Solutions to Exercises 7.2.2 to 7.2.4, and 7.2.6 to 7.2.9.

7.2.2. At stage 0, the Bayes expected loss is $\int_0^1 (\theta - a)^2 / (\theta(1 - \theta)) d\theta = \infty$ for all a, so that $\rho_0 = \infty$. At stage j, the posterior distribution of θ given $X_1 = -1, \dots, X_j = -1$ is still $\mathcal{U}(0,1)$, so $\rho_j(-1,\dots,-1) = \infty$ for all j. Hence $U_j(-1,\dots,-1) = \infty$ for all j as well. For any given truncation integer, $J, V_J^{(J)}(-1,\ldots,-1) = \infty$, and by backward induction for any $0 \leq j < J, V_i^{(J)}(-1,\ldots,-1) = \infty$ $(1/2)V_{i+1}^{(J)}(-1,\ldots,-1)+\cdots=\infty$. Thus, $V_0^{(J)}=\infty$ for all J.

Now consider the sequential decision rule: Stop sampling at the first N such that $X_N \neq -1$; if $X_N = 0$, estimate θ as 0, and if $X_N = 1$, estimate θ as 1. The expected terminal loss is the same if $X_N = 0$ or $X_N = 1$, namely $\int_0^1 (\theta^2/(\theta(1-\theta)))2(1-\theta) d\theta = 2\int_0^1 \theta d\theta = 1$. The expected sampling cost is $E_\theta cN = 2c$. Since this rule has finite risk, $V_0^{(\infty)}$ is finite.

- 7.2.3. **Proof.** Let a_j denote the constant $U_j(x_1,\ldots,x_j)$. Then, $V_J^{(J)}=a_J$, and by backward induction, $V_j^{(J)} = \min\{a_j, \ldots, a_J\}$ for $0 \le j \le J$. Hence the Bayes rule for the problem truncated at J is the fixed sample size rule that stops at m(J), where $a_{m(J)} = \min\{a_0, a_1, \ldots, a_J\}$, and we have $V_0^{(J)} = \min\{a_0, a_1, \dots, a_J\}$. If in addition, $V_0^{(J)} \to V_0^{(\infty)}$ as $J \to \infty$, then, since our assumption on the cost function implies that $a_j \to \infty$ as $j \to \infty$, we have $V_0^{(\infty)} = \min\{a_0, a_1, \dots\} = a_m$ for some finite m. The Bayes sequential rule is the fixed sample size rule that stops at stage m whatever the observations.
- 7.2.4. (a) The posterior diatribution of θ given X_1, \ldots, X_j is the gamma, $\mathcal{G}(S_j + 1, 1/(j+1))$, where $S_j = \sum_{1}^{j} X_j$. The Bayes estimate of θ after stopping at stage j is the mean of this distribution, $\hat{\theta}_j = \sum_{1}^{j} X_j$. $(S_j+1)/(j+1)$. The Bayes terminal risk is K times the variance of this distribution, $\rho_j = K(S_j+1)/(j+1)^2$.
- (b) The conditional distribution of X_j given S_{j-1} (with θ integrated out) is the negative binomial, $\mathcal{NB}(S_{j-1}+1,1/(j+1))$. This has mean $(S_{j-1}+1)/j$, so

$$E(\rho_j(X_1, \dots, X_{j-1}, X_j | X_1, \dots, X_{j-1}) = \frac{K}{(j+1)^2} E(S_j + 1 | S_{j-1})$$

$$= \frac{K}{(j+1)^2} (S_{j-1} + 1 + \frac{S_{j-1} + 1}{j}) = \frac{K(S_{j-1} + 1)}{j(j+1)}.$$

(c) With K = 12 and c = 1, we have $U_j = \rho_j + j = 12(S_j + 1)/(j + 1)^2 + j$ and $\mathrm{E}(U_j | S_{j-1}) = 12(S_j + 1)/(j + 1)^2 + j$ $12(S_{j-1}+1)/(j(j+1))+j$. We have $V_3^{(3)}=U_3=(3/4)(S_3+1)+3$ and $\mathrm{E}(V_3^{(3)}|S_2)=S_2+4$. We compute a table similar to Table 7.1.

