
Solutions to the Exercises of Section 2.7.

2.7.1. Let S1 be a convex set in Ek , let A = S1 , let Θ = {θ1, . . . , θk} and consider the game (Θ,A, L)
with L(θj , a) = aj . If the random variable available to the statistician is degenerate at 0 for all θ ∈ Θ, then
D = A , D∗ = A∗ , and (Θ, D∗, R) is the same as (Θ,A∗, L). The risk set of Equation (2.3) reduces to

S = {(y1, . . . , yk) : for some δ ∈ A∗ , yj = L(θj , δ), for j = 1, . . . , k}.

We are to show S = S1 .
(a) S1 ⊂ S : Let a ∈ S1 and let δ be degenerate at a . Then aj = L(θj , δ) so a ∈ S .
(b) S ⊂ S1 : Let y ∈ S and find a distribution δ over A such that yj = L(θj , δ) for all j . Then
yj = EL(θj , Z) = EZj where Z has distribution δ . Since S1 is convex, we have y = EZ ∈ S1 from Lemma
3, thus showing S ⊂ S1 .

2.7.2. Suppose Θ = {θ1, . . . , θk} is finite, D is compact, and R(θ, d) is continuous in d for each θ ∈ Θ.
Then, the nonrandomized risk set, S0 , is the continuous image of the compact set, D , and hence is compact.
Since S is the convex hull of S0 by Corollary 1, and since the convex hull of a compact set is compact by
Theorem 2.4.2, it follows that S is compact.

2.7.3. Let S1 and S2 be disjoint closed convex subsets of k-space, and suppose that S1 is bounded
and hence compact. Let S = {z : z = x − y} . Then S is convex and 0 �∈ S as in the proof of Theorem
1. Moreover, S is closed. (Proof. If zn ∈ S and zn → z , find xn ∈ S1 and yn ∈ S2 such that
zn = xn − yn . Since S1 is compact, there exists a subsequence xn′ that converges, say xn′ → x ∈ S1 .
Then, yn′ = xn′ − zn′ → x− z = y ∈ S2 , so z = x− y ∈ S . ) Now by Lemma 1, there is a p such that
pT z > 0 for all z ∈ S . Since S is closed, ε = infz∈S pTz > 0, which implies 0 < ε = infx∈S1,y∈S2 pT (x−y) =
infx∈S1 pTx− supy∈S2

pTy , completing the proof.

2.7.4. In two dimensions, let S1 = {(x1, x2) : x1 > 0, x2 ≥ 1/x1} and S2 = {(y1, y2) : y1 = 0,−∞ <
y2 < ∞} . Then S1 and S2 are disjoint closed and convex sets. The separating hyperplane is unique and is
given by pT = (1, 0). Yet, infx∈S1 pTx = 0 and supy∈S2

pTy = 0.

2.7.5. Suppose S is strictly convex and x0 is not an interior point of S . If x0 is not on the boundary of
S , then x

¯0 is not in the closure which is also convex so by Lemma 1 there is a p �= 0 such that pT (x−x0) > 0
for all x ∈ S and we are done. So assume that x0 is on the boundary of S . By Theorem 1, there exists a
point p �= 0 such that pTx ≥ pTx0 for all x ∈ S .

Suppose pTx = pTx0 for some x ∈ S , x �= x0 . If x is on the boundary of S , then since S is strictly
convex, the point (x+x0)/2 is in the interior of S and pT (x+x0)/2 = pTx0 . Thus we may assume without
loss of generality that x is in the interior of S . But then y− εp is in the interior of S for sufficiently small
ε , and this implies that pTx0 ≤ pT (x− εp) = pTx− εpTp < pTx = pTx0 , a contradiction that completes
the proof.


