Final Examination

Statistics 200C

T. Ferguson

June 10, 2010

1. (a) State the Borel-Cantelli Lemma and its converse.

(b) Let X_1, X_2, \ldots be i.i.d. from a distribution with density, $f(x) = \theta x^{-(\theta+1)}$ on the interval $(1, \infty)$. For what value of θ is it true that $(1/n)X_n \xrightarrow{a.s.} 0$.

2. Let X_1, X_2, \ldots be independent random variables with X_k having the distribution

$$X_k = \begin{cases} \frac{1}{\sqrt{k}} & \text{with probability } \frac{\sqrt{k}}{(\sqrt{k}+1)} \\ -1 & \text{with probability } \frac{1}{(\sqrt{k}+1)} \end{cases}$$

(a) Let $S_n = \sum_{k=1}^n X_k$. Find $E(S_n)$ and $Var(S_n)$. Note that $Var(S_n) \sim 2\sqrt{n}$.

(b) Check that the UAN condition holds.

(c) Show whether or not $(S_n - E(S_n))/\sqrt{\operatorname{Var}(S_n)}$ converges in law to the standard normal distribution by checking the Lindeberg condition.

3. Suppose we are given n independent trials resulting in c possible cells, each trial having probability p_i of falling in cell i, for i = 1, ..., c. Let n_i denote the number of trials falling in cell i.

(a) What is Pearson's chi-square for testing the hypothesis that the true probabilities are p_i for i = 1, ..., c?

(b) Find the transformed chi-square with the transformation, $g(p) = \log(p)$ applied to each cell. Find the modified transformed chi-square.

(c) What is the approximate large sample distribution of the modified transformed chi-square if the true cell probabilities are p_i^0 for i = 1, ..., c?

4. In sampling from a population of N objects having values z_1, z_2, \ldots, z_N , first a sample of size n < N/2 is taken without replacement. Later a second sample of size n is taken from the remaining N - n objects without replacement. The difference of the means of the two samples is used to compare the samples. This leads to a rank statistic of the form $S_N = \sum_{1}^{N} z_j a(R_j)$, where a(i) = 1 for $i = 1, \ldots, n, a(i) = -1$ for $i = n + 1, \ldots, 2n$, and a(i) = 0 for $i = 2n + 1, \ldots, N$.

(a) What are the mean and the variance of S_N ?

(b) Assume that $n \to \infty$ as $N \to \infty$. Under what condition on the z_i is it true that $(S_N - ES_N)/\sqrt{\operatorname{Var}(S_N)} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1)$?

5. (a) Give the definition of the Kullback-Leibler Information number, $K(f_0, f_1)$.

(b) What is the Information Inequality?

(c) Suppose $f_0(x)$ is the density of the binomial distribution, $\mathcal{B}(n, 1/2)$ (with sample size n and probability of success 1/2), and $f_1(x)$ is the density of the binomial distribution, $\mathcal{B}(n, 3/4)$. Find $K(f_0, f_1)$ and check that the inequality holds.

6. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be a sample from a bivariate distribution with density

$$f(x, y|\mu, \theta) = \theta^2 \mu x \exp\{-\theta x (1 + \mu y)\} \quad \text{for } x > 0 \text{ and } y > 0,$$

where $\mu > 0$ and $\theta > 0$ are parameters.

(a) Find the maximum likelihood estimates of μ and θ .

(b) Find the Fisher Information matrix for this distribution.

(c) What is the asymptotic distribution of the MLE of μ when θ is unknown? What is the asymptotic distribution of the MLE of μ when θ is known?

7. Let X_1, \ldots, X_n be a sample from the Poisson distribution $\mathcal{P}(\lambda)$, let Y_1, \ldots, Y_n be a sample from a Poisson distribution, $\mathcal{P}(\lambda + \beta_1)$, let Z_1, \ldots, Z_n be a sample from the Poisson distribution, $\mathcal{P}(\lambda + \beta_2)$, with all three parameters, λ , β_1 , β_2 , unknown. Assume that all three samples are independent.

