
Chapter 7. BANDIT PROBLEMS.

Bandit problems are problems in the area of sequential selection of experiments, and
they are related to stopping rule problems through the theorem of Gittins and Jones (1974).
In the first section, we present a description of bandit problems and give some historical
background. In the next section, we treat the one-armed bandit problems by the method
of the previous chapter. In the final section, we discuss the Theorem of Gittins and Jones
which shows that the k -armed bandit problems may be solved by solving k one-armed
problems. An excellent reference to bandit problems is the book of Berry and Fristedt,
(1985).

§7.1 Introduction to the Problem. Consider a sequential decision problem in
which at each stage there are k possible actions or choices of experiment. Choice of action
j results in an observation being taken from the j th experiment, and you receive the
numerical value of this observation as a reward. The observations you make may give you
information useful in future choices of actions. Your goal is to maximize the present value
of the infinite stream of rewards you receive, discounted in some way.

The name “bandit” comes from modeling these problems as a k -armed bandit, which
is a slot machine with k arms, each yielding an unknown, possibly different distribution
of payoffs. You do not know which arm gives you the greatest average return, but by
playing the various arms of the slot machine you can gain information on which arm is
best. However, the observations you use to gain information are also your rewards. You
must strike a balance between gaining rewards and gaining information. For example, it
is not good to always pull the arm that has performed best in the past, because it may
have been that you were just unlucky with the best arm. If you have many trials to go
and it only takes a few trials to clarify the matter, you can stand to improve your average
gain greatly with only a small investment. Typically in these problems, there is a period
of gaining information, followed by a period of narrowing down the arms, followed by a
period of “profit taking”, playing the arm you feel to be the best.

A more important modeling of these problems comes from clinical trials in which there
are k treatments for a given disease. Patients arrive sequentially at the clinic and must be
treated immediately by one of the treatments. It is assumed that response from treatment
is immediate so that the effectiveness of the treatment that the present patient receives is
known when the next patient must be treated. It is not known precisely which one of the
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treatments is best, but you must decide which treatment to give each patient, keeping in
mind that your goal is to cure as many patients as possible. This may require you to give
a patient a treatment which is not the one that looks best at the present time in order to
gain information that may be of use to future patients.

To describe bandit problems more precisely, let the k reward distributions be denoted
by F1(x|θ1), . . . , Fk(x|θk) where θ1, . . . , θk are parameters whose exact values are not
known precisely, but whose joint prior distribution is known and denoted by G(θ1, . . . , θk).
Initially, an action a1 is chosen from the set {1, . . . , k} and then an observation, Z1 , the
reward for the first stage, is taken from the distribution Fa1 . Based on this information,
an action a2 is then taken from the same action space, and an observation, Z2 , is taken
from Fa2 and so on. It is assumed that given an and the parameters θ1, . . . , θk , Zn is
chosen from Fan independent of the past. A decision rule for this problem is a sequence
A = (a1, a2, . . .) of functions adapted to the observations; that is, an may depend on past
actions and observations,

an(a1, Z1, a2, Z2, . . . , an−1, Zn−1).

It is hoped that no confusion results from using one symbol, an , to denote both the
function of past observations and the action taken at stage n .

There is a discount sequence, denoted by B = (β1, β2, . . .), such that the j th obser-
vation is discounted by βj where 0 ≤ βj ≤ 1 for j = 1, 2, . . . . The total discounted return
is then

∑∞
1 βjZj . The problem is to choose a decision rule A to maximize the expected

reward, E
∑∞

1 βjZj . This problem is called the k -armed bandit problem. The one-armed
bandit problem, mentioned in Exercise 1.4, is defined as the 2-armed bandit problem in
which one of the arms always returns the same known amount, that is, the distribution F
associated with one of the arms is degenerate at a known constant.

To obtain a finite value for the expected reward, we assume

(1) each distribution, Fj for j = 1, . . . , k , has finite first moment, and

(2)
∑∞

1 βj < ∞ .

Two important special cases of the discount sequence are

(1) the n -horizon uniform discount for which β1 = . . . = βn = 1 and βn+1 =
βn+2 = . . . = 0, and

(2) the geometric discount in which B = (1, β, β2, β3, . . .), that is, βj = βj−1 for
j = 1, 2, . . . .