S_2	d_2^0	U_2	$\mathrm{E}(V_3^{(3)} S_2)$	$V_{2}^{(3)}$	ϕ_2^0
0	1/3	10/3	4	10/3	1
1	2/3	14/3	5	14/3	1
2	3/3	18/3	6	6	any
3	4/3	22/3	7	7	0
:	÷	:	:	:	:
 S_1	d_1^0	U_1	$E(V_2^{(3)} S_1)$	$V_1^{(3)}$	ϕ_1^0
0	1/2	4	4 - (1/54)	4 - (1/54)	
1	2/2	7	6 - (4/27)	6 - (4/27)	0
2	3/2	10	7 + (1/2)	7 + (1/2)	0
3	4/2	13	9	9	0
:	÷	÷	÷	:	:
S_0 0	d_0^0 1	U_0 12	$E(V_1^{(3)} S_0) 6 - (8/27)$	$V_0^{(3)} \\ 6 - (8/27)$	ϕ_0^0

 $\mathbf{F}(V^{(3)}|\mathbf{S}_2)$

An optimal stopping rule for the problem truncated at 3 is to stop at stage 2 if $S_2 \le 2$ and stop at stage 3 otherwise. The value is $5.7037\cdots$.

5. The posterior distribution of θ given X_1, \ldots, X_j is $\mathcal{B}e(S_j+1, j-S_j+1)$, where $S_j=X_1+\cdots+X_j$. The mean of the posterior is $(S_j+1)/(j+2)$. The Bayes terminal decision rule, d_j , at stage j is to take action a_1 if $S_j \leq j/2$ and to take action a_2 otherwise. The Bayes terminal loss, ρ_j , is $K(S_j+1)/(j+2)$ if $S_j \leq j/2$ and $K(j-S_j+1)/(j+2)$ otherwise. We compute a table similar to Table 7.1 for the problem truncated at J=5.

S_5	d_{5}^{0}	Cost	$ ho_5$	$U_5 = V_5^{(5)}$			
0	a_1	5	8	13			
1	a_1	5	16	21			
2	a_1	5	24	29			
3	a_2	5	24	29			
4	a_2	5	16	21			
5	a_2	5	8	13			
S_4	d_4^0	Cost	$ ho_4$	U_4	$E(V_5^{(5)} S_4)$	$V_4^{(5)}$	$\phi_4^{(0)}$
0	a_1	4	9.333	13.333	14.333	13.333	1
1	a_1	4	18.667	22.667	23.667	22.667	1
2	a_1	4	28.000	32.000	29.000	29.000	0
3	a_2	4	18.667	22.667	23.667	22.667	1
4	a_2	4	9.333	13.333	14.333	13.333	1
S_3	d_{3}^{0}	Cost	0-	U_3	$E(V_4^{(5)} S_3)$	$V_3^{(5)}$	$\phi_3^{(0)}$
0	a_3 a_1	3	$\rho_3 \\ 11.200$	14.200	$\frac{E(V_4 \mid S_3)}{15.200}$	$\frac{v_3}{14.200}$	ψ_3
1	a_1 a_1	3	22.400	25.400	25.200	25.200	0
$\frac{1}{2}$	_	3	22.400	25.400 25.400	25.200 25.200	25.200 25.200	0
3	$egin{array}{c} a_2 \ a_2 \end{array}$	3	11.200	14.200	15.200	14.200	1
		<u> </u>	11.200	14.200			
S_2	d_2^0	Cost	$ ho_2$	U_2	$E(V_3^{(5)} S_2)$	$V_{2}^{(5)}$	$\phi_{2}^{(0)}$
0	a_1	2	14.000	16.000	16.950	16.000	1
1	a_1	2	28.000	30.000	25.200	25.200	0
2	a_2	2	14.000	16.000	16.950	16.000	1
S_1	d_1^0	Cost	$ ho_1$	U_1	$E(V_2^{(5)} S_1)$	$V_{1}^{(5)}$	$\phi_1^{(0)}$
0	a_1	1	18.667	19.667	19.067	19.067	0
1	a_2	1	18.667	19.667	19.067	19.067	0
S_0	d_0^0	Cost	ρ_0	U_0	$E(V_1^{(5)} S_0)$	$V_0^{(5)}$	$\phi_0^{(0)}$
0	$a_0 \\ a_1$	0	28.000	28.000	19.067	19.067	$\overset{\varphi_0}{0}$
	ω_1		20.000	20.000	10.001	10.001	

