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Abstract: Proposed and investigated are four impartial combinatorial
games: Empty & Transfer, Empty-All-But-One, Empty & Redistribute, and En-
tropy Reduction. These games involve discarding chips from some boxes and
transferring chips from one box to another. Empty & Transfer and Entropy Re-
duction are solved only for a small number of boxes. Empty-All-But-One, Empty
and Redistribute and Entropy Reduction are solved in both normal and misère
forms. The Sprague-Grundy function for Empty & Transfer is found in the two
box case.
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1. Introduction.

Four related impartial combinatorial games are investigated. The first game is called
Empty & Transfer. Given k boxes each containing at least one chip, a move consists of
emptying a box and transferring to it at least one chip, but not all chips, from one of
the other boxes. Players move alternately and play continues until no more moves are
possible. Under the normal ending rule, the last player to move wins; under the misère
rule, the last player to move loses. The normal form of this game is solved for k ≤ 4.
For k = 2, the Sprague-Grundy function is found. The second game is called Empty-All-
But-One. A move consists of emptying all but one of the boxes and transferring chips
from the remaining box so that there is at least one chip in each box. The third game is
called Empty & Redistribute. A move empties only one box but the chips in the remaining
boxes may be redistributed among all boxes in an arbitrary manner. These two games are
solved for arbitrary k in both normal and misère forms. The last game is called Entropy
Reduction. Two boxes are chosen and made more nearly equal in size by transferring chips
from one box to the other. This game is solved for k = 3 in both the normal and the
misère versions.

Solving these games involves the standard procedure of finding the P-positions and
N-positions. A position is a P-position if the Previous player (the one who just moved) can
win with optimal play. It is an N-position if the Next player to move can win with optimal
play. We use P to denote the set of P-positions, N = Pc to denote the set of N-positions
and T to denote the set of terminal positions. After conjecturing a set P to be the set
of P-positions, one checks whether the conjecture is true by checking the following three
conditions.

1. For normal play, T ⊂ P . For misère play, T ⊂ N .
2. For any position p ∈ P and for any position q that can be reached from

p in one move, we have q ∈ N .
3. For any position p ∈ N that is not terminal, there exists a move to a

position q ∈ P .
There are various related problems in the literature, many of which are described in the

basic book on combinatorial games by Berlekamp, Conway and Guy (1982). A related chip
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transfer game, called Fulves’s Merger, is described in Guy (1995) (see unsolved problem
#38). In this game, any number of chips (possibly all) may be transferred from one box to
another box whose size is at least as great as the original box. The player who first makes
all boxes contain an even number of chips is the winner. (The total number of chips is
assumed even.)

In general, games of this sort, in which the sizes of two or more boxes may change
simultaneously in one move, may not be written as a disjunctive sum of games. Examples
are Moore’s Nimk in which as many chips as desired may be removed from up to k boxes
(see, for example, Jenkens and Mayberry (1980)), Matrix Nimk of Holladay (1958), and
Wythoff’s Nim (see, for example, Fraenkel and Lorberbom (1995)).

Another example may be found in the games Trim and Rim of Jim Flanigan (1980).
Since this interesting paper is unpublished, I mention the rules of these games. However,
I leave it to the reader to discover their secret which involves the notion of trim-sum
(addition without carry in base 3) and rimk -sum. In Trim, a player may remove any
positive number, x , of chips from any box, and also, if desired, he may remove exactly y
chips from another box, provided y is a power of three and y > x/2. Rimk for k ≥ 2 is a
generalization of Nim and Trim, with Rim2 = Nim and Rim3 = Trim. In Rimk , a player
may remove any positive number, x , of chips from any box, and also he has the option,
that may be exercised up to k − 2 times in any one move, of removing precisely y chips
from any box (including the box from which the x chips were taken, and possibly using
the same box more than once), provided y is a power of k and y > x/2. Flanigan uses as
an illustration the game of Rim5 played with just 5 boxes of sizes 71, 135, 138, 176, and
252. One winning move for the first player is to remove 62 chips from the box of size 71,
and 50 chips from the box of size 176. This is effected by setting x = 37 taken from the
first box and then exercising the option three times with y = 25, once from the first box
and twice from the fourth box.

There are many unsolved problems in connection with the Chip Transfer games.
Empty & Transfer has been solved only for k ≤ 4. Can one find simple solutions for
any k ≥ 5? Similarly, no simple description of the solution of the misére version of Empty
& Transfer has been found for any k ≥ 3. Entropy Reduction has only been solved for
k ≤ 3. Moreover, the Sprague-Grundy function has not been found for any of these games
for any k ≥ 3. It might also be interesting to find suspense and remoteness numbers for
these games.

There are many possible generalizations of these games that are worth investigating.
However, the most promising of these seems to be one suggested by a referee that bridges
Empty-All-But-One and Empty & Redistribute. It is played with k nonempty boxes, and
a move consists in emptying j boxes (where j < k is a fixed number) and redistributing
the rest so that no box is empty. A similar game, in which the mover may select the
number j of boxes to empty, is easy and is described in Section 4.

