Solutions to the Exercises of Section 1.4.

1.4.1. **Proof.** (i) From linearity of \leq , either $p \leq p$ or $p \leq p$. Thus, $p \leq p$ and $p \sim p$. (ii) If $p_1 \leq p_2$ and $p_2 \leq p_1$, then $p_2 \leq p_1$ and $p_1 \leq p_2$. So $p_1 \sim p_2$ implies $p_2 \sim p_1$. (iii) If $p_1 \leq p_2$ and $p_2 \leq p_1$, and if $p_2 \leq p_3$ and $p_3 \leq p_2$, then from the transitivity of \leq , we have $p_1 \leq p_3$ and $p_3 \leq p_1$, so that $p_1 \sim p_3$.

1.4.2. **Proof.** We are given $p_1 \leq p_2$ and $p_2 \leq p_3$ but not $p_3 \leq p_2$. Then $p_1 \leq p_3$ by transitivity. We must show not $p_3 \leq p_1$. If $p_3 \leq p_1$, then by transitivity $p_3 \leq p_2$. This contradicts not $p_3 \leq p_2$, completing the proof.

1.4.3. The statement is not quite correct. We should replace H_1 with the following: H'_1 : Suppose p_n and p'_n are in \mathcal{P}^* for n = 1, 2, ..., and $\lambda_n \ge 0$ and $\sum_1^{\infty} \lambda_n = 1$. If $p_n \le p'_n$ for all n, then $\sum_{n=1}^{\infty} \lambda_n p_n \le \sum_{n=1}^{\infty} \lambda_n p'_n$. If, in addition, $p_n < p'_n$ for some n for which $\lambda_n > 0$, then $\sum_{n=1}^{\infty} \lambda_n p_n < \sum_{n=1}^{\infty} \lambda_n p'_n$.

We may then state the theorem as follows.

Theorem. If a preference pattern \leq on \mathcal{P}^* satisfies H'_1 and H_2 , then there exists a utility, u, on \mathcal{P}^* which agrees with \leq . Furthermore, u is uniquely determined up to a linear transformation. Moreover, u is bounded, and

(*)
$$u(\sum_{n=1}^{\infty}\lambda_n p_n) = \sum_{n=1}^{\infty}\lambda_n u(p_n).$$

Proof. (Blackwell and Girshick) Since H'_1 implies H_1 , the first two statements of the theorem folow from Theorem 1 of the text. Now suppose that u is not bounded. Assume without loss of generality that it is not bounded from above. Then we can find a sequence $p_n \in \mathcal{P}^*$ such that $u(p_n) > 2^n$ and $u(p_n) > u(p_{n-1})$ for all n. Let $q = \sum_{1}^{\infty} 2^{-n} p_n$ and $q_N = (\sum_{1}^{N} 2^{-n} p_n) + 2^{-N} p_N$. Now hypothesis H'_1 implies that $q_N < q$ for all N, so that $u(q_N) < u(q)$ for all N. But q_N is a finite mixture so we may compute $u(q_N) > N + 1$. This implies that u(q) > N + 1 for all N which contradicts that requirement that u(q) be finite and shows that u is bounded.

Now note that (*) is automatically true if λ_n is zero except for a finite number of values of n. So assume that $\lambda_n > 0$ for an infinite number of values of n so that $\sum_{N+1}^{\infty} \lambda_n > 0$ for all N. Then

$$u(\sum_{1}^{\infty} \lambda_n p_n) = u\left[\sum_{1}^{N} \lambda_n p_n + (\sum_{N+1}^{\infty} \lambda_n) \sum_{N+1}^{\infty} \mu_n^{(N)} p_n\right]$$
$$= \sum_{1}^{N} \lambda_n u(p_n) + \sum_{N+1}^{\infty} \lambda_n u(\sum_{N+1}^{\infty} \mu_n^{(N)} p_n)$$

where $\mu_n^{(N)} = \lambda_n / \sum_{N+1}^{\infty} \lambda_n$. Since *u* is bounded,

$$\sum_{N+1}^{\infty} \lambda_n u(\sum_{N+1}^{\infty} \mu_n^{(N)} p_n) \to 0$$

as $N \to \infty$, completing the proof of (*).

1.4.4. Let $0 < \lambda \leq 1$. By the definition of \sim , $p_1 \sim p_2$ is equivalent to $p_1 \leq p_2$ and $p_2 \leq p_1$. From hypothesis H_1 applied twice, this is equivalent to $\lambda p_1 + (1 - \lambda)q \leq \lambda p_2 + (1 - \lambda)q$ and $\lambda p_2 + (1 - \lambda)q \leq \lambda p_1 + (1 - \lambda)q$. Again by the definition of \sim , this is equivalent to $\lambda p_1 + (1 - \lambda)q \sim \lambda p_2 + (1 - \lambda)q$.

1.4.5. Suppose that π_1, \ldots, π_m and π'_1, \ldots, π'_m are two probability vectors such that

$$u_{g}[p_{1},\ldots,p_{m}] = u(p_{1})\pi_{1} + \cdots + u(p_{m})\pi_{m} = u(p_{1})\pi'_{1} + \cdots + u(p_{m})\pi'_{m} \text{ for all } p_{1},\ldots,p_{m} \in \mathcal{P}^{*}.$$

Find $q_0 < q_1$ so that $u(q_1) > u(q_0)$. Now for fixed *i* take $p_i = q_1$ and $p_j = q_0$ for $j \neq i$ in this equation. We find $u(q_1)\pi_i + \sum_{j\neq i} u(q_0)\pi_j = u(q_1)\pi'_i + \sum_{j\neq i} u(q_0)\pi'_j$. This reduces to $\pi_i(u(q_1) - u(q_0)) + u(q_0) = \pi'_i(u(q_1) - u(q_0)) + u(q_0)$. But since $u(q_1) > u(q_0)$, this implies that $\pi_i = \pi'_i$. Since *i* is arbitrary, this shows uniqueness.