
Solutions to the Exercises of Section 1.4.

1.4.1. Proof. (i) From linearity of ≤ , either p ≤ p or p ≤ p . Thus, p ≤ p and p ∼ p .
(ii) If p1 ≤ p2 and p2 ≤ p1 , then p2 ≤ p1 and p1 ≤ p2 . So p1 ∼ p2 implies p2 ∼ p1 .
(iii) If p1 ≤ p2 and p2 ≤ p1 , and if p2 ≤ p3 and p3 ≤ p2 , then from the transitivity of ≤ , we have p1 ≤ p3

and p3 ≤ p1 , so that p1 ∼ p3 .

1.4.2. Proof. We are given p1 ≤ p2 and p2 ≤ p3 but not p3 ≤ p2 . Then p1 ≤ p3 by transitivity. We
must show not p3 ≤ p1 . If p3 ≤ p1 , then by transitivity p3 ≤ p2 . This contradicts not p3 ≤ p2 , completing
the proof.

1.4.3. The statement is not quite correct. We should replace H1 with the following:
H ′

1 : Suppose pn and p′n are in P∗ for n = 1, 2, . . ., and λn ≥ 0 and
∑∞

1 λn = 1. If pn ≤ p′n for
all n , then

∑∞
n=1 λnpn ≤

∑∞
n=1 λnp′n . If, in addition, pn < p′n for some n for which λn > 0, then∑∞

n=1 λnpn <
∑∞

n=1 λnp′n .
We may then state the theorem as follows.

Theorem. If a preference pattern ≤ on P∗ satisfies H ′
1 and H2 , then there exists a utility, u , on P∗

which agrees with ≤ . Furthermore, u is uniquely determined up to a linear transformation. Moreover, u is
bounded, and

(∗) u(
∞∑

n=1

λnpn) =
∞∑

n=1

λnu(pn).

Proof. (Blackwell and Girshick) Since H ′
1 implies H1 , the first two statements of the theorem folow from

Theorem 1 of the text. Now suppose that u is not bounded. Assume without loss of generality that it is
not bounded from above. Then we can find a sequence pn ∈ P∗ such that u(pn) > 2n and u(pn) > u(pn−1)
for all n . Let q =

∑∞
1 2−npn and qN = (

∑N
1 2−npn) + 2−NpN . Now hypothesis H ′

1 implies that qN < q
for all N , so that u(qN) < u(q) for all N . But qN is a finite mixture so we may compute u(qN) > N + 1.
This implies that u(q) > N +1 for all N which contradicts that requirement that u(q) be finite and shows
that u is bounded.

Now note that (∗) is automatically true if λn is zero except for a finite number of values of n . So
assume that λn > 0 for an infinite number of values of n so that

∑∞
N+1 λn > 0 for all N . Then

u(
∞∑
1

λnpn) = u

[
N∑
1

λnpn + (
∞∑

N+1

λn)
∞∑

N+1

µ(N)
n pn

]

=
N∑
1

λnu(pn) +
∞∑

N+1

λnu(
∞∑

N+1

µ(N)
n pn)

where µ
(N)
n = λn/

∑∞
N+1 λn . Since u is bounded,

∞∑
N+1

λnu(
∞∑

N+1

µ(N)
n pn) → 0

as N → ∞ , completing the proof of (∗).
1.4.4. Let 0 < λ ≤ 1. By the definition of ∼ , p1 ∼ p2 is equivalent to p1 ≤ p2 and p2 ≤ p1 . From

hypothesis H1 applied twice, this is equivalent to λp1 + (1 − λ)q ≤ λp2 + (1 − λ)q and λp2 + (1 − λ)q ≤
λp1 + (1 − λ)q . Again by the definition of ∼ , this is equivalent to λp1 + (1− λ)q ∼ λp2 + (1− λ)q .

1.4.5. Suppose that π1, . . . , πm and π′
1, . . . , π

′
m are two probability vectors such that

ug[p1, . . . , pm] = u(p1)π1 + · · ·+ u(pm)πm = u(p1)π′
1 + · · ·+ u(pm)π′

m for all p1, . . . , pm ∈ P∗.

Find q0 < q1 so that u(q1) > u(q0). Now for fixed i take pi = q1 and pj = q0 for j �= i in this equation.
We find u(q1)πi +

∑
j �=i u(q0)πj = u(q1)π′

i +
∑

j �=i u(q0)π′
j . This reduces to πi(u(q1) − u(q0)) + u(q0) =

π′
i(u(q1)−u(q0))+u(q0). But since u(q1) > u(q0), this implies that πi = π′

i . Since i is arbitrary, this shows
uniqueness.


