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PART III. Two-Person General-Sum Games

1. Bimatrix Games — Safety Levels

The simplest case to consider beyond two-person zero-sum games are the two-person
non-zero-sum games. Examples abound in Economics: the struggle between labor and
management, the competition between two producers of a single good, the negotiations
between buyer and seller, and so on. Good reference material may be found in books of
Owen and Straffin already cited. The material treated in Part III is much more oriented
to economic theory. For a couple of good references with emphasis on applications in
economics, consult the books, Game Theory for Applied Economists by Robert Gibbons
(1992), Princeton University Press, and Game Theory with Economic Applications by H.
Scott Bierman and Luis Fernandez (1993), Addison-Wesley Publishing Co. Inc.

1.1 General-Sum Strategic Form Games. Two-person general-sum games may
be defined in extensive form or in strategic form. The normal or strategic form of a two-
person game is given by two sets X and Y of pure strategies of the players, and two
real-valued functions u1(x, y) and u2(x, y) defined on X × Y , representing the payoffs to
the two players. If I chooses x ∈ X and II chooses y ∈ Y , then I receives u1(x, y) and II
receives u2(x, y).

A finite two-person game in strategic form can be represented as a matrix of ordered
pairs, sometimes called a bimatrix. The first component of the pair represents Player I’s
payoff and the second component represents Player II’s payoff. The matrix has as many
rows as Player I has pure strategies and as many columns as Player II has pure strategies.
For example, the bimatrix ⎛

⎝ (1, 4) (2, 0) (−1, 1) (0, 0)
(3, 1) (5, 3) (3,−2) (4, 4)
(0, 5) (−2, 3) (4, 1) (2, 2)

⎞
⎠ (1)

represents the game in which Player I has three pure strategies, the rows, and Player II
has four pure strategies, the columns. If Player I chooses row 3 and Player II column 2,
then I receives −2 (i.e. he loses 2) and Player II receives 3.

An alternative way of describing a finite two person game is as a pair of matrices. If
m and n representing the number of pure strategies of the two players, the game may be
represented by two m × n matrices A and B. The interpretation here is that if Player I
chooses row i and Player II chooses column j, then I wins aij and II wins bij , where aij

and bij are the elements in the ith row, jth column of A and B respectively. Note that
B represents the winnings of Player II rather than her losses as would be the case for a
zero-sum game. The game of bimatrix (1) is represented as (A,B), where

A =

⎛
⎝ 1 2 −1 0

3 5 3 4
0 −2 4 2

⎞
⎠ and B =

⎛
⎝ 4 0 1 0

1 3 −2 4
5 3 1 2

⎞
⎠ (2)
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Note that the game is zero-sum if and only if the matrix B is the negative of the matrix
A, i.e. B = −A.

1.2 General-Sum Extensive Form Games. The extensive form of a game may
be defined in the same manner as it was defined in Part II. The only difference is that
since now the game is not zero-sum, the payoff cannot be expressed as a single number.
We must indicate at each terminal vertex of the Kuhn tree how much is won by Player I
and how much is won by Player II. We do this by writing this payoff as an ordered pair
of real numbers whose first component indicates the amount that is paid to Player I, and
whose second component indicates the amount paid to player II. The following Kuhn tree
is an example.

N

I II

(–1,3) (0,2)

(2,–1) (0,0)

(1,0)

1/4 3/4

c d a b

c d

Figure 1.1.

If the first move by chance happens to go down to the right, if Player II chooses a,
and if Player I happens to choose c, the payoff is (2,−1), which means that Player I wins
2 and Player II loses 1. Note that the second component represents Player II’s winnings
rather than losses. In particular, a game is a zero-sum game if and only if the components
of each payoff vector sum to zero.

1.3 Reducing Extensive Form to Strategic Form. The problem of reducing
a general sum game in extensive form to one in strategic form is solved in a completely
similar manner as for the case of a zero-sum game. The only difference is that the payoffs
are ordered pairs. If there are random moves, the outcome is a random distribution over
these ordered pairs which is replaced by the average of the ordered pairs. This is done by
taking the corresponding average over each component of the pair separately.

As an illustration, consider the game of Figure 1. Player I has two pure strategies,
X = {c, d}, and Player II has two pure strategies, Y = {a, b}. The corresponding strategic
form of this game is given by the 2 × 2 bimatrix,

( a b

c (5/4, 0) (2/4, 3/4)
d (0, 2/4) (3/4, 2/4)

)
. (3)
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For example, the component of the first row, first column is computed as follows. One-
fourth of the time nature goes left, and I uses c, resulting in a payoff of (−1, 3). Three-
fourths of the time nature goes right, Player II uses a and Player I uses c, giving a payoff of
(2,−1). Therefore, the average payoff is (1/4)(−1, 3) + (3/4)(2,−1) = (−1/4 + 6/4, 3/4−
3/4) = (5/4, 0). The other components of the bimatrix are computed similarly.

1.4 Overview. The analysis of two-person games is necessarily more complex for
general-sum games than for zero-sum games. When the sum of the payoffs is no longer
zero (or constant), maximizing one’s own payoff is no longer equivalent to minimizing the
opponent’s payoff. The minimax theorem does not apply to bimatrix games. One can
no longer expect to play “optimally” by simply looking at one’s own payoff matrix and
guarding against the worst case. Clearly, one must take into account the opponent’s matrix
and the reasonable strategy options of the opponent. In doing so, we must remember that
the opponent is doing the same. The general-sum case requires other more subtle concepts
of solution.

The theory is generally divided into two branches, the noncooperative theory and
the cooperative theory. In the noncooperative theory, either the players are unable to
communicate before decisions are made, or if such communication is allowed, the players
are forbidden or are otherwise unable to make a binding agreement on a joint choice of
strategy. The main noncooperative solution concept is the strategic equilibrium. This
theory is treated in the next two chapters. In the cooperative theory, it is assumed that
the players are allowed to communicate before the decisions are made. They may make
threats and counterthreats, proposals and counterproposals, and hopefully come to some
compromise. They may jointly agree to use certain strategies, and it is assumed that such
an agreement can be made binding.

