
Solutions to Exercises 5.2.2 through 5.2.11.

5.2.2. To show that U(θ, θ + 1) has monotone likelihood ratio, take θ1 < θ2 and consider two cases.
Case 1: θ1 + 1 < θ2 . The likelihood ratio is

L(θ1 , θ2) =
f(x|θ1)
f(x|θ2)

=

{ 0, if θ1 < x < θ1 + 1;
∞, if θ2 < x < θ2 + 1;
undefined, otherwise.

Case 2: θ1 < θ2 < θ1 + 1.

L(θ1, θ2) =
f(x|θ1)
f(x|θ2)

=



0, if θ1 < x < θ2;
1, if θ2 < x < θ1 + 1;
∞, if θ1 + 1 < x < θ2 + 1;
undefined, otherwise.

In either case, the likelihood ratio is nondecreasing on the set where it is defined. (This analysis is for a
sample of size one. The concept of monotone likelihood ratio is a one dimensional concept. The MLR theory
cannot be applied for a sample of size n , because sufficiency only reduces the problem to a two-dimensional
sufficient statistic, (minXi,maxXi).)

Here is a counterexample to the second statement of Theorem 5.2.1 when the size of the test is zero. In
the U(θ, θ + 1) problem above, the test φ1(x) = I(x > θ0 + 2) is a test of the form (5.24) and it has size
zero. But the test φ2(x) = I(x > θ0 + 1) also has size zero and is better than φ1 . It has strictly greater
power for θ0 < θ < θ0 + 2.

5.2.3. Fix θ1 < θ2 . Then

f(x|θ2)
f(x|θ1)

=

{
c(θ2)/c(θ1) if x < θ1
+∞ if θ1 < x < θ2
undefined if x > θ2.

Since this is non-decreasing in x for x < θ2 , this family has monotone likelihood ratio. Note that the class
of uniform distributions, U(0, θ), is a special case of this family, with c(θ) = 1/θ and h(x) = I(0,∞)(x).

5.2.4. Let f(x|θ) = exp{−|x− θ|/β}/(2β) be the density of X , where β is known. For fixed θ1 < θ2 ,

f(x|θ2)
f(x|θ1)

=




e−(θ2−θ1)/β if x < θ1
e(2x−θ2−θ1)/β if θ1 < x < θ2
e(θ2−θ1)/β if x > θ2.

This is nondecreasing in x , so the family has monotone likelihood ratio.

5.2.5. The density is f(x|θ) = e−(x−θ)I(θ,∞)(x). Let θ1 < θ2 . Then

f(x|θ2)
f(x|θ1)

=
e−(x−θ2)I(θ2,∞)(x)
e−(x−θ1)I(θ1,∞)(x)

=

{ undefined if x ≤ θ1
0 if θ1 < x ≤ θ2
eθ2−θ1 if θ2 < x.

This is clearly nondecreasing on its domain of definition, which is x > θ1 .

5.2.6. The Cauchy distribution, C(0, θ), has density f(x|θ) = θ

π(θ2 + x2)
. If 0 < θ1 < θ2 , then

f(x|θ2)
f(x|θ1)

=
θ2(θ2

1 + x2)
θ1(θ2

2 + x2)
.

This is defined for all x , but it has a minimum at x = 0, is decreasing on (−∞, 0) and increasing on (0,∞).
So it does not have monotone likelihood ratio.



But if T = |X| , then the density of T is fT (t|θ) =
2θ

π(θ2 + t2)
I[0,∞)(t). For 0 < θ1 < θ2 , we have

fT (t|θ2)
fT (t|θ1)

=
θ2(θ2

1 + t2)
θ1(θ2

2 + t2)
,

on its domain of definition, which is [0,∞). On this interval, the ratio is increasing.

5.2.7. (a) The distribution of T = max(Xi) has density

fT (t|θ) = ntn−1θ−nI(0 < t < θ)

The class of Neyman-Pearson best tests have the form given in (5.7) for some k ≥ 0 or (5.8). In our case,
this reduces to the class of tests

(1) φ(t) =
{
1 if θ0 < t < θ1
γ(t) if t ≤ θ0 or t ≥ θ1

where 0 ≤ γ(t) ≤ 1 is arbitrary and determines the size of the test. Every best test is of this form (up to a
set of probability zero), and each of these tests is best of its size.

