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Abstract: A theorem of Rao and Shanbhag, characterizing the exponential and the
geometric distributions as the only distributions of independentX and Y for which X−Y
is independent of {min{X,Y } ≤ u} for some suitable values of u, is discussed and a
generalization to many variables is explored.
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1. Introduction. The main purpose of this paper is to present a generalization
to many variables of a theorem of C. R. Rao and D. N. Shanbhag characterizing the
exponential and geometric distributions on the basis of independence of certain statistics.
A secondary purpose is to bring attention to an unpublished thesis of Chia-Jon Hong
(1985) containing some results giving rise to this generalization. A related theorem of
Srivastava is extended to the absolutely continuous case.

In the discussion, the exponential and geometric distributions are taken to be two and
three parameter families including location and scale parameters. Thus, the exponential
distributions have density

f(x|α, θ) = θ−1 exp{−(x− α)/θ}I(x > α) (1)

where θ > 0 and α are real numbers, and I(A) represents the indicator function of the set
A. The geometric distributions have probability mass function

f(x|α, λ, p) = (1− p)pn for x = α+ nλ and n = 0, 1, 2, . . . (2)

where 0 < p < 1, λ > 0, and α are real numbers.

With this understanding, the underlying result that forms the basis of the Rao-
Shanbhag characterization of the exponential and geometric is the following theorem due
to Ferguson (1964, 1965) and Crawford (1966).

Theorem. (Ferguson and Crawford) Let X and Y be independent nondegenerate random
variables, and let U = min{X,Y } and V = X − Y . Then U and V are independent if and
only if X and Y are both exponential or both geometric with the same support.

Theorem 8.2.1 in the book of Rao and Shanbhag (1994) improves this characterization
by weakening the independence assumption as follows.

Theorem. (Rao and Shanbhag) Let X and Y be independent random variables, and let
U = min{X,Y } and V = X − Y . Suppose u1 is any number such that there are at least
two points of the support of the distribution of U in (−∞, u1]. Then V is independent of
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the events {U ≤ u} for all u ≤ u1 if and only if X and Y are both exponential or both
geometric with the same support.

Thus, complete independence between U and V is not needed. All that is required is
that V be independent of the events {U ≤ u} for a “few” values of u (at least two) in the
left tail of the distribution of U . The proof of this theorem uses the celebrated Lau-Rao
Theorem (1982). In fact, the main theme of their 1994 book is the power and unity that
the Lau-Rao Theorem brings to many areas.

It should be noted that we have replaced the condition that V and UI(U ≤ u1) be
independent as given by Rao and Shanbhag in the statement of their theorem by the
stronger condition that V and the events {U ≤ u} be independent for all u ≤ u1. This is
the condition I am sure they intended and the one that was used in the proof. Hong (1985)
gives an example of independent identically distributed random variables X and Y , whose
common distribution is an equiprobable mixture of two distinct geometric distributions
on the nonnegative integers, for which V and {U = 1} are independent. This gives a
counterexample to the theorem of Rao and Shanbhag as stated in their book. It also
answers a question raised by Arnold (1980) in a related context.

There are many related results characterizing the exponential and geometric distri-
butions in the statistical literature. Phillips (1981) has treated the Ferguson/Crawford
problem in which independence of U and V is replaced by the conditional independence
of U and V given V > 0. An extension of this to many variables is given in Hong (1985)
and Liang and Balakrishnan (1992).

Another class of problems stems from the work of Fisz (1958), Rogers (1963) and
Ferguson (1967). In this class, the variables X1,X2, . . . ,Xn are assumed to be indepen-
dent and identically distributed, and distributions are characterized by the linearity of the
regression of one order statistic on another. The distributions so characterized include the
power distributions and the Pareto distributions as well as the exponential and geomet-
ric distributions. Work on various aspects of this problem was done by El-Neweihi and
Govindarajulu (1979), Sreehari (1983), Rao and Shanbhag (1986), Wu and Ouyang (1996)
and others, but the original problem was not solved in full generality until Dembinski and
Wesolowski (1998).

Another class of problems involves characterizing distributions by equality of distri-
bution of certain statistics. Interesting papers in this area include Puri and Rubin (1970),
Fosam and Shanbhag (1994) and Rao and Shanbhag (1996).

2. Extension to Many Variables.

The unpublished thesis of Chia-Jon Hong (1985) contains generalizations to many
variables of special cases of this result. One of Hong’s results for the geometric distribution
is as follows.