The cooperative theory itself breaks down into two branches, depending on whether
or not the players have comparable units of utility and are allowed to make monetary side
payments in units of utility as an incentive to induce certain strategy choices. The corre-
sponding solution concept is called the TU cooperative value if side payments are allowed,
and the NTU cooperative value if side payments are forbidden or otherwise unattainable.
The initials TU and NTU stand for “transferable utility” and “non-transferable utility”
respectively.

1.5 Safety Levels. One concept from zero-sum games carries over and finds impor-
tant use in general sum games. This is the safety level, or the amount that each player
can guarantee winning on the average. In a bimatrix game with m×n matrices A and B,
Player I can guarantee winning on the average at least

vI = max
p

min
j

m∑
i=1

piaij = Val(A). (4)

This is called the safety level of Player I. (This is by definition the lower value of A,
which by the minimax theorem is also the upper value or the value of A. So we may write
vI = Val(A).) Player I can achieve this payoff without considering the payoff matrix of
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Player II. A strategy, p, that achieves the maximum in (4) is called a maxmin strategy
for Player I.

Similarly, the safety level of Player II is

vII = max
q

min
i

n∑
j=1

bijqj = Val(BT ), (5)

since Player II can guarantee winning this amount on the average. Any strategy q, that
achieves the maximum in (5) is a maxmin strategy for Player II. (Note as a technical
point that vII is the value of BT, the transpose of B. It is not the value of B. This is
because Val(B) is defined as the value of a game where the components represent winnings
of the row chooser and losses of the column chooser.) An example should clarify this.

Consider the example of the following game.

(
(2, 0) (1, 3)
(0, 1) (3, 2)

)
or A =

(
2 1
0 3

)
and B =

(
0 3
1 2

)
.

From the matrix A, we see that Player I’s maxmin strategy is (3/4, 1/4) and his safety
level is vI = 3/2. From the matrix B, we see the second column dominates the first.
(Again these are II’s winnings; she is trying to maximize) Player II guarantees winning at
least vII = 2 by using her maxmin strategy, namely column 2. Note that this is the value
of BT (whereas Val(B) = 1).

Note that if both players use their maxmin strategies, then Player I only gets vI ,
whereas Player II gets (3/4)3 + (1/4)2 = 11/4. This is pleasant for Player II. But if
Player I looks at B, he can see that II is very likely to choose column 2 because it strictly
dominates column 1. Then Player I would get 3 which is greater than vI , and Player II
would get vII = 2.

The payoff (3,2) from the second row, second column, is rather stable. If each believes
the other is going to choose the second strategy, then each would choose the second strategy.
This is one of the main viewpoints of noncooperative game theory, where such a strategy
pair is called a strategic equilibrium.

In TU cooperative game theory, where the units used to measure I’s payoff are assumed
to be the same as the units used to measure Player II’s payoff, the players will jointly agree
on (3,2), because it gives the largest sum, namely 5. However, in the agreement the players
must also specify how the 5 is to be divided between the two players. The game is not
symmetric; Player II has a threat to use column 1 and Player I has no similar threat. We
will see later some of the suggestions on how to split the 5 between the players.

The NTU theory is more complex since it is assumed that the players measure their
payoffs in noncomparable units. Side payments are not feasible or allowed. Any deviation
from the equilibrium (3,2) would have to be an agreed upon mixture of the other three
payoffs. (The only one that makes sense to mix with (3,2) is the payoff (1,3)).
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1.6 Exercises.

1. Convert the following extensive form game to strategic form.
N

I

II
(1,3)

(4,1) (0,8) (4,3) (7,0)

1/4 3/4

a b

c d c d

2. Find the safety levels and maxmin strategies for the players in the bimatrix games,

(a)
(

(1, 1) (5, 0)
(0, 5) (4, 4)

)
.

(b)
(

(3, 10) (1, 5)
(2, 0) (4, 20)

)
.

3. Contestants I and II in a game show start the last round with winnings of $400
and $500 dollars respectively. Each must decide to pass or gamble, not knowing the choice
of the other. A player who passes keeps the money he/she started with. If Player I
gambles, he wins $200 with probability 1/2 or loses his entire $400 with probability 1/2.
If Player II gambles, she wins or loses $200 with probability 1/2 each. These outcomes
are independent. Then the contestant with the higher amount at the end wins a bonus of
$400.
(a) Draw the Kuhn tree.
(b) Put into strategic form.
(c) Find the safety levels.

4. A Coordination Game. The following game is a coordination game. The safety
levels and maxmin strategies for the players indicate that the first row, first column would
be chosen giving both players 4. Yet if they could coordinate on the second row, second
column, they would receive 6 each. (

(4, 4) (4, 0)
(0, 4) (6, 6)

)

Suppose you, as row chooser, are playing this game once against a person chosen at random
from this class. Which row would you choose? or, if you prefer, which mixed strategy would
you use? Your score on this question depends on what the other students in the class do.
You must try to predict what they are going to do. Do not reveal your answer to this
question to the other students in the class.
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2. Noncooperative Games

Two-person general-sum games and n-person games for n > 2 are more difficult to
analyze and interpret than the zero-sum two-person games of Part II. The notion of “op-
timal” behavior does not extend to these more complex situations. In the noncooperative
theory, it is assumed that the players cannot overtly cooperate to attain higher payoffs. If
communication is allowed, no binding agreements may be formed. One possible substitute
for the notion of a “solution” of a game is found in the notion of a strategic equilibrium.

2.1 Strategic Equilibria. A finite n-person game in strategic form is given by n
nonempty finite sets, X1, X2, . . . , Xn, and n real-valued functions u1, u2, . . . , un, defined
on X1 × X2 × · · · × Xn. The set Xi represents the pure strategy set of player i and
ui(x1, x2, . . . , xn) represents the payoff to player i when the pure strategy choices of the
players are x1, x2, . . . , xn, with xj ∈ Xj for j = 1, 2, . . . , n.