(a) Find the likelihood ratio test statistic for testing the hypothesis $H_0: \beta_1 = \beta_2$.

(b) What function of the likelihood ratio test statistic has asymptotically a chi-square distribution, and how many degrees of freedom does it have in this case?

8. A sample of size n is taken in a multinomial experiment with c^2 cells denoted (i, j), $i = 1, \ldots, c$ and $j = 1, \ldots, c$. Let p_{ij} denote the probability of cell (i, j), and let n_{ij} denote the number falling in cell (i, j), so that $\sum \sum p_{ij} = 1$ and $\sum \sum n_{ij} = n$.

(a) Let H denote the hypothesis of symmetry, that $p_{ij} = p_{ji}$ for all i and j. Find the chi-square test of H against all alternatives? How many degrees of freedom does it have?

(b) Let H_0 denote the hypothesis that all off-diagonal elements are equal: $p_{ij} = q$ for all $i \neq j$, for some q. Note that under H_0 , $p_{11} + p_{22} + \ldots + p_{cc} + c(c-1)q = 1$. Find the chi-square test of H_0 against all alternatives. How many degrees of freedom?

(c) What, then, is the chi-square test of H_0 against H, and how many degrees of freedom does it have?

Solutions to the Final Examination, Stat 200C, Spring 2010.

1. (a) If A_1, A_2, \ldots are events such that $\sum_{j=1}^{\infty} P(A_j) < \infty$, then $P(A_n \ i.o.) = 0$. Conversely, if the A_j are independent events, and $\sum_{j=1}^{\infty} P(A_j) = \infty$, then $P(A_n \ i.o.) = 1$.

(b) Let ϵ be an arbitrary positive number. Then $(1/n)X_n \xrightarrow{a.s.} 0$ if, and only if, $P((1/n)X_n > \epsilon \quad i.o.) = 0$. Since

$$\sum_{n=1}^{\infty} \mathcal{P}((1/n)X_n > \epsilon) = \sum_{n=1}^{\infty} \mathcal{P}(X_n > n\epsilon) = \sum_{n=1}^{\infty} 1/(n\epsilon)^{\theta} < \infty$$

if, and only if, $\theta > 1$, we have $(1/n)X_n \xrightarrow{a.s.} 0$ if, and only if, $\theta > 1$.

2. (a) $E(X_k) = 0$ and $Var(X_k) = 1/\sqrt{k}$. So $E(S_n) = 0$ and $B_n^2 = Var(S_n) = \sum_{1}^n 1/\sqrt{k} \sim \int_1^n (1/x) \, dx \sim 2\sqrt{n}$. (b) $\max_{1 \le j \le n} 1/\sqrt{j} = 1$, so $[\max_j Var(X_j)]/B_n^2 \sim 1/2\sqrt{n} \to 0$. (c) Since $|X_j| \le 1$ for all j,

$$\frac{1}{B_n^2} \sum_{j=1}^n \mathcal{E}(X_j^2 \mathcal{I}(X_j^2 > \epsilon^2 B_n^2)) \le \frac{1}{B_n^2} \sum_{j=1}^n \mathcal{E}(X_j^2 \mathcal{I}(1 > \epsilon^2 B_n^2)) = \mathcal{I}(1 > \epsilon^2 / 2\sqrt{n}) = 0$$

for *n* sufficiently large. So, $S_n/B_n \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$, or $S_n/n^{1/4} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1/2)$

3. (a)
$$\chi_P^2 = n \sum_{j=1}^c \frac{((n_j/n) - p_j)^2}{p_j}$$
.
(b) $\chi_T^2 = n \sum_{j=1}^c p_j (\log(n_j/n) - \log(p_j))^2$ and $\chi_{TM}^2 = \sum_{j=1}^c n_j (\log(n_j/n) - \log(p_j))^2$.

