
OPTIMAL STOPPING AND APPLICATIONS

Chapter 1. STOPPING RULE PROBLEMS

The theory of optimal stopping is concerned with the problem of choosing a time to
take a given action based on sequentially observed random variables in order to maximize
an expected payoff or to minimize an expected cost. Problems of this type are found in
the area of statistics, where the action taken may be to test an hypothesis or to estimate
a parameter, and in the area of operations research, where the action may be to replace a
machine, hire a secretary, or reorder stock, etc. In this chapter, we introduce the problem
mathematically and give a number of examples of applications.

Historically, the problem arose in the sequential analysis of statistical observations
with Wald’s theory of the sequential probability ratio test in Wald (1945) and the subse-
quent books, Sequential Analysis (1947) and Statistical Decision Functions (1950). The
Bayesian perspective on these problems was treated in the basic paper of Arrow, Black-
well and Girshick (1948). The generalization of sequential analysis to problems of pure
stopping without statistical structure was made by Snell (1952). In the 1960’s, papers of
Chow and Robbins (1961) and (1963) gave impetus to a new interest and rapid growth of
the subject. The book, Great Expectations: The Theory of Optimal Stopping by Chow,
Robbins and Siegmund (1971), summarizes this development.

§1.1 The Definition of the Problem. Stopping rule problems are defined by two
objects,

(i) a sequence of random variables, X1,X2, . . . , whose joint distribution is assumed
known, and

(ii) a sequence of real-valued reward functions,

y0, y1(x1), y2(x1, x2), . . . , y∞(x1, x2, . . .).

Given these two objects, the associated stopping rule problem may be described as
follows. You may observe the sequence X1,X2, . . . for as long as you wish. For each
n = 1, 2, . . . , after observing X1 = x1,X2 = x2, . . . ,Xn = xn, you may stop and receive
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the known reward yn(x1, . . . , xn) (possibly negative), or you may continue and observe
Xn+1 . If you choose not to take any observations, you receive the constant amount, y0 . If
you never stop, you receive y∞(x1 , x2, . . .). (We shall allow the rewards to take the value
−∞ ; but we shall assume the rewards are uniformly bounded above by a random variable
with finite expectation so that all the expectations below make sense.)

Your problem is to choose a time to stop to maximize the expected reward. You are
allowed to use randomized decisions. That is, given that you reach stage n having observed
X1 = x1, . . . ,Xn = xn , you are to choose a probability of stopping that may depend
on these observations. We denote this probability by φn(x1, . . . , xn). A (randomized)
stopping rule consists of the sequence of these functions,

φ = (φ0, φ1(x1), φ2(x1, x2), . . .), (1)

where for all n and x1, . . . , xn , 0 ≤ φn(x1, . . . , xn) ≤ 1. The stopping rule is said to be
non-randomized if each φn(x1, . . . , xn) is either 0 or 1.

Thus, φ0 represents the probability that you take no observations at all. Given that
you take the first observation and given that you observe X1 = x1 , φ1(x1) represents the
probability you stop after the first observation, and so on. The stopping rule, φ , and the
sequence of observations, X = (X1,X2, . . .), determines the random time N at which
stopping occurs, 0 ≤ N ≤ ∞ , where N = ∞ if stopping never occurs. The probability
mass function of N given X = x = (x1, x2, . . .) is denoted by ψ = (ψ0 , ψ1, ψ2, . . . , ψ∞),
where

ψn(x1, . . . , xn) = P(N = n|X = x) for n = 0, 1, 2, . . . ,

ψ∞(x1, x2, . . .) = P(N = ∞|X = x).
(2)

This may be related to the stopping rule φ as follows:

ψ0 = φ0

ψ1(x1) = (1 − φ0)φ1(x1)
...

ψn(x1, . . . , xn) = [
n−1∏

1

(1 − φj(x1, . . . , xj))]φn(x1 , . . . , xn)

...

ψ∞(x1, x2, . . .) = 1 −
∞∑

0

ψj(x1, . . . , xj).