Definition. A vector of pure strategy choices (x1, x2, . . . , xn) with xi ∈ Xi for i = 1, . . . , n
is said to be a pure strategic equilibrium, or PSE for short, if for all i = 1, 2, . . . , n, and
for all x ∈ Xi,

ui(x1, . . . , xi−1, xi, xi+1, . . . , xn) ≥ ui(x1, . . . , xi−1 , x, xi+1, . . . , xn). (1)

Equation (1) says that if the players other than player i use their indicated strategies,
then the best player i can do is to use xi. Such a pure strategy choice of player i is called
a best response to the strategy choices of the other players. The notion of strategic
equilibrium may be stated: a particular selection of strategy choices of the players forms
a PSE if each player is using a best response to the strategy choices of the other players.

Consider the following examples with two players,

(a)
(

(3, 3) (0, 0)
(0, 0) (5, 5)

)
(b)

(
(3, 3) (4, 3)
(3, 4) (5, 5)

)

In (a), the first row, first column, denoted 〈1, 1〉, is a strategic equilibrium with equilibrium
payoff (3, 3). If each believes the other is going to choose the first strategy, neither player
will want to change to the second strategy. The second row, second column, 〈2, 2〉, is
also a strategic equilibrium. Since its equilibrium payoff is (5, 5), both players prefer this
equilibrium. In (b), the first row, first column, 〈1, 1〉, is still an equilibrium according to
the definition. Neither player can gain by changing strategy. On the other hand, neither
player can be hurt by changing, and if they both change, they both will be better off. So
the equilibrium 〈1, 1〉 is rather unstable.

Example (a) is of a game in which the players receive the same payoff, but are not
allowed to communicate. If they were allowed to communicate, they would choose the
joint action giving the maximum payoff. Other examples of this nature occur in the class
of rendezvous games, in which two players randomly placed on a graph, each not knowing
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the position of the other, want to meet in minimum time. See the book of Alpern and Gal
(2003).

If players in a noncooperative game are allowed to communicate and do reach some
informal agreement, it may expected to be a strategic equilibrium. Since no binding
agreements may be made, the only agreements that may be expected to occur are those that
are self-enforcing, in which no player can gain by unilaterally violating the agreement.
Each player is maximizing his return against the strategy the other player announced he
will use.

It is useful to extend this definition to allow the players to use mixed strategies. We
denote the set of probabilities over k points by Pk:

Pk = {p = (p1, . . . , pk) : pi ≥ 0 for i = 1, . . . , k, and
∑k

1 pi = 1}. (2)

Let mi denote the number of pure strategy choices of player i, so that the set Xi has mi

elements. Then the set of mixed strategies of player i is just Pmi . It is denoted by X∗
i

where X∗
i = Pmi .

We denote the set of elements of Xi by the first mi integers, Xi = {1, 2, . . . ,mi}.
Suppose that for i = 1, 2, . . . , n, Player i uses pi = (pi1, pi2, . . . , pimi) ∈ X∗

i . Then the
average payoff to player j is

gj(p1, . . . ,pn) =
m1∑

i1=1

· · ·
mn∑

in=1

p1i1 · · · pninuj(i1, . . . , in). (3)

Then the analogous definition of equilibrium using mixed strategies is as follows.

Definition. A vector of mixed strategy choices (p1,p2, . . . ,pn) with pi ∈ X∗
i for i =

1, . . . , n is said to be a strategic equilibrium, or SE for short, if for all i = 1, 2, . . . , n, and
for all p ∈ X∗

i ,

gi(p1, . . . ,pi−1,pi,pi+1, . . . ,pn) ≥ gi(p1, . . . ,pi−1,p,pi+1, . . . ,pn). (4)

Any mixed strategy pi that satisfies (4) for all p ∈ X∗
i is a best response of player i

to the mixed strategies of the other players. Thus, a particular selection of mixed strategy
choices of the players forms an SE if and only if each player is using a best response to the
strategy choices of the other players. No player can gain by unilaterally changing strategy.
Note that a PSE is a special case of an SE.

This notion of best response represents a practical way of playing a game: Make
a guess at the probabilities that you think your opponents will play their various pure
strategies, and choose a best response to this. This is an example of the famous Bayesian
approach to decision making. Of course in a game, this may be a dangerous procedure.
Your opponents may be better at this type of guessing than you.

The first question that arises is “Do there always exist strategic equilibria?”. This
question was resolved in 1951 by John Nash in the following theorem which generalizes
von Neumann’s minimax theorem. In honor of this achievement, strategic equilibria are
also called Nash equilibria.
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Theorem. Every finite n-person game in strategic form has at least one strategic equi-
librium.

A proof of this theorem using the Brouwer Fixed Point Theorem is given in Appendix
3. This proof is an existence proof and gives no indication of how to go about finding
equilibria. However, in the case of bimatrix games where n = 2, the Lemke-Howson
algorithm (Journal SIAM, 1964, 12, 413-423) may be used to compute strategic equilibria
in a finite number of steps using a simplex-like pivoting algorithm (see Parthasarathy and
Raghavan (1971) for example). An interesting consequence of this method is that, under
a nondegeneracy condition, the number of SE’s is finite and odd!

One of the difficulties of the noncooperative theory is that there are usually many
equilibria giving different payoff vectors as we shall see in the following examples. Another
difficulty is that even if there is a unique strategic equilibrium, it may not be considered
as a reasonable solution or a predicted outcome. In the rest of this section we restrict
attention to n = 2, the two-person case.

2.2 Examples. Example 1. A Coordination Game. Consider the game with
bimatrix (

(3, 3) (0, 2)
(2, 1) (5, 5)

)

and corresponding payoff matrices

A =
(

3 0
2 5

)
and B =

(
3 2
1 5

)

The corresponding maxmin (MM) strategies are (1/2,1/2) for Player I and (3/5,2/5) for
Player II. The safety levels are (vI , vII) = (5/2, 13/5).

Here there are two obvious pure strategic equilibria (PSE’s) corresponding to the
payoffs (3,3) and (5,5). Both players prefer the second SE because it gives them both
5 instead of 3. If they could coordinate their actions, this outcome would be expected.
However, if they cannot communicate and if both players believe the other is going to
choose the first strategy, then they are both going to choose the first strategy and receive
the payoff 3. One cannot say the outcome (3,3) is irrational. If that’s the way things
have always been, then one who tries to change things hurts oneself. This phenomenon
occurs often, usually with many players. To try to change the structure of a language or
the typewriter keyboard or the system of measurement requires a lot of people to change
simultaneously before any advantage is realized.

