
Chapter 2. FINITE HORIZON PROBLEMS.

A stopping rule problem has a finite horizon if there is a known upper bound on
the number of stages at which one may stop. If stopping is required after observing
X1, . . . ,XT , we say the problem has horizon T . A finite horizon problem may be obtained
as a special case of the general problem as presented in Chapter 1 by setting yT+1 =
· · · = y∞ = −∞ . In principle, such problems may be solved by the method of backward
induction. Since we must stop at stage T , we first find the optimal rule at stage T − 1.
Then, knowing the optimal rule at stage T − 1, we find the optimal rule at stage T − 2,
and so on back to the initial stage (stage 0). We define V

(T )
T (x1, . . . , xT ) = yT (x1, . . . , xT )

and then inductively for j = T − 1, backward to j = 0,

V
(T )

j (x1, . . . , xj) =

max
{

yj(x1, . . . , xj),E(V (T )
j+1 (x1, . . . , xj ,Xj+1)|X1 = x1, . . . ,Xj = xj)

}
.

(1)

Inductively, V
(T )

j (x1, . . . , xj) represents the maximum return one can obtain starting from
stage j having observed X1 = x1, . . . ,Xj = xj . At stage j , we compare the return for
stopping, namely yj(x1, . . . , xj), with the return we expect to be able to get by con-
tinuing and using the optimal rule for stages j + 1 through T , which at stage j is
E(V (T )

j+1(x1, . . . , xj ,Xj+1)|X1 = x1, . . . ,Xj = xj). Our optimal return is therefore the

maximum of these two quantities, and it is optimal to stop at j if V
(T )
j (x1, . . . , xj) =

yj(x1 , . . . , xj), and to continue otherwise. The value of the stopping rule problem is then
V

(T )
0 .

In this chapter, we present a number of problems whose solutions may be effectively
evaluated by this method. The most famous of these is the secretary problem. In the first
three sections, we discuss this problem and some of its variations. In the fourth section,
we treat the Cayley-Moser problem, a finite horizon version of the house selling problem
mentioned in Chapter 1. In the last section, we present the parking problem of MacQueen
and Miller. Other examples of finite horizon problems include the fishing problem and the
one-armed bandit problem of the Exercises of Chapter 1.

§2.1 The Classical Secretary Problem. The secretary problem and its offshoots
form an important class of finite horizon problems. There is a large literature on this
problem, and one book, Problems of Best Selection (in Russian) by Berezovskiy and Gnedin
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(1984) devoted solely to it. For an entertaining exposition of the secretary problem, see
Ferguson (1989). The problem is usually described as that of choosing the best secretary
(the secretary problem), but it is sometimes described as the problem of choosing the best
spouse (the marriage problem) or the largest of an unknown set of numbers (Googol).
First, we describe what is known as the classical secretary problem, or CSP.

1. There is one secretarial position available.

2. There are n applicants for the position; n is known.

3. It is assumed you can rank the applicants linearly from best to worst without ties.

4. The applicants are interviewed sequentially in a random order with each of the n!
orderings being equally likely.

5. As each applicant is being interviewed, you must either accept the applicant for
the position and end the decision problem, or reject the applicant and interview the next
one if any.

6. The decision to accept or reject an applicant must be based only on the relative
ranks of the applicants interviewed so far.

7. An applicant once rejected cannot later be recalled.

8. Your objective is to select the best of the applicants; that is, you win 1 if you select
the best, and 0 otherwise.

We place this problem into the guise of a stopping rule problem by identifying stopping
with acceptance. We may take the observations to be the relative ranks, X1,X2, . . . ,Xn ,
where Xj is the rank of the j th applicant among the first j applicants, rank 1 being
best. By assumption 4, these random variables are independent and Xj has a uniform
distribution over the integers from 1 to j . Thus, X1 ≡ 1, P(X2 = 1) = P(X2 = 2) = 1/2,
etc.

Note that an applicant should be accepted only if it is relatively best among those
already observed. A relatively best applicant is called a candidate, so the j th applicant
is a candidate if and only if Xj = 1. If we accept a candidate at stage j , the probability
we win is the same as the probability that the best among the first j applicants is best
overall. This is just the probability that the best candidate overall appears among the first
j applicants, namely j/n . Thus,

yj(x1, . . . , xj) =
{

j/n if applicant j is a candidate,
0 otherwise.

(2)

Note that y0 = 0 and that for j ≥ 1, yj depends only on xj .

This basic problem has a remarkably simple solution which we find directly without
the use of (1). Let Wj denote the probability of win using an optimal rule among rules
that pass up the first j applicants. Then Wj ≥ Wj+1 since the rule best among those
that pass up the first j + 1 applicants is available among the rules that pass up only the
first j applicants. It is optimal to stop with a candidate at stage j if j/n ≥ Wj . This
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means that if it is optimal to stop with a candidate at j , then it is optimal to stop with a
candidate at j + 1, since (j + 1)/n > j/n ≥ Wj ≥ Wj+1 . Therefore, an optimal rule may
be found among the rules of the following form, Nr for some r ≥ 1:

Nr : Reject the first r−1 applicants and then accept the next relatively best applicant,
if any.

