
Solutions to Exercises 7.3.2 through 7.3.5, and 7.3.7 through 7.3.11.

7.3.2. (a)

Eθ,φ(dN(TN )) = Eθ,φ{Eφ(dN (TN)|N, TN )}
= P(N = 2, T2 = 1)d2(1) + P(N = 2, T2 = 2)d2(2) + P(N = 3, T3 = 0)d3(0)

+ P(N = 3, T3 = 1)d3(1) + P(N = 3, T3 = 2)d3(2)

= θ(1 − θ)d2(1) + θ2d2(2) + (1− θ)3d3(0) + 2θ(1− θ)d3(1) + θ2(1− θ)d3(2)
= d3(0) + θ[d2(1)− 3d3(0) + 2d3(1)]

+ θ2[−d2(1) + d2(2) + 3d3(0)− 4d3(1) + d3(2)] + θ3[−d3(0) + 2d3(1)− d3(2)].

(b) Equating coefficients in Eθ,φ(dN(TN )) = θ , we find

d3(0) = 0
d2(1) + 2d3(1) = 1
d2(2) + d3(2) = d2(1) + 4d3(1)

2d3(1) = d3(2)

If we let z = d3(2), the class of unbiased nonrandomized estimates is: d2(1) = 1− z , d2(2) = 1, d3(0) = 0,
d3(1) = z/2 and d3(2) = z for o ≤ z ≤ 1.

(c) The expected loss as a function of z and θ is

R(θ, z) = Eθ,φ(θ − dN (TN))2 = θ(1− θ){z2(θ + 3)/2− 2z + 1}.

(d) If z > 2/3, then R(θ, z)−R(θ, 2/3) = θ(1−θ){(z −2/3)[(z+2/3)(θ+3)/2−2]} ≥ 0 for all θ . This
shows that the unbiased estimate with d3(2) = z is improved by the estimate with d3(2) = 2/3.

If z < 1/2, then R(θ, z) − R(θ, 1/2) = θ(1 − θ){(1/2− z)[2 − (1/2− z)(θ + 3)/2]} ≥ 0 for all θ . This
shows that the unbiased estimate with d3(2) = z is improved by the estimate with d3(2) = 1/2.

7.3.3. X1 is B(1, 1/2), and X2 given X1 = 0 is B(1, θ) while X2 given X1 = 1 is B(1, 1/2).

R(θ, (φ, δ)) = Eθ,φ(Eφ(L(θ, dN(X1 , . . . , XN )) + c(θ,X1, . . . , XN)|N))

= Pφ(N = 1)[(θ− 1
2
)2 + c] + Pφ(N = 2)[θ(1− θ)2 + (1− θ)θ2 + 2c]
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R(θ, (φ0, δ0)) = Pφ0 (X1 = 1)(θ − 1
2
)2 + Pφ0,θ(X1 = 0, X2 = 1)(1− θ)2 +Pφ0,θ(X1 = 0, X2 = 0)θ2 + 2c
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7.3.4. The Bayes risk for a rule that takes no observations is

.5L(0, a) + .5L(1, a) = .5(a2 + (1− a)2) = a2 − a+ .5

with minimum value 1/4, taken on at a = .5. For a rule that observes (X1, X2), the posterior distribution
of θ given X1 = 1, X2 = 1 or X1 = 1, X2 = 0 is the same as the prior and so the Bayes rule for these points
is d(1, 1) = d(1, 0) = .5 also. The posterior of θ for X1 = 0, X2 = 1 is degenerate at 1, so the Bayes rule
is d(0, 1) = 1; similarly, the posterior of θ given X1 = 0, X2 = 0 is degenerate at zero giving d(0, 0) = 0 as
the Bayes rule. Thus the rule (φ0, δ0) is Bayes with respect to this prior if its Bayes risk, 1/8 + 2c , is not
greater than that of taking no observations, 1/4. This reduces to the condition, c ≤ 1/16.

