Solutions to Exercises 6.1.1 through 6.1.3.

6.1.1. $f(x|\theta) = {5 \choose x} \theta^x (1-\theta)^{5-x}$ has monotone likelihood ratio, so, if the loss function satisfies (6.3) with $\theta_1 = 1/3$ and $\theta_2 = 2/3$, we want to find one-sided ϕ_j 's such that $E_{\theta_1}\phi_1(X) = E_{\theta_1}\psi_1(X)$ and $E_{\theta_2}\phi_2(X) = E_{\theta_2}\psi_2(X)$, where $\psi_j(x) = \sum_{i=j+1}^3 \psi(i|x)$ for j = 1, 2. The rule that improves on $\psi(j|x)$ is then $\phi(j|x) = \phi_{j-1}(x) - \phi_j(x)$. Note

$$E_{\theta_2}\psi_2(X) = P_{\theta_2}\{X = 2 \text{ or } X = 5\} = {\binom{5}{2}}{\binom{2}{3}}^2 {\binom{1}{3}}^3 + {\binom{2}{3}}^5 = \frac{72}{243}$$

To get $E_{\theta_2}\phi_2(X) = 72/243$, we start by putting $\phi_2(5) = 1$; this has probability 32/243. We need 40/243 more; if we put $\phi_2(4) = 1$, we would get 80/243 more. Therefore, the desired rule is: $\phi(3|x) = \phi_2(x) = 0$ for $x \le 4$, $\phi(3|4) = 1/2$, and $\phi(3|5) = 1$. By symmetry, $\phi(1|x) = 0$ for $x \ge 2$, $\phi(1|1) = 1/2$, and $\phi(1|0) = 1$. We find $\phi(2|x)$ by subtracting the sum from 1: $\phi(2|0) = \phi(2|5) = 0$, $\phi(2|1) = \phi(2|4) = 1/2$, and $\phi(2|3) = \phi(2|4) = 1$.

6.1.2. (a) Consider the rule ϕ_a defined for $a \ge 0$ as

$$\phi_a(1|x) = \mathbf{I}_{(-\infty,-a)}(x)$$

$$\phi_a(2|x) = \mathbf{I}_{(-a,a)}(x),$$

$$\phi_a(1|x) = \mathbf{I}_{(a,\infty)}(x).$$

This rule has risk function

$$R(\theta, \phi_a) = (\theta + 1)^2 P_{\theta}(X < -a) + \theta^2 P_{\theta}(-a \le X \le a) + (\theta - 1)^2 P_{\theta}(a < X)$$

= $\theta^2 + (2\theta + 1)\Phi(-\theta - a) + (1 - 2\theta)(1 - \Phi(-\theta + a))$

where $\Phi(z)$ is the distribution function of $\mathcal{N}(0,1)$. We now show that for each θ in [-1,1] $R(\theta,\phi_a)$ is a decreasing function of a for $a < .549 \cdots$. This shows that ϕ_a is not admissible for any $a < .549 \cdots$. The derivative of R with respect to a,

$$\frac{\partial}{\partial a}R(\theta,\phi_a) = -(2\theta+1)\frac{1}{\sqrt{2\pi}}e^{-(\theta+a)^2/2} - (2\theta-1)\frac{1}{\sqrt{2\pi}}e^{-(\theta-a)^2/2}$$

is negative if and only if

$$2\theta[e^{a\theta} - e^{-a\theta}] < [e^{a\theta} + e^{-a\theta}]$$

which holds if and only if $2\theta \tanh(a\theta) < 1$. This is symmetric in θ so we restrict θ to be in the interval [0,1]. Since $\tanh(z)$ is an increasing function, we may solve for a to find $a < \tanh^{-1}(1/2\theta)/\theta$, where we think of $\tanh^{-1}(1/2\theta)$ as $+\infty$ if $\theta \le 1/2$. But $\tanh^{-1}(1/2\theta)/\theta$ is otherwise decreasing in θ so the worst case occurs at $\theta = 1$. Hence, $R(\theta, \phi_a)$ is a decreasing function of a for each θ in [-1,1] provided $a < \tanh^{-1}(1/2) = .549 \cdots$.

(b) Now suppose that $\Theta = (-\infty, \infty)$. To show that every monotone rule is admissible, it is sufficient to show that for a given monotone ϕ there does not exist a better monotone ψ , because Theorem 6.1.1 implies that the monotone rules form an essentially complete class for this problem. Suppose that

$$\begin{split} \psi(1|x) &= \mathbf{I}_{(-\infty,a_1)}(x) \qquad \psi(2|x) = \mathbf{I}_{(a_1,b_1)}(x) \qquad \psi(3|x) = \mathbf{I}_{(b_1,\infty)}(x) \\ \phi(1|x) &= \mathbf{I}_{(-\infty,a_2)}(x) \qquad \phi(2|x) = \mathbf{I}_{(a_2,b_2)}(x) \qquad \phi(3|x) = \mathbf{I}_{(b_2,\infty)}(x) \end{split}$$

and that ψ is as good as ϕ , where $a_1 < b_1$ and $a_2 < b_2$. In terms of the risk functions, we have for all θ ,

$$\begin{aligned} (\theta+1)^2 \mathcal{P}_{\theta}(X < a_1) + \theta^2 \mathcal{P}_{\theta}(a_1 < X < b_1) + (1-\theta)^2 \mathcal{P}_{\theta}(b_1 < X) \\ \leq (\theta+1)^2 \mathcal{P}_{\theta}(X < a_2) + \theta^2 \mathcal{P}_{\theta}(a_2 < X < b_2) + (1-\theta)^2 \mathcal{P}_{\theta}(b_2 < X) \end{aligned}$$

or, subtracting θ^2 from both sides,

$$(2\theta+1)P_{\theta}(X < a_1) + (1-2\theta)P_{\theta}(X > b_1) \le (2\theta+1)P_{\theta}(X < a_2) + (1-2\theta)P_{\theta}(X > b_2).$$
(*)