There is a third less obvious equilibrium point that sometimes occurs in these games.
If each player has an equalizing strategy for the other player’s matrix, then that pair of
strategies forms an equilibrium. This is because if an opponent uses a strategy that makes
it not matter what you do, then anything you do is a best response, in particular the
equalizing strategy on the opponent’s matrix. (Recall that an equalizing strategy is one
that gives the same average payoff to the opponent no matter what the opponent does.)
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Let us find this equalizing strategic equilibrium for the above game. Note that
each player uses the matrix of his opponent. Player I has the equalizing strategy p =
(4/5, 1/5) for B, and Player II has the equalizing strategy q = (5/6, 1/6) for A. If the
players use these strategies, the average payoff is (5/2, 13/5), the same as the safety levels.

Is it possible that the average payoff from a strategic equilibrium is less than the
safety level for one of the players? The answer is no. (See Exercise 1.) Therefore the
strategic equilibrium (p, q) is as poor a strategic equilibrium as you can get. Moreover,
it is extremely unstable. It is true that it does neither player any good to deviate from
his/her equilibrium strategy, but on the other hand it does not harm a player to change
to another strategy.

In the above example, the payoffs for the three SE’s are all different. The players have
the same preferences as to which of the three outcomes they would prefer. In the next
example, the players have different preferences between the two pure strategic equilibria.

Example 2. The Battle of the Sexes. Suppose the matrices are

( a b

a (2, 1) (0, 0)
b (0, 0) (1, 2)

)
so that A =

(a b

a 2 0
b 0 1

)
and B =

(a b

a 1 0
b 0 2

)
.

The name of this game arises as a description of the game played between a husband
and wife in choosing which movie to see, a or b. They prefer different movies, but going
together is preferable to going alone. Perhaps this should be analyzed as a cooperative
game, but we analyze it here as a noncooperative game.

The pure strategy vectors (a, a) and (b, b) are both PSE’s but Player I prefers the first
and Player II the second.

First note that the safety levels are vI = vII = 2/3, the same for both players. Player
I’s MM strategy is (1/3,2/3), while Player II’s MM strategy is (2/3,1/3). There is a third
strategic equilibrium given by the equalizing strategies p = (2/3, 1/3) and q = (1/3, 2/3).
The equilibrium payoff for this equilibrium point, (vI , vII) = (2/3, 2/3), is worse for both
players than either of the other two equilibrium points.

Example 3. The Prisoner’s Dilemma. It may happen that there is a unique SE
but that there are other outcomes that are better for both players. Consider the game
with bimatrix

( cooperate defect
cooperate (3, 3) (0, 4)
defect (4, 0) (1, 1)

)

In this game, Player I can see that no matter which column Player II chooses, he will be
better off if he chooses row 2. For if Player I chooses row 2 rather than row 1, he wins
4 rather than 3 if Player II chooses column 1, and he wins 1 rather than 0 if she chooses
column 2. In other words, Player I’s second strategy of choosing the second row strictly
dominates the strategy of choosing the first. On the other hand, the game is symmetric.
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Player II’s second column strictly dominates her first. However, if both players use their
dominant strategies, each player receives 1, whereas if both players use their dominated
strategies, each player receives 3.

A game that has this feature, that both players are better off if together they use
strictly dominated strategies, is called the Prisoner’s Dilemma. The story that leads to this
bimatrix and gives the game its name is as follows. Two well-known crooks are captured
and separated into different rooms. The district attorney knows he does not have enough
evidence to convict on the serious charge of his choice, but offers each prisoner a deal. If
just one of them will turn state’s evidence (i.e. rat on his confederate), then the one who
confesses will be set free, and the other sent to jail for the maximum sentence. If both
confess, they are both sent to jail for the minimum sentence. If both exercise their right
to remain silent, then the district attorney can still convict them both on a very minor
charge. In the numerical matrix above, we take the units of measure of utility to be such
that the most disagreeable outcome (the maximum sentence) has value 0, and the next
most disagreeable outcome (minimum sentence) has value 1. Then we let being convicted
on a minor charge to have value 3, and being set free to have value 4.

This game has abundant economic application. An example is the manufacturing by
two companies of a single good. Both companies may produce either at a high or a low
level. If both produce at a low level, the price stays high and they both receive 3. If they
both produce at the high level the price drops and they both receive 1. If one produces at
the high level while the other produces at the low level, the high producer receives 4 and
the low producer receives 0. No matter what the other producer does, each will be better
off by producing at a high level.

2.3 Finding All PSE’s. For larger matrices, it is not difficult to find all pure strategic
equilibria. This may be done using an extension of the method of finding all saddle points
of a zero-sum game. With the game written in bimatrix form, put an asterisk after each
of Player I’s payoffs that is a maximum of its column. Then put an asterisk after each of
Player II’s payoffs that is a maximum of its row. Then any entry of the matrix at which
both I’s and II’s payoffs have asterisks is a PSE, and conversely.

An example should make this clear.

⎛
⎜⎜⎝

a b c d e f

A (2, 1) (4, 3) (7∗, 2) (7∗, 4) (0, 5∗) (3, 2)
B (4∗, 0) (5∗, 4) (1, 6∗) (0, 4) (0, 3) (5∗, 1)
C (1, 3∗) (5∗, 3∗) (3, 2) (4, 1) (1∗, 0) (4, 3∗)
D (4∗, 3) (2, 5∗) (4, 0) (1, 0) (1∗, 5∗) (2, 1)

⎞
⎟⎟⎠

In the first column, Player I’s maximum payoff is 4, so both 4’s are given asterisks. In the
first row, Player II’s maximum is 5, so the 5 receives an asterisk. And so on.

When we are finished, we see two payoff vectors with double asterisks. These are the
pure strategic equilibria, (C, b) and (D, e), with payoffs (5, 3) and (1, 5) respectively. At
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all other pure strategy pairs, at least one of the players can improve his/her payoff by
switching pure strategies.

In a two-person zero-sum game, a PSE is just a saddle point. Many games have no
PSE’s, for example, zero-sum games without a saddle point. However, just as zero-sum
games of perfect information always have saddle points, non-zero-sum games of perfect
information always have at least one PSE that may be found by the method of backward
induction.