(c)The limiting distribution is noncentral $\chi^2_{c-1}(\lambda)$, with c-1 degrees of freedom and noncentrality parameter $\lambda = n \sum_{j=1}^{c} p_j^0 (\log(p_j^0) - \log(p_j))^2$.

4. (a) Since $\bar{a}_N = 0$, we have $ES_N = 0$. The variance of S_N is $(N^2/(N-1))\sigma_z^2\sigma_a^2$, and since $\sigma_a^2 = (1/N)\sum_1^N a(i)^2 = 2n/N$, we have $Var(S_N) = (2nN/(N-1))\sigma_z^2$.

(b) For asymptotic normality of S_N , we need

$$\frac{\max_j (z_j - \bar{z}_N)^2 \max(a(j) - \bar{a}_N)^2}{N\sigma_z^2 \sigma_a^2} \to 0.$$

We have $\max_j (a(j) - \bar{a}_N)^2 = 1$, and $\sigma_a^2 = 2n/N$. Then the above condition becomes

$$\frac{\max_j (z_j - \bar{z}_N)^2}{2n\sigma_z^2} \to 0.$$

5. (a) $K(f_0, f_1) = E_0 \log \frac{f_0(X)}{f_1(X)}$, where E_0 represents the expectation when $f_0(x)$ is the density of X.

(b) $K(f_0, f_1) \ge 0$, with equality if, and only if, $f_0(x)$ and $f_1(x)$ are the same distribution.

(c) $f_0(x) = \binom{n}{x} (1/2)^n$ and $f_1(x) = \binom{n}{x} (3/4)^x (1/4)^{n-x}$, so $f_0(x)/f_1(x) = 2^n/3^x$. So $K(f_0, f_1) = E_0(n \log 2 - X \log 3) = n \log 2 - (n/2) \log 3 = (n/2) [\log 4 - \log 3]$. This is obviously positive.

6. (a) $\ell_n(\theta,\mu) = 2n\log\theta + n\log\mu + \sum_1^n\log x_i - \theta\sum_1^n x_i(1+\mu y_i)$. $\partial \ell_n/\partial \theta = (2n/\theta) - \sum_1^n x_i(1+\mu y_i) = 0$ implies $2 = \hat{\theta}\bar{x} + \hat{\theta}\hat{\mu}\bar{x}\bar{y}$ and $\partial \ell_n/\partial \mu = (n/\mu) - \theta\sum_1^n x_i y_i = 0$ implies $1 = \hat{\theta}\hat{\mu}\bar{x}\bar{y}$. Solving these equations gives $\hat{\theta} = 1/\overline{X}_n$ and $\hat{\mu} = \overline{X}_n/\overline{X}\overline{Y}_n$, where $\overline{X}\overline{Y}_n = (1/n)\sum_1^n X_iY_i$.

(b) $\Psi(x,\theta,\mu) = ((2/\theta) - x(1+\mu y), (1/\mu) - \theta xy)$, which shows that $E(XY) = 1/\mu\theta$, so that

$$\dot{\Psi} = \begin{pmatrix} -2/\theta^2 & -xy \\ -xy & -1/\mu^2 \end{pmatrix} \text{ and } \mathcal{I}(\theta,\mu) = -\mathbf{E}\dot{\Psi} = \begin{pmatrix} 2/\theta^2 & 1/\mu\theta \\ 1/\mu\theta & 1/\mu^2 \end{pmatrix}$$

(c) Since $\operatorname{Det}(\mathcal{I}) = 1/\mu^2 \theta^2$, we have $E(XY) = 1/\mu\theta$, so that $\mathcal{I}(\theta,\mu)^{-1} = \mu^2 \theta^2 \begin{pmatrix} 1/\mu^2 & -1/\mu\theta \\ -1/\mu\theta & 2/\theta^2 \end{pmatrix} = \begin{pmatrix} \theta^2 & -\mu\theta \\ -\mu\theta & 2\mu^2 \end{pmatrix}$. So when θ is unknown, $\sqrt{n}(\hat{\mu} - \mu) \xrightarrow{\mathcal{L}} \mathcal{N}(0, 2\mu^2)$. When θ is known, the asymptotic variance of the MLE is the reciprocal of the lower right corner of the information matrix, namely μ^2 . So $\sqrt{n}(\tilde{\mu} - \mu) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \mu^2)$. (Here, the MLE of μ is $\tilde{\mu} = 1/(\theta \overline{XY}_n)$.)