In the former, the payoff is simply
∑n

1 Zj , the sum of the first n observations. The
problem becomes one with a finite horizon which can in principle be solved by backward
induction. In the latter, there is a time invariance in which the future after n stages looks
like it did at the start except for the change from the prior distribution to the posterior
distribution. We will treat mainly problems with geometric discount and independent
arms, that is, prior distributions G for which θ1, . . . , θk are independent, so that an
observation on one arm will not influence your knowledge of the distribution of any other
arm.
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First, we give a little historical background to add perspective to what follows. Early
work on these problems centered mainly on the finite horizon problem with Bernoulli
trials. These problems were introduced in the framework of clinical trials by Thompson
(1933) for two treatments with outcomes forming Bernoulli trials with success probabilities
having independent uniform prior distributions on (0,1). Robbins (1952) reintroduced the
problem from a non-Bayes viewpoint, and suggested searching for the minimax decision
rule. In the Bernoulli case, he proposed the play-the-winner/switch-from-a-loser strategy,
and discussed the asymptotic behavior of rules.

The first paper to search for Bayes decision rules for this problem is the paper of
Bradt, Johnson and Karlin (1956). One of their important results, mentioned in Exercise
1.4, is that for the one-armed bandit with finite horizon and Bernoulli trials, if the known
arm is optimal at any stage, then it is optimal to use that arm at all subsequent stages.
Another important result is that for the 2-armed bandit with finite horizon and Bernoulli
trials with success probabilities p1 and p2 , if the prior distribution gives all its weight to
points (p1, p2) on the line p1 +p2 = 1, then the 1-stage look-ahead rule is optimal; that is,
it is optimal to choose the arm with the higher present probability of success. In addition,
they conjecture that if the prior distribution gives all its weight to two points (a, b) and
(b, a) symmetrically placed about the line p1 = p2 , then again the 1-stage look-ahead rule
is optimal. This conjecture was proved to be true by Feldman (1962).

These are about the only cases in which the optimal rule is easy to evaluate. In par-
ticular, in the important practical case of independent arms, the difficulty of computation
of the optimal rule hindered real progress. One important result for the 2-armed Bernoulli
bandit with independent arms and finite horizon is the “stay-on-a winner” principle, proved
in Berry (1972). This principle states that if an arm is optimal at some stage and if it
proves to be successful at that stage, then it is optimal at the following stage also. This
was proved for the one-armed Bernoulli bandit with finite horizon by Bradt, Johnson and
Karlin (1956). This was the state of affairs when the theorem of Gittins and Jones showed
that for the k-armed bandit with independent arms and geometric discount, the problem
can be solved by solving k one-armed bandit problems.

We treat a problem of a somewhat more general structure than that indicated above
by letting the returns for each arm be an arbitrary sequence of random variables, (not
necessarily exchangeable). Thus for each arm, say arm j , there is assumed to be a sequence
of returns, Xj1,Xj2, . . . with an arbitrary joint distribution, subject to the condition that
supn EX+

jn < ∞ for all j = 1, . . . , k . It is assumed that the arms are independent, that is,
that the sets {X11,X12, . . .}, . . . , {Xk1,Xk2, . . .} are independent sets of random variables.
When an arm, say j , is pulled, the first random variable of the sequence Xj1 is received as
the reward. The next time j is pulled, the reward Xj2 is received, etc. That the theorem
of Gittins and Jones applies to this more general probabilistic structure has been proved
by Varaiya, Walrand and Buyukkoc (1985). See also Mandelbaum (1986).

§7.2 The one-armed bandit. As a preliminary to the solution of the k -armed
bandit with geometric discount and independent arms, it is important to understand the
one-armed bandit. The one-armed bandit is a really a bandit problem with two arms, but
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one of the arms has a known i.i.d. distribution of returns, and so plays only a minor role.
We first show how the one-armed bandit can be related to a stopping rule problem. We
assume that arm 1 has an associated sequence of random variables, X1,X2, . . . with known
joint distribution satisfying supn EX+

n < ∞ . For the other arm, arm 2, the returns are
assumed to be i.i.d. from a known distribution with expectation λ . We take the discount
sequence to be geometric, B = (1, β, β2, . . .) where 0 < β < 1, and seek to find a decision
rule A = (a1, a2, . . .) to maximize

(1) V (A) = E(
∞∑

1

βj−1Zj |A).