(3)

ψ∞(x1, x2, . . .) represents the probability of never stopping given all the observations.

Your problem, then, is to choose a stopping rule φ to maximize the expected return,
V (φ), defined as

V (φ) = E yN (X1, . . . ,XN )

= E
=∞∑

j=0

ψj(X1, . . . ,Xj)yj(X1, . . . ,Xj)
(4)
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where the “= ∞” above the summation sign indicates that the summation is over values
of j from 0 to ∞ , including ∞ . In terms of the random stopping time N , the stopping
rule φ may be expressed as

φn(X1, . . . ,Xn) = P(N = n|N ≥ n,X = x) for n = 0, 1, . . . . (5)

The notation used is that of Section 7.1 of Ferguson (1967).

Remarks

1. LOSS VS. REWARD. Often, the structure of the problem makes it more convenient
to consider a loss or a cost rather than a reward. Although one may use the above structure
by letting yn denote the negative of the loss, clarity is gained in such cases by letting yn

denote the loss incurred by stopping at n , and considering the problem to be one of
choosing a stopping rule to minimize V (φ).

2. RANDOM REWARD SEQUENCES. For some applications, the reward sequence
is more realistically described as a sequence of random variables Y0, Y1, . . . , Y∞ whose
joint distribution with the observations X1,X2, . . . is known. The actual value of Yn may
not be known precisely at time n when the decision to stop or continue must be made.
However, allowing returns to be random does not represent a gain in generality because,
since the decision to stop at time n may depend on X1, . . . ,Xn , we may replace the
sequence of random rewards Yn by the sequence of reward functions yn(x1, . . . , xn) for
n = 0, 1, . . . ,∞ , where

yn(x1, . . . , xn) = E{Yn|X1 = x1, . . . ,Xn = xn}. (6)

Any stopping rule φ for the payoff sequence Y0, Y1, . . . , Y∞ would give the same expected
return for the sequence y0, y1, . . . , y∞ .

3. THE INCREASING SEQUENCE OF SIGMA-FIELDS APPROACH. There is a
simpler, more widely used, notation to model stopping rule problems that we describe
here. Let (Ω,B,P) denote the probability space on which all our random variables are
defined, and let Fn denote the sub-σ -field of B generated by X1, . . . ,Xn (the smallest
σ -field containing the sets {X1 ≤ x1, . . . ,Xn ≤ xn} for all x1, . . . , xn ). With F0 = {Ω, ∅}
and F∞ = the σ -field generated by ∪Fn ,

F0 ⊂ F1 ⊂ . . . ⊂ Fn ⊂ . . . ⊂ F∞ ⊂ B (7)

represents an increasing sequence of σ -fields. For an arbitrary random variable Z , the
conditional expectation of Z given X1, . . . ,Xn may be denoted by

E(Z|Fn) = E(Z|X1, . . . ,Xn). (8)

The stopping rule problem may be stated in terms of the sequence (7), without mention
of the random variables X1,X2, . . . , as being defined by the two objects,

(i ′ ) the increasing sequence of σ -fields (7) and,
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(ii ′ ) a sequence of reward random variables, Y0, Y1, . . . , Yn, . . . , Y∞ .

Remark 2 above implies that we may assume without loss of generality that Yn is
Fn -measurable. (Being a function of X1, . . . ,Xn is essentially equivalent to being Fn -
measurable.) In particular, we may assume that Y∞ is F∞ -measurable. A stopping rule
is defined to be a random variable N taking values in {0, 1, . . . ,∞} , such that the event
{N = n} is in Fn . (This is equivalent to saying that the decision to stop at time n can
depend only on X1, . . . ,Xn and not otherwise on future observations, Xn+1, . . . .) The
problem is to choose a stopping rule N to maximize the expected return, E(YN ).