(b) A test, φ(t), that is in this class for all θ1 > θ0 is UMP of its size for testing H0 : θ = θ0 against
H ′

1 : θ1 > θ0 . This is the class of tests,

(2) φ(t) =
{
1 if t > θ0
γ(t) if t ≤ θ0

for arbitrary 0 ≤ γ(t) ≤ 1.
(c) The test

φ(t) =
{
1 if t > θ0
α if t ≤ θ0

is in this class and so is UMP for testing H0 against H ′
1 . Moreover, the power function, Eθφ(T ) is a

constant, α , for θ ≤ θ0 , and so this test is of size α for testing H ′
0 : θ ≤ θ0 . Since such tests form a subclass

of the tests of size α for testing H0 , this test is also UMP for testing H ′
0 against H ′

1 .
Since this test is UMP, we cannot improve on the power at any θ > θ0 without decreasing the size at

θ = θ0 . However, the test,

φ1(t) =
{
1 if t > (1− n

√
α)θ0

0 otherwise

is also UMP of size α for testing H ′
0 vs H ′

1 , but for 0 < α < 1 the size is smaller than α for all θ < θ0 . (In
fact the size is zero for θ < (1− n

√
α)θ0 .) Thus, if 0 < α < 1, φ is not admissible since φ1 is better.

(d) The class of best tests for testing θ = θ0 vs θ = θ1 for θ1 < θ0 are tests of one of the forms

(3) φ(t) =
{
0 for θ1 < t < θ0
γ(t) otherwise. or φ(t) =

{
1 if t < θ1
γ(t) otherwise

For every θ1 < θ0 , the test

φ2(t) =
{
1 if t > θ0 or t < b = θ0 n

√
α

0 if b < t < θ0

is of one of these two forms, and, in addition, is of the form found in part (b). Thus, φ2 is UMP of its size
for testing H0 against the two-sided hypothesis, H ′

2 : θ < θ0 . It is easy to check that this test has size α .
(e) For use later in Exercise 5.8.7, we generalize (5.30) slightly to

f(x|θ) = c(θ)h(x)I(−∞,π(θ))(x)
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where π(θ) is an increasing function of θ . Then the distribution of T = max{X1, . . . , Xn} has density

fT (t|θ) = c(θ)nn
(∫ t

−∞
h(x) dx

)n−1

h(t)I(t < π(θ))

The class of Neyman-Pearson best tests of H0 : θ = θ0 against H1 : θ = θ1 , where θ1 > θ0 , consists of
tests of form (1) with θ0 and θ1 replaced by π(θ0) and π(θ1) respectively. The UMP tests of H0 against
H ′

1 : θ > θ0 are still those tests of the form (2) with θ0 replaced by π(θ0). The best tests of θ = θ0 against
θ = θ1 for θ1 < θ0 are of the form (3) with θ0 and θ1 replaced byπ(θ0) and π(θ1) respectively. The test

φ2(t) =
{
1 if t > π(θ0) or t < b
0 if b < t < π(θ0)

where b < π(θ0), is of both forms and so is UMP of its size for testing H0 against H : θ �= θ0 . To achieve
size α , b must satisfy c(θ0)

∫ b

−∞ h(x) dx = n
√
α .

5.2.8. (a)

R(bluff, φ) = P [(a+ b)Eλ1(1− φ(X)) + aEλ1φ(X)] + (1− P )[−(a+ b)Eλ0 (1− φ(X)) + aEλ0φ(X)]
= (2P − 1)(a + b)− PbEλ1φ(X) + (1− P )(2a+ b)Eλ0φ(X)

R(honest, φ) = P [(a+ b)Eλ1(1− φ(X)) + aEλ1φ(X)]− a(1− P )
= a(2P − 1) + bP − bPEλ1φ(X)

(b) The minimax rule is that φ that minimizes the maximum of R(bluff, φ) and R(honest, φ). For
a fixed Eλ0φ(X), both R(bluff, φ) and R(honest, φ) are minimized by maximizing Eλ1φ(X), so that the
minimax rule must be a best test of its size for testing H0 against H1 . Thus, if φα denotes a best test of size
α , we restrict attention to the class of tests φα and find that α that minimizes the maximum risk. It is easy
to check that if Eλ0φα(X) = α = b/(2a+ b), then R(bluff, φα) = R(honest, φα) = V , say. Moreover, since
Eλ1φα(X) is increasing in α , R(honest, φα) is decreasing in α so that R(honest, φα) ≥ V for α ≤ b/(2a+b).
This rule will therefore be minimax if we show that R(bluff, φα) ≥ V for α ≥ b/(2a+ b).