Such a rule is called a threshold rule with threshold r . The probability of win using
Nr is

Pr =
n∑

k=r

P(kth applicant is best and is selected )

=
n∑

k=r

P(kth applicant is best )P(kth applicant is selected | it is best )

=
n∑

k=r

1
n

P(best of first k − 1 appears before stage r)

=
n∑

k=r

1
n

r − 1
k − 1

=
r − 1

n

n∑
k=r

1
k − 1

,

(3)

where (r−1)/(r−1) represents 1 if r = 1. The optimal r1 is the value of r that maximizes
Pr . Since

Pr+1 ≤ Pr if and only if

r

n

n∑
r+1

1
k − 1

≤ r − 1
n

n∑
r

1
k − 1

if and only if

n∑
r+1

1
k − 1

≤ 1,

we see that the optimal rule is to select the first candidate that appears among applicants
from stage r1 on, where

r1 = min{r ≥ 1 :
n∑

r+1

1
k − 1

≤ 1}. (4)

The following table is easily constructed.

n = 1 2 3 4 5 6 7 8
r1 = 1 1 2 2 3 3 3 4

Pr1 = 1.0 .500 .500 .458 .433 .428 .414 .410

It is of interest to compute the approximate values of the optimal r1 and the optimal
Pr1 for large n . Since

∑n
r+1 1/(k − 1) ∼ log(n/r), we have approximately log(n/r1) = 1,

or r1/n = e−1 . Hence, for large n it is approximately optimal to pass up a proportion
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e−1 = 36.8% of the applicants and then select the next candidate. The probability of
obtaining the best applicant is then approximately e−1 .

§2.2 Arbitrary Monotonic Utility. Problems in which the objective is to select
the best of the applicants, as in assumption 8, are called best-choice problems. These
are problems of the very particular person who will be satisfied with nothing but the very
best. We extend the above result to more arbitrary payoff functions of the rank of the
selected applicant. For example, we might be interested in getting one of the best two
applicants; or we might be interested in minimizing the expected rank of the applicant
selected, rank 1 being best. Let U(j) be your payoff if the applicant you select has rank
j among all applicants. It is assumed that U(1) ≥ U(2) ≥ · · · ≥ U(n). The lower the
ranking the more valuable. If no selection is made at all, the payoff is a fixed number
denoted by Z∞ (allowed to be greater than U(n)). In the best-choice problem, U(1) = 1,
U(2) = · · · = U(n) = 0, and Z∞ = 0.

Let Xj be the relative rank of the j th applicant among the first j applicants observed.
Then the Xj are independent, and Xj is uniformly distributed on the integers, {1, 2, ..., j} .
The reward function yj(x1, . . . , xj) is the expected payoff given that you have selected the
j th applicant and it has relative rank xj . The probability that an applicant of rank x
among the first j applicants has eventual rank b among all applicants is the same as the
probability that the applicant of rank b will be found in a sample of size j and have rank
x there, namely

f(b|j, x) =

(
b−1
x−1

)(
n−b
j−x

)
(
n
j

) for b = x, . . . , n − j + x,

(the negative hypergeometric distribution). Hence for 1 ≤ j ≤ n ,

yj(x1, ..., xj) =
n−j+x∑

b=x

U(b)f(b|j, x)

where x = xj . To force you to take at least one observation, we take y0 = −∞ . We
note that yj depends only on xj and may be written yj(xj). As a practical matter,
computation may be carried out conveniently using a backward recursion. The recursion
for the probabilities,

f(b|j − 1, x) =
x

j
f(b|j, x + 1) +

j − x

j
f(b|j, x),

implies the backward recursion for the expected values,

yj−1(x) =
x

j
yj(x + 1) +

j − x

j
yj(x) (5)

for j > 1, with initial conditions, yn(x) = U(x) for 1 ≤ x ≤ n .



Finite Horizon Problems 2.5

The horizon for the secretary problem is n . If you go beyond the horizon, you receive
Z∞ , so the initial condition on the V (n) is: V

(n)
n (xn) = max(U(xn), Z∞). Since the

Xi are independent, the conditional expectation in the right side of (1) reduces to an
unconditional expectation. Since yj depends on x1, . . . , xj only through the values of xj ,
the same is true of V

(n)
j . Hence, for j = n − 1, . . . , 1,

V
(n)
j (xj) = max{yj(xj),

1
j + 1

j+1∑
x=1

V
(n)
j+1(x)}.

It is optimal to stop at j if

yj(xj) ≥
1

j + 1

j+1∑
x=1

V
(n)
j+1(x)

and to continue otherwise. The generalization of the result for the CSP that the optimal
rule is a threshold rule, is contained in the following lemma.

Lemma. If it is optimal to select an applicant of relative rank x at stage k , then
(a) it is optimal to select an applicant of relative rank x − 1 at stage k , and
(b) it is optimal to select an applicant of relative rank x at stage k + 1 .