This approach is somewhat more general than the approach using (i) and (ii) because
there exist σ -fields that are not generated by any sequence of random variables. It may
appear that some generality has been lost by this approach because the stopping rules
defined by this method are non-randomized. However, we may restrict attention to non-
randomized stopping rules without loss of generality. This may be seen by attaching to
each Xj an independent uniform (0,1) random variable, Uj . For a given stopping rule
φ we could form an equivalent non-randomized stopping rule by stopping at j when we
reach it if Uj < φj(X1, . . . ,Xj).

§1.2 Examples. Here are a number of optimal stopping rule problems that have
important applications. Since stopping rule problems are defined by the sequences (i)
and (ii) of §1.1, we must specify in each case the observations, X1,X2, . . . , their joint
distributions, and the reward (or cost) function, yn(x1 , . . . , xn) for stopping at stage n .
We often use Yn to denote the random payoff for stopping at stage n ,

Yn = yn(X1, . . . ,Xn).

1. THE HOUSE-SELLING PROBLEM. Offers come in daily for an asset, such as a
house, that you wish to sell. Let Xn denote the amount of the offer received on day n .
You don’t know the values of the offers before they come in but you feel you may assume
that the offers are independent and all have the same distribution that you feel you know.
Each offer costs an amount c > 0 to observe; one may think of c as a cost of living. When
you receive an offer, Xn , you must decide whether accept it or to wait for a better offer.
You know a better offer will eventually appear, but will the increased size of the offer
compensate for the observational costs you will have to pay?

For (i) then, the observations are X1,X2, . . . assumed to be independent and iden-
tically distributed with known distribution. For (ii), we distinguish two problems with
differing payoffs, depending on whether or not you are able to recall and accept a past
offer after you have observed a subsequent one. If you may not recall past offers, then

y0 = 0
yn(x1 , . . . , xn) = xn − nc for n = 1, 2, . . .

y∞(x1, x2, . . .) = −∞.
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Thus, after paying to observe Xn , you may accept the offer and receive Xn or reject it
and pay c to see the offer Xn+1 . If you are allowed to recall past offers, then

y0 = 0
yn(x1, . . . , xn) = max(x1, . . . , xn) − nc for n = 1, 2, . . .

y∞(x1 , x2, . . .) = −∞.

In this case if you decide to stop, you receive the largest outstanding offer. The problems
with recall were introduced by MacQueen and Miller (1960), Derman and Sacks (1960)
and Chow and Robbins (1961), and, with discount rather than cost, by Karlin (1962). The
problems without recall were treated by Sakaguchi (1961) and Chow and Robbins (1961,
1963).

In the economics literature, this problem is called the job search problem, and is
attributed to George Stigler, (1961, 1962). An unemployed worker is searching for a job.
Each search costs a certain amount in time and lost wages. When an available job is found,
conditions for employment, including salary, are announced. How many searches should
the worker undertake before accepting the best offer so far found? For a review of this
problem from this viewpoint, see Lippman and McCall (1976).

2. MAXIMIZING THE AVERAGE. You observe a fair coin being tossed repeatedly.
You may stop observing at any time , and when you do you receive as a reward the average
number of heads observed. Thus, if the first toss is heads, you should certainly stop since
your payoff is one and you can never receive a higher payoff than that. On the other hand,
the strong law of large numbers implies that the average number of heads converges almost
surely to 1/2, so you would never stop at a time when the average number of heads is less
than or equal to 1/2. What stopping rule should you employ to maximize your expected
payoff? And how great an expected payoff can you obtain?

Problems of this sort were first studied by Y. S. Chow and H. Robbins (1965) who
describe a stopping rule that achieves an expected payoff greater than .79 in the above
problem. This problem was mentioned on page 314 of Ferguson (1967) as the problem of
the experimenter who knows the probability of success is 1/2, but who is going to estimate
the probability of success by the average number of successes and wants to bias his estimate
as much as possible.

We may put the problem of maximizing the average in the form of a stopping rule
problem as follows. Let X1,X2, . . . be independent identically distributed random vari-
ables with a known distribution having a finite mean µ , and let

y0 = µ

yn(x1, . . . , xn) = (x1 + . . . + xn)/n for n = 1, 2, . . .

y∞(x1, x2, . . .) = µ.