2. Empty & Transfer.

Rules: There are k ≥ 2 boxes each containing a positive integer number of chips.
A move of the game consists of emptying one of the boxes, selecting another box and
transferring some but not all of the chips from it into the empty box. Last player to move
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wins.
There is a unique terminal position, namely T = {(1, 1, . . . , 1)} . It seems difficult to

solve this game for general k , but we have one general result.

Proposition 1. Let O denote the set of positions (n1, . . . , nk) such that all ni are odd.
Then O ⊂ P .

Proof. Clearly T ⊂ O . Any move from a position in which all of the components are
odd must be to a position of the form with exactly one even component. But we may
immediately put this position back into O by emptying any odd box and putting one chip
from the even box into it.

Proposition 2. Any position with exactly one or two even components is an N-position.

Proof. Consider such a position. If it has two even components, empty one of them; if
it has one even component then empty an odd component. In either case, place one chip
from the remaining even component in the empty box. This leaves a position with all odd
components, which is a P-position by Proposition 1.

As a corollary, we note that we have solved the case k = 2. In this case we have
P = O , since positions with all components odd are P by Proposition 1, and the rest of
the positions are N by Proposition 2.

For k = 2 we can find the Sprague-Grundy function. This can be used to solve a sum
of such games.

Proposition 3. For k = 2 , the Sprague-Grundy function, g(x, y) , may be found induc-
tively as

g(x, y) = 0 if both x and y are odd

g(2x, 2y) = g(2x, 2y − 1) = g(2x − 1, 2y) = 1 + g(x, y).

For example, the SG-value of the position (31, 54) is g(31, 54) = 1 + g(16, 27) =
2 + g(8, 14) = 3 + g(4, 7) = 4 + g(2, 4) = 5 + g(1, 2) = 6 + g(1, 1) = 6.

Another method of computing the Sprague-Grundy value is useful for thinking about
the proof of Proposition 3. Expand x and y in binary: x = (· · · x2x1x0)2 and y =
(· · · y2y1y0)2 . Find the smallest j such that not both xj = 0 and yj = 0. If both xj = 1
and yj = 1, then g(x, y) = j ; otherwise, add 2j to x if xj = 1 and add it to y if yj = 1.
This does not change the g value of the pair. Now apply the same process again to obtain
a larger j , and continue this process until xj = yj = 1. Then g(x, y) = j . We illustrate
this method on the same example.

{31 = (011111)2
54 = (110110)2

→
{32 = (100000)2
54 = (110110)2

→
{32 = (100000)2
56 = (111000)2

→
{32 = (0100000)2
64 = (1000000)2

→
{64 = (1000000)2
64 = (1000000)2

.

Thus g(x, y) = 6, since the 1’s occur in the sixth column from the right starting the
counting at 0. From this method for computing g , we immediately see that if g(x, y) = n ,
then g(u, v) = n for all (u, v) such that u ≡ x (mod 2n+1) and v ≡ y (mod 2n+1).

To prove proposition 3, we use three lemmas.
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Lemma 1. Suppose g(u, v) = n . Then a = u (mod 2n+1) and b = v (mod 2n+1) satisfy

1 ≤ a ≤ 2n 1 ≤ b ≤ 2n and 2n + 1 ≤ a+ b ≤ 2n+1.

Proof. By induction: The result is true for n = 0, since g(u, v) = 0 means that both u
and v are odd, so that a = b = 1.

Now suppose the result is true for n − 1. If g(u, v) = n , then u = 2x or u = 2x − 1
for some (x, y) such that g(x, y) = n− 1. By the induction hypothesis, a = x (mod 2n),
b = y (mod 2n) satisfy 1 ≤ a ≤ 2n−1 and 1 ≤ b ≤ 2n−1 . Hence if c = u (mod 2n+1),
then c = 2a or c = 2a − 1, so that 1 ≤ c ≤ 2n . Similarly if d = v (mod 2n+1), then
d = 2b or d = 2b − 1. In addition, a + b = 2(c + d) or u + v = 2(c + d) − 1, so that
2n + 1 ≤ a + b ≤ 2n+1 .

Lemma 2. For every x such that 2n + 1 ≤ x ≤ 2n+1 , there exists (u, v) such that
g(u, v) = n and u+ v ≡ x (mod 2n+1) .

Proof. In fact, we have g(u, v) = n for u = 2n and any v such that 1 ≤ v ≤ 2n as is
easily seen by the binary computation method.

Lemma 3. If j is such that both 1 ≤ x (mod 2j+1) ≤ 2j and 1 ≤ y (mod 2j+1) ≤ 2j ,
then g(x, y) ≤ j .

Proof. Consider the binary expansion, x = (· · ·x2x1x0)2 and y = (· · · y2y1y0)2 . If
xj = 1 (similarly yj = 1), then, since xi = 0 for i < j , the binary method of computing
g shows that g(x, y) = j . Now suppose that xj = yj = 0. Now the binary method may
stop before it changes xj or yj to 1, in which case g(x, y) < j . Otherwise, if xj (similarly
yj ) changes to 1, then all xi = 0 for i < j , so that again the binary method shows that
g(x, y) = j . In all cases, g(x, y) ≤ j .
Proof of Proposition 3. Let n ≥ 0 and assume that g(u, v) = n . We must show (1)
for all j < n , there is a move from (u, v) into some point (x, y) such that g(x, y) = j ,
and (2) there is no move from (u, v) into any (x, y) such that g(x, y) = n .