First we argue that we may assume without loss of generality that the returns from
arm 2 are degenerate at λ . Note that in the expectation above, any Zj from arm 2 may
be replaced by λ . However, the rule A may allow the actual values of these Zj to influence
the choice of the future aj . But the statistician may produce his own private sequence of
i.i.d. random variables from the distribution of arm 2 and use them in A in place of the
actual values he sees. This produces a randomized decision rule which may be denoted by
A∗ . Use of A∗ in the problem where the random variables are given to be degenerate at
λ produces the same expected payoff as A does in the original problem.

The advantage of making this observation is that we may now assume that the decision
rule A does not depend on Zj when aj = 2, since Zj is known to be λ . Thus we assume
that arm 2 gives a constant return of λ each time it is pulled.

We now show that if at any stage it is optimal to pull arm 2, then it is optimal to
keep pulling arm 2 thereafter. This implies that if there exists an optimal rule for this
problem, there exists an optimal rule with the property that every pull of arm 2 is followed
by another pull of arm 2. Thus one need only decide on the time to switch from arm 1 to
arm 2. This relates this problem to a stopping rule problem in which the stopping time is
identified with the time of switching from arm 1 to arm 2. Without loss of generality, we
may assume that arm 2 is optimal at the initial stage, and state the theorem as follows.

Theorem 1. If it is initially optimal to use arm 2 in the sense that supA V (A) = V ∗ =
sup{V (A) : A such that a1 = 2} , then it is optimal to use arm 2 always and V ∗ =
λ/(1 − β) .

Proof. For a given ε > 0, find a decision rule A such that a1 = 2 and V (A) ≥ V ∗−ε .
Then,

V (A) = λ + βE(
∞∑

2

βj−2Zj |A)

= λ + βE(
∞∑

1

βj−1Zj+1|A)

= λ + βE(
∞∑

1

βj−1Z ′
j |A1)

≤ λ + βV ∗,
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where A1 = (a2, a3, . . .) is the rule A shifted by 1, and Z ′
j = Zj+1 . Thus, we have

V ∗ − ε ≤ λ + βV ∗ , or equivalently, V ∗ ≤ (λ + ε)/(1 − β). Since ε > 0 is arbitrary, this
implies V ∗ ≤ λ/(1 − β), but this value is achievable by using arm 2 at each stage.

This theorem is also valid for the n -uniform discount sequence. In fact, Berry and
Fristedt (1985) show that if the sequence {X1,X2, . . .} is exchangeable, then an optimal
strategy for the problem has the property that every pull of arm 2 is followed by a pull of
arm 2 if, and essentially only if, the discount sequence is what they call regular. The dis-
count sequence B is said to be regular if it has increasing failure rate, that is, if βn/

∑∞
n βj

is non-decreasing on its domain of definition. That the above theorem is not true for such
discount sequences is easily seen: If B = {.1, 1, 0, 0, 0, . . .} , then B is regular, yet if X1 is
degenerate at 10, X2 is degenerate at 0, and λ = 0, then clearly the only optimal strategy
is to follow an initial pull of arm 2 with a pull of arm 1. Exactly what property of B is
required for the above theorem seems to be unknown.

As a corollary, we see that there exists an optimal rule for this problem. It is either
the rule that uses arm 2 at all stages, or the rule corresponding to the stopping rule N ≥ 1
that is optimal for the stopping rule problem with payoff,

(2) Yn =
n∑

1

βj−1Xj + λ
∞∑

n+1

βj−1.

In fact, we can say more.

Theorem 2. Let Λ(β) denote the optimal rate of return for using arm 1 at discount β ,

(3) Λ(β) = sup
N≥1

E(
∑N

1 βj−1Xj)

E(
∑N

1 βj−1)
.

Then arm 2 is optimal initially if, and only if, λ ≥ Λ(β) .

Proof. By Theorem 1, we may restrict attention to decision rules A specified by a
stopping time N which represents the last time that arm 1 is used. The payoff using N
is E(

∑N
1 βj−1Xj + λ

∑∞
N+1 βj−1), which for N = 0 is λ/(1 − β). Therefore, arm 2 is

optimal initially if, and only if, for all stopping rules N ≥ 1,

E(
N∑

1

βj−1Xj + λ

∞∑

N+1

βj−1) ≤ λ/(1 − β)

or, equivalently,

E(
N∑

1

βj−1Xj) ≤ λE(
N∑

1

βj−1)

or, equivalently,

E(
N∑

1

βj−1Xj)/E(
N∑

1

βj−1) ≤ λ.
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This is equivalent to Λ(β) ≤ λ .