Proof. Let A(j) = (1/j)
∑j

i=1 V
(n)
j (i). The hypothesis is that yk(x) ≥ A(k + 1). We

are to show that (a) yk(x − 1) ≥ A(k + 1), and (b) yk+1(x) ≥ A(k + 2). (a) follows since
yk(x − 1) ≥ yk(x). To see (b), note first that A(k + 1) ≥ A(k + 2) since A(k + 1) is an
average of quantities V

(n)
k+1(i) each at least as large as A(k + 2). Thus, (b) will follow if

we show yk+1(x) ≥ yk(x). To see this, use the recursion (5) to obtain,

yk(x) = (x/(k + 1))yk+1(x + 1) + ((k + 1 − x)/(k + 1))yk+1(x)
≤ (x/(k + 1))yk+1(x) + ((k + 1 − x)/(k + 1))yk+1(x)
= yk+1(x).

This lemma implies that an optimal rule has the following form. Let rx denote
the first stage at which it is optimal to select an applicant of relative rank x . Then,
1 ≤ r1 ≤ r2 ≤ ... ≤ rn ≤ n and if at stage j you see an applicant of relative rank x , you
stop if j ≥ rx . For example, when U(3) = U(4) = . . . = U(n) = Z∞ = 0, the threshold
rule takes the form Nr,s : continue through stage r−1; from stages r through s−1, select
an applicant of relative rank 1; from stages s through n , select an applicant of relative
rank 1 or 2. (See Exercise 3.)

As another application consider the problem of minimizing the expected rank of
the applicant selected. In this case, U(j) = j , yj(xj) = (n+1)xj/(j +1) as may be found
using (5), and we are trying to minimize EyN (XN ). D. V. Lindley (1961) introduced this
problem. For small values of n the optimal values of the rx , call them rx(n), may be
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computed without difficulty. The problem of approximating these values when n is large
has been solved by Chow, Moriguti, Robbins, and Samuels (1964). Their results may be
summarized as follows. Let V (n) denote the expected rank of the applicant selected by
an optimal rule when there are n applicants. Then as n → ∞ ,

V (n) → V (∞) =
∞∏
1

(1 + 2/j)1/(j+1) = 3.8695 · · · and

rx(n)/n → (1/V (∞))
x−1∏

1

(1 + 2/j)1/(j+1) = b(x).

Thus, b(1) = .2584 · · · , b(2) = .4476 · · · , b(3) = .5640 · · · , and for large x , b(x) =
1 − 2/(x + 1) + O(1/x3). Therefore the optimal rule has the following description. Wait
until 25.8% of the applicants have passed; then select any applicant of relative rank 1.
After 44.8% of the applicants have passed, select any applicant of relative rank 1 or 2.
After 56.4% have passed, select any candidate of relative rank 1, 2 or 3, etc.

The paper of Mucci (1973) contains an extension of these results to general non-
decreasing payoff based on the ranks. An interesting possibility is that for some reward
functions, yj , the function b(x) = limn→∞ rx(n)/n may not tend to 1 as x → ∞ ; that is,
there may be an upper bound on the proportion of applicants it is optimal to view.

§2.3 Variations. There is a large literature dealing with many variations of the CSP.
For example, there may be a probability q that an applicant will not accept an offered job
(Exercise 2). Or, in the viewpoint of the marriage problem, it may be a worse outcome to
marry the wrong person than not to get married at all (Exercise 1).

In Gilbert and Mosteller (1966), the intrinsic values of the objects are revealed, and
you are allowed to use the information in your search for the best object. To be specific,
there is a sequence of independent identically distributed continuous random variables,
X1, . . . ,Xn , that are shown to you one at a time, and you may stop the proceedings by
selecting the number being shown to you. As before, the payoff is a function of the true
rank of the number you select. For the best-choice problem, you win 1 if you select the
largest Xi and you win 0 otherwise. Gilbert and Mosteller solve the best-choice problem
when the distribution of the Xi ’s is fully known, and show that the limiting probability
of choosing the best converges to v∗ = .58016 · · · as n → ∞ . This is to be compared to
the limiting value e−1 when the intrinsic values are not revealed.

The first description of the secretary problem in print occurs in Martin Gardner’s
Scientific American column of February 1960, in which he describes a game theoretic
version called “Googol”. In this version, player I chooses n numbers, X1, . . . ,Xn , writes
them on slips of paper and puts them in a hat. Player II, not knowing the numbers, pulls
them out at random one at a time. Player II may stop at any time, and if he does he
wins one if the last number he has drawn is the largest of all the n numbers. Clearly,
player II can achieve at least probability Pr1 of winning by using only the relative ranks
of the numbers drawn and the optimal stopping rule for the CSP. Can he do better using
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the actual values of the X ’s? Can player I choose the X ’s without giving away any extra
information? (See Exercise 4.)