7.2.6. (a) The joint density of X_1, \ldots, X_n and θ is proportional to $\exp\{-(1/2)(\sum_1^n X_i^2 - 2\theta S_n + n\theta^2) - (1/2\sigma^2)\theta^2\}$ where $S_n = \sum_1^n X_i$, so the posterior density of θ given X_1, \ldots, X_n is proportional to this also. This gives

$$g(\theta|X_1,...,X_n) = c \exp\{-\frac{1}{2} \frac{1 + n\sigma^2}{\sigma^2} (\theta - \frac{\sigma^2 S_n}{1 + n\sigma^2})^2\}.$$

This is the normal distribution, $\mathcal{N}(\sigma^2 S_n/(1+n\sigma^2), \sigma^2/(1+n\sigma^2))$.

- (b) With squared error loss, the Bayes terminal decision rule is $d_n^0 = \mathrm{E}(\theta|X_1,\ldots,X_n) = \sigma^2 S_n/(1+n\sigma^2)$, with expected loss $\rho_n = \sigma^2/(1+n\sigma^2)$. Thus, the $U_n = nc + (\sigma^2/(1+n\sigma^2))$ is constant, and since $\rho_n \to 0$, Theorems 3 and 4 imply that the Bayes sequential decision rule is the fixed sample size rule: Take a sample of size n, where n is that value of j that minimizes U_j , and estimate θ to be $\sigma^2 S_n/(1+n\sigma^2)$. It has Bayes risk $\min_j (jc + (\sigma^2/(1+n\sigma^2)))$.
- (c) Let n be the integer j that minimizes jc+1/j. The rule that observes a fixed sample of size n and estimates θ to be S_n/n is minimax since it has constant risk, $nc + \mathrm{E}_{\theta}(\theta S_n/n)^2 = nc + 1/n$, and is extended Bayes (since the minimum Bayes risk of part (b) converges to nc+1/n as $\sigma^2 \to \infty$).