2.4 Iterated Elimination of Strictly Dominated Strategies. Since in general-
sum games different equilibria may have different payoff vectors, it is more important than
in zero-sum games to find all strategic equilibria. We may remove any strictly dominated
row or column without losing any equilibrium points (Exercise 7).

We, being rational, would not play a strictly dominated pure strategy, because there
is a (possibly mixed) strategy that guarantees us a strictly better average payoff no matter
what the opponent does. Similarly, if we believe the opponent is as rational as we are, we
believe that he/she will not use a dominated strategy either. Therefore we may cancel any
dominated pure strategy of the opponent before we check if we have any dominated pure
strategies which may now be eliminated.

This argument may be iterated. If we believe our opponent not only is rational but
also believes that we are rational, then we may eliminate our dominated pure strategies,
then eliminate our opponent’s dominated pure strategies, and then again eliminate any
of our own pure strategies that have now become dominated. The ultimate in this line
of reasoning is that if it is common knowledge that the two players are rational, then we
may iteratively remove dominated strategies as long as we like. (A statement is “common
knowledge” between two players if each knows the statement, and each knows the other
knows the statement, and each knows the other knows the other knows the statement, ad
infinitum.)

As an example of what this sort of reasoning entails, consider a game of Prisoner’s
Dilemma that is to be played sequentially 100 times. The last time this is to be played it is
clear that rational players will choose to defect. The other strategy is strictly dominated.
But now that we know what the players will do on the last game we can apply strict
domination to the next to last game to conclude the players will defect on that game too.
Similarly all the way back to the first game. The players will each receive 1 at each game.
If they could somehow break down their belief in the other’s rationality, they might receive
3 for each game.

Here is another game, called the Centipede Game of Robert Rosenthal (1980), that
illustrates this anomaly more vividly. This is a game of perfect information with no chance
moves, so it is easy to apply the iterated removal of strictly dominated strategies. The
game in extensive form is given in Figure 2.1.

Since this is a game of perfect information, it may be solved by backward induction.
At the last move, Player II will certainly go down instead of across since that gives her
101 instead of 100. Therefore at the next to last move, Player I will go down rather than
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I II I II I II I II

(1,1) (0,3) (2,2) (1,4) (98,98) (97,100) (99,99) (98,101)

(100,100)

Figure 2.1 The Centipede Game.

across since that gives him 99 instead of the 98. And so forth, back to the initial position,
where Player I will go down rather than across because he receives 1 instead of 0. This is
the unique PSE because all eliminated strategies were strictly dominated.

Empirical evidence acquired by playing similar games shows that this gives a poor
prediction of how people actually play this game. See the book of David M. Kreps (1990)
Game Theory and Economic Modeling, Oxford University Press, for a discussion.

2.5 Exercises.

1. Strategic Equilibria Are Individually Rational. A payoff vector is said to
be individually rational if each player receives at least his safety level. Show that if (p, q)
is a strategic equilibrium for the game with matrices A and B, then pTAq ≥ vI and
pTBq ≥ vII . Thus, the payoff vector for a strategic equilibrium is individually rational.

2. Find the safety levels, the MM-strategies, and find all SE’s and associated vector
payoffs of the following games in strategic form.

(a)
(

(0, 0) (2, 4)
(2, 4) (3, 3)

)
. (b)

(
(1, 4) (4, 1)
(2, 2) (3, 3)

)
. (c)

(
(0, 0) (0,−1)
(1, 0) (−1, 3)

)
.

3. The Game of Chicken. Two players speed head-on toward each other and a
collision is bound to occur unless one of them chickens out at the last minute. If both
chicken out, everything is okay (they both win 1). If one chickens out and the other does
not, then it is a great success for the player with iron nerves (payoff = 2) and a great
disgrace for the chicken (payoff = −1). If both players have iron nerves, disaster strikes
(both lose 2).
(a) Set up the bimatrix of this game.
(b) What are the safety levels, what are the MM strategies, and what is the average payoff
if the players use the MM strategies?
(c) Find all three SE’s.

4. An extensive form non-zero-sum game. A coin with probability 2/3 of heads
and 1/3 of tails is tossed and the outcome is shown to player I but not to player II. Player
I then makes a claim which may be true or false that the coin turned up heads or that the
coin turned up tails. Then, player II, hearing the claim, must guess whether the coin came
up heads or tails. Player II wins $3 if his guess is correct, and nothing otherwise. Player
I wins $3 if I has told the truth in his claim. In addition, Player I wins an additional $6 if
player II guesses heads.
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(a) Draw the Kuhn tree.
(b) Put into strategic (bimatrix) form.
(c) Find all PSE’s.

5. Find all PSE’s of the following games in strategic form.

(a)

⎛
⎜⎝

(−3,−4) ( 2,−1) ( 0, 6) ( 1, 1)
( 2, 0) ( 2, 2) (−3, 0) ( 1,−2)
( 2,−3) (−5, 1) (−1,−1) ( 1,−3)
(−4, 3) ( 2,−5) ( 1, 2) (−3, 1)

⎞
⎟⎠.

(b)

⎛
⎜⎜⎜⎝

( 0, 0) ( 1,−1) ( 1, 1) (−1, 0)
(−1, 1) ( 0, 1) ( 1, 0) ( 0, 0)
( 1, 0) (−1,−1) ( 0, 1) (−1, 1)
( 1,−1) (−1, 0) ( 1,−1) ( 0, 0)
( 1, 1) ( 0, 0) (−1,−1) ( 0, 0)

⎞
⎟⎟⎟⎠.

6. Consider the bimatrix game:
(

(0, 0) (1, 2) (2, 0)
(0, 1) (2, 0) (0, 1)

)
.

(a) Find the safety levels for the two players.
(b) Find all PSE’s.
(c) Find all SE’s given by mixed equalizing strategies.

7. Strategic Equilibria Survive Elimination of Strictly Dominated Strate-
gies. Suppose row 1 is strictly dominated (by a probability mixture of rows 2 through m,
i.e. a1j <

∑m
i=2 xiaij for all j where xi ≥ 0 and

∑m
2 xi = 1), and suppose (p∗, q∗) is a

strategic equilibrium. Show that p∗1 = 0.