Problems such as Googol, in which the distribution of the X ’s is completely unknown,
are called no-information problems. The classical secretary problem is included in this
group. Problems such as the problem of Gilbert and Mosteller, in which the X ’s are
i.i.d. with a known distribution, are called full-information problems. A number of
intermediate versions have been proposed featuring some sort of partial information
about the distribution of the X ’s. Petruccelli (1980) treats the normal distribution with
unknown mean and shows that the best invariant rule achieves v∗ as a limiting probability
of selecting the best. Thus, asymptotically nothing is lost by not knowing the mean of
the normal distribution. On the other hand, if the distribution is uniform on the interval
(a, b) with a and b unknown, Stewart (1978) and Samuels (1981) show that the minimax
stopping rule is based only on relative ranks, and so gives limiting probability e−1 , so that
learning the distribution does you no good asymptotically. Campbell and Samuels (1981)
consider the problem of selecting the best among the last n objects from a sequence of
m + n objects. The success probabilities converge as m/(m + n) → t to a quantity p∗(t),
where p∗(t) increases from e−1 at t = 0 (no-information) to v∗ at t = 1 (full-information).

Another variation lets the total number of objects that are going to be seen be un-
known, violating assumption 2 of the CSP. It is assumed instead that the number of objects
is random with some known distribution. These problems were introduced by Presman
and Sonin (1972). (See Exercise 5.) Abdel-Hamid, Bather, and Trustrum (1982) con-
sider admissibility of stopping rules for this problem, and J. D. Petruccelli (1983) gives
conditions under which the optimal rule is a threshold rule.

Still another variation, introduced by Yang (1974) allows us to attempt to select an
object we have already passed over. This is called backward solicitation. The probability
of success of backward solicitation depends on how far in the past the object was observed.
For example, one may be allowed to choose any of the last m objects that have been
observed, as in Smith and Deely (1975). This problem has been extended to the full
information case by Petruccelli (1982), and to the case where an option may be bought to
be able to recall a desirable object subsequently by J. Rose (1984).

§2.4 The Cayley-Moser Problem. A finite horizon version of the problem of selling
an asset was proposed by Arthur Cayley in 1875. A smooth version of Cayley’s problem,
due to Moser (1956), is presented in this section. Another important finite horizon problem,
the parking problem of MacQueen and Miller (1960), is described in the next section.

In the Cayley problem, a population of m objects with known values, x1, x2, . . . , xm ,
is given. From this population, a simple random sample of size at most n , where n ≤ m ,
is drawn sequentially without replacement. You may stop the sampling at any time by
selecting the last chosen object and you receive the value of that object as a reward,
but you must stop and select the nth sample if you have not stopped before that stage.
The problem is to find a stopping rule that maximizes the expected value of the selected
object. Cayley discusses this problem and suggests solving it by the method of backward
induction. He then applies the method to a simple example of a population of size m = 4
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with values {1, 2, 3, 4} , and finds for n = 1, 2, 3, 4, the optimal rules and the maximal
expected rewards. (Exercise 7.) The Cayley problem (sampling without replacement from
a population of size m of known values 1, 2, . . . ,m) has been extended to sampling with
recall and an arbitrary payoff function by Chen and Starr (1980).

Moser reformulates Cayley’s problem in a way that provides an approximation to the
problem when m is large and the population values are {1, 2, . . . ,m} . He assumes that
the observations, X1,X2, . . . ,Xn , are independent and identically distributed according
to a uniform distribution on the interval, (0, 1). The return for stopping at stage j is
Yj = Xj , at least one observation must be taken (so y0 = −∞), and stopping is required
if stage n is reached.

Let us derive the optimal stopping rule by the method of equation (1), assuming
an arbitrary common distribution, F (x), for the Xj , with finite first moment. We have
V

(n)
n = Yn = Xn , and inductively for j = n− 1 down to 1, V

(n)
j = max{Xj ,E(V (n)

j+1|Fj)} .

The independence of the Xj implies inductively that V
(n)
j depends only on Xj and that

An−j = E(V (n)
j+1|Fj) is a constant that depends only on n− j , the number of stages to go.

Thus, the optimal stopping rule stops at j if Xj ≥ An−j , where the Aj may be computed
inductively as

A0 = −∞
A1 = EX1 and for j ≥ 1,

Aj+1 = Emax{X,Aj} =
∫ Aj

−∞
Aj dF (x) +

∫ ∞

Aj

xdF (x). (6)

When the Xj are uniformly distributed on (0, 1), we may as well put A0 = 0, and
we find A1 = 1/2, and for j ≥ 1,

Aj+1 =
∫ Aj

0

Aj dx +
∫ 1

Aj

xdx = (A2
j + 1)/2 (7)

We have A2 = 5/8, A3 = 89/128, and so on. Moser finds an approximation to the An for
large n as

An � 1 − 2
n + log(n) + c

(8)

for some constant c .