Theorem. (Hong) Let X1, . . . ,Xn be independent nonnegative integer-valued random
variables and suppose that P(Xj = 0) > 0 and P(Xj = 1) > 0 for some j, 1 ≤ j ≤ n.
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Let U = min{X1, . . . ,Xn}. If the event {U = 0} and the vector of differences, V =
(X2−X1, . . . ,Xn−X1), are independent, then all X1, . . . ,Xn have geometric distributions
with support N.

This may be considered as a generalization to many variables of a discrete version
of the theorem of Rao and Shanbhag, where the support of the distributions is known to
be restricted to the nonnegative integers. However even in the case n = 2, this does not
follow from the theorem of Rao and Shanbhag because independence of V and {U = u} is
required for only one value of u.

Hong’s corresponding result for the exponential distribution is

Theorem. (Hong) Let X1, . . . ,Xn be independent nonnegative random variables with
continuous distributions. Suppose 0 is in the support of the distribution of X1, say. If for
a sequence of ε > 0 tending to zero, the event {U < ε} and V are independent, then all
X1, . . . ,Xn are exponential with support (0,∞).

This is an extension to many dimensions of a continuous version of the theorem of
Rao and Shanbhag. Hong proved the first theorem using the Shanbhag Lemma (1977).
For the second theorem, he used a theorem of Ramachanran (1977) and Shimizu (1978).
He was not aware of the Lau-Rao Theorem.

But now that we have the example of Rao and Shanbhag to guide us, we can unify and
generalize Hong’s results. This requires the following extension of the Lau-Rao Theorem.

Theorem 1. Let µ be a σ-finite measure on [0,∞) satisfying the condition µ({0}) < 1. Let
f1(x), . . . , fn(x) be nonnegative real-valued Borel measurable functions defined on [0,∞),
locally integrable with respect to Lebesgue measure, none of which are identically zero a.e.
(almost everywhere with respect to Lebesgue measure). Suppose

n∏
i=1

fi(xi) =
∫ ∞

0

n∏
i=1

fi(xi + y)dµ(y) a.e. (4)

Then either µ is arithmetic with some span λ > 0 and

fi(x+ kλ) = fi(x)bki a.e. for i = 1, . . . , n and k = 0, 1, . . ., (5)

where the bi > 0 satisfy
∑∞

k=0(
∏n

i=1 bi)
kµ({kλ}) = 1, or µ is nonarithmetic and

fi(x) = ci exp{θix} a.e. for i = 1, . . . , n. (6)

for some ci > 0 and θi satisfying
∫ ∞
0 exp{x

∑n
1 θi} dµ(x) = 1.

When n = 1 this is the Lau-Rao Theorem. This should be considered an extension
rather than a generalization because it follows easily from the Lau-Rao Theorem itself.
Based on this theorem, we can prove the following unification of the theorems of Hong.
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Theorem 2. Let X1, . . . ,Xn be independent. Assume that U = min{X1, . . . ,Xn} is
nondegenerate and let u1 be any number such that P(U ≤ u1) > 0. If the the vector of
differences, V = (X2−X1, . . . ,Xn −X1), is independent of the events {U ≤ u} for u ≤ u1,
then X1, . . . ,Xn are all exponential with the same support or all geometric with the same
support.

This also contains the theorem of Rao and Shanbhag when n = 2, and it makes the
minor improvement of not requiring two points of the support of U below u1 in the discrete
case. Proofs are deferred to Section 4.

3. A Theorem of Srivastava.

Another weakening of the independence assumption in the Theorem of Ferguson and
Crawford occurs in a result of R. C. Srivastava (1974). Here the weakening is on the values
of V on which independence is required but the setting is restricted to be discrete. Let N

denote the natural numbers {0, 1, 2, . . .}.

Theorem. (Srivastava) Let X and Y be independent nondegenerate N-valued random
variables, and suppose the support of Y is N. Let U = min{X,Y } and V = X − Y . Then
U and {V = v} are independent for v = 0 and v = 1 if and only if X and Y are both
geometric with support N.

Here is an analogous theorem in the absolutely continuous case to characterize the
exponential distribution.

Theorem 3. Let X and Y be independent nonnegative absolutely continuous random
variables and suppose that the support of Y is [0,∞). Let U = min{X,Y } and V = X−Y .
Then U and V I(0 < V < ε) are independent for some ε > 0 if and only if X and Y are
both exponential on (0,∞).

This result is not true if the support of Y is not required to be the whole of [0,∞).
One can find other distributions if the support of Y is taken to be [0, u0] for some u0 > 0.
The class of all such distributions is found in the following theorem in which we have taken
u0 = 1 since this is just a change of scale.