The value Λ(β) depends only on β and on the distribution of the returns from arm
1, X1,X2, . . . . It is called the Gittins index for arm 1 and it represents the indifference
point: that value of λ for arm 2 in the one-armed bandit at which you would be indifferent
between starting off on arm 1 and choosing arm 2 all the time.

§7.3 The Gittins Index Theorem. We return to the k -armed bandit with geo-
metric discount and independent arms having returns denoted by

arm 1: X(1, 1),X(1, 2), . . .
arm 2: X(2, 1),X(2, 2), . . .
. . .
arm k : X(k, 1),X(k, 2), . . .

where it is assumed that the variables are independent between rows and that the first
absolute moments exist and are uniformly bounded, supk≥1,t≥1 E|X(k, t)| < ∞ . The
discount is β , where 0 ≤ β < 1, and we seek a decision rule A = (a1, a2, . . .) to maximize
the total discounted return,

(4) V (A) = E(
∞∑

t=1

βt−1Zt|A).

For each arm we may compute a Gittins index,

(5) Λj = sup
N≥1

E
N∑

t=1

βt−1X(j, t)/E
N∑

t=1

βt−1 for j = 1, . . . , k

where we suppress β in the notation for Λ since β is held constant throughout this section.

The celebrated theorem of Gittins and Jones (1974) states that for the k -armed bandit
with geometric discount and independent arms, it is optimal at each stage to select the
arm with the highest index. We give a proof of this theorem due to Varaiya, Walrand
and Buyukkoc (1983) and adopt their didactic strategy of presenting the proof first in the
special case in which there are just two arms (k = 2) and where all the random variables
are degenerate. We denote the returns from arm 1 by X(1),X(2), . . . and from arm 2 by
Y (1), Y (2), . . . . Thus, it is assumed that X(1),X(2), . . . and Y (1), Y (2), . . . are bounded
sequences of real numbers. Let the Gittins indices be denoted by

ΛX = sup
j≥1

j∑

1

βt−1X(t)/
j∑

1

βt−1

ΛY = sup
j≥1

j∑

1

βt−1Y (t)/
j∑

1

βt−1.

Since X(t) is assumed bounded, the series
∑n

1 βt−1X(t) converges, so that there
exists a value of j , possibly ∞ , at which the supremum in the definition of ΛX is taken
on. In the following lemma, we suppose that s is this value of j so that 1 ≤ s ≤ ∞ .
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Lemma 1. Suppose the sequence X(1),X(2), . . . is non-random and bounded. If ΛX =∑s
1 βt−1X(t)/

∑s
1 βt−1 , then for all j ≤ s ,

(6)
s∑

t=j

βt−1X(t) ≥ ΛX

s∑

t=j

βt−1,

and for s finite and all j > s ,

(7)
j∑

t=s+1

βt−1X(t) ≤ ΛX

j∑

t=s+1

βt−1.

Proof. Since we have both

s∑

1

βt−1X(t) = ΛX

s∑

1

βt−1, and

j−1∑

1

βt−1X(t) ≤ ΛX

j−1∑

1

βt−1 for all j,

subtracting the latter from the former gives (6) when j is less than or equal to s , and
gives (7) when j > s .

Inequality (6) implies that after j − 1 < s stages have elapsed, the new Gittins index
(which is at least as great as

∑s
j βt−1X(t)/

∑s
j βt−1 ) is at least as great as the original

index, ΛX . Similarly, (7) shows that after exactly s stages have elapsed, the new Gittins
index can be no greater than the original one. In fact, the following proof shows that if
ΛX ≥ ΛY and ΛX =

∑s
1 βt−1X(t)/

∑s
1 βt−1 , then it is optimal to start with at least s

pulls of arm 1.

Theorem 3. If the sequences X(1),X(2), . . . and Y (1), Y (2), . . . are non-random and
bounded, if ΛX ≥ ΛY then it is optimal initially to use arm 1.

Proof. Assume ΛX ≥ ΛY and let A be any rule. We will show that there is a rule
A′ that begins with arm 1 and gives at least as great a value as A . Then it is clear that
the supremum of V (A) over all A is the same as the supremum of V (A) over all A that
begin with arm 1.