7. (a) The log-likelihood function is $\ell_n = \log L_n(\lambda, \beta_1, \beta_2) = -(3\lambda + \beta_1 + \beta_2)n + \log(\lambda) \sum X_i + \log(\lambda + \beta_1)) \sum Y_i + \log(\lambda + \beta_2) \sum Z_i$ plus a term not involving the parameters. The likelihood equations are

$$\frac{\partial \ell_n}{\partial \lambda} = -3n + \lambda^{-1} \sum X_i + (\lambda + \beta_1)^{-1} \sum Y_i + (\lambda + \beta_2)^{-1} \sum Z_i$$
$$\frac{\partial \ell_n}{\partial \beta_1} = -n + (\lambda + \beta_1)^{-1} \sum Y_i$$
$$\frac{\partial \ell_n}{\partial \beta_2} = -n + (\lambda + \beta_2)^{-1} \sum Z_i$$

The maximum likelihood estimates are $\hat{\lambda} = \overline{X}_n$, $\hat{\beta}_1 = \overline{Y}_n - \overline{X}_n$, and $\hat{\beta}_2 = \overline{Z}_n - \overline{X}_n$. In a similar way, the MLE's under H_0 are $\tilde{\lambda} = \overline{X}_n$, and $\tilde{\beta}_1 = \tilde{\beta}_2 = (\overline{Y}_n + \overline{Z}_n)/2 - \overline{X}_n$. The likelihood ratio test rejects H_0 for small values of

$$\Lambda = \frac{L_n(\tilde{\lambda}, \tilde{\beta}_1, \tilde{\beta}_2)}{L_n(\hat{\lambda}, \hat{\beta}_1, \hat{\beta}_2)} = \frac{((\overline{Y}_n + \overline{Z}_n)/2)^{n(Y_n + Z_n)}}{\overline{Y}_n^{n\overline{Y}_n} \overline{Z}_n^{n\overline{Z}_n}}$$

(b) $-2\log\Lambda$ has asymptotically a chi-square distribution with 1 degree of freedom.

8. (a) Under H, the maximum likelihood estimates of the p_{ij} are $\hat{p}_{ii} = n_{ii}/n$ and for $i \neq j$, $\hat{p}_{ij} = (n_{ij} + n_{ji})/2n$. There are $(c-1) + (c-2) + \cdots + 1 = c(c-1)/2$ restrictions going from the general hypothesis to H. So the chi-square test of H rejects H if $\chi^2(\hat{p})$ is greater than the appropriate cutoff point for a chi-square distribution with c(c-1)/2 degrees of freedom.

(b) Under H_0 , the likelihood is proportional to $[\prod_{j=1}^n p_{jj}^{n_{jj}}]q^m$, where $m = n - \sum_{j=1}^c n_{jj}$. So the maximum likelihood estimates are

$$\tilde{p}_{jj} = (n_{jj}/n)$$
 and $\tilde{q} = [1 - \sum_{1}^{c} \tilde{p}_{jj}]/(c(c-1)).$

There are c parameters estimated so the chi-square test of H_0 rejects H_0 if $\chi^2(\tilde{p})$ is greater than the appropriate cutoff point for a chi-square distribution with $(c^2 - 1) - c = c^2 - c - 1$ degrees of freedom.

(c) The chi-square test of H_0 within H, rejects H_0 if $\chi^2(\tilde{p}) - \chi^2(\hat{p})$ is greater than the appropriate cutoff point for a chi-square distribution with $c^2 - c - 1 - (c(c-1)/2) = (c(c-1)/2) - 1$ degrees of freedom.