
Chapter 3. THE EXISTENCE OF OPTIMAL STOPPING RULES.

Consider the general stopping rule problem of Chapter 1 with observations X1,X2, . . .
and rewards Y0, Y1, . . . , Y∞ where Yn = yn(X1, . . . ,Xn). The following two assumptions
are basic to the theory of this chapter.

A1. E{supn Yn} < ∞ .
A2. lim supn→∞ Yn ≤ Y∞ a.s.

Assumption A1 allows us to interchange expectation and summation in what follows.
It implies that even a prophet who can foresee the future and stop at the time that Yn

assumes its maximum value, or comes close to the supremum if the maximum does not
exist, can only obtain a finite expected return. Thus, certainly supN EYN < ∞ , where the
supremum is taken over all stopping rules, N .

In §3.1, we show that under these two assumptions an optimal stopping rule exists.
The treatment follows the method of Chow and Robbins (1963) using the notion of a
regular stopping rule. In §3.2, we discuss the principle of optimality and the optimality
equation. We show under assumptions A1 and A2 that the rule given by the principle of
optimality is optimal. In §3.3, we derive Wald’s equation, and in §3.4, we examine prophet
inequalities.

Here are two examples that show if either one of the assumptions is not satisfied, an
optimal stopping rule may not exist.

EXAMPLE 1. Let X1,X2, . . . be independent Bernoulli trials with probability 1/2 of
success, and let Y0 = 0,

Yn = (2n − 1)
n∏
1

Xi, (1)

and Y∞ = 0. As long as only successes have occurred, you may stop at stage n and receive
2n−1; after the first failure has occurred, you receive 0. Since Yn → 0 a.s., A2 is satisfied.
On the other hand, supn Yn = 2k − 1 with probability 1/2k+1 for k = 0, 1, 2, . . . so that
E{supn Yn} =

∑∞
0 (1−1/2k)/2 = ∞ and A1 is not satisfied. If you reach stage n without

any failures, your return for stopping is 2n−1, while if you continue one stage you can get
an expected value of at least (2n+1 − 1)/2 = 2n − 1/2, which is better. Thus, it can never
be optimal to stop before a failure has occurred. Yet continuing forever gives you a zero
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payoff so there is no optimal stopping rule. In fact, supN EYN = 1, but the supremum is
not attained.

EXAMPLE 2. Let Y0 = 0, Yn = 1 − 1/n for n = 1, 2, . . . and Y∞ = 0. (The Xn are
immaterial.) Here A1 is satisfied and A2 is not. Yet, like the previous example, the longer
you wait the better off you are, but if you wait forever you win nothing. There is no
optimal rule.

We remark that for minimization problems, where Yn represents a cost rather than a
reward, conditions A1 and A2 should be replaced by

A1. E{infn Yn} > −∞ .
A2. lim infn→∞ Yn ≥ Y∞ a.s.

§3.1. Regular Stopping Rules. We precede the main theorem on the existence of
optimal stopping rules by two lemmas involving the notion of a regular stopping rule, a
concept due to Snell (1952).

Definition. A stopping rule N is said to be regular, if for every n ,

E{YN |Fn} > Yn a.s. on {N > n}. (2)

In other words, N is regular if E{YN |X1 = x1, . . . ,Xn = xn} > yn(x1, . . . , xn) for
almost all (x1, . . . , xn) ∈ {N > n} . In still other words, N is regular if it has the property
that if N tells you to continue at a certain stage, then N gives you an improved conditional
expected return compared to stopping at that stage. The first lemma shows how to replace
a given stopping rule by a regular one having no worse expected payoff.

Lemma 1. Assume A1. Given any stopping rule N , there is a regular stopping rule N ′

such that EYN ′ ≥ EYN .