The general argument of Lemma 1.7.1 shows that g1(α) = R(bluff, φα) is convex in α : If φ0 achieves
the minimum of R(bluff, φα0) and φ1 achieves the minimum of R(bluff, φα1), then for arbitrary π ∈ (0, 1),
the rule φ that uses φ0 with probability π and φ1 with probability 1 − π has size α = πα0 + (1 − π)α1

and R(bluff, φ) = πR(bluff, φα0) + (1− π)R(bluff, φα1). But the optimal rule can do at least this well; that
is R(bluff, φπα0+(1−π)α1 ) ≤ πR(bluff, φα0) + (1− π)R(bluff, φα1).

There remains to show that g1(0) ≤ g1(b/(2a+ b)). Since g1(0) = (2P − 1)(a+ b)− PbEλ1φ0(X) and
g1(b/(2a+b)) = (2P−1)(a+b)−PbEλ1φb/(2a+b)(X)+(1−P )(2a+b)b/(2a+b), we have g1(0) ≤ g1(b/(2a+b))
if and only if Eλ1φb/(2a+b)(X) − Eλ1φ0(X) ≤ (1− P )/P . If P < 1/2, this is always true.

It is interesting to note that II’s optimal strategy is independent of P and λ1 . It is exactly the UMP
test of H0 vs H ′

1 : λ < λ0 . On the other hand, Player I’s optimal strategy does depend on these quantities.
This strategy is to bluff with probability 1−g′1(b/(2a+b))/((1−P )(2a+b)), where g′1 represents a derivative
of g1 in the sense of being the slope of any supporting hyperplane of the graph of g1 .

5.2.9. Let θ1 < θ2 . Then,

f(x|θ2)
f(x|θ1)

=
(1 + ex−θ1)2

(1 + ex−θ2)2
eθ1−θ2 =

(
1 + cy

1 + y

)2 1
c

where y = ex−θ1 and c = eθ2−θ1 . It is easy to see that this ratio is increasing in y since c > 1. But since y
is increasing in x , the ratio is also increasing in x .

5.2.10. Given f(x|θ) = c(θ)h(x)I(π1(θ),π2(θ))(x), with π1(θ) < π2(θ), both nondecreasing in θ , we
compute the likelihood ratio for fixed θ1 < θ2 in two cases. First, if π1(θ2) < π2(θ1) then

f(x|θ2)
f(x|θ1)

=



0 if π1(θ1) < x < π1(θ2)
c(θ2)/c(θ1) if π1(θ2) < x < π2(θ1)
+∞ if π2(θ1) < x < π2(θ2)
undefined otherwise.
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Second, if π1(θ2) ≥ π2(θ1) then

f(x|θ2)
f(x|θ1)

=

{
0 if π1(θ1) < x < π2(θ1)
+∞ if π1(θ2) < x < π1(θ2)
undefined otherwise.

In either case, the ratio is nondecreasing in x in the domain of definition of the ratio.

5.2.11. The likelihood ratio for testing H ′
0 : θ = 0 against a simple alternative θ > 0 is

f(x1, . . . , xn|θ)/f(x1, . . . , xn|0) =
I(θ < t1 < t2 < θ + 1)
I(0 < t1 < t2 < 1)

=

{ 0 if t1 < θ
1 if θ < t1 < t2 < 1
∞ if t2 > 1

.

The class of best tests of H ′
0 against a fixed θ > 0 consists of the tests of the two forms

φ(t1, t2) =

{ 1 if t2 > 1
any if θ < t1 < t2 < 1
0 if t1 < θ

or φ(t1, t2) =
{
1 if θ < t1
any if t1 < θ.

The tests of this form for all θ > 0 are

φ0(t1, t2) =
{
1 if t1 > k or t2 > 1
0 if t1 < k and t2 < 1

for some k ≥ 0. These are the UMP tests for testing H ′
0 against H1 : θ > 0. To show they are UMP for

testing H0 against H1 , we use the argument of the text: these tests have nondecreasing power function
on the set (−∞, 0] and so are UMP out of the smaller class of tests that have size no greater than α on
(−∞, 0] . To find k to achieve a given α , note α = P0(T1 > k) = (1− k)n , so that k = 1− α1/n .

4