- 7.2.7. (a) The posterior density of θ given X_1, \ldots, X_j is proportional to $\theta^{S_j + \alpha 1} \exp\{-\theta(\lambda + j)\}$, which makes it the gamma distribution, $\mathcal{G}(S_j + \alpha, (\lambda + j)^{-1})$.
- (b) $E(\theta a)^2/\theta$ is minimized by $a = 1/E\theta^{-1}$ and the minimum value is $E\theta 1/E\theta^{-1}$. For the $\mathcal{G}(S_j + \alpha, (\lambda + j)^{-1})$ distribution, we have $E\theta = (S_j + \alpha)/(\lambda + j)$ and $E\theta^{-1} = (\lambda + j)/(S_j + \alpha 1)$. So the Bayes estimate is $d_0 = (S_j + \alpha 1)/(\lambda + j)$ and the Bayes expected loss is $\rho_j = (\lambda + j)^{-1}$.
- (c) Since the $U_j = jc + (\lambda + j)^{-1}$ are constant and since $\rho_j \to 0$, we have from Theorems 3 and 4 that the Bayes sequential decision rule is the fixed sample size rule: Take a sample of size n, where n is that value of j that minimizes U_j , stop and estimate θ to be $(S_n + \alpha)/(\lambda + n)$. It has Bayes risk $\min_j (jc + (\lambda + j)^{-1})$. Since n is the first j such that $(j+1)c + (j+1)^{-1} \ge jc + j^{-1}$, it is also the first j such that $j(j+1) \ge 1/c$, and (adding 1/4 to both sides), the first j such that $(j-1/2)^2 \ge (1/c) + (1/4)$. From this we see that $n = [\sqrt{1/c + 1/4}]$, where [x] denotes the integer nearest to x.
- (d) Consider the rule, call it (d,ϕ) : Find n that minimizes $jc+j^{-1}$, take a sample of size n and estimate θ to be S_n/n . This corresponds to the rule of part (c) with $\alpha=0$ and $\lambda=0$. We will show it is minimax by showing it has constant risk, and is extended Bayes. The risk function is $R(\theta,(d,\phi)) = jc + \mathbb{E}_{\theta}(\theta S_j/j)^2/\theta = jc + \operatorname{Var}(S_j/j)/\theta = jc + 1/j$, independent of θ . Since the Bayes risks of (c), namely $\min_j(jc+(\lambda+j)^{-1})$, converge to $\min_j(jc+j^{-1})$ as $\lambda\to 0$, we see that the rule (d,ϕ) is extended Bayes and hence minimax.
- 7.2.8. (a) The joint density of X_1, \ldots, X_n and θ is proportional to $\theta^{n+\alpha-1} \exp{\{\lambda + S_n\}}$ where $S_n = \sum_{1}^{n} X_i$, so the posterior density of θ given X_1, \ldots, X_n must be proportional to this also. This is the gamma distribution, $\mathcal{G}(n + \alpha, (\lambda + S_n)^{-1})$.
- (b) $E(\theta-a)^2/\theta^2$ is minimized by $a=E(\theta^{-1})/E(\theta^{-2})$ and the minimum value is $1-(E\theta^{-1})^2/E\theta^{-2}$. For the $\mathcal{G}(n+\alpha,(\lambda+S_n)^{-1})$ distribution, we have $E\theta^{-1}=(\lambda+S_n)/(n+\alpha-1)$ and $E\theta^{-2}=(\lambda+S_n)^2/((n+\alpha-1)(n+\alpha-2))$. Therefore, the Bayes estimate is $d_n^0=(n+\alpha-2)/(\lambda+S_n)$ and the Bayes terminal risk is $\rho_n=1/(n+\alpha-1)$. (Note the misprint in the text.)
- (c) Since the $U_n = nc + 1/(n + \alpha 1)$ are constant and since $\rho_n \to 0$, we have from Theorems 3 and 4 that the Bayes sequential decision rule is the fixed sample size rule: Take a sample of size n, where n minimizes U_j , stop and estimate θ to be $(n + \alpha 2)/(\lambda + S_n)$. It has Bayes risk $\min_j U_j$.
- (d) Consider the rule, call it (d, ϕ) : Find j that minimizes $jc + (j-1)^{-1}$, take a sample of size j and estimate θ to be $(j-2)/S_j$. This corresponds to the rule of part (c) with $\alpha = 0$ and $\lambda = 0$. We will show it is minimax by showing it has constant risk, and is extended Bayes. The risk function is

$$R(\theta, (d, \phi)) = jc + E_{\theta}(\theta - (j-2)/S_j)^2/\theta^2$$

= $jc + 1 - 2(j-2)E_{\theta}(\theta S_j)^{-1} + (j-2)^2E_{\theta}(\theta S_j)^{-2}$.