Proof. Define N ′ = min{n ≥ 0 : E(YN |Fn) ≤ Yn} . That is, N ′ tells you to use N until
N tells you to continue and stopping is at least as good, in which case you stop. It is clear
that N ′ is a stopping rule and that N ′ ≤ N . On {N ′ = n} , we have E(YN |Fn) ≤ Yn

a.s. for all n , while on {N ′ = ∞} , we have YN = YN ′ = Y∞ a.s. Hence,

EYN ′ =
=∞∑
n=0

E(I{N ′ = n}Yn) ≥
∞∑

n=0

E(I{N ′ = n}E(YN |Fn)) + E(I{N ′ = ∞}Y∞)

=
=∞∑
n=0

E(I{N ′ = n}YN ) = EYN ,

(3)

where the summation is over n from 0 to ∞ inclusive. The interchange of expectation
and summation is valid by A1. To see that N ′ is regular, we use the same argument as
above conditional on Fn to find that on {N ′ > n} , we have E(YN ′|Fn) ≥ E(YN |Fn) a.s.
Since E(YN |Fn) > Yn a.s. on {N ′ > n} , we have E(YN ′|Fn) > Yn on {N ′ > n} .

The next lemma shows that we may improve on two regular stopping rules by stopping
when the one with the longer life tells us to stop.
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Lemma 2. Assume A1. If N and N ′ are regular stopping rules, then so is N ′′ =
max{N,N ′} and then

EYN ′′ ≥ max{EYN ,EYN ′}. (4)

Proof. N ′′ is equal to N except on sets of the form {N = n} ∩ {N ′ > n} in which case
E(YN ′′|Fn) = E(YN ′|Fn) > Yn a.s. Hence,

EYN ′′ =
∑

E(I{N = n}YN ′′) =
∑

E(I{N = n}E(YN ′′ |Fn))

≥
∑

E(I{N = n}Yn) = EYN .
(5)

By symmetry, EYN ′′ ≥ EYN ′ .

To see that N ′′ is regular, note that {N ′′ > n} = {N > n} ∪ {N ′ > n} . On {N >
n} , an argument similar to the above but conditional on Fn shows that E(YN ′′ |Fn) ≥
E(YN |Fn) a.s., which is greater than Yn from the regularity of N . By symmetry,
E(YN ′′|Fn) > Yn a.s. on {N ′ > n} . Hence, on {N ′′ > n} , E(YN ′′|Fn) > Yn a.s.
showing the regularity of N ′′ .

With these two lemmas in hand, the main theorem of this chapter is an application
of the Fatou-Lebesgue Lemma, which states: If Z,X1,X2, . . . is a sequence of real-valued
random variables such that Xn ≤ Z for all n and EZ < ∞ , then lim supn EXn ≤
E lim supn Xn .

Theorem 1. Under A1 and A2, there exists a stopping rule N∗ such that EYN∗ = V ∗ ,
where V ∗ = supN EYN .

Proof. If V ∗ = −∞ , the result is trivial. So we may assume that −∞ < V ∗ < ∞ .
Let N1, N2, . . . be a sequence of stopping rules such that EYNj → V ∗ . Let N ′

1, N
′
2, . . . be

the regularized versions as in Lemma 1, so that EYN ′
j
→ V ∗ . Let N ′′

j = max{N ′
1, . . . , N

′
j}

so that by Lemma 2, EYN ′′
j

≥ EYN ′
j

and consequently EYN ′′
j

→ V ∗ . Note that N ′′
j

is a monotone nondecreasing sequence of stopping rules converging to the stopping rule
N∗ = sup{N ′

1, N
′
2, . . .} . Moreover, since N ′′

j is a nondecreasing sequence of integers, either
N ′′

j → ∞ or N ′′
j is a fixed integer from some j on. Thus, lim supj→∞ YN ′′

j
≤ YN∗ a.s from

A2. From the Fatou-Lebesgue Theorem, since the YN ′′
j

are bounded above by supn Yn

which is integrable by A1,

V ∗ = lim supEYN ′′
j
≤ E lim supYN ′′

j
≤ EYN∗. (6)

Since EYN∗ ≤ V ∗ by definition of V ∗ , we have EYN∗ = V ∗ .