8. Consider the non-cooperative bimatrix game:

⎛
⎝ (3, 4) (2, 3) (3, 2)

(6, 1) (0, 2) (3, 3)
(4, 6) (3, 4) (4, 5)

⎞
⎠.

(a) Find the safety levels, and the maxmin strategies for both players.
(b) Find as many strategic equilibria as you can.

9. A PSE vector of strategies in a game in extensive form is said to be a subgame
perfect equilibrium if at every vertex of the game tree, the strategy vector restricted
to the subgame beginning at that vertex is a PSE. If a game has perfect information, a
subgame perfect equilibrium may be found by the method of backward induction. Figure
2.2 is an example of a game of perfect information that has a subgame perfect PSE and
another PSE that is not subgame perfect.
(a) Solve the game for an equilibrium using backward induction.
(b) Put the game into strategic form.
(c) Find another PSE of the strategic form game, relate it to the extensive form game and
show it is not subgame perfect.
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I

II
(0,1)

(1,0) (–10,–1)

A B

a b

Figure 2.2 An Extensive Form Game.

10. Suppose you are playing the centipede game once as Player I against a person
chosen at random from this class. At what point would you choose the option to go down
ending the game, assuming the opponent has not already ended the game?

Now answer the same question assuming you are Player II.

Your score on this question depends on what the other students in the class do. Do
not reveal your answer to this question to the other students in the class.
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3. Models of Duopoly

The examples given of the noncooperative theory of equilibrium have generally shown
the theory to have poor predictive power. This is mainly because there may be multiple
equilibria with no way to choose among them. Alternately, there may be a unique equilib-
rium with a poor outcome, even one found by iterated elimination of dominated strategies
as in the prisoner’s dilemma or the centipede game. But there are some situations, such
as the prisoner’s dilemma played once, in which strategic equilibria are quite reasonable
predictive indicators of behavior. We begin with a model of duopoly due to A. Cournot
(1838).

3.1 The Cournot Model of Duopoly. There are two competing firms producing a
single homogeneous product. These firms must choose how much of the good to produce.
The cost of producing one unit of the good is a constant c, the same for both firms. If
a Firm i produces the quantity qi units of the good, then the cost to Firm i is cqi, for
i = 1, 2. (There is no setup cost.) The price of a unit of the good is negatively related to
the total amount produced. If Firm 1 produces q1 and Firm 2 produces q2 for a total of
Q = q1 + q2, the price is

P (Q) =
{

a − Q if 0 ≤ Q ≤ a
0 if Q > a

= (a − Q)+ (1)

for some constant a. (This is not a realistic assumption, but the price will be approximately
linear near the equilibrium point, and that is the main thing.) We assume the firms must
choose their production quantities simultaneously; no collusion is allowed.

The pure strategy spaces for this game are the sets X = Y = [0,∞). Note these are
infinite sets, so the game is not a finite game. It would not hurt to restrict the strategy
spaces to [0, a]; no player would like to produce more than a units because the return is
zero. The payoffs for the two players are the profits,

u1(q1, q2) = q1P (q1 + q2) − cq1 = q1(a − q1 − q2)+ − cq1 (2)
u2(q1, q2) = q2P (q1 + q2) − cq2 = q2(a − q1 − q2)+ − cq2 (3)

This defines the strategic form of the game. We assume that c < a, since otherwise the
cost of production would be at least as great as any possible return.

First, let us find out what happens in the monopolistic case when there is only one
producer. That is, suppose q2 = 0. Then the return to Firm 1 if it produces q1 units is
u(q1) = q1(a − q1)+ − cq1. The firm will choose q1 to maximize this quantity. Certainly
the maximum will occur for 0 < q1 < a; in this case, u(q1) = q1(a − c) − q2

1 , and we may
find the point at which the maximum occurs by taking a derivative with respect to q1,
setting it to zero and solving for q1. The resulting equation is u′(q1) = a − c − 2q1 = 0,
whose solution is q1 = (a− c)/2. The monopoly price is P ((a− c)/2) = (a + c)/2, and the
monopoly profit is u((a − c)/2) = (a − c)2/4.
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To find a duopoly PSE, we look for a pure strategy for each player that is a best
response to the other’s strategy. We find simultaneously the value of q1 that maximizes
(2) and the value of q2 that maximizes (3) by setting the partial derivatives to zero.

∂

∂q1
u1(q1, q2) = a − 2q1 − q2 − c = 0 (4)

∂

∂q2
u2(q1, q2) = a − q1 − 2q2 − c = 0 (5)

(u1 is a quadratic function of q1 with a negative coefficient, so this root represents a point
of maximum.) Solving these equations simultaneously and denoting the result by q∗1 and
q∗2 , we find

q∗1 = (a − c)/3 and q∗2 = (a − c)/3. (6)

Therefore, (q∗1 , q∗2) is a PSE for this problem.

In this SE, each firm produces less than the monopoly production, but the total
produced is greater than the monopoly production. The payoff each player receives from
this SE is

u1(q∗1 , q∗2) =
a − c

3
(a − a − c

3
− a − c

3
) − c

a − c

3
=

(a − c)2

9
. (7)

Note that the total amount received by the firms in this equilibrium is (2/9)(a − c)2.
This is less than (1/4)(a − c)2, which is the amount that a monopoly would receive using
the monopolistic production of (a − c)/2. This means that if the firms were allowed to
cooperate, they could improve their profits by agreeing to share the production and profits.
Thus each would produce less, (a− c)/4 rather than (a− c)/3, and receive a greater profit,
(a − c)2/8 rather than (a − c)2/9.

On the other hand, the duopoly price is P (q∗1 +q∗2) = (a+2c)/3, which is less than the
monopoly price, (a + c)/2 (since c < a). Thus, the consumer is better off under a duopoly
than under a monopoly.

This PSE is in fact the unique SE. This is because it can be attained by iteratively
deleting strictly dominated strategies. To see this, consider the points at which the function
u1 has positive slope as a function of q1 ≥ 0 for fixed q2 ≥ 0. The derivative (4) is positive
provided 2q1 + q2 < a − c. See Figure 3.1.