(1) Suppose that j < n . Let a = u (mod 2j+1) and b = v (mod 2j+1). First note
that we cannot have both 1 ≤ a ≤ 2j and 1 ≤ b ≤ 2j , because Lemma 3 would imply
that g(u, v) ≤ j , contradicting g(u, v) = n . So we have at least one of a and b is either
0 or greater than 2j (but less than 2j+1 ). Suppose it is a . Then by Lemma 2, the move
(u, v) into (x, y) = (u − 2j , 2j) has g(x, y) = j .

(2) Now let a = u (mod 2n+1) and b = v (mod 2n+1). By Lemma 1, we have
1 ≤ a ≤ 2n and 1 ≤ b ≤ 2n . But any move of (u, v) into (x, y) has either x + y ≡ u
(mod 2n+1) or x + y ≡ v (mod 2n+1), and in either case we would have 1 ≤ x + y
(mod 2n+1) ≤ 2n , and, by Lemma 1 again, we would not have g(x, y) = n . .

We can also solve completely the cases k = 3 and k = 4.

Proposition 4. In the three box case, P = ∪∞
0 Pj , where

Pj = {(n1, n2, n3) : for all i , ni = 2jmi for some odd number mi }.

Proof. 1. The terminal position is in P .
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2. If n = (n1, n2, n3) ∈ Pj , then emptying one box and transfering chips to it from
another will leave 2j times an odd number in the remaining box, but there is no way to
write 2jm for m odd as a sum of two numbers of this form. Thus, no move from Pj can
be in P .

3. If n �∈ P , then for each i find ji such that ni = 2jimi for mi odd. Suppose
without loss of generality that j1 ≤ j2 ≤ j3 . Then j1 < j3 since n �∈ P . Therefore we
may empty box 2, and put 2j1 chips from box 3 into box 2. The resulting position is in
Pj1 ⊂ P .

We now treat the 4 box case. All P-positions may be found using the following two
propositions. These propositions are not valid for a larger number of boxes.

Proposition 5. (a, b, c, d) ∈ P if, and only if, (2a, 2b, 2c, 2d) ∈ P .

Proof. If the result is not true, there exists a smallest counterexample in the sense
that the sum a + b + c + d is smallest. Take such a counterexample and suppose first
that (a, b, c, d) ∈ P and (2a, 2b, 2c, 2d) ∈ N . Then (2a, 2b, 2c, 2d) can be moved into P .
Suppose without loss of generality, that it is moved to (x, y, 2c, 2d) ∈ P where x+y = 2a .
By Proposition 2, not both x and y can be odd. Hence both x and y are even and
we can write x = 2u and y = 2v . But (u, v, c, d) ∈ N since it can be reached in one
move from (a, b, c, d) ∈ P . Then (u, v, c, d) ∈ N and (2u, 2v, 2c, 2d) ∈ P gives a smaller
counterexample.

Now suppose the smallest counterexample has (a, b, c, d) ∈ N and (2a, 2b, 2c, 2d)
∈ P . There must be a move putting (a, b, c, d) into P , say to (a′, b′, c′, d′) ∈ P . But
the same move (using twice as many chips everywhere) puts (2a, 2b, 2c, 2d) ∈ P to
(2a′, 2b′, 2c′, 2d′) ∈ N . This also gives a smaller counterexample.

Proposition 6. (a, b, c, d) ∈ P if, and only if, (2a, 2b, 2c, 2d − 1) ∈ P .

Proof. If the result is not true, there exists a counterexample with smallest sum a+ b+
c+d . First suppose such a counterexample has (a, b, c, d) ∈ P and (2a, 2b, 2c, 2d−1) ∈ N .
There exists a move from (2a, 2b, 2c, 2d−1) into P . This move cannot empty the box with
an odd number of chips, because the same move could get rid of 2d from (2a, 2b, 2c, 2d),
which from Proposition 5 is in P . Therefore there must be an odd number of chips left
after the move, so we may suppose that the move is to a point (2r, 2s, 2t, 2u−1) ∈ P . But
then (a, b, c, d) ∈ P into (r, s, t, u) ∈ N is a legal move. This gives a counterexample with
a smaller sum.

Now suppose the smallest counterexample has (a, b, c, d) ∈ N and (2a, 2b, 2c, 2d−1) ∈
P . Then there exists a move from (a, b, c, d) to P . If such a move empties the box
of d chips, the corresponding move from (2a, 2b, 2c, 2d − 1) with twice as many chips,
gives a counterexample to Proposition 5. Similarly, if one of a , b or c , say a , was
removed and then b or c was redistributed, the corresponding move would be available
from (2a, 2b, 2c, 2d−1) with twice as many chips, giving a smaller counterexample. Finally,
if one of a , b or c , say a , was removed and then d was redistributed, The corresponding
move from (2a, 2b, 2c, 2d−1), with one less chip in one of the cells to which the d was moved
gives a smaller counterexample. Thus in every case there is a smaller counterexample.