§3.2. The Principle of Optimality and the Optimality Equation. At the initial
stage, we can obtain y0 without sampling, or we can obtain V ∗ by using an optimal rule.
Therefore, it is optimal to stop without sampling if, and only if, y0 = V ∗ . We expect to be
able to apply this principle at later stages too. If we have observed X1 = x1, . . . ,Xn = xn ,
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we may obtain yn(x1, . . . , xn) without sampling further, or we can, by using a rule optimal
for the remaining stages, obtain

V ∗
n (x1, . . . , xn) = sup

N≥n
E{YN |X1 = x1, . . . ,Xn = xn}. (7)

Note V ∗
0 = V ∗ . Here supN≥n means supremum over the set of all stopping rules N such

that P(N ≥ n) = 1. We expect that it will be optimal to stop at stage n having observed
X1 = x1, . . . ,Xn = xn if and only if yn(x1, . . . , xn) = V ∗

n (x1 , . . . , xn). This is known as
the principle of optimality. It is also of central importance in the more general dynamic
programming problems.

This principle is valid here under A1 and A2 but it requires a modification. The trouble
is that in general there are more than a countable number of stopping rules, N ≥ n , and
the supremum of an uncountable collection of random variables (here the supremum of
E(YN |Fn) over the set of those stopping rules N ≥ n) may not be a random variable (i.e.
measurable) and even if it is, it may not be what we want it to be. Thus, (7) is not well
defined. We can get around this difficulty by using instead the essential supremum.

Definition. Let Xt , for t ∈ T , be a collection of random variables. We say that a random
variable Z is an essential supremum of (Xt)t∈T and write Z = ess supt∈T Xt , if

i. P(Z ≥ Xt) = 1 for all t ∈ T , and
ii. if Z ′ is any other random variable such that P(Z ′ ≥ Xt) = 1 for all t ∈ T , then

P(Z ′ ≥ Z) = 1 .

As an example of a collection of random variables Xt for which ess supt∈T Xt �=
supt∈T Xt , let T = [0, 1] and let Xt = I(t = U) where U is a random variable with a
uniform distribution on [0, 1] . Then supt∈T Xt = 1, yet ess supt∈T Xt = 0.

Lemma 3. An essential supremum, Z = ess supt∈T Xt , always exists, and there exists a
countable subset C ⊂ T such that Z = supt∈C Xt is an essential supremum.

Proof. By taking arctan of the Xt , (t ∈ T ), if necessary, we may assume without loss of
generality that the Xt are uniformly bounded. Let C be the class of all countable subsets
of T , and let

α = sup
S∈C

E sup
t∈S

Xt. (8)

For every n = 1, 2, . . . find sets Sn ∈ C such that E supt∈Sn
Xt ≥ α − 1/n . Let C =⋃∞

n=1 Sn and Z = supt∈C Xt so that C is countable and EZ = α . We now show that
Z = ess supt∈T Xt .

i. Suppose for some t ∈ T , P(Z < Xt) > 0. Then Emax(Z,Xt) > EZ ≥ α ,
contradicting (8). Hence P(Z ≥ Xt) = 1) for all t ∈ T .

ii. Suppose for some Z ′ that P(Z ′ ≥ Xt) = 1 for all t ∈ T . Then since C is
countable, P(Z ′ ≥ supt∈C Xt) = 1. Hence P(Z ′ ≥ Z) = 1.
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Before returning to the principle of optimality, we first indicate that the analogues of
Lemmas 1 and 2 are valid conditionally on having reached stage n . For this purpose, we
extend the notion of a regular stopping rule. When we write X ≥ Y or X > Y etc., where
X and Y are random variables, we take it as implied that the inequalities hold almost
surely. Similarly, when we write X > Y on a set A , we mean P({X > Y } ∩ A) = P(A).

Definition. A stopping rule N ≥ n is regular from n on, if for every k ≥ n ,
E{YN |Fk} > Yk on {N > k} .

Lemma 1′ . Under A1, for any stopping rule N ≥ n there exists a stopping rule N ′ ≥ n ,
regular from n on, such that E{YN ′|Fn} ≥ E{YN |Fn}.

Lemma 2′ . Under A1, if N ≥ n and N ′ ≥ n are both regular from n on, then so is
N ′′ = max(N,N ′) and E(YN ′′ |Fn) ≥ max(E{YN |Fn},E{YN ′|Fn}) .

The proofs of these lemmas are straightforward adaptations of the proofs of Lemmas
1 and 2, and so are omitted.