This may be demonstrated as follows. If we let Bn = 2/(1 − An) − n , then B0 = 2
and (7) reduces to

Bn+1 − Bn =
1

Bn + n − 1
,

and we are to show that Bn − log(n) → c . It is clear that the Bn are increasing. Then,
Bn ≥ 2 for all n so that the differences Bn+1 − Bn are bounded above by 1/(n + 1) and

Bn = B0 +
n−1∑
j=0

(Bj+1 − Bj) ≤ 2 +
n−1∑
j=0

1
j + 1

. (9)
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This upper bound on Bn gives us a lower bound on the differences,

Bn+1 − Bn ≥ 1
n + 1 +

∑n−1
j=0

1
j+1

from which we may obtain a similar lower bound on the Bn :

Bn ≥ 2 +
n−1∑
j=0

1

j + 1 +
∑j−1

i=0
1

i+1

. (10)

The difference of the bounds (9) and (10) is a sum of the form
∑

log(n)/n2 and so is
bounded. Thus we have Bn = log(n) + O(1). Finally, let Cn = Bn −

∑n
j=1 1/j . Then,

Cn+1 − Cn =
1

n − 1 + Cn +
∑n

1 1/j
− 1

n + 1
∼ − log(n)

(n + 1)2

shows that Cn is a Cauchy sequence and hence converges. Thus, Bn−log(n) also converges
to some constant c and (8) follows. Gilbert and Mosteller (1966) have approximated the
constant c . To six figures, it is 1.76799.

Equations for the Aj are discussed in Guttman (1960) for the normal distribution, in
Karlin (1962) for the exponential distribution (see Exercise 8), in Gilbert and Mosteller
(1966) for the Pareto distribution and in Engen and Seim (1987) for the gamma distribu-
tion.

Various finite horizon extensions of the Moser problem have been suggested. Karlin
(1962) and Saario (1986) treat the problem in which there are several objects to be selected.
Hayes (1969) allows future returns to be discounted. Karlin (1962), Mastran and Thomas
(1973) and Sakaguchi (1976) treat problems with random arrivals. But the main extension
of Moser’s problem is to allow an unbounded horizon, in which case a cost of observation
or a discount factor must be included so that one is not inclined to continue forever. These
problems are referred to as house-selling or selling an asset or search for the best offer and
are treated in Chapter 4.

Another important generalization of the Moser problem may be found in the work
of Derman, Lieberman and Ross (1972). In this problem, there are n workers of known
values, p1 ≤ . . . ≤ pn and n jobs that appear sequentially with random values, X1, . . . ,Xn ,
assumed to be independent and identically distributed according to a known distribution.
The return for assigning worker i to job j is the product piXj . The problem is to
assign workers to jobs, immediately as the job values become known, in such a way to
maximize the expectation of the sum of the returns. This contains the Moser problem
when p1 = · · · = pn−1 = 0 and pn = 1. It is a more complex decision problem than the
stopping rule problems treated here since at each stage we must decide among a number of
actions, not just two. Derman et al. show that there is an optimal policy of the following
form: For each n ≥ 1, there are numbers −∞ = a0n ≤ a1n ≤ a2n ≤ · · · ≤ ann = +∞ such
that if there are n workers remaining to be assigned and a job of value X1 appears, the
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job is assigned to worker i if X1 is contained in the interval [ai−1,n, ain] . A remarkable
feature of this result is that the aij ’s do not depend on the values of the pi ’s, so long as
they are arranged in increasing order. This result has been extended to random arrival
infinite horizon problems with a discount by Albright (1974). See R. Righter (1990) for
further extensions and recent developments.

§2.5 The Parking Problem. (MacQueen and Miller (1960)) You are driving along
an infinite street toward your destination, the theater. There are parking places along the
street but most of them are taken. You want to park as close to the theater as possible
without turning around. If you see an empty parking place at a distance d before the
theater, should you take it?

Here, we model this problem in a discrete setting. We assume that we start at the ori-
gin and that there are parking places at all integer points of the real line. Let X0,X1,X2, . . .
be independent Bernoulli random variables with common probability p of success, where
Xj = 1 means that parking place j is filled and Xj = 0 means that it is available. Let
T > 0 denote your target parking place. You may stop at parking place j if Xj = 0, and
if you do you lose |T − j| . You cannot see parking place j + 1 when you are at j , and if
you once pass up a parking place you cannot return to it. If you ever reach T , you should
choose the next available parking place. If T is filled when you reach it, your expected
loss is then (1− p)+ 2p(1− p)+ 3p2(1− p)+ . . . = 1/(1− p), so that we may consider this
as a stopping rule problem with finite horizon T and with loss

yT = 0 if XT = 0 and yT = 1/(1 − p) if XT = 1

and for j = 0, . . . , T − 1,

yj = T − j if Xj = 0 and yj = ∞ if Xj = 1.

The value yj = ∞ forces you to continue if you reach a parking place j and it is filled.
We seek a stopping rule, N ≤ T , to minimize EYN .

First we show that if it is optimal to stop at stage j when Xj = 0, then it is optimal
to stop at stage j +1 when Xj+1 = 0. As in Moser’s problem, V

(T )
j depends only on Xj ,

and An−j = E(V (T )
j+1 |Fj) is a constant that depends only on n − j . It is optimal to stop

at stage n − j if yn−j ≤ Aj . We are to show that if n − j ≤ Aj , then n − j − 1 ≤ Aj−1 .
This follows from the inequalities, n − j − 1 < n − j ≤ Aj ≤ Aj−1 .