Theorem 4. Let X and Y be independent nonnegative absolutely continuous random
variables and suppose that the support of Y is [0, 1]. Let U = min{X,Y } and V = X − Y
and let ε be any positive number for which P(V < ε) > 0. Then U and V I(0 < V < ε) are
independent if and only if for some λ > 0 and some θ > 0, Y has survival function

P(Y > u) =
(
e−λu − e−λ

1− e−λ

)θ

for 0 < u < 1 (7)

and X has density

fX(x) =
θλ

θ + eλ
e−λx for 0 < x < 1 + ε. (8)
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(fX (x) is arbitrary for x > 1 + ε.)

4. Proofs.

Proof of Theorem 1. There exist, for i = 1 . . . , n, x0
i with fi(x0

i ) > 0 and such that the
function h(x) =

∏n
i=1 fi(x0

i + x) satisfies the conditions of the Lau-Rao Theorem.

Case 1. µ is nonarithmetic: Then h(x) = c exp{θx} a.e. for some c > 0 and θ
satisfying

∫ ∞
0
eθx dµ(x) = 1. Thus fi(x) > 0 a.e. for x ≥ x0

i . Then (4) implies fi(x) > 0
a.e. for all x ≥ 0. Now fix j and apply the Lau-Rao Theorem once more to (4) with xi = 0
for i �= j. This implies that fj(x) = cj exp{θjx}.

Case 2. µ is arithmetic with span λ: Then h(x + kλ) = h(x)bk for k = 0, 1, . . . and
x ≥ 0, where b > 0 satisfies

∑∞
0 bkµ({kλ}) = 1. This implies there are x1

i ∈ [0, λ) such
that fi(x1

i ) > 0. Now fix j and apply the Lau-Rao Theorem once more to (1) with xi = x1
i

for i �= j. This implies fi(x+ kλ) = fi(x)bki for k = 0, 1, . . . and x ≥ 0.

Proof of Theorem 2. Note that {U = Xi} is a function of V for all i = 1, . . . , n.
Then the independence of V and {U ≤ u} implies that V and {U ≤ u} are conditionally
independent given {U = Xi}. This is because

P(U ≤ u,V ≤ v|U = Xi) = P(U ≤ u,V ≤ v, U = Xi)/P(U = Xi)
= P(U ≤ u)P(V ≤ v, U = Xi)/P(U = Xi)
= P(U ≤ u|U = Xi)P(V ≤ v|U = Xi).

The second equality follows because {U ≤ u} is independent of V and {U = Xi} is a
function of V . The third equality follows similarly.

Let u0 denote the left extremity of the support of U (possibly −∞). Then for some
i, u0 is the left extremity of the support of Xi. Suppose without loss of generality that u0

is the left extremity of the support of X1. Then

P(U ≤ u,U = X1) > 0 (9)

for all u > u0. Therefore, for all v = (v2, . . . , vn) ≥ 0,

P(V ≥ v|U ≤ u,U = X1) = P(V ≥ v|U = X1), (10)

independent of u for u0 < u ≤ u1. If u0 = −∞, then letting u → −∞ in (10) shows that
(10) must be 1 for all v ≥ 0. But letting v → ∞ in (10) gives the value 0 which is a
contradiction. Thus, u0 must be finite. Without loss of generality, take u0 = 0.

We distinguish two cases. If U has a mass point at u0 = 0, we may assume without
loss of generality that X1 has a mass point at 0. Then for all v > 0,

P(V ≥ v)P(U = 0) = P(V ≥ v, U = 0)
= P(X1 = 0,X2 ≥ v2, . . . ,Xn ≥ vn)
= P(X1 = 0)P(X2 ≥ v2) · · ·P(Xn ≥ vn)

(11)
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Checking separately, we see that (11) must hold even if some of the vi are zero; thus it
holds for all v ≥ 0. Note that X1 cannot be degenerate at 0 otherwise U would be also. We
may now apply the extended Lau-Rao Theorem to conclude that either the distribution of
X1 is arithmetic with some span λ > 0, in which case,

P(Xi ≥ x+ kλ) = P(Xi ≥ x)bki for i = 2, . . . , n and k = 0, 1, . . ., (12)

for some 0 < bi < 1, or the distribution of X1 is nonarithmetic in which case, P(Xi ≥ x) =
cie

θix for i = 2, . . . , n.

If U does not have a mass point at 0, then P(X1 = U,U ≤ u) > 0 for all u > 0. Then
from (10), we have for all v ≥ 0,

P(V ≥ v|U = X1) = lim
u→0+

P(V ≥ v|U ≤ u,U = X1). (13)

First note that for v ≥ 0,

P(V ≥ v|U = X1) =
P(V ≥ v, U = X1)

P(U = X1)
=

P(V ≥ v)
P(U = X1)

.