The next theorem is the optimality equation of dynamic programming. Let

V ∗
n = ess supN≥nE{YN |Fn}. (9)

Theorem 2. Under A1, V ∗
n = max(Yn,E{V ∗

n+1|Fn}) .

Proof. Let N ≥ n be an arbitrary stopping rule. On {N > n} , E{YN |Fn+1} ≤ V ∗
n+1 , so

that on {N > n} , E{YN |Fn} = E{E(YN |Fn+1)|Fn} ≤ E{V ∗
n+1|Fn} . Hence E{YN |Fn} =

I{N = n}Yn + I{N > n}E{YN |Fn} ≤ max(Yn,E{V ∗
n+1|Fn}) for all N ≥ n . Therefore,

V ∗
n = ess supN≥nE{YN |Fn} ≤ max(Yn,E{V ∗

n+1|Fn}).
To show the reverse inequality, first note that Yn ≤ V ∗

n trivially. Now by Lemma
3, there exists a sequence N1, N2, . . . of stopping rules with each Nk ≥ n + 1 such
that V ∗

n+1 = supk E{YNk|Fn+1} . By Lemma 1′ , there exists for each k a stopping
rule N ′

k ≥ n + 1 regular from n + 1 on such that E{YN ′
k
|Fn+1} ≥ E{YNk|Fn+1} . Let

N ′′
k = max(N ′

1, . . . , N
′
k). Then,

V ∗
n ≥ E{YN ′′

k
|Fn} = E(E{YN ′′

k
|Fn+1}|Fn)

≥ E( max
1≤j≤k

E{YN ′
j
|Fn+1}|Fn) by Lemma 2′,

≥ E( max
1≤j≤k

E{YNj |Fn+1}|Fn)

→ E(V ∗
n+1|Fn)

(10)

by monotone convergence.

It is interesting to note that the optimality equation holds under A1 alone, even if an
optimal rule does not exist.
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The stopping rule given by the principle of optimality is the rule

N∗ = min{n ≥ 0 : Yn = V ∗
n }. (11)

It may be dangerous to use the rule give by the principle of optimality. In Example 2 of
the introduction of this chapter, V ∗

n = 1 for all finite n , and Yn < 1 for all finite n so N∗

tells you to continue forever. This gives a payoff of 0.

Using A1 only, N∗ may not be optimal, but yet no rule is made worse by stopping
when N∗ tells you to stop, as the following lemma shows.

Lemma 4. Assume A1. Let N be any stopping rule and let N ′ = min(N,N∗) . Then,
EYN ′ ≥ EYN .

Proof. On {N∗ = n < N} , V ∗
n ≥ E(YN |Fn). Hence,

EI{N∗ < N}YN∗ =
∞∑
0

EI{N∗ = n < N}Yn

=
∞∑
0

EI{N∗ = n < N}V ∗
n

≥
∞∑
0

E(I{N∗ = n < N}E{YN |Fn})

=
∞∑
0

EI{N∗ = n < N}YN

= EI{N∗ < N}YN .

(12)

Hence,
EYN ′ = EI{N∗ < N}YN∗ + EI{N∗ ≥ N}YN

≥ EI{N∗ < N}YN + EI{N∗ ≥ N}YN = EYN ,
(13)

completing the proof.

Under A1 and A2, N∗ is optimal. In fact, the proof of the following theorem shows
that out of all optimal rules it stops the soonest (for any optimal rule No , N∗ ≤ No ). A
characterization of all optimal rules may be found in the paper of M. Klass (1973).

Theorem 3. Under A1, if there exists an optimal rule, in particular if A2 holds, then N∗

is optimal.