7.3.5. (a) First we find ϕ0
n(Tn) = Pϕ(N = n|N ≥ n, Tn). Since ϕ always takes at least two observations,

we have ϕ0
0 = 0 and ϕ0

1 = 0. For n = 2, ϕ0
2(t) = Pϕ(N = 2|T2 = t). If T2 = 0, then X2 = 0



so that ϕ0
2(0) = 0. If T2 = 1 then X1 = 0, X2 = 1 and X1 = 1, X2 = 0 are equally likely, so that

ϕ0
2(1) = Pϕ(N = 2|T2 = 1) = Pϕ(X2 = 1|T2 = 1) = 1/2. If N ≥ 3, then we know that X2 = 0 so that
ϕ0

3(t) = Pϕ(N = 3|X2 = 0, T3 = t). We find similarly, ϕ0
3(0) = 0, ϕ0

3(1) = 1/2 and ϕ0
3(2) = 1. (If N ≥ 3,

then T3 cannot be equal to 3.) Finally, ϕ4(t) ≡ 1.
The terminal decision rule is given by δ0j (t) = Eϕ(δj(X1 , . . . , Xj)|N = j, Tj = t), the mixture of the

distributions δj using the mixing distribution of X1, . . . , Xj given N = j and Tj = t . We never stop before
stage 2, so δ00 and δ01 are undefined. If N = 2, then X2 = 1 so that δ02(t) = 1 for all t . Similarly if N = 3,
then X3 = 1 so that δ03(t) = 1 for all t . If N = 4, then X2 = 0 and X3 = 0 so that T4 = X1 +X4 . We
then compute δ04(0) = 0 w.p. 1, δ04(1) = 0 w.p. 1/2, and = 1 w.p. 1/2, and δ04(2) = 1 w.p. 1.

(b) To find the nonrandomized rule that improves on δ0 , we replace each δ0j by its expectation. Thus,
d0
2(t) = 1 for all t , d0

3(t) = 1 for all t , and d0
4(t) = 0 for t = 0, = 1/2 for t = 1 and = 1 for t = 1.

7.3.7. (a) Since Tn is a sufficient statistic, and Tn ∈ P(nθ), we have for nonnegative integers x1, . . . , xn

such that x1 + · · ·+ xn = t ,

P (X1 = x1, . . . , Xn = xn|Tn = t) =
fX1,...,Xn(x1, . . . , xn|θ)

fTn(t|θ)

=
exp{−nθ}θx1+···+xn/(x1! · · ·xn!)

exp{−nθ}(nθ)t/t!

=
t!

x1! · · ·xn!
(
1
n
)t.

This is the multinomial distribution with n cells with equal probabilities 1/n , and sample size t .
(b) By Theorem 3, φ(d0) is as good as (φ,d), where for tn ≥ 2,

d0
n(tn) = Eφ(dn(X1, . . . , Xn)|N = n, Tn = tn)

= E(X1|X1 + · · ·+Xn−1 < 2, Tn = tn)
= P(X1 = 1|X1 + · · ·+Xn−1 < 2, Tn = tn)

=
P(X1 = 1, X1 + · · ·+Xn−1 < 2|Tn = tn)

P(X1 + · · ·+Xn−1 < 2|Tn = tn)

=
P(X1 = 1, X2 = 0, . . . , Xn−1 = 0|Tn = tn)

P(X1 + · · ·+Xn−1 = 0|Tn = tn) + P(X1 + · · ·+Xn−1 = 1|Tn = tn)

=
(tn!/(Tn − 1)!)(1/n)tn

(1/n)tn + (n − 1)(tn!/(tn − 1)!)(1/n)tn
=

tn
1 + (n− 1)tn

.

7.3.8. (a) Since Tn is a sufficient statistic, and Tn ∈ NB(n, θ), we have for nonnegative integers
x1, . . . , xn such that x1 + · · ·+ xn = t ,

P (X1 = x1, . . . , Xn = xn|Tn = t) =
fX1,...,Xn(x1, . . . , xn|θ)

fTn(t|θ)

=
(1− θ)nθx1+···+xn

(
n+t−1

t

)
(1− θ)nθt

=
1(

n+t−1
t

) .