Similarly for the right side of (13):

P(V ≥ v|U ≤ u,U = X1) = P(V ≥ v|X1 ≤ u,U = X1)

=
P(V ≥ v, U = X1|X1 ≤ u)
P(U = X1|X − 1 ≤ u)

=
P(V ≥ v|X1 ≤ u)

P(U = X1|X − 1 ≤ u)
→ P(X2 > v2, . . . ,Xn > vn)

as u → 0+. Therefore (13) becomes

P(X2 ≥ X1 + v2, . . . ,Xn ≥ X1 + vn) = P(U = X1)P(X2 > v2, . . . ,Xn > vn)

The left side is left-continuous in v and the right side is right-continuous. This shows that
the distributions of X2, . . . ,Xn are continuous, and so Xj > vj in (12) may be replaced by
Xj ≥ vj . Since the distribution of X1 is nonarithmetic in this case, the Lau-Rao Theorem
implies that X2, . . . ,Xn have exponential distributions on (0,∞).

Proof of Theorem 3. The “if” part is well known, We prove the converse. For all v ≥ 0
and all u ≥ 0,

fU,V (u, v) = fX,Y (u+ v, u) = fX(u+ v)fY (u). (14)

The first equality follows because if v ≥ 0, then X−Y = v implies X ≥ Y , so that U = Y .
For 0 ≤ v ≤ ε and all u ≥ 0, we have the Cauchy functional equation,

fU (u)fV (v) = fX (u+ v)fY (u). (15)
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Since we have assumed fY (u) > 0 for almost all u ≥ 0, this implies that fX(x) = λe−λx

for some λ > 0. The density of U is

fU (u) = fX (u)P(Y > u) + fY (u)P(X > u)

= λe−λuP(Y > u) + fY (u)e−λu,
(16)

so that (15) implies

λe−λ(u+v)fY (u) = e−λu[λP(Y > u) + fY (u)]fV (v)

From this, we see that fV (v)/e−λv is constant for 0 ≤ v ≤ ε. This in turn implies that
fY (u)/P(Y > u) is constant for all u > 0. Thus Y is exponential also.

Proof of Theorem 4. Since the support of Y is [0, 1], (15) holds for all 0 < u < 1 and
all 0 < v < ε. This implies

fX (x) = µe−λx for 0 < x < 1 + ε (17)

for some µ > 0 and some λ. The distribution of X above 1+ ε is not restricted. However,
we cannot have mass greater than one on (0, 1 + ε), so

{
0 < µ ≤ λ/(1− e−λ(1+ε)) for λ �= 0
0 < µ ≤ 1/(1 + ε) for λ = 0

(18)

Now (15) becomes

fU (u)fV (v) = µe−λ(u+v)fY (u) for 0 < u < 1 and 0 < v < ε. (19)

This implies that fV (v) = µe−λv times some constant for 0 < v < ε. Substituting this into
(19) gives

fU (u) = e−λufY (u)/c for 0 < u < 1, (20)

where the constant c must be
∫ 1

0
e−λydFY (y). Since U = min{X,Y }, FU (u) must be

strictly greater than FY (u) for all u. But from (20) this cannot be for u close to 0 unless
c < 1. Thus λ > 0. The density of U is

fU (u) = µe−λuP(Y > u) + fY (u)(1 −
µ

λ
(1− e−λu)). (21)

Combining (20) and (21) gives

fY (u)[(
1
c
− µ

λ
)e−λu − (1 − µ

λ
)] = µe−λuP(Y > u) (22)

for 0 < u < 1. The term in square brackets must be positive for all 0 < u < 1, so assuming
(1/c)− (µ/λ) �= 0 and integrating fY (u)/P(Y > u) gives

− log P(Y > u) = µ

∫
e−λu

(1c − µ
λ )e

−λu − (1− µ
λ )
du = −θ log((1

c
− µ

λ
)e−λu − (1− µ

λ
))
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plus a constant of integration, where

θ =
µ/λ

1
c − µ

λ

=
µc

(λ − µc)
. (23)

But limu→1−P(Y > u) = 0 shows that we must have θ > 0 and

(1− µ

λ
) = (

1
c
− µ

λ
)e−λ (24)

A similar argument shows that (1/c)−(µ/λ) cannot be equal to 0. Now, P(Y > 0) = 1 fixes
the constant of integration and Equation (7) follows. Solving (23) for c and substituting
into (24) gives µ = θλ/(θ+eλ). Equation (17) becomes Equation (8). It is straightforward
to check the converse.
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