Proof. Let N0 be an optimal rule and let N = min{N0, N
∗} . Then from Lemma 4, N is

also optimal and N ≤ N∗ . We will complete the proof by showing that N = N∗ . Suppose
P{N < N∗} > 0. Then for some n , P{N = n < N∗} > 0, and on {N = n < N∗} ,
Yn < V ∗

n , so that we should be able to improve N by changing N on {N = n < N∗} to
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something that gives return close to V ∗
n . As in the proof of Theorem 2, find Nk regular

from n on such that supk E{YNk |Fn} = V ∗
n and let N ′

k = max{N1, . . . , Nk} so that

V ∗
n ≥ E(YN ′

k
|Fn) ≥ max

1≤j≤k
E(YNj |Fn) → V ∗

n (14)

monotonically. Then, since EI{N = n < N∗}YN ′
k
→ EI{N = n < N∗}V ∗

n , there exists
a k such that EI{N = n < N∗}Yn < EI{N = n < N∗}YN ′

k
. Letting N ′ = N ′

k on
{N = n < N∗} and N ′ = N otherwise, we have EYN ′ > EYN , contradicting the optimal-
ity of N . Consequently, P(N < N∗) = 0 which implies that N = N∗ .

Often useful in applications is an alternate form of the rule given by the principle of
optimality, based on the random variables

W ∗
n = E(V ∗

n+1|Fn).

By the optimality equation, V ∗
n = max(Yn,W ∗

n), and the rule, N∗ , becomes

N∗ = min{n ≥ 0 : Yn ≥ W ∗
n}.

One can show that W ∗
n = ess supN>nE(YN |Fn), so W ∗

n can be considered as the best
return available at stage n among rules that continue at least one stage. The rule N∗

calls for stopping when the return for stopping is at least as great as the best that can be
obtained by continuing. The rule N∗∗ = min{n ≥ 0 : Yn > W ∗

n} is the optimal rule that
stops last (for any optimal rule No , N∗∗ ≥ No ).

§3.3 The Wald Equation. The following equation, due to Wald, is very useful in
solving optimal stopping problems.

Theorem 4. Let X1,X2, . . . be a sequence of independent identically distributed random
variables such that E|X1| < ∞ , let µ = EX1 , and let Sn = X1 + · · ·+Xn . Let N be any
stopping rule, adapted to X1,X2, . . . . Then, if EN < ∞ ,

E(SN ) = µE(N). (15)

Moreover, if EN = ∞ and µ �= 0 , then (15) holds provided ESN exists (that is, provided
not both ES+

N = ∞ and ES−
N = ∞ where x+ = max(0, x) and x− = −min(0, x)).

We give two proofs. The first does not cover the “moreover” part of the statement,
but is more flexible for providing simple extensions.
Proof #1. Provided the change of summation can be justified, we have

ESN =
∞∑

n=1

E{I(N = n)Sn}

=
∞∑

n=1

n∑
j=1

E{I(N = n)Xj}

=
∞∑

j=1

∞∑
n=j

E{I(N = n)Xj}

=
∞∑

j=1

E{I(N ≥ j)Xj}.

(16)
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Since N is a stopping rule for the sequence X1,X2, . . . , the event {N ≥ j} depends only
on X1, . . . ,Xj−1 and so is independent of Xj . The equation continues

=
∞∑

j=1

P{N ≥ j}E(Xj) = µ
∞∑

j=1

P{N ≥ j} = µEN.

The interchange of summations is justified provided the double summation in (16) con-
verges absolutely. This follows by replacing Xj with |Xj | in (16) and obtaining as above,
E(|SN |) ≤ E(|X1|)E(N) < ∞ .

Proof #2. (This proof is due to Blackwell (1946). The ‘Moreover’ part is due Robbins
and Samuel (1966).) Consider n stopping problems as follows. Let N1 be the stopping
rule N applied to the sequence X1,X2, . . . , let N2 be the stopping rule N applied to
XN1+1,XN1+2, . . . , etc., and let Nn be the stopping rule N applied to XN1+···+Nn−1+1 ,
XN1+···+Nn−1+2 , . . . . Let the returns for these problems be denoted by Z1, . . . , Zn where
Zj = XN1+···+Nj−1+1 + · · · + XN1+···+Nj . Then, the Zj are independent with the same
distribution as SN , and we have

Z1 + · · · + Zn

n
=

X1 + · · · + XN1+···+Nn

N1 + · · · + Nn
· N1 + · · · + Nn

n
. (17)

From the strong law of large numbers, (X1 + · · ·+ XN1+···+Nn)/(N1 + · · ·+ Nn) → µ a.s.
If EN < ∞ , then (N1 + · · · + Nn)/n → EN a.s., so that (Z1 + · · · + Zn)/n → µEN a.s.,
and hence by the converse to the strong law, ESN = µEN . Similarly, if ESN < ∞ and
µ �= 0, then (N1 + · · · + Nn)/n → ESN/µ = EN a.s.