This assumes then that if you don’t take any observations, you receive µ . If you never
stop, you receive limn→∞ Xn = µ a.s.
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3. BAYES SEQUENTIAL STATISTICAL DECISION PROBLEMS. Stopping rule
problems originated in the theory of sequential statistical analysis as developed by Wald
(1947). Bayes sequential decision problems provide examples of stopping rule problems
with dependent X1,X2, . . . .

In this problem, a parameter θ is chosen from a parameter space Θ according to some
prior distribution τ . Eventually the statistician must choose an action a in a given action
space A incurring a loss L(θ, a). However, he may observe random variables X1,X2, . . .
sequentially for as long as he likes before choosing the action, at a cost of c for each
Xi observed. The random variables X1,X2, . . . are assumed to be i.i.d. given θ with
a distribution of known form, F (x|θ). If he decides to stop taking observations after
observing X1, . . . ,Xn , then he would choose a ∈ A to minimize his conditional expected
loss, and thus be expected to lose

ρn(X1, . . . ,Xn) = inf
a∈A

E{L(θ, a)|X1 , . . . ,Xn} for n = 0, 1, . . . .

The rule that chooses a ∈ A after observing X1, . . . ,Xn is called the terminal decision
rule. It may be chosen independently of the stopping rule. (For a discussion, see section
7.2 of Ferguson (1967).) In this problem there is a loss plus cost, so in line with remarks 1
and 2 above, we let yn denote the conditional minimum Bayes expected loss plus cost of
stopping at n ,

yn(x1, . . . , xn) = ρn(x1 , . . . , xn) + nc for n = 0, 1, . . .

y∞(x1, x2, . . .) = +∞.

The distribution of X1,X2, . . . is taken to be the marginal distribution derived from the
joint distribution of θ,X1,X2, . . . by integrating out the variable θ according to the given
prior distribution. Thus even if the Xi are independent given θ , they become dependent
when θ is integrated out.

4. THE ONE-ARMED BANDIT. (Bradt, Johnson and Karlin (1956)) There are two
treatments available for the cure of a disease. The standard treatment, T2, has a known
probability p0 of cure, while treatment T1 has unknown probability p of cure, where the
prior distribution of p is known. A group of n patients is to be treated sequentially, and
you must decide which treatment to give each patient. If p were greater than p0 , you
would prefer to give T1 to each patient. You may gain information on the value of p by
observing the cure rate of patients assigned treatment T1. It is assumed that the patients
respond independently and immediately to treatment. Assignment of a treatment to a
patient may depend upon past outcomes. If T1 starts to look good because it is curing
a proportion of patients greater than p0 , then one would like to keep assigning T1. Your
objective is to cure as many of the patients as possible. Your payoff is the number of
patients cured.

This is called the one-armed bandit problem. Bradt, Johnson and Karlin (1956) show
that if it is ever optimal to use T2 on a patient, then it is optimal to continue to use T2
on all subsequent patients. Therefore, we need only consider rules that decide when, if
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ever, to start on treatment T2. In this way, the one-armed bandit problem is related to a
stopping rule problem where stopping is identified with switching to treatment T2.

If treatment T1 is given to patient number j , we let Xj be 1 if the patient is cured
and 0 if he is not. Thus, it is assumed that X1, . . . ,Xn given p are independent identically
distributed Bernoulli random variables with P(Xj = 1) = p , and that p has a known prior
distribution, G(p). This determines the distribution of the observations. If we decide
to switch treatments after observing X1, . . . ,Xk , then the number of patients cured is
Yk = X1 + . . . + Xk + Zk+1 + . . . + Zn , where Zj is one or zero depending on whether
the patient j is cured by treatment T2 or not. The values of the Zj are not known when
the decision to stop must be made, but we can, as pointed out in Remark 2, replace the
Zj by their expected values, p0 , without loss of generality. The reward for stopping at k
becomes

Yk = X1 + . . . + Xk + (n − k)p0 for k = 0, 1, . . . , n.