From these propositions, it is easy to determine the outcome of an arbitrary position.
Given a position (a, b, c, d), we may repeatedly divide by 2 until there is at least one odd
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number without changing the outcome (Proposition 5). If there are then 4 odd numbers,
the position is a P-position (Proposition 1). If there are 3 or 2 odd numbers, the position
is an N-position (Proposition 2). If there is exactly one odd number, then adding 1 to it
does not change the outcome (Propositions 5 and 6), but then all numbers are even and
the method may be repeated until the outcome is resolved.

An optimal move from an N-position may also be found easily. Let g(a, b, c, d) denote
the number of divisions by 2 in the above algorithm, similar to the SG-function for the
case k = 2. If the algorithm ends with 3 odd numbers, then empty any of the 3 boxes
that led to an odd number and transfer 2g(a,b,c,d) chips to it from the box that led to the
even number. If the algorithm ends with 2 odd numbers, then empty either of the boxes
that led to an even number and transfer 2g(a,b,c,d) chips to it from the other box that led
to an even number. The maximum number of arithmetic operations needed to carry out
these computations is linear in the logarithm of the maximum number of chips in a box.

It is surprising that the same type of numerical operations involved in finding the
Sprague-Grundy values of the game for k = 2 are used for k = 4 to find the outcome.

3. Empty-All-But-One.

Rules: There are k boxes each containing a positive integer number of chips. A move
of the game consists of emptying k − 1 of the boxes and redistributing the contents of the
remaining box among all the boxes in such a way that there is at least one chip in each
box. Note that for k = 2, Empty-All-But-One is the same as Empty & Transfer, and so
the normal form of it has been solved in Section 2.

The terminal positions are those in which all coordinates are positive and less than
k :

T = {n = (n1, . . . , nk) : 1 ≤ ni ≤ k − 1 for i = 1, . . . , k}.
Proposition 7. The set of P-positions is

P = {n = (n1, . . . , nk) : 1 ≤ ni (mod k(k − 1)) < k for i = 1, . . . , k}.

Proof. 1. Clearly all terminal positions are in P .
2. If n ∈ P is moved to m = (m1 . . . ,mk), where m1 + · · · +mk = ni for some i ,

then it cannot be true that we have 1 ≤ mj (mod k(k − 1)) < k for all j , because then
ni = m1+ · · ·+mk would be between k and k(k−1) (mod k(k−1)) contradicting n ∈ P .
Thus m �∈ P .

3. If n �∈ P , then for some i we have ni (mod k(k − 1)) is between k and k(k − 1).
Any such ni may be written as a sum m1 + · · · +mk where all mj (mod k(k − 1)) are
between 1 and k . Therefore there exists a move of n into m ∈ P .

We may also solve the misère version of the game for general k . In the misère version
of the game, the terminal positions are N-positions.

Proposition 7(misère). Let q = (k−1)(2k−1) . The set P of P-positions for the misère
version of Empty-All-But-One consists of those positions n = (n1, . . . , nk) such that for
all i , either (1) 1 ≤ ni ≤ k − 1 , or (2) k ≤ ni (mod q) ≤ 2k − 2 , but not all ni < k .

P = {(n1, . . . , nk)) : for all i , either 1 ≤ ni ≤ k − 1 or k ≤ ni (mod q) ≤ 2k − 2} − T .
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Proof. 1. None of the terminal positions is in P , since we have excluded the case of all
ni < k .

2. Suppose n ∈ P is moved to m = (m1, . . . ,mk), where m1 + · · · + mk = ni

for some i . Then ni must satisfy k ≤ ni (mod q) ≤ 2k − 2. But the sum modulo
q of the coordinates of any P-position is at least (k − 1) + k = 2k − 1 and at most
k(2k−2) = 2k(k−1) = k−1 modulo q . That is, no P-position has the sum of coordinates
between k and 2k − 2 modulo q . Thus m is not in P .

3. If n is not in P and is not terminal, then it has at least one coordinate ni > k− 1
such that ni (mod q) is not between k and 2k − 2. But we can achieve any number
between (k − 1) + k and k(2k − 2) as a sum of k numbers between 1 and 2k − 2 with at
least one of them at least k . Hence, we may empty all but box i , and distribute these ni

chips in all boxes so that the resulting position lies in P .
The proofs of these propositions are constructive and indicate how to find a P-position

from a given N-position in a number of operations that is linear in k .

4. Empty & Redistribute.

Rules: There are k boxes, each containing a positive number of chips. A move in the
game consists of two parts. First, one of the boxes is chosen and all chips are removed from
it and discarded. Second, the chips remaining in the other k − 1 boxes are redistributed
among the k boxes in such a way that there is at least one chip in each box. Players
alternate moves and the last player to move wins.