Thus, there is an optimal rule of the threshold form, Nr for some r ≥ 0: continue
until r places from the destination and park at the first available place from then on.
Let Pr denote the expected cost using this rule. Then, P0 = p/(1 − p), and for r ≥ 1,
Pr = (1 − p)r + pPr−1 . We will show by induction that

Pr = r + 1 +
2pr+1 − 1

1 − p
. (11)
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P0 = p/(1− p) = 1 + (2p− 1)/(1− p), so it is true for r = 0. Suppose it is true for r − 1;
then Pr = (1−p)r+pPr−1 = (1−p)r+pr+p(2pr−1)/(1−p) = (r+1)+(2pr+1−1)/(1−p),
as was to be shown.

To find the value of r that minimizes (11), look at the differences, Pr+1 − Pr =
1+(2pr+2 − 2pr+1)/(1− p) = 1− 2pr+1 . Since this is increasing in r , the optimal value is
the first r for which this difference is nonnegative, namely, min{r ≥ 0 : pr+1 ≤ 1/2} . For
example, if p ≤ 1/2, you should reach the destination before looking for a parking place.
But if p = .9, say, we should start looking for a parking place r = 6 places before the
destination.

There are various extensions to this problem. There may be a cost of time or gas.
(See Exercise 10.) MacQueen and Miller (1960) allow you to drive around the block in
search for a parking place, and Tamaki (1988) allows you to make a U-turn, at a cost, to
return to a previously observed parking space. In Tamaki (1985), the problem is extended
to allow the probability of finding parking space j free to depend on j . (See Exercises 11
and 12.) Other extensions are treated in Chapter 5.

§2.6 Exercises.

1. The win-lose-or-draw marriage problem. (Sakaguchi (1984)) Consider the marriage
problem in which the payoff is 1 if you select the best, −1 if you select someone who is
not the best, and 0 if you stay single.
(a) Find the optimal rule.
(b) Show that for large n the rule is approximately to pass up the first 1/

√
e = 60.6 · · ·%

of the possibilities and to select the next relatively best, if any.

2. Uncertain employment. (Smith (1975)) Consider the classical secretary problem
with the added possibility that an observed candidate may be unavailable (the applicant
may refuse the offer). If this is the case, you are not allowed to select the applicant and the
search goes on. Let εk represent the indicator of the event that applicant k is available; it
is assumed that the εk are independent and independent of the Xj with P(εk = 1) = p for
all k . The outcome of availability or not is made known to you at the time of observation.
(a) Show that yk = (k/n)I(Xk = 1, εk = 1).
(b) Show that there is a threshold rule that is optimal.
(c) Show that the probability of win using the threshold rule Nr is

Pr =
p

n

n∑
k=r

Γ(r)Γ(k − p)
Γ(k)Γ(r − p)

.

(d) Use (n − p)pΓ(n − p)/Γ(n) → 1 as n → ∞ to show that the optimal threshold is
approximately r = np1/(1−p) .

3. One of the best two. (Gilbert and Mosteller (1966), Gusein-Zade (1966)) Consider
the secretary problem with U(3) = ... = U(n) = Z∞ = 0 and U(1) = a ≥ U(2) = b ≥ 0 .
An optimal rule is of the form, Nr,s : do not stop in stages 1 through r − 1; in stages r
through s − 1, select an object if it has relative rank 1; in stages s through n , select an
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object if it has relative rank 1 or 2.
(a) Show P(select the best|Nr,s) = ((r−1)/n)[

∑s−1
r 1/(k−1)+(s−2)

∑n
s 1/((k−1)(k−2))] .

(b) Show P(select second best|Nr,s) = ((r − 1)/n)[(1/(n − 1))
∑s−1

r (n − k)/(k − 1) +
(s − 2)

∑n
s 1/((k − 1)(k − 2))] .

(c) Let V (r, s) = E(return|Nr,s). Let n → ∞ , r/n → x , and s/n → y . Show that
V (r, s) → (a + b)x(log(y/x) + 1 − y) − bx(y − x).
(d) Show that this limit is maximized if y = (a + b)/(a + 2b) and x satisfies log(x) =
(2b/(a + b))x − 1 + log(y).
(e) Specialize to the case a = b = 1. (Ans. x = .3475 · · · , y = 2/3 and limiting probability
of selecting one of the best two = .574 · · · .

