
Solutions to the Exercises of Section 3.4.

3.4.1. We are to show E(median(Xi)|T ) = X when X1, . . . , Xn is a sample from N (θ, 1) and T =
X1 + · · · + Xn . Since X is a one-to-one function of T, E(median(Xi)|T ) = E(median(Xi)|X). Note
that median(Xi − X) = median(Xi) − X a.s. But X and the differences, (X1 − X, . . . , Xn − X), are
stochastically independent, so E(median(Xi)|X) = X+ E(median(Xi − X)|X) = X+ E(median(Xi − X)).
But E(median(Xi − X)) = Eθ(median(Xi))− Eθ(X) = θ − θ = 0. Hence, E(median(Xi)|T ) = X .

3.4.2. If X1, . . . , Xn is a sample from the uniform distribution, U(α, β), then T = (minXj ,maxXj) is
a sufficient statistic for (α, β) (see bottom of page 118). Hence, since the loss function, ((α + β)/2 − a)2 ,
is a convex function of a for all (α, β), the decision rule d0 = E(Xn|T ) is as good as Xn . Using Exercise
3.4.6, since the distribution of Xn given T = t is nondegenerate for almost all t when n ≥ 3, and the loss
is strictly convex, d0 is an improvement over Xn when n ≥ 3. When n = 2, d0 = Xn so it is not an
improvement in this case.

To find d0 , we use the following symmetry argument. The conditional distribution of the order statistics,
X(1), . . . , X(n) , given T , that is given X(1) and X(n) , has X(2), . . . , X(n−1) as the order statistics of a
sample of size n − 2 from the uniform distribution on the interval (X(1), X(n)). Thus the conditional
distribution of Xn given T is symmetric about the midpoint of the interval, namely, about the midrange,
M = (minXj +maxXj)/2. Hence, d0 = E(Xn|T ) =M .

3.4.3. (The conclusion should have read “. . . , then the maximum likelihood estimate can be taken to be
a function of T .” Note that if the parameter space consists of two points, Θ = {1/3, 2/3} , and if X1 and
X2 are independent Bernoulli, B(1, θ), then θ̂(X1, X2) = (X1+1)/3 is a maximum likelihood estimate of θ
that is not a function of the sufficient statistic X1 +X2 . This occurs because the maximum of f(x1, x2|θ)
over θ is not achieved at a unique value of θ when x1+x2 = 1. But we can still find a maximum likelihood
estimate that is a function of T .)

If T = t(X) is sufficient for θ and the factorization theorem holds, then fX(x|θ) = g(t(x), θ)h(x). If
for a given x there is a value of θ that achieves the maximum in f(x|θ), then the same value of θ achieves
the maximum in g(t, θ) where t = t(x). Then if the maximum likelihood estimate exists, we can choose for
each t in the range of t(x) a value θ̂(t) that maximizes g(t, θ). The the estimate θ̂(t(x)) is a maximum
likelihood estimate of θ .

3.4.4. (a) Let fj = nj p̂j(1 − p̂j). Then, setting the derivatives of logit χ2 with respect to α and β to
zero gives
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xjfj)2 , is nonnegative by Schwarz inequality. We may assume

without loss of generality that the xj are distinct (since the Yj corresponding to equal xj could be combined).
Then the determinant is zero if and only if at most one fj is positive. In this case, the minimum logit χ2

estimates are not uniquely determined.
(b) For N = 3, n1 = n2 = n3 = 10, x1 = −1, x2 = 0, x3 = 1, and Y1 = 0, Y2 = 4, Y3 = 9, the

equations become,
33α+ 9β = 24 log(2/3) + 9 log(9)
9α+ 9β = 9 log(9)

Hence, the minimum logit χ2 estimates are

α̂(y) = log 2− log 3 = −.405 · · ·
β̂(y) = − log 2 + 3 log 3 = 2.603 · · · .

To find the Rao-Blackwellized version, we need the conditional distribution of Y1, Y2, Y3 given Y1+Y2+Y3 =
13 and Y3−Y1 = 9. The only vectors (y1, y2, y3) of integers yj with 0 ≤ yj ≤ 10, such that y1+y2+y3 = 13
and y3 − y1 = 9 are

y = (0, 4, 9) and y′ = (1, 2, 10).



When Y = y , the minimum logit χ2 estimates are found as above. When Y = y′ , the minimum logit χ2

estimates are
α̃(y′) = −2 log 2 = −1.386 · · ·
β̃(y′) = 2(log 3− log 2) = .811 · · · .

We compute
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) = .824 · · ·

from which we have P(Y = y′|Y = y or Y = y′) = 1 − .824 · · · = .176 · · ·. The Rao-Blackwellized
estimates are therefore

α∗(13, 9) = E{α(Y)|T = (13, 9)} = .824α̂(y) + .176α̃(y′) = −.579 · · ·

and
β∗(13, 9) = E{β̂(Y)|T = (13, 9)} = .824β̂(y) + .176β̃(y′) = 2.286 · · ·.

3.4.5. (Again as in Exercise 3, the conclusion should state that there exists a nonrandomized Bayes rule
that is a function of T .)

If T = t(X) is sufficient for θ and the factorization theorem holds, then fX(x|θ) = g(t(x), θ)h(x). For
a prior τ , the Bayes rule minimizes the conditional Bayes risk given X = x which is proportional to

∫
Θ

L(θ, d)g(t(x), θ) dτ (θ).

This depends on x only through the value of t(x). Hence any Bayes rule may be taken to be a function of
t(x), as in Exercise 3.

3.4.6. Suppose L(θ, a) is strictly convex in a for all θ ∈ Θ, and that the conditional distribution of
d(X) given T = t is nondegenerate. Then from Exercise 2.8.9 we may conclude that E(L(θ, d(X)|T = t) >

L(θ,E(d(X)|T = t)) = L(θ, θ̂(t)), the inequality being strict. If the distribution of d(X) given T = t is
nondegenerate for a set of t with positive probability under some θ , then in the proof of the Rao-Blackwell
Theorem we may conclude that R(θ, d) = Eθ[E(L(θ, d(X)|T )] > Eθ[L(θ, θ̂(T ))] = R(θ, θ̂).
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