For all values of q2 ≥ 0, the slope is negative for all q1 > (a − c)/2. Therefore, all
q1 > (a − c)/2 are strictly dominated by q1 = (a − c)/2.

But since the game is symmetric in the players, we automatically have all q2 > (a−c)/2
are strictly dominated and may be removed. When all such points are removed from
consideration in the diagram, we see that for all remaining q2, the slope is positive for all
q1 < (a − c)/4. Therefore, all q1 < (a − c)/4 are strictly dominated by q1 = (a − c)/4.

Again symmetrically eliminating all q2 < (a − c)/4, we see that for all remaining q2,
the slope is negative for all q1 > 3(a − c)/8. Therefore, all q1 > 3(a − c)/8 are strictly
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Area of

Negative

slope of u1

Area of

Positive

slope of u1

Figure 3.1

0 (a-c)/4 3(a-c)/8 (a-c)/2q1

0

(a-c)/4

(a-c)/2

a-c

q2

dominated by q1 = 3(a − c)/8. And so on, chipping a piece off from the lower end and
then one from the upper end of the interval of the remaining q1 not yet eliminated. If
this is continued an infinite number of times, all q1 are removed by iterative elimination
of strictly dominated strategies except the point q∗1 , and by symmetry q∗2 for Player II.

Note that the prisoner’s dilemma puts in an appearance here. Instead of using the
SE obtained by removing strictly dominated strategies, both players would be better off if
they could cooperate and produce (a − c)/4 each.

3.2 The Bertrand Model of Duopoly. In 1883, J. Bertrand proposed a different
model of competition between two duopolists, based on allowing the firms to set prices
rather than to fix production quantities. In this model, demand is a function of price
rather than price a function of quantity available.

First consider the case where the two goods are identical and price information to the
consumer is perfect so that the firm that sets the lower price will corner the market. We
use the same price/demand function (1) solved for demand Q in terms of price P ,

Q(P ) =
{

a − P if 0 ≤ P ≤ a
0 if P > a

= (a − P )+. (8)
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The actual demand is Q(P ) where P is the lowest price. The monopoly behavior under this
model is the same as for the Cournot model of the previous section. The monopolist sets
the price at (a + c)/2 and produces the quantity (a− c)/2, receiving a profit of (a− c)2/4.

Suppose firms 1 and 2 choose prices p1 and p2 respectively. We assume that if p1 = p2

the firms share the market equally. We take the cost for a unit production again to be
c > 0 so that the profit is pi − c times the amount sold. Then the payoff functions are

u1(p1, p2) =

⎧⎨
⎩

(p1 − c)(a − p1)+ if p1 < p2

(p1 − c)(a − p1)+/2 if p1 = p2

0 if p1 > p2

(9)

and

u2(p1, p2) =

⎧⎨
⎩

(p2 − c)(a − p2)+ if p2 < p1

(p2 − c)(a − p2)+/2 if p2 = p1

0 if p2 > p1

(10)

Here there is a unique PSE but it is rather disappointing. Both firms charge the production
cost, p∗1 = p∗2 = c, and receive a payoff of zero. This is the safety level for each player. It
is easy to check that this is an equilibrium. No other pair of prices can be an equilibrium
because either firm could capture the entire market by slightly undercutting the other’s
price.

This feature of capturing the entire market by undercutting the other’s price is not
entirely reasonable for a number of reasons. Usually the products of two firms are not
entirely interchangeable so some consumers may prefer one product to the other even if
it costs somewhat more. In addition there is the problem of the consumer getting the
information on the prices, and there is the feature of brand loyalty by consumers. We may
modify the model in an attempt to take this into account.

The Bertrand Model with Differentiated Products. Again we assume that the firms
choose prices p1 and p2 and that the cost of unit production is c > 0. Since the profits per
unit produced are p1 − c and p2 − c, we may assume that the prices will satisfy p1 ≥ c and
p2 ≥ c. This time we assume that the demand functions of the products of the firms for
given price selections are given by

q1(p1, p2) = (a − p1 + bp2)+

q2(p1, p2) = (a − p2 + bp1)+,
(11)

where b > 0 is a constant representing how much the product of one firm is a substitute
for the product of the other. We assume b ≤ 1 for simplicity. These demand functions
are unrealistic in that one firm could conceivably charge an arbitrarily high price and still
have a positive demand provided the other firm also charges a high enough price. However,
this function is chosen to represent a linear approximation to the “true” demand function,
appropriate near the usual price settings where the equilibrium is reached.

Under these assumptions, the strategy sets of the firms are X = [0,∞) and Y = [0,∞),
and the payoff functions are

u1(p1, p2) = q1(p1, p2)(p1 − c) = (a − p1 + bp2)+(p1 − c)
u2(p1, p2) = q2(p1, p2)(p2 − c) = (a − p2 + bp1)+(p2 − c).

(12)
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To find the equilibrium prices, we must find points (p∗1, p∗2) at which u1 is maximized in p1

and u2 is maximized in p2 simultaneously. Assuming a−p1 + bp2 > 0 and a−p2 + bp1 > 0,
we find

∂

∂p1
u1(p1, p2) = a − 2p1 + bp2 + c = 0

∂

∂p2
u2(p1, p2) = a − 2p2 + bp1 + c = 0.

Again the functions are quadratic in the variable of differentiation with a negative coeffi-
cient, so the resulting roots represent maxima. Solving simultaneously and denoting the
result by p∗1 and p∗2, we find

p∗1 = p∗2 =
a + c

2 − b
.

3.3 The Stackelberg Model of Duopoly. In the Cournot and Bertrand models
of duopoly, the players act simultaneously. H. von Stackelberg (1934) proposed a model
of duopoly in which one player, called the dominant player or leader, moves first and the
outcome of that player’s choice is made known to the other player before the other player’s
choice is made. An example might be General Motors, at times big enough and strong
enough in U.S. history to play such a dominant role in the automobile industry. Let us
analyze the Cournot model from this perspective.