REMARK 1. One interpretation of this result for µ = 0 is that it shows that no
stopping strategy with EN < ∞ in a sequence of identical fair games can yield a positive
expected payoff. If each game has expectation µ = 0, then the expectation of the sum
SN is zero for every stopping rule N with EN < ∞ . If EN = ∞ is allowed, then we can
obtain ESN > 0 by defining N as the first n such that Sn > 0, provided the distribution
of X1 is not degenerate at zero. The law of the iterated logarithm shows that N is finite
with probability one.

REMARK 2. If the Xi are independent with mean µ but not identically distributed,
then the result ESN = µEN may not hold. (See Exercise 4.) The natural generalization
of this theorem to the dependent case is for sequences Sn that form a martingale. For
this theory, see for example the books of Chung (1968), or Chow, Robbins and Siegmund
(1971).

REMARK 3. If EX−
1 < ∞ , the argument involving (16) shows that when EN < ∞ ,

ESN = EX1EN even if EX1 = ∞ , provided (when N ≡ 0) 0 times ∞ is taken to be 0.

EXAMPLE 3. As an example of the use of this equation, suppose that the Xi are
i.i.d. taking integer values less than or equal to 1 with probabilities P(Xi = j) = pj , where∑1

−∞ pj = 1, and assume that EXi > 0. For some integer r > 0, let N = min{n >
0 : Sn = r} . Then N < ∞ with probability one, since Sn → ∞ a.s. by the law of large
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numbers. Then, since SN ≡ r , we have EN = ESN/EX1 = r/EX1 . In the particular
case where p1 = p and p0 = 1 − p , we have the well-known result that the expectation of
the number of trials until the rth success in a sequence of i.i.d. Bernoulli trials is r/p (a
negative binomial random variable).

§3.4 Prophet Inequalities. Under A1 and A2, the decision maker can attain an
expected payoff of V ∗ = supN EYN , using stopping rules, i.e. using rules for which stopping
at stage n depends only on the observations up to that time. On the other hand, a prophet,
who can foresee the future and who knows the values of all the Yn , would stop at some
Yn which is close to the largest overall, and thus achieve an expected payoff as close as
desired to M∗ = Esupn Yn . We certainly have V ∗ ≤ M∗ .

Obviously, the prophet has a big advantage over the decision maker. Therefore it is
surprising that in many situations there are universal upper bounds on the advantage of
the prophet over the decision maker. Inequalities bounding M∗ above by some function
of V ∗ are called prophet inequalities. The most basic and surprising of these is the first
general prophet inequality discovered. It is due to Krengel, Sucheston and Garling, and
found in Krengel and Sucheston (1977, 1978).

This inequality deals with a sequence of random variables X1,X2, . . . that are inde-
pendent and nonnegative, and in which the payoff, Yn , for stopping at stage n is Xn itself.
We require that the decision maker use rules that stop at some finite time (i.e. we require
P(N < ∞) = 1), so there is no need to define Y∞ . We use the notation,

V ∗ = sup
N<∞

E(XN ) and M∗ = E(sup
n

Xn). (18)

The basic theorem of Krengel, Sucheston and Garling is the following: For independent
nonnegative random variables, X1,X2, . . . ,

M∗ ≤ 2V ∗. (19)

Thus, a prophet cannot win more on the average than twice that of a real-time decision
maker, when dealing with a sequence of independent nonnegative random variables.