4. Googol. (Berezovskiy and Gnedin (1984)) Let X1, . . . ,Xn be i.i.d. uniform on
(0, θ) where θ has the Pareto distribution, Pa(α, 1). The Pareto distribution, Pa(α, x)
is defined to be the distribution with density

f(θ|α, x) = αxαθ−(1+α)I(θ > x),

where α > 0 and x is an arbitrary real number. Let M0 = X0 = 1, and for j = 1, . . . , n
let Mj = max{X0,X1, . . . ,Xj} = max{Mj−1,Xj} . You observe the X ’s one at a time
and you may stop at any time. If the most recently observed Xj when you stop is the
largest of all the X ’s, including X0 , you win.
(a) Show the posterior distribution of θ given X1, . . . ,Xj is Pa(j + α,Mj).
(b) Show yj = P{Xj = Mn|X1, . . . ,Xj} = ((j + α)/(n + α))I(Xj = Mj).
(c) Show that if it is optimal to stop at stage j with Xj = Mj , then it is optimal to stop
at stage j + 1 if Xj+1 = Mj+1 .
(d) Show that the optimal stopping rule is to pass up r − 1 numbers and then stop at the
next j such that Xj = Mj , where r is that integer that maximizes Pr = ((r − 1 + α)/
(n + α))

∑n
j=r 1/(j − 1 + α).

5. Random Number of Applicants. (Presman and Sonin (1972), Rasmussen and
Robbins (1975)) The number, K , of applicants is unknown, but it is assumed to be random
with a uniform distribution on {1, . . . , n} . The assumptions are as in the CSP, but if you
pass up an applicant and it turns out that there are no more, you lose. You want to select
the best of the K applicants.
(a) Find yj for j = 1, . . . , n .
(b) Show there is a threshold rule that is optimal.
(c) Find the probability of win using an arbitrary threshold rule.
(d) Find approximately, for large n , the optimal threshold rule and the optimal reward.

6. The Duration Problem . (Ferguson, Hardwick and Tamaki (1992)) The first 7
assumptions of the CSP are in force, but the payoff now is the proportion of time you are
in possession of the relatively best applicant. Thus, if the j th applicant is relatively best
and you select him, you win (k− j)/n if the next relatively best applicant is the k th, and
you win (n + 1 − j)/n if the j th applicant is best overall.
(a) Find yj for j = 1, . . . , n .
(b) Show there is a threshold rule that is optimal.
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(c) Find the expected winnings using an arbitrary threshold rule. Note that the answer is
exactly the same as for Problem 5(c) so the asymptotic values of 5(d) hold for this problem
as well.

7. The Cayley Example. Suppose in Cayley’s problem that the population consists of
m = 4 objects of values 1, 2, 3 and 4. For n = 1, 2, 3 and 4, find the optimal stopping
rule and its expected payoff if one may sample at most n times.

8. Moser’s problem with an exponential distribution. (Karlin (1962)) In Moser’s
problem, suppose the common distribution of the Xi is exponential on (0,∞).
(a) Find the recurrence relation for the Aj .
(b) Show that An = log(n) + o(1); that is, show An − log(n) → 0.
(c) Moser’s problem with two stops. (Karlin (1959) vol. 2, Chap. 9, Exercise 13.) In Moser’s
problem with U(0, 1) variables and finite horizon n, suppose you are allowed to choose two
numbers from the sequence and are given the sum as a payoff. How do you proceed?

9. Moser’s problem with nonidentical distributions. (Moser (1956)) Suppose, in
Moser’s problem, that X1, . . . ,Xn are independent and Xi has a uniform distribution
on the interval (0, n + 1 − i).
(a) Find the recurrence for the sequence of cutoff points An .
(b) Show that An � n −

√
2n in the sense that (n − An)/

√
2n → 1.

10. The parking problem with cost. Solve the parking problem if the loss for stopping
at parking place j is changed to |T − j|+ cj , where c > 0 represents a cost of time or gas.

11. The parking problem with arbitrary probabilities and distances between parking
places. Let X0,X1, . . . ,XT be independent Bernoulli random variables where P(Xi =
1) = pi , 0 ≤ pi ≤ 1 for all i . Let s0 ≤ s1 ≤ . . . ≤ sT be a nondecreasing sequence of
numbers with sT > 0. Consider the finite horizon stopping rule problem with observations
{Xi} and rewards Yi for stopping at i , where Yi = si if Xi = 1, and Yi = 0 if Xi = 0, for
i = 0, 1, . . . , T . (This contains the parking problem with non-constant distances between
parking spaces, and probability of a free space dependent on its position.) Let Wj denote
the optimal expected reward if it is decided to continue from stage j for j = 0, 1, . . . , T −1,
and WT = 0. Note that Wj−1 = E{V (T )

j |Fj−1} is a constant.
(a) Find the backward recursion equations for the Wj .
(b) Show there is an optimal rule of the form Nr : Stop at the first j ≥ r at which Xj = 1.

12. The parking problem with random distances. Generalize the parking problem to
allow random nonnegative distances, Zj , between parking places. (This extension also
contains Exercise 11 when the εj below are identically one.) One can think of the Zj as
the travel time between parking places which is random due to traffic fluctuations. To be
specific: Assume that the observations, Xj = (Zj , εj) for j = 1, . . . , T , are independent
with the Zj nonnegative, the εj Bernoulli with probability pj of success, and with Zj

and εj independent for all j . Let Sn =
∑n

1 Zj , and let the reward for stopping at n be
Yn = SnI(εn = 1). Let Wj(Sj) = E{V (T )

j+1 |Fj} denote the optimal expected reward if it is
decided to continue from stage j .
(a) Find the backward recursion equations for the Wj(s).
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(b) Show that there exist numbers, r1 ≥ r2 ≥ · · · ≥ rT = 0, such that it is optimal to stop
at stage j if Sj ≥ rj and εj = 1.