We use the fact that the normal tails decrease to zero very rapidly, namely, $P_0(X > x) \sim (1/x)e^{-x^2/2}/\sqrt{2\pi}$. This follows from

$$xe^{x^2/2} \int_x^\infty e^{-z^2/2} dz = x \int_0^\infty e^{-u} (x^2 + 2u)^{-1/2} du = \int_0^\infty e^{-u} (1 + 2(u/x^2))^{-1/2} du \to 1$$

as $x \to \infty$. Suppose that $a_1 < a_2$. Then subtract $2\theta + 1$ from both sides of (*), divide both sides by $P_{\theta}(X > a_1)$ and let $\theta \to -\infty$. The left side tends to $+\infty$ and the right side tends to zero. This contradiction shows that $a_1 \ge a_2$. Similarly, letting $\theta \to +\infty$ shows that $b_1 \le b_2$. Now suppose that $a_2 < a_1$. Then (*) implies that $b_1 \ne b_2$, and (*) reduces to

$$(2\theta + 1)\mathbf{P}_{\theta}(a_2 < X < a_1) + (1 - 2\theta)\mathbf{P}_{\theta}(b_1 < X < b_2) \le 0.$$

This inequality is clearly false for any θ such that $P_{\theta}(a_2 < X < a_1) = P_{\theta}(b_1 < X < b_2)$. But such a θ exists since both sides of this equation are continuous in θ and the left side is less than (resp. greater than) the right for θ sufficiently close to $-\infty$ (resp. $+\infty$). Hence $a_1 = a_2$ and by symmetry, $b_1 = b_2$.

6.1.3. (a) We must find the value of x_2 that minimizes (6.10). The left side of the max in (6.10) is decreasing in x_2 for all θ_0 and, if L = 1, the right side is increasing in x_2 . This max is minimized therefore when x_2 is chosen so that the left side is equal to the right side, that is when $P_{\theta_0}\{X < x_2\} + P_{\theta_0}\{X > x_2\} = P_{\theta_0}\{X < x_2\}$. For the logistic distribution, this is

$$(1 + e^{-(-x_2 - \theta_0)})^{-1} + 1 - (1 + e^{-(x_2 - \theta_0)})^{-1} = (1 + e^{-(x_2 - \theta_0)})^{-1}.$$

This reduces to $2e^{-x_2} + e^{\theta_0} = e^{x_2}$. For given θ_0 , this may be solved numerically for x_2 . For example, if $\theta_0 = .68437...$, then $x_2 = 1.0000...$, and if $\theta_0 = 1.96268...$, then $x_2 = 2.0000...$

(b) For L = 2, the minimum of (6.10) occurs when $x_2 = \theta_0$.

(c) We will show the risk is made smaller if we increase x_2 slightly. The risk function of the rule (6.9) with $x_1 = -x_2$ as given above (6.10) becomes for the logistic distribution

$$R(\theta,\phi) = \begin{cases} (1+e^{x_2+\theta})^{-1} + 1 - (1+e^{-x_2+\theta})^{-1} & \text{if } 0 \le \theta \le \theta_0\\ (L-1)(1+e^{x_2+\theta})^{-1} + (1+e^{-x_2+\theta})^{-1} & \text{if } \theta > \theta_0. \end{cases}$$

For all $\theta \leq \theta_0$, the risk is decreasing in x_2 . We complete the proof by showing that for all $\theta > \theta_2$, the derivative of R with respect to x_2 is negative if L is sufficiently large. For $\theta > \theta_2$, this derivative is

$$\frac{\partial R}{\partial x_2} = -\frac{(L-1)e^{x_2+\theta}}{(1+e^{x_2+\theta})^2} + \frac{e^{-x_2+\theta}}{(1+e^{-x_2+\theta})^2}$$

This is nonpositive if $(L-1)e^{x_2+\theta}(1+e^{-x_2+\theta})^2 \ge e^{-x_2+\theta}(1+e^{x_2+\theta})^2$, which holds if

$$(L-1)(e^{2x} + 2e^{x_2+\theta} + e^{2\theta}) \ge 1 + 2e^{x_2+\theta} + e^{2x_2+2\theta}.$$

If L > 2, the first two terms on the left dominate the first two terms on the right, and if $L - 1 \ge e^{2x_2}$, the third term on the left also dominates the third term on the right for all θ , completing the proof. Note, however, that the inequality in the text, $L - 1 \ge e^{x_2}$, must be corrected to $L - 1 \ge e^{2x_2}$.