Find s such that ΛX =
∑s

1 βt−1X(t)/
∑s

1 βt−1 where 1 ≤ s ≤ ∞ . Let k(t) denote
the number of times that rule A calls for the use of arm 2 just before arm 1 is used for
the tth time, t = 1, 2, . . . . It may be that arm 2 is not used between pulls t − 1 and t
of arm 1 so that k(t) = k(t − 1) and it is possible that A does not use arm 1 t times, in
which case k(t) is defined as +∞ . We have 0 ≤ k(1) ≤ k(2) ≤ . . . ≤ ∞ . We define a new
decision rule A′ that starts out with s X ’s followed by k(s) Y ’s and then, if k(s) < ∞ ,
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following this with the same sequence of X ’s and Y ’s as in A . Subject to s and the first
s k(t)’s being finite, the sequence of observations occurs in the following order for A :

Y (1), . . . , Y (k(1)),X(1), Y (k(1) + 1), . . . , Y (k(2)),X(2), . . . , Y (k(s)),X(s), Z(T + 1), . . .

where T is the time that the sth X occurs using decision rule A and Z(T + 1), . . .
represents the rest of this sequence beyond T . The sequence of observations occurs in the
following order using A′ :

X(1),X(2), . . . ,X(s), Y (1), . . . , Y (k(1)), . . . , Y (k(2)), . . . , Y (k(s)), Z(T + 1), . . .

We are to show that V (A′) − V (A) ≥ 0. Write this difference as V (A′) − V (A) =
∆(X) − ∆(Y ), where ∆(X) represents the improvement in the value caused by shifting
the X ’s forward, and ∆(Y ) represents the loss due to shifting the Y ’s backward. Thus,

∆(X) =
s∑

1

βt−1X(t) −
s∑

1

βt+k(t)−1X(t)

=
s∑

1

βt−1(1 − βk(t))X(t)

=
s∑

t=1

βt−1X(t)
t∑

j=1

(βk(j−1) − βk(j))

=
s∑

j=1

(βk(j−1) − βk(j))
s∑

t=j

βt−1X(t)

≥ ΛX

s∑

j=1

(βk(j−1) − βk(j))
s∑

t=j

βt−1

= ΛX

s∑

1

βt−1(1 − βk(t)),

where k(0) represents 0, and the inequality follows from (6). It is important to note that
this computation is valid even if some of the k(t) = ∞ , that is, even if A did not contain
s X ’s. It is also valid if s = ∞ . Similarly, we have

∆(Y ) =
s∑

j=1

βj−1

k(j)∑

t=k(j−1)+1

βt−1Y (t) − βs

k(s)∑

t=1

βt−1Y (t)

=
s∑

j=1

(βj−1 − βs)
k(j)∑

t=k(j−1)+1

βt−1Y (t)
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=
s∑

j=1

s∑

m=j

(βm−1 − βm)
k(j)∑

t=k(j−1)+1

βt−1Y (t)

=
s∑

m=1

(βm−1 − βm)
m∑

j=1

k(j)∑

t=k(j−1)+1

βt−1Y (t)

= (1 − β)
s∑

m=1

βm−1

k(m)∑

t=1

βt−1Y (t)

≤ ΛY (1 − β)
s∑

m=1

βm−1

k(j)∑

t=1

βt−1

= ΛY

s∑

m=1

βm−1(1 − βk(m)).

The inequality follows from the definition of ΛY . This computation is also valid if s = ∞
or if some of the k(t) = ∞ . Now, using the assumption that ΛX ≥ ΛY , we find that
∆(X) −∆(Y ) ≥ 0, as was to be shown.

The proof of the general theorem is similar, but at the crucial step involving the
inequalities, we will not be able to interchange summation and expectation because the
limits of summation are random. To circumvent this difficulty, the following two lemmas
will be used. We deal with possibly randomized stopping rules by allowing the increasing
sequence of σ -fields,

(8) F(1) ⊂ F(2) ⊂ . . . ⊂ F(∞)

to be such that F(t) is the σ -field generated by X(1), . . . ,X(t) and any number of other
random variables independent of X(t + 1),X(t + 2), . . . . To say now that a random
variable Z is F(t)-measurable means essentially that Z and {X(t + 1),X(t + 2), . . .} are
conditionally independent given X(1), . . . ,X(t). In particular, we have

(9)
EX(t + 1)Z = E(E{X(t + 1)Z|X(1), . . . ,X(t + 1)})

= E(X(t + 1)E{Z|X(1), . . . ,X(t)})

for any F(t)-measurable Z . This observation is useful in the proof of the following lemma.