This inequality follows from the finite horizon version, where the decision maker is
restricted to using rules that stop by some prespecified time n . In this case we have

V ∗
n = sup

N≤n
E(XN ) and M∗

n = E( max
1≤j≤n

Xj). (20)

and the inequality becomes
M∗

n ≤ 2V ∗
n . (21)

To see that (21) implies (19), simply note, since max1≤j≤n Xj is a.s. nondecreasing to
supn Xn , that M∗

n → M∗ as n → ∞ . Then V ∗ ≥ V ∗
n ≥ (1/2)M∗

n → (1/2)M∗ as n → ∞ .
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Examples. One cannot replace the condition that the Xi be nonnegative with the
condition that the expectations be nonnegative. Here is an example with n = 2. Let
the X1 = 1 and let X2 be B with probability 1/2 and −B with probability 1/2, for
some large number B . The best one can do with stopping rules is to stop with the first
observation and receive V ∗

2 = 1, since continuing gives an expected value of 0. But the
prophet can get M∗

2 = Emax{1,X2} = (1/2) + (1/2)B = (B + 1)/2.

A similar example shows that the inequalities (19) and (21) are sharp. Let X1 = 1,
X3 = X4 = · · · = 0, and for some number B > 1 let P(X2 = B) = 1/B and P(X2 = 0) =
1 − (1/B). Then again the best the real-time decision maker can do is V ∗ = 1. Whereas
the prophet can obtain M∗ = Emax{1,X2} = (1 − (1/B)) + (1/B)B = 2 − (1/B). This
can be made as close to 2 as desired by making B large.

If in (21) we rule out the trivial cases where M∗ = 0 and M∗ = ∞ , then the inequality
may be taken to be strict.

The inequality (21) is interesting because of its generality. Of course, in particular
situations the bound may not be very good. For example, in the Cayley-Moser problem
of Chapter 2, when X1, . . . ,Xn are i.i.d. uniform, the distribution of max{X1, . . . ,Xn}
has the beta distribution function, F (y) = yn on [0, 1] . This distribution has mean
M∗

n = n/(n+1) = 1− (1/(n+1)). This is just slightly bigger than V ∗
n = An � 1− (2/(n+

log(n) + 1.768)) when n is large.

For the proof of the prophet inequality (21), we use a method due to Ester Samuel-
Cahn (1984). This proof has the advantage of being constructive. It exhibits a stopping
rule that achieves at least half of the profit of a prophet. Moreover, it shows that the
advantage of the prophet does not increase if the decision maker is restricted to using pure
threshold rules. (A threshold rule is pure if the cutoff point does not depend on n .)

Let Mn = max1≤j≤n Xj . We define a pure threshold stopping rule with threshold
c to be a rule of the form

s(c) =
{

min{1 ≤ j ≤ n : Xj > c} if Mn > c
n if Mn ≤ c

(22)

or

t(c) =
{

min{1 ≤ j ≤ n : Xj ≥ c} if Mn ≥ c
n if Mn < c.

(23)

Let m denote a median of the distribution of Mn , i.e.

P(Mn < m) = q ≤ 1/2 and P(Mn > m) = p ≤ 1/2. (24)

and let

β =
n∑
1

E(Xi − m)+. (25)

Then one of the two stopping rules, s(m) or t(m), will achieve at least half of EMn .
More precisely,



Existence of Optimal Rules 3.11

Theorem 5. If m ≤ β , then E(Mn) ≤ 2E(Xs(m)) . If m ≥ β , then E(Mn) ≤ 2E(Xt(m)) .

Proof. First note that (Mn − m)+ = max1≤i≤n(Xi − m)+ ≤
∑n

1 (Xi − m)+ a.s., so that
E(Mn − m)+ ≤ β . Hence,

E(Mn) = m + E(Mn − m) ≤ m + E(Mn − m)+ ≤ m + β. (26)

Suppose first that m ≤ β . Then

E(Xs(m) − m)+ = E
n∑
1

(Xi − m)+I(s(m) = i)

=
n∑
1

E(Xi − m)+I(s(m) > i − 1)

=
n∑
1

E(Xi − m)+P(s(m) > i − 1).