This problem has finite horizon, n . The problem is to choose a stopping rule, N ≤ n , to
maximize E(YN ). In this problem as in general bandit problems, we are not interested per
se in estimating the unknown p . It is the sum of the observations that we are trying to
maximize. General bandit problems are treated in Chapter 7.

5. DETECTING A CHANGE-POINT. (Shiryaev (1963)) You are monitoring a se-
quence of i.i.d. random variables, X1,X2, . . . with a known distribution, F0 . At some
point T in time, unknown to you, the distribution will change to some other known distri-
bution, F1 , and you want to sound an alarm as soon as possible after the change occurs.
It is assumed that you know the distribution of T . If the cost of stopping after the change
has occurred is the time since the change, and if the cost of a false alarm, that is, of
stopping before the change has occurred, is taken to be a constant c > 0, then the total
cost may be represented by

Yn = cI{n < T} + (n − T )I{n ≥ T} for n = 0, 1, . . . , and Y∞ = ∞.

In this display, I(A) represents the indicator function of a set A ; so, for example, I{n < T}
is equal to 1 if n < T , and to zero otherwise. Since T is a random unobservable quantity,
we may replace Yn by its conditional expected value given X1, . . . ,Xn ,

yn = cP(T > n|Fn) + E((n − T )+|Fn) for n = 0, 1, . . . , and Y∞ = ∞.

Applications include monitoring heart patients for a change in pulse rate, monitoring a
production line for a change in quality, and monitoring missiles for a change of course.

§1.3 Exercises. Formulate the following problems as stopping rule problems; that is,
give the distributions of the observations Xn , and give the payoffs Yn or yn(X1, ...,Xn).

1. The Burglar Problem. (Haggstrom (1966)) A burglar contemplates a series of
burglaries. He may accumulate his larcenous earnings as long as he is not caught, but if
he is caught during a burglary, he loses everything including his initial fortune, if any, and
he is forced to retire. He wants to retire before he is cuaght. Assume that returns for each
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burglary are i.i.d. and independent of the event that he is caught, which is, on each trial,
equally probable. He wants to retire with a maximum expected fortune.

2. Fishing. (Starr and Woodroofe (1974)) You are fishing in a lake with n fish. Let
Tj denote the time required to catch fish number j if you were to fish indefinitely. Assume
the Tj are i.i.d. with known distribution F . You observe the order statistics of the Tj

sequentially until you decide to stop, at which time you receive 1 for each fish you have
caught and you pay c times the total time required. This is really a continuous time
problem, but Starr and Woodroofe have shown that if F has non-decreasing failure rate
(i.e. if f(t)/(1 − F (t)) is non-decreasing, where f is the density), then it is optimal to
stop only at the time of a catch.

3. Search for a new species. (Rasmussen and Starr (1979)) Individual wasps from
the genus Zyzzyx are observed at unit time intervals. This genus is comprised of species
µ1, µ2, . . . and the observations are assumed to be independently drawn from this genus
with probability pj for species j , assumed known. The cost of each observation is c > 0,
and the reward when you stop is the number of different species observed.

4. Proofreading. (Yang, Wackerly and Rosalsky (1982)) A manuscript has just been
typed. The number of misprints in the manuscript is a random variable, M , whose dis-
tribution is known. Misprints may be found and corrected through proofreading. Each
proofreading costs an amount c1 > 0. On the kth proofreading, each undetected misprint
is found independently with probability pk independent of the number of misprints found
on previous proofreadings. Each undetected misprint left in the manuscript when it is sent
to the printer costs an amount c2 > 0. The problem is to decide when to stop proofread-
ing and send the manuscript to the printer. (This problem may also be stated in terms of
deciding when one should stop testing software for bugs and send it to be marketed. See,
for example, Dalal and Mallows (1988).)

5. Success runs. (Starr (1972)) Independent identically distributed Bernoulli trials
with probability p of success are observed at a constant cost per observation until you
decide to stop. When you stop, you receive a reward proportional to the number of
successes in the current success run up to the time you stop.