Lemma 2. Let X(t) be a sequence of random variables such that supt E|X(t)| < ∞ ,
let 0 < β < 1 and let ΛX denote the Gittins index. Then, for every stopping rule N ,
and every sequence of random variables α(t) , t = 1, 2, . . . , such that α(t) is F(t − 1)-
measurable and 1 ≥ α(1) ≥ α(2) ≥ . . . ≥ 0 a.s., we have

(10) E
N∑

t=1

α(t)βt−1X(t) ≤ ΛXE
N∑

t=1

α(t)βt−1.
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Proof. Let W (t) = βt−1(X(t) − ΛX). Then, the definition of ΛX implies that for
every stopping rule N ≥ 1,

E
N∑

t=1

W (t) ≤ 0.

For any stopping rule N , I(N ≥ t) is F(t − 1)-measurable. Hence, from (9),

E
N∑

t=1

W (t) = E
=∞∑

n=1

I(N = n)
n∑

t=1

W (t)

= E
∞∑

t=1

W (t)
=∞∑

n=t

I(N = n)

= E
∞∑

t=1

W (t)γ(t) ≤ 0,

where γ(t) = P(N ≥ t|X(1), . . . ,X(t − 1)). Any sequence, 1 ≥ γ(1) ≥ γ(2) ≥ . . . ≥ 0
a.s. with γ(t) F(t − 1)-measurable, determines a stopping rule N such that P(N ≥
t|F(t − 1)) = γ(t). Hence, the hypothesis that E

∑N
1 W (t) ≤ 0 for all stopping rules N

is thus equivalent to the hypothesis that E
∑∞

t=1 W (t)γ(t) ≤ 0 for all sequences γ(t) such
that γ(t) is F(t − 1)-measurable and 1 ≥ γ(1) ≥ γ(2) ≥ . . . ≥ 0 a.s. Now, since

E
N∑

t=1

α(t)W (t) = E
=∞∑

n=1

I(N = n)
n∑

t=1

α(t)W (t)

= E
∞∑

t=1

α(t)W (t)
=∞∑

n=t

I(N = n)

= E
∞∑

t=1

W (t)γ(t) ≤ 0,

where γ(t) = E{α(t)I(N ≥ t)|X(1), . . . ,X(t − 1)} , the conclusion follows.

The next lemma provides the required generalization of (6) of Lemma 1. Since E|Xn|
is assumed to be bounded, conditions A1 and A2 are satisfied and there exists an optimal
stopping rule for every λ . In particular, there exists a rule N∗ that attains the Gittins
index.

Lemma 3. Let X(t) be a sequence of random variables such that supt E|X(t)| < ∞ , let
0 < β < 1 , and let N∗ denote a stopping rule that attains the Gittins index, ΛX . Then, for
every sequence of random variables ξ(t) , t = 1, 2, . . . such that ξ(t) is F(t−1)-measurable
and 0 ≤ ξ(1) ≤ ξ(2) ≤ . . . ≤ 1 a.s., we have

(11) E
N∗∑

t=1

ξ(t)βt−1X(t) ≥ ΛXE
N∗∑

t=1

ξ(t)βt−1.
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Proof. Since the Gittins index is attained at N∗ ,

E
N∗∑

t=1

βt−1X(t) = ΛXE
N∗∑

t=1

βt−1.

From Lemma 2 with α(t) = 1 − ξ(t), we have

E
N∗∑

t=1

(1 − ξ(t))βt−1X(t) ≤ ΛXE
N∗∑

t=1

(1 − ξ(t))βt−1.

Subtracting the latter from the former gives the result.

We now turn to the general problem with k independent arms, and denote the se-
quence of returns from arm j by X(j, 1),X(j, 2), . . . for j = 1, . . . , k . It is assumed
that the sets {X(1, t)}∞t=1, . . . , {X(k, t)}∞t=1 are independent, and that supj,t E|X(j, t)| <
∞ . We shall be dealing with random variables k(j, t) that depend upon the sequence
X(j, 1),X(j, 2), . . . only through the values of X(j, 1), . . . ,X(j, t− 1), though possibly on
some of the X(m,n) for m �= j . Such random variables are measurable with respect to
the σ -field generated by X(j, 1), . . . ,X(j, t−1), and X(m,n) for m �= j and n = 1, 2, . . . .
We denote this σ -field by F(j, t − 1).