Firm 1 chooses an amount to produce, q1, at a cost c per unit. This amount is then
told to Firm 2 which then chooses an amount q2 to produce also at a cost of c per unit.
Then the price P per unit is determined by equation (1), P = (a − q1 − q2)+, and the
players receive u1(q1, q2) and u2(q1, q2) of equations (2) and (3).

Player I’s pure strategy space is X = [0,∞). From the mathematical point of view, the
only difference between this model and the Cournot model is that Firm 2’s pure strategy
space, Y , is now a set of functions mapping q1 into q2. However, this is now a game of
perfect information that can be solved by backward induction. Since Firm 2 moves last,
we first find the optimal q2 as a function of q1. That is, we solve equation (5) for q2. This
gives us Firm 2’s strategy as

q2(q1) = (a − q1 − c)/2. (13)

Since Firm 1 now knows that Firm 2 will choose this best response, Firm 1 now wishes to
choose q1 to maximize

u1(q1, q2(q1)) = q1(a − q1 − (a − q1 − c)/2) − cq1

= −1
2
q2
1 +

a − c

2
q1.

(14)

This quadratic function is maximized by q1 = q∗1 = (a− c)/2. Then Firm 2’s best response
is q∗2 = q2(q∗1) = (a − c)/4.

Let us analyze this SE and compare its payoff to the payoff of the SE in the Cournot
duopoly. Firm 1 produces the monopoly quantity and Firm 2 produces less than the
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Cournot SE. The payoff to Firm 1 is u1(q∗1 , q∗2) = (a − c)2/8 and the payoff to Firm 2
is u2(q∗1 , q∗2) = (a − c)2/16. Therefore Firm 1’s profits are greater than that given by
the Cournot equilibrium, and Firm 2’s are less. Note that the total amount produced is
(3/4)(a − c), which is greater than (2/3)(a − c), the total amount produced under the
Cournot equilibrium. This means the Stackelberg price is lower than the Cournot price,
and the consumer is better off under the Stackelberg model.

The information that Firm 2 received about Firm 1’s production has been harmful.
Firm 1 by announcing its production has increased its profit. This shows that having more
information may make a player worse off. More precisely, being given more information
and having that fact be common knowledge may make you worse off.

3.4 Entry Deterrence. Even if a firm acts as a monopolist in a certain market, there
may be reasons why it is in the best interests of the firm to charge less than the monopoly
price, or equivalently, produce more than the monopoly production. One of these reasons
is that the high price of the good achieved by monopoly production may attract another
firm to enter the market.

We can see this in the following example. Suppose the price/demand relationship can
be expressed as

P (Q) =
{

17 − Q if 0 ≤ Q ≤ 17
0 otherwise, (15)

where Q represents the total amount produced, and P represents the price per unit amount.
Suppose additionally, that the cost to the firm of producing q1 items is q1 + 9. That is,
there is a fixed cost of 9 and a constant marginal cost of 1 per unit quantity. The profit
to the firm of producing quantity q1 of the good is

u(q1) = (17 − q1)q1 − (q1 + 9) = 16q1 − q2
1 − 9. (16)

The value of q1 that maximizes the profit is found by setting the derivative of u(q1) to zero
and solving for q1:

u′(q1) = 16 − 2q1 = 0.

So the monopoly production is
q1 = 8,

the monopoly price is 9, and the monopoly profit is

u(8) = 9 · 8 − 17 = 55.

Suppose now a competing firm observes this market and thinks of producing a small
amount, q2, to hopefully make a small profit. Suppose also that this firm also has the same
cost, q2+9, as the monopoly firm. On producing q2 the price will drop to P (8+q2) = 9−q2,
and the competing firm’s profit will be

u2 = (9 − q2)q2 − (q2 + 9) = 8q2 − q2
2 − 9. (17)
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This is maximized at q2 = 4 and the profit there is u2 = 7. Since this is positive, the firm
has an incentive to enter the market.

Of course, the incumbent monopolist can foresee this possibility and can calculate the
negative effect it will have on the firm’s profits. If the challenger enters the market with a
production of 4, the price will drop to P (8+4) = 5, and the monopolist’s profits will drop
from 55 to 5 · 8− 17 = 23. It seems reasonable that some preventative measures might be
worthwhile.

If the monopolist produces a little more than the monopoly quantity, it might deter
the challenger from entering the market. How much more should be produced? If the
monopolist produces q1, then the challenger’s firm’s profits may be computed as in (17)
by

u2(q1, q2) = (17 − q1 − q2)q2 − (q2 + 9).

This is maximized at q2 = (16 − q1)/2 for a profit of

u2(q1, (16 − q1)/2) = (16 − q1)2/4 − 9.

The profit is zero if (16 − q1)2 = 36, or equivalently, if q1 = 10.

This says that if the monopolist produces 10 rather than 8, then the challenger can
see that it is not profitable to enter the market.

However, the monopolist’s profits are reduced by producing 10 rather than 8. From
(16) we see that the profits to the firm when q1 = 10 are

u1(10) = 7 · 10 − 19 = 51

instead of 55. This is a relatively small amount to pay as insurance against the much
bigger drop in profits from 55 to 23 the monopolist would suffer if the challenger should
enter the market.

The above analysis assumes that the challenger believes that, even if the challenger
should enter the market, the monopolist will continue with the monopoly production,
or the pre-entry production. This would be the case if the incumbent monopolist were
considered as the dominant player in a Stackelberg model. Note that the entry deterrence
strategy pair, q1 = 10 and q2 = 0, does not form a strategic equilibrium in this Stackelberg
model, since q1 = 10 is not a best response to q2 = 0. To analyze the situation properly,
we should enlarge the model to allow the game to be played sequentially several times.

If this problem were analyzed as a Cournot duopoly, we would find that, at equilibrium,
each firm would produce 5 1

3 , the price would drop to 6 1
3 , and each firm would realize a

profit of 19 4
9 . This low profit is another reason that the incumbent firm should make strong

efforts to deter the entry of a challenger.
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3.5 Exercises.

1.(a) Suppose in the Cournot model that the firms have different production costs.
Let c1 and c2 be the costs of production per unit for firms 1 and 2 respectively, where both
c1 and c2 are assumed less than a/2. Find the Cournot equilibrium.

(b) What happens, if in addition, each firm has a set up cost? Suppose Player I