For k = 2, this game is the same as Empty & Transfer and Empty-All-But-One.
We solve this game for arbitrary k ≥ 2. A position in this game may be represented by
a k -tuple, x = (x1, x2, . . . , xk) where xi , for each i = 1, 2, . . . , k , is a positive integer
representing the number of chips in the ith box. We denote the set of all positions by Xk .
We denote the sum of the coordinates of x by |x| = x1 + x2 + · · · + xk and refer to |x|
as the norm of x . Since the ordering of the boxes makes no difference, we may assume
that x1 ≤ x2 ≤ . . . ≤ xk in this representation. We also use the multiplicative notation to
represent positions, with a power indicating the number of times a particular coordinate
value occurs. Thus, 132 325 represents the position (1, 1, 1, 2, 3, 3, 5) ∈ X7 . There is a
unique terminal position, namely 1k = (1, 1, . . . , 1).

This game has a feature that enables one to play it optimally without knowing all the
P-positions. (This is fortunate because it is difficult to describe all P-positions explicitly.
This is illustrated in the case k = 7 after the proof of the main result). In fact, one only
needs to know the set, called S(k) below, of positive integers that are achievable as norms
of P-positions. Then a position, x , is an N-position if there is at least one coordinate, xi ,
such that |x| − xi ∈ S(k), and otherwise x is a P-position. Below we describe S(k) and
give for each n ∈ S(k) a P-position of the simple form x(n) = vk−1z for some integers v
and z . Then an optimal move at an N-position, x , is to find a coordinate xi such that
n = |x| − xi ∈ S(k) (if none exists, then x is an P-position), and to discard xi and to
redistribute the remaining chips into x(n).

The idea behind this solution can be illustrated in the much simpler game called
Selective-Empty & Redistribute. In this game, a move consists of emptying any number j ,
1 ≤ j ≤ k − 1, of boxes and redistributing the contents of the remaining boxes arbitrarily
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among the k boxes so that no box is empty. Here, the set, S(k), of norms of P-positions has
the simple form S(k) = {n ≥ k : n = 0 (mod k)} . Define for each n ∈ S(k), x(n) = 1k−1z
where z = n − (k − 1). To show that S(k) is the set of integers achievable as norms of
P-positions, and that each x(n) ∈ P , it is sufficient to show (1) T ⊂ {x(n) : n ∈ S(k)} ,
(2) no x(n) with norm in S(k) can be moved to a position with norm in S(k), and (3)
every position with norm not in S(k) can be moved into some x(n). (1) follows since
T = {x(k)} . (2) follows since the only moves from x(n) are to empty some number j of
the boxes containing 1 chip. Since 1 ≤ j ≤ k−1, this changes the modulus of the norm to
a non-zero value. Finally, to show (3), we must show that for any integers x1, x2, . . . , xk

there is a nonempty subset of them whose sum is 0 (mod k). This is a well-known result;
see, for example Roberts (1984), Exercise 8.1.26. (In fact, from this exercise, we can see
that the same result and solution holds if the boxes are ordered and it is required that the
boxes to be emptied are consecutive.) Note that there are P-positions with norm in S(k)
other than the x(n). For example, when k is odd, 2k is a P-position.

In the game Empty & Redistribute, the structure of the solution depends on an integer
function of k defined as follows.

f(k) = min{j ≥ 1 : k − 1 is not divisible by j + 1}.

Note that f(k) = 1 if and only if k is even, and for example f(7) = 3 and f(61) = 6.
There is no k such that f(k) = 5.

We describe the set S(k) by describing the complement set R(k). Define the sets
Rj(k) for j = 1, . . . , f(k) as follows.

Rj(k) =
{
{n : jk ≤ n < (j + 1)k and n = j(k − 1) (mod (j + 1))} if j < f(k)
{n : n ≥ kf(k) and n = f(k)(k − 1) (mod (f(k) + 1))} if j = f(k)

For example, R1(6) = {7, 9, 11, . . .} and R2(7) = {15, 18} . Then define

R(k) = ∪f(k)
j=1 Rj(k) and S(k) = {k, k + 1, k + 2, . . .} −R(k).

For example, R(7) = {8, 10, 12} ∪ {15, 18} ∪ {22, 26, 30, . . .} .
A useful property of f(k) is expressed in the following lemma.

Lemma 4. If j ≤ f(k) , then (k − 1)j �∈ S(k) .

Proof. If j ≤ f(k), then (k − 1) is divisible by j . The largest element of Rj−1(k) is
(j − 1)(k − 1) + j(k − 1)/j = (k − 1)j . Thus, (k − 1)j is in Rj−1(k), and hence is not in
S(k).

For each n ∈ S(k), we associate a position, x(n) as follows. If n < f(k)k , find j
such that jk ≤ n < (j + 1)k ; otherwise (if n ≥ f(k)k ), let j = f(k). Then 1 ≤ j ≤ f(k).
Now let v = n− j(k− 1) (mod (j+1)), 0 ≤ v ≤ j . Note that since n ∈ S(k), then v �= 0
because n = j(K − 1) (mod (j+1)) ∈ Rj(k) and so has been excluded from S(k). Thus,
1 ≤ v ≤ j . Now define x(n) as

x(n) = vk−1z where z = n − (k − 1)v.
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As an example, suppose k = 7; then f(k) = 3 and S(k) = {7, 9, 11, 13, 14, 16, 17, 19,
20, 21, 23, 24, 25, 27, 28, 29, . . .} . For n = 7, we have j = 1, v = 7 − 7 − 1 (mod 2) = 1
and z = 1, so x(7) = 161 = 17 , the terminal position. For n = 16, we have j = 2, v = 1
and z = 10, so x(16) = 1610. Similarly, x(28) = 2616.