The distribution of θS_j is $\mathcal{G}(j,1)$ independent of θ so the risk is independent of θ . We find $\mathrm{E}(\theta S_j)^{-1} = 1/(j-1)$ and $\mathrm{E}(\theta S_j)^{-2} = 1/((j-1)(j-2))$, provided j>2. Substitution into the formula for R gives $R(\theta,(d,\phi))=jc+(j-1)^{-1}$. (This formula also holds for j=2 as is checked by direct computation.) Since the Bayes risks of (c), namely $\min_n \{nc+1/(n+\alpha-1)\}$, converge to $jc+(j-1)^{-1} = \min_n \{nc+1/(n-1)\}$ as $\alpha \to 0$, we see that the rule (d,ϕ) is extended Bayes and minimax. The optimal $j=1+[\sqrt{(1/c)+(1/4)}]$, where [x] denotes the integer nearest to x, is always at least 2.

- 7.2.9. (a) The joint density of X_1, \ldots, X_j and θ is proportional to $\theta^{-(j+\alpha+1)} \exp\{(\lambda + S_j)/\theta\}$ so the posterior distribution of θ given X_1, \ldots, X_j is proportional to this also. This is the reciprocal gamma $\mathcal{G}^{-1}(j+\alpha,(\lambda+S_j)^{-1})$.
- (b) For the $\mathcal{G}^{-1}(j+\alpha,(\lambda+S_j)^{-1})$ distribution, we have $\mathrm{E}\theta^{-1}=(j+\alpha)/(\lambda+S_j)$ and $\mathrm{E}\theta^{-2}=(j+\alpha)(j+\alpha-1)/(\lambda+S_n)^2$. Therefore, the Bayes estimate is $d_j^0=\mathrm{E}(\theta^{-1})/\mathrm{E}(\theta^{-2})=(\lambda+S_j)/(j+\alpha+1)$ and the Bayes terminal risk is $\rho_j=1-(\mathrm{E}\theta^{-1})^2/\mathrm{E}\theta^{-2}=1/(j+\alpha+1)$.
- (c) Since the $U_j = jc + (j + \alpha + 1)^{-1}$ are constant and since $\rho_j \to 0$, we have from Theorems 3 and 4 that the Bayes sequential decision rule is the fixed sample size rule: Take a sample of size n, where n minimizes U_j , stop and estimate θ to be $(\lambda + S_n)/(n + \alpha + 1)$. It has Bayes risk $nc + (n + \alpha + 1)^{-1}$.
- (d) Consider the rule, call it (d, ϕ) : Find j that minimizes $jc + (j+1)^{-1}$, take a sample of size j and estimate θ to be $S_j/(j+1)$. This corresponds to the rule of part (c) with $\alpha = 0$ and $\lambda = 0$. We will show

it is minimax by showing it has constant risk, and is extended Bayes. The risk function is

$$R(\theta, (d, \phi)) = jc + \mathcal{E}_{\theta}(\theta - S_j/(j+1))^2/\theta^2$$

= $jc + 1 - 2(j+1)^{-1}\mathcal{E}_{\theta}(S_j/\theta) + (j+1)^{-2}\mathcal{E}_{\theta}(S_j/\theta)^2$.

The distribution of S_j/θ is $\mathcal{G}(j,1)$ independent of θ so the risk is independent of θ . We find $\mathrm{E}(S_j/\theta)=j$ and $\mathrm{E}(S_j/\theta)^2=j(j+1)$. Substitution into the formula for R gives $R(\theta,(d,\phi))=jc+(j+1)^{-1}$. Since the Bayes risks of (c), namely $\min_j\{jc+(n+\alpha-1)^{-1}\}$, converge to $jc+(j-1)^{-1}=\min_j\{jc+(n-1)^{-1}\}$ as $\alpha\to 0$, we see that the rule (d,ϕ) is extended Bayes and minimax. The optimal j is $[\sqrt{(1/c)+(1/4)}]-1$, where [x] denotes the integer nearest to x.