13. Fishing. (Starr (1974)) Suppose that a lake contains n fish whose catch times,
T1, . . . , Tn , are i.i.d. exponential, with density f(t) = exp{−t}I(t > 0). Let X1, . . . ,Xn

denote the order statistics of the Tj . If you stop after catching j fish, you receive Yj =
j−cXj , for j = 0, 1, . . . , n where X0 = 0 and c > 0. Find an optimal stopping rule. Hint:
Recall that X1,X2−X1,X3−X2, . . . ,Xn−Xn−1 are independent and that Zj = Xj−Xj−1

has density f(z) = (n + 1 − j) exp{−(n + 1 − j)z}I(z > 0).

14. A Symmetric Random Walk Secretary Problem. (Blackwell and MacQueen,
(1996), personal communication.) Let X1,X2, . . . ,Xn be i.i.d. random variables. Let
Sk =

∑k
1 Xi denote the partial sums with S0 = 0, and let Mk = max{S0, S1, . . . , Sk}

be the maxima of the partial sums. If we stop at stage k , 0 ≤ k ≤ n , we win if and
only if Sk = Mn . This is a full-information secretary problem with the worths of the
secretaries following a random walk. Note that ties among the Sj may occur, but you
win if you tie for best. If you stop at a stage k with Sk < Mk you can’t possibly win.
If you stop at stage k with Sk = Mk , then your probability of winning is yk = pn−k ,
where pj = P(S1 ≤ 0, . . . , Sj ≤ 0). Thus this is a finite horizon stopping rule problem
with payoff for stopping at k equal to ykI(Sk = Mk).

The problem seems hard in general, but make the assumption that the distribution of
the X ’s is symmetric about 0, and do the following.
(a) Suppose you are at a stage k with Sk = Mk and you decide to continue until
stage n in the hope that Sn = Mn . The probability you win is then qn−k , where
qj = P(S0 ≤ Sj , . . . , Sj−1 ≤ Sj). Show that pj = qj for all j .
(b) Show that any stopping rule is optimal provided it does not stop at any k < n for
which Sk < Mk . In particular, the rule that continues to the last stage and stops is opti-
mal.
(c) Suppose that the distribution of the X ’s is Bernoulli with P(X = 1) = P(X = −1) =
1/2. Show pn =

(
n

�n/2�
)
2−n .

(d) Suppose that the distribution of the X ’s is double exponential with density 1
2e−|x| .

Show that

pn =
1

22n−1

(
2n − 1

n

)
for n = 1, 2, . . .

One way is to use the fundamental identity of Wald (EetSN M(t)−N ≡ 1, valid for t for
which M(t) is finite, where M(t) = EetX is the moment generating function of X ) to find
the probability generating function of N = min{n > 0 : Sn > 0} is EuN = 1 −

√
1 − u .

(e) Show that the answer to (d) holds for any continuous symmetric distribution of the
X ’s. (Use Theorem 8.4.3 of Chung, (1974).)

15. The Cayley-Moser problem with independent non-identically distributed distribu-
tions. (Assaf, Goldstein and Samuel-Cahn (2000)) If, in the Cayley-Moser problem, the
Xi have different distributions with different means etc., the decision maker should be able
to improve his expected return by choosing the order in which he observes the Xi . Let
Fj(x) denote the distribution function of Xj and assume that Xj ≥ 0 for all j . Suppose
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we observe the Xi sequentially in reverse order, Xn,Xn−1, . . . ,X1 . Then corresponding
to (6), the optimal rule stops at Xj+1 if Xj+1 > Aj , where A0 = 0, A1 = EX1 and for
j ≥ 1

Aj+1 = Emax{Xj+1, Aj} =
∫ Aj

0

Aj dFj+1(x) +
∫ ∞

Aj

xdFj+1(x).

Define the function gj(α) = Emax{Xj , α} ; then A1 = g1(0), A2 = g2(g1(0)), and so
forth.

Suppose the random variable Xj has distribution function F (x|θj), where

F (x|θ) =

⎧⎨
⎩

0 if x < 0
(1−θ)2

(1−xθ)2 if 0 ≤ x < 1,
1 if x ≥ 1.

for 0 < θ < 1. Note the F (x|θ) has a mass at 0 of size (1 − θ)2 . The θj are known and
between 0 and 1.
(a) Show EXj = θj .
(b) Show

gj(α) = 1 − (1 − θj)(1 − α)
1 − θjα

for 0 < α < 1.

(c) Show g1(g2(α)) = g2(g1(α)) for all 0 ≤ α < 1.
(d) Conclude that An is a symmetric function of the θi so that the decision maker is
indifferent as to the order in which he observes the Xi !