(27)

The last equality uses the fact that the event {s(m) > i−1} depends only on X1, . . . ,Xi−1

and so is independent of Xi . Moreover,

P(s(m) > i − 1) ≥ P(s(m) = n) ≥ P(Mn ≤ m) = 1 − p (28)

for all i . Together (27) and (28) show that E(Xs(m) −m)+ ≥ β(1 − p). Finally,

E(Xs(m)) = E(Xs(m)I(Xs(m) > m)) + E(XnI(Xs(m) ≤ m) ≥ E(Xs(m)I(Xs(m) > m)) (29)

since Xn ≥ 0. Continuing this inequality,

E(Xs(m)I(Xs(m) > m)) = E((Xs(m) − m)I(Xs(m) > m)) + mP(Xs(m) > m)

= E(Xs(m) −m)+ + mP(Mn > m) = E(Xs(m) − m)+ + mp

≥ β(1 − p) + mp = β − (β −m)p
≥ β − (β − m)/2 = (m + β)/2
≥ E(Mn)/2

(30)
using (26) and our assumption that m ≤ β . This proves the first statement of the theorem.
The second statement is proved in a completely analogous fashion.

It is interesting to note that this proof shows that for inequality (21) the assumption
that all the Xi be nonnegative may be replaced by the assumption that just Xn be
nonnegative. For the corresponding improvement in the conditions for inequality (19), see
Exercise 6.

There are many other prophet inequalities. An important class of prophet inequali-
ties concerns a sequence of independent uniformly bounded random variables. The basic
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theorem in this class is due to Hill and Kertz (1981): For independent random variables,
X1,X2, . . . such that 0 ≤ Xi ≤ 1 for all i ,

M∗ ≤ V ∗ +
1
4

(31)

or better, as proved in Hill (1983)

M∗ ≤ 2V ∗ − (V ∗)2. (32)

The inequality here is sharp and may be attained. (See Exercise 7.)

Other classes of prophet inequalities include those where the variables are allowed to
be dependent, or the variables are restricted to being i.i.d., or where the decision maker is
given the freedom to choose the order in which the Xi are observed. For a review of these
and other prophet inequalities, see the survey paper of Hill and Kertz (1992).

§3.5 Exercises.

1. The one-stage look-ahead rule. Let N1 denote the one-stage look-ahead rule,
sometimes called the myopic rule,

N1 = min{n ≥ 0 : Yn ≥ E(Yn+1|Fn)},

and let N
(J)
1 denote this rule truncated at J , N

(J)
1 = min{N1, J} .

(a) Show that N
(J)
1 is regular if A1 is satisfied.

(b) Show that N1 is regular if A1 and A2 are satisfied.
(c) Show by counterexample that if A1 or A2 is not satisfied, N1 may not be regular.

2. The hypermetropic rule. Let N∞ denote the hypermetropic rule,

N∞ = min{n ≥ 0 : Yn ≥ E(Y∞|Fn)}.

Show that under condition A1, N∞ is regular.

3. The one-time look-ahead rule. Let T1 denote the one-time look-ahead rule,

T1 = min{n ≥ 0 : Yn ≥ sup
j>n,j≤∞

E(Yj |Fn)}.

(a) Show that T1 is regular under conditions A1 and A2.
(b) Assuming A1 and A2, conclude that the one-time look-ahead rule is at least as good
as the one-stage look-ahead rule, and the hypermetropic rule.

4. Wald’s equation without the assumption of identical distributions.
(a) Find an example of independent X1,X2, . . . such that EXj = 0 for all j , and a
stopping rule N adapted to X1,X2, . . . with EN < ∞ such that E(X1 + · · · + XN ) > 0.
(b) Let X1,X2, . . . be independent with finite means µj = EXj for j = 1, 2, . . . . Let N
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be any stopping rule such that EN < ∞ . Find the extra conditions on the distributions
of the Xj that are needed so that equation (16) goes through to show

E(SN) = E
N∑

j=1

µj . (33)

5. Give an example of independent nonnegative random variables, X1, . . . ,Xn , for
which E(Mn) > 2E(Xs(m)), and another example for which E(Mn) > 2E(Xt(m)). (For
this, it suffices to take n = 2.)

6. Prove the following extension of basic prophet inequality: If X1,X2, . . . , are inde-
pendent, and if

∑∞
i=1 P(Xi ≥ 0) = ∞ , then (19) holds.

7. For each value of V ∗ in (0,1), give an example of independent random variables
X1,X2, . . . with 0 ≤ Xi ≤ 1 for all i such that M∗ = 2V ∗ + (V ∗)2 .