General Strategy. Given an N-position, x , find a component xi such that n = |x|−xi ∈
S(k). (If no such xi exists, x is a P-position.) Remove xi chips and move to x(n).

The number of arithmetic operations required is linear in k : k additions to find the
norm of x , plus many fewer than k to find f(k), plus k divisions to find a move from an
N-position. The main result is that this general strategy always works.

Proposition 8. For all n ∈ S(k) , x(n) is a P-position. Every position x of norm
n ∈ R(k) is an N-position. The proof is constructive and indicates how a P-position may
be found from a given N-position in a number of operations that is linear in k .

Proof. It is sufficient to show that any move from a position reached by the strategy
can be reversed by a move back into one of these positions. Then eventually the strategy
will move into the terminal position, x(k). We first show that every move from one of
the positions x(n) must be to a position with norm in R(k). Then we show that every
position with norm in R(k) can be moved into a position with norm in S(k) and hence
into one of the x(n).

Suppose n ∈ S(k). From any position of the form x(n) = vk−1z there are only two
types of moves, one removing v chips and the other removing z chips. Removing z chips
leads to a position with norm (k − 1)v . Since all positions x(n) with n ∈ S(k) are of
this form with 1 ≤ v ≤ f(k), Lemma 4 shows that the resulting position has norm in
R(k). Suppose therefore that v chips are removed from x(n) = vk−1z where z > v . If
n > f(k)k , then n is of the form n = kf(k) + 1 + m(f(k) + 1) + v , with m ≥ 0 and
1 ≤ v ≤ f(k). Removing v chips leaves f(k)(k − 1) + (f(k) + 1)(m + 1) chips which is
not in S(k). Similarly for n < f(k)k : Find j such that jk < n < (j +1)k and write n in
the form n = jk + 1+m(j + 1)+ v with 0 ≤ m ≤ (k − 1)/(j + 1) and 1 ≤ v ≤ j < f(k).
Removing v chips leaves j(k − 1) + (j + 1)(m+ 1) chips which is not in S(k).

Now suppose n = |x| �∈ S(k). If n > f(k)k , then n ∈ Rf(k)(k) is of the form
n = f(k)k + v where v = 1 (mod (f(k) + 1)). If any of the components of x is one of

{x : 1 ≤ x ≤ v and x �= 0 (mod (f(k) + 1))},

then removal of such a component reduces the norm to a value in S(k). On the other
hand, if x contains only components of sizes not in the above list, namely

{x : 1 ≤ x ≤ v and x = 0 (mod (f(k) + 1))} ∪ {x : x > v},

then the smallest norm such an x can have occurs when k − 1 of the components are
f(k)+1 and the last component is at least v+1 since the norm of x cannot be a multiple
of f(k) + 1. That is n ≥ (k− 1)(f(k) + 1) + v+1 = n+ k− f(k) > n . This contradiction
shows that such x do not exist. The same argument works for x with norm n ∈ R(k)
satisfying n < f(k)k . Find j < f(k) such that jk < n < (j + 1)k ; then n = jk + v
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where v = 1 (mod j+1). Then x can be moved directly to S(k) if x has any component
in {x : 1 ≤ x ≤ v and x �= 0 (mod (j + 1))} and otherwise its norm n is at least
(k − 1)(j + 1) + v + 1 = n − j + k > n .

Using this result, one may find all P-positions. A position, x , with norm n is a P-
position if and only if for every component xi of x we have n − xi ∈ R(k). It is easy to
see that for even values of k , the set of P-positions is the set of all positions with an odd
number of chips in each box. For other values of k , the description is not so easy.

As an example, we give without proof the set of P-positions for k = 7. These positions
can conveniently be grouped into four classes. There is an initial class, P1 , of exceptions
consisting of positions whose sum is less than 21, and then things settle down into one of
three classes distinguished by the sum modulo 4. These three general classes are

P2 = {x = (x1 , . . . , x7) : xi = 3 (mod 4) for all i}
P3 = {x = 26z : z = 0 (mod 4) and z ≥ 8}
P4 = {x = (x1 , . . . , x7) : xi = 1 (mod 4) for all i and

∑
xi ≥ 23}

− {159z} − {1452z}

For example, the class P4 consists of all 7-tuples of positive integers equal to 1 (mod 4)
whose sum is at least 23, except for those 7-tuples that contain five 1’s and a 9, and those
that contain four 1’s and two 5’s. The positions in class P2 have sum equal to 1 (mod 4),
those in class P3 have sum equal to 0 (mod 4), and those in P4 have sum equal to 3
(mod 4).

