Stat 200C, Spring 2010

Solutions to Exercise Set 9.

20.5.(a) $E_{\theta}(X) = (1 - \theta) + 2\theta = 1 + \theta$, so the method of moments estimator of θ is $\hat{\theta}_n = \overline{X}_n - 1$.

(b) The log likelihood is $\ell_n(\theta) = \sum \log[(1-\theta)e^{-x_i} + \theta(1/2)e^{-x_i/2}]$, so the likelihood equation is

$$\ell'_n(\theta) = \sum \frac{-e^{-x_i/2} + (1/2)}{(1-\theta)e^{-x_i/2} + \theta(1/2)} = 0.$$

One may improve $\hat{\theta}_n$ by the Newton method formula $\tilde{\theta}_n = \hat{\theta}_n - \ell'_n(\hat{\theta}_n)/\ell''_n(\hat{\theta}_n)$, where

$$\ell_n''(\theta) = -\sum \frac{(e^{-x_i/2} - (1/2))^2}{[(1-\theta)e^{-x_i/2} + \theta(1/2)]^2}$$

22.1. (a) The likelihood function is $L = \prod (1/\sqrt{2\pi\sigma})e^{-(y_i - \alpha - \beta x_i)^2/2\sigma^2}$. The MLE's under the general hypothesis, H, are $\hat{\beta} = s_{xy}/s_x^2$, $\hat{\alpha} = \overline{Y} - \hat{\beta}\overline{X}$, and $\hat{\sigma}^2 = \frac{1}{n}\sum (Y_i - \hat{\alpha} - \hat{\beta}x_i)^2$. We have $\sup_H L = (1/\sqrt{2\pi\hat{\sigma}})^n e^{-n/2}$. Under H_0 , the MLE's are $\tilde{\alpha} = \tilde{\beta} = \sum Y_i (x_i + 1)/\sum (x_i + 1)^2$, and $\tilde{\sigma}^2 = \frac{1}{n}\sum (Y_i - \tilde{\alpha}(x_i + 1))^2$. We have $\sup_{H_0} L = (1/\sqrt{2\pi\tilde{\sigma}})^n e^{-n/2}$. The likelihood ratio statistic is $\Lambda = (\hat{\sigma}/\tilde{\sigma})^n$. The likelihood ratio test rejects H_0 if Λ is too small. This is equivalent to the test that rejects H_0 if $\tilde{\sigma}^2/\hat{\sigma}^2$ is too large, or if $F = (\tilde{\sigma}^2 - \hat{\sigma}^2)/(\frac{1}{n-2}\hat{\sigma}^2)$ is too large. This is the usual F-test of H_0 . Under H_0 , the statistic F has an F-distribution with 1 and n - 2 degrees of freedom.

(b) If σ^2 is given, the estimates of α and β are the same as in (a). Here we have $\sup_H L = (\frac{1}{\sqrt{2\pi\sigma}})^n e^{-n\hat{\sigma}^2/2\sigma^2}$, and $\sup_{H_0} L = (\sqrt{2\pi\sigma})^n e^{-n\tilde{\sigma}^2/2\sigma^2}$. The likelihood ratio statistic is $\Lambda = \exp\{-\frac{n}{2\sigma^2}(\tilde{\sigma}^2 - \hat{\sigma}^2)\}$. The likelihood ratio test rejects H_0 if Λ is too small. This is equivalent to the test that rejects H_0 if $\tilde{\sigma}^2 - \hat{\sigma}^2$ is too large. This statistic is the numerator of the F above. It has a chi-square distribution with 1 degree of freedom.

22.5.(a) The likelihood function is $L(\mu, \theta) = e^{-n\mu} \mu^{\Sigma X_i} e^{-n\theta} \theta^{\Sigma Y_i} / (\prod x_i ! y_i !)$. The maximum likelihood estimates under the general hypothesis are $\hat{\mu}_n = \overline{X}_n$ and $\hat{\theta}_n = \overline{Y}_n$. To find the maximum likelihood estimates under H_0 , we replace μ by θ^2 in log L and take a derivative with respect to θ .

$$\frac{\partial}{\partial \theta} \log L_n = -2n\theta + \frac{2\sum X_i}{\theta} - n + \frac{\sum Y_i}{\theta} = 0$$

Solving the quadratic for θ gives $\tilde{\theta}_n = (-1 + \sqrt{1 + 8(2\overline{X} + \overline{Y})})/4$ as the MLE of θ under H_0 . The likelihood ratio statistic then becomes

$$\lambda_n = \frac{L(\tilde{\theta}_n^2, \tilde{\theta}_n)}{L(\hat{\mu}_n, \hat{\theta}_n)} = \frac{e^{-n\tilde{\theta}_n^2 - n\tilde{\theta}_n}\tilde{\theta}_n^{[2n\bar{X} + n\bar{Y}]}}{e^{-n\hat{\mu}_n - n\hat{\theta}_n}\hat{\mu}_n^{n\bar{X}}\hat{\theta}_n^{n\bar{Y}}}$$

(b) $-2\log \lambda_n \xrightarrow{\mathcal{L}} \chi_1^2 \text{ as } n \to \infty.$