(Note the misprint in the text.)
(b) For n > 1 and t ≥ n− 1,

Eφ(X1|N = n, Tn = t) = · · · = Eφ(Xn−1|N = n, Tn = t) and Eφ(Xn |N = n, Tn = t) = 0

so that

t = Eφ(
n∑

1

Xi|N = n, Tn = t) = (n− 1)Eφ(X1|N = n, Tn = t)

2



which gives d0
n(t) = Eφ(X1|N = n, Tn = t) = t/(n − 1). For n = 1, we must have X1 = 0, so d0

0(t) =
Eφ(X1|N = 1, T1 = 0) = 0.

(c) Automatically, φ0
0 = φ0 . For n = 1,

φ0
1(t) = Pφ(N = 1|N ≥ 1, T1 = t) = φ1(t)

while for n > 1 and t ≥ n− 1,

π0
n(t) =

Pφ(N = n|Tn = t)
Pφ(N ≥ n|Tn = t)

=
P(X1 > 0, . . . , Xn−1 > 0, Xn = 0|Tn = t)

P(X1 > 0, . . . , Xn−1 > 0|Tn = t)
.

To compute the numerator probability, note that the number of points in the set {(x1, . . . , xn−1) : xi >

0,
∑n−1

1 xi = t} is the same as the number of points in {(x1, . . . , xn−1) : xi ≥ 0,
∑n−1

1 xi = t − (n − 1)} ,
which is

(
(n−1)+(t−(n−1))−1

t−(n−1)

)
=

(
t−1

t−n+1

)
. Hence

P(X1 > 0, . . . , Xn−1 > 0, Xn = 0|Tn = t) =

(
t−1

t−n+1

)
(
n+t−1

t

) .

Similarly,

P(X1 > 0, . . . , Xn−1 > 0|Tn = t) =

(
t

t−n+1

)
(
n+t−1

t

) .

Hence,

φ0
n(t) =

(
t−1

t−n+1

)
(

t
t−n+1

) =
n− 1
t

.

7.3.9. We must show P(X1 = x1, . . . , xj = xj|Tj = t, Tj+1 = t+ x) does not depend on x for x = 0 or
1.

P(X1 = x1, . . . , xj = xj|Tj = t, Tj+1 = t+ x) =
Pθ(X1 = x1, . . . , Xj = xj, Tj = t, Xj+1 = x)

Pθ(Tn = t, Xj+1 = x)

=
Pθ(Xj+1 = x|X1 = x1, . . . , Xj = xj, Tj = t)Pθ(X1 = x1, . . . , Xj = xj, Tj = t)

Pθ(Xj+1 = x|Tj = t)Pθ(Tj = t)

The first terms in numerator and denominator are equal (when x = 1 both are equal to (θ − t)/(M − j)).
These cancel, showing Tn is transitive.

7.3.10. For any set A ,

Pθ,φ((X1 , . . . , Xn) ∈ A|N = n, Tn = t) =
Pθ,φ((X1, . . . , Xn) ∈ A,N = n|Tn = t)

Pθ,φ(N = n|Tn = t)

=
E(IA(X1 , . . . , Xn)ψn(X1, . . . , Xn)|Tn = n)

E(ψn(X1, . . . , Xn)|Tn = t)
.

Note that this depends on the distribution of X1, . . . , Xn only through the conditional distribution of
(X1, . . . , Xn) given Tn = t . But for n ≤ M , X1, . . . , Xn in Exercise 9, and X1, . . . , Xn from independent
Bernoulli trials have the same conditional distribution given Tn = t , hence they have the same conditional
distribution given N = n and Tn = t .

7.3.11. Let X1, X2, . . . be independent Bernoulli trials with Pθ(X1 = 1) = 1/2, and Pθ(Xi = 1) = θ
for all i > 1. Then T1 ≡ 0, T2 = (X1, X2),. . . , Tn = (X1,

∑n
2 Xi),dots, forms a sufficient sequence for θ .

But E(X1|T1) = 1/2 and E(X1 |T1, T2 = (x1, x2)) = x1 . Since these quantities differ, the sequence is not
transitive.
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