The class P1 of exceptions may be classified by the sum of the components. They
are:

sum
7 17

9 163
11 165 1532

13 167 153 5 1433

14 27

16 1610 1443

17 265
19 1613 1572 14427 1344

20 2552

The set of P-positions is the union of these four classes, P = P1 ∪ P2 ∪ P3 ∪ P4 .

The misère version of this game can also be solved. Unlike what usually turns out
to be the case, the misère version is somewhat simpler than the normal version. The
function corresponding to the function f(k) above takes on only three values, allowing
us to consider just three cases. We state the result separately for the three cases without
proof.

Proposition 8(misère). (1) If k is odd, the set of P-positions is P = {1k−1z : z even} .
(2) Suppose k = 0 (mod 6) or k = 2 (mod 6) .

10



For n odd, k < n < 2k , let x(n) = 1k−1z .
For n ≥ 2k , n − 2k = 0 (mod 3) , let x(n) = 2k−1z .
For n ≥ 2k , n − 2k = 2 (mod 3) , let x(n) = 1k−1z .

All such x(n) are P-positions. For all other n , positions x with |x| = n are N-positions.
(3) Suppose k = 4 (mod 6) .

For n odd, k < n < 2k , let x(n) = 1k−1z .
For 2k ≤ n < 3k , n − 2k = 0 (mod 3) , let x(n) = 2k−1z .
For 2k ≤ n < 3k , n − 2k = 2 (mod 3) , let x(n) = 1k−1z .
For n ≥ 3k , n − 3k = 0 (mod 4) , let x(n) = 3k−1z .
For n ≥ 3k , n − 3k = 3 (mod 4) , let x(n) = 2k−1z .
For n ≥ 3k , n − 3k = 2 (mod 4) , let x(n) = 1k−1z .

All such x(n) are P-positions. For all other n , positions x with |x| = n are N-positions.

As an example, suppose k = 10 and x = 35427 11 29. Then n = |x| = 70. Since
70 ≥ 3k = 30, and n − 3k = 0 (mod 4), we may not remove a component of size 3
(mod 4) because the resulting n−3k would be equal to 1 (mod 4). Thus the two optimal
moves according to Proposition 8(misère) are: Empty a box of 4 chips and move to 3939,
or empty the box of 29 chips and move to 2923.

5. Entropy Reduction.

Rules: There are k boxes of chips. A legal move consists of transferring chips from
one box to another in such a way as to reduce the entropy. That is, a move is to take chips
from one box and put them in another provided the boxes are made more nearly equal in
size. That the game eventually ends follows by noticing that each move reduces the sum
of squares or the sum of the absolute differences by at least 2. Last to move wins.

A position may be taken as a k -tuple of integers. Clearly the position is not changed
if we add the same number of chips to each box. We may even allow initial positions with a
negative number of chips in a box. The terminal positions are those in which the numbers
of chips in all the boxes differ by at most 1. We restrict attention to the case of three
boxes.

Proposition 9. When k = 3 , the P-positions are triplets of the form (x, x, y) , where
x = y or where |x − y| in its binary representation ends in an even number of zeros, or
equivalently, where x = y or |x−y| may be written in the form 4nm for some nonnegative
integer n and some odd integer m .

Proof. 1. The terminal positions are of the form (x, x, x) and (x, x, x ± 1). These are
clearly of the proper form with x = y or |x − y| = 1, and so are in P .

2. Suppose (x, x, y) ∈ P . If x = y , the position is terminal. Otherwise, the only move
back to a position with two equal coordinates occurs by moving to make y and one of the
x equal, namely to (x, u, u) where u = (x + y)/2. Then since x �= y and |x − y| = 4nm
for m odd, we have |x− u| = |x− y|/2 which is not of the form 4n times an odd number.
Thus, (x, u, u) ∈ N .

3. If (x, x, y) ∈ N , then |x− y| = 4n2m with m odd, and we can move (x, x, y) into
(x, u, u) with u = (x + y)/2. But |x − u| = |x − y|/2 = 4nm and so (x, u, u) ∈ P . So
assume (x, y, z) ∈ N with x > y > z . We may move chips from the x box into the z box
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until one of the boxes is of size y . If this moves (x, y, z) into (u, y, y) or (y, y, u) with
u = y or |u − y| = 4nm with m odd, we are done since the resulting position is in P . If
not, that is if |u−y| = 4n2m with m odd, we continue moving chips from the first box into
the third until we arrive at (v, y, v) where v = (u+y)/2. Then |v−y| = |u−y|/2 = 4nm ,
so that (v, y, v) ∈ P .

It is interesting to note that for a given (x, y, z) ∈ N , there always exists a move to
P by moving chips from the largest box into the smallest.

We can also solve the misère version of the game. The set of P-positions is more
complex and it is advantageous to simplify the notation. The outcome of a position
(x, y, z) is invariant under permutation of the pile sizes (i.e. changing to (y, z, x)), and
under subtraction of a constant from each of the piles (i.e. changing to (x − u, y − u, z −
u). Therefore we may simplify the notation by writing (x, y, z) in nonincreasing order,
normalizing so that the third coordinate is 0, and then dropping the third coordinate
from the notation. Thus (5, 2) represents any position of the form (u + 5, u + 2, u),
(u + 2, u, u + 5), etc. In addition the outcome is invariant under negation (i.e. changing
(x, y, z) to (u − x, u − y, u − z)). Thus (5, 3) and (5, 2) must have the same outcome;
similarly (x, 0) and (x, x) have the same outcome. Although we do not take advantage of
this in the notation, taking note of it will simplify the proof.