Any decision rule that at each stage chooses an arm that has the highest Gittins index
is called a Gittins index rule.

Theorem 4. For a k -armed bandit problem with independent arms and geometric dis-
count, any Gittins index rule is optimal.

Proof. Suppose that Λ1 = maxΛj . Let A be an arbitrary decision rule. We prove
the theorem by showing that there is a rule A′ that begins with arm 1 and gives at least
as great a value as A .

Let k(j, t) denote the (random) time that A uses arm j for the tth time, j = 1, . . . , k ,
t = 1, 2, . . . , with the understanding that k(j, t) = ∞ if arm j is used less than t times.
The value of A may then be written

V (A) = E{
∞∑

t=1

βt−1Z(t)|A}

= E
k∑

j=1

∞∑

t=1

βk(j,t)−1X(j, t).

Let N∗ denote the stopping rule that achieves the supremum in

Λ1 = sup
N≥1

E(
N∑

1

βt−1X(1, t))/E(
N∑

1

βt−1),
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and let T denote the (random) time that A uses arm 1 for the N∗ th time, T = k(1, N∗).
Define the decision rule A′ as follows:
(a) use arm 1 at times 1, 2, . . . , N∗ , and then if N∗ < ∞ ,
(b) use the arms j �= 1 at times N∗ + 1, . . . , T in the same order as given by A , and then
if T < ∞ ,
(c) continue according to A from time T on.

Let k′(j, t) denote the time when A′ uses arm j for the tth time, so that k′(1, t) = t
for t = 1, . . . , N∗ . Finally, let m(j) denote the number of times that arm j is used by
time T , so that m(1) = N∗ . Then,

(12)

V (A′) − V (A) = E
k∑

j=1

m(j)∑

t=1

(βk′(j,t)−1 − βk(j,t)−1)X(j, t)

= E
N∗∑

t=1

(βt−1 − βk(1,t)−1)X(1, t)

− E
k∑

j=2

m(j)∑

t=1

βt−1(βk(j,t)−t − βk′(j,t)−t)X(j, t)

= E
N∗∑

t=1

ξ(t)βt−1X(1, t) −
k∑

j=2

E
m(j)∑

t=1

α(j, t)βt−1X(j, t)

where

ξ(t) = 1 − βk(1,t)−t, and

α(j, t) = βk(j,t)−t − βk′(j,t)−t.

Since k(1, t) − t represents the number of times that an arm other than arm 1 has been
pulled by the time the tth pull of arm 1 occurs, we have that k(1, t) − t is F(1, t − 1)-
measurable and nondecreasing in t a.s. so that ξ(t) is F(1, t − 1)-measurable and 0 ≤
ξ(1) ≤ ξ(2) ≤ . . . ≤ 1 a.s. Thus from Lemma 3, we have

(13) E
N∗∑

t=1

ξ(t)βt−1X(1, t) ≥ Λ1E
N∗∑

t=1

ξ(t)βt−1.

For j > 1, α(j, t) = βk(j,t)−t(1− βk′(j,t)−k(j,t)). Since k(j, t)− t is F(j, t− 1)-measurable
and nondecreasing and since k′(j, t) − k(j, t) is equal to N∗ minus the number of times
arm 1 is pulled before the tth pull of arm j , and hence is F(j, t − 1)-measurable and
nonincreasing, we find that α(j, t) is F(j, t − 1)-measurable and 1 ≥ α(j, 1) ≥ α(j, 2) ≥
. . . ≥ 0. Hence from Lemma 2, we have for j = 2, . . . , k ,

(14) E
m(j)∑

t=1

α(j, t)βt−1X(j, t) ≤ ΛjE
m(j)∑

t=1

α(j, t)βt−1.
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Combining (13) and (14) into (12) and recalling that Λj ≤ Λ1 for all j > 1, we find

V (A′) − V (A) ≥ Λ1E
k∑

j=1

m(j)∑

t=1

(βk′(j,t)−1 − βk(j,t)−1).

This last expectation is zero since it is just V (A′)− V (A) with all payoffs put equal to 1.