Proposition 9(misère). For the misère version of the entropy game with k = 3 , the
P-positions are P = P1 ∪ P2 ∪ P3 , where

P1 = {(2, 0), (2, 1), (2, 2), (5, 2), (5, 3)}
P2 = {(x, 0), (x, x) : x = 4n2m for m = 3 or 7}
P3 = {(x, 0), (x, x) : x = 4nm for m odd, m �= 3 or 7, and when n ≤ 1, m �= 1}

Proof. 1. The terminal positions are (0, 0), (1, 0) and (1, 1) and are not in P .
2. It is easy to check that the five elements of P1 cannot move to elements of P . Now

suppose (x, 0) ∈ P2 with x = 4n2m , m = 3 or 7. The only moves are to (x − u, u). This
cannot be in P1 because the sum x is a multiple of 6 or 14. It can be in P2 ∪ P3 only if
x − u = u ; that is, only at (x/2, x/2). But x/2 is of the form 4nm with m = 3 or 7 and
so can be in neither P2 nor P3 . By symmetry, (x, x) ∈ P2 cannot move to P . Finally,
suppose (x, 0) ∈ P3 with x = 4nm , m odd. ((x, x) ∈ P3 may be treated by symmetry.)
The only moves are to (x−u, u). This cannot be in P1 because m = 3 and m = 7, as well
as n = 1, m = 1 have been excluded from P3 . It can be in P2 ∪ P3 only at (x/2, x/2).
But this can occur only if n > 0 and x has the form 4n−12m , m odd. This cannot be in
P3 , nor can it be in P2 since m = 3 and m = 7 have been excluded from P3 .

3. Now suppose (x, y) �∈ P . We must show that if (x, y) is not terminal, it can be
moved to P . First suppose (x, y) is of the form (x, 0) (or symmetrically (x, x)). Then
x must be equal to 1, 4, 4nm for n > 1 and m = 3 or 7, or 4n2m for m odd m �= 3
or 7. Take them in order. (1, 0) is terminal. (4, 0) can be moved to (2, 2) ∈ P1 . (x, 0)
for x = 4nm with n > 1 and m = 3 or 7 can be moved to (x/2, x/2) ∈ P2 since
x/2 = 4n−12m with m = 3 or 7, which is in P2 . (x, 0) for x = 4n2m with m �= 3 or
7 can be moved to (4nm, 4nm), which is in P3 except when m = 1 and n = 0 or 1; in
which case (2, 0) is initially in P1 and (8, 0) can be moved to (5, 3).
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The remaining cases to be considered are all those (x, y) with x > y > 0, except for
(2, 1), (5, 2) and (5, 3). We may without loss of generality assume y ≥ x/2. There are two
main cases. First suppose that x is odd. Then transferring x− y chips from the first box
to the third moves to the position (2y − x, 2y − x). This is of the form 4nm with n = 0
m odd, and so is in P3 provided m �= 1, m �= 3 and m �= 7. If m = 1, the move was to
(1, 1) and by transferring two chips less you could have moved to (5, 3) ∈ P1 , unless you
started at (x, y) = (3, 2), in which case you could move to (2, 0) ∈ P1 . If m = 3, the move
was to (3, 3) and by transferring one more chip you could have moved to (2, 1) ∈ P1 . If
m = 7, the move was to (7, 7) and by transferring two more chips you could have moved
to (5, 3) ∈ P1 .

Now suppose x is even. Transferring x−y chips from the first box to the third moves
to the position (2y − x, 2y − x), and transferring x/2 chips from the first to the third
leads to (y− (x/2), 0). Since x is even, 2y−x is either of the form 4nm with m odd and
n ≥ 1, or of the form 4n2m with m odd n ≥ 0. If y− 2x = 4nm with m odd and n ≥ 1,
then (2y − x, 2y − x) ∈ P3 unless m = 3 or m = 7, in which case (y − (x/2), 0) ∈ P2 ; or
m = 1 and n = 1, in which case (y − (x/2), 0) = (2, 0) ∈ P1 . Finally if 2y − x = 4n2m
with m odd and n ≥ 0, then (2y − x, 2y − x) ∈ P2 if m = 3 or m = 7; if m �= 3 or
7, then (y − (x/2), 0) ∈ P3 unless m = 1 and n = 0 or 1, that is y − 2x = 2 or 8. If
n = 0, then (y − 2x, y − 2x) = (2, 2) ∈ P1 , and if n = 1 then (2y − x, 2y − x) = (8, 8),
and transferring 3 more chips would end up at (5, 3) ∈ P1 .

The proofs are constructive. One can see that the number of arithmetic operations
needed to find the outcome and an optimal move from a given N-position is linear in the
logarithm of the maximum difference of the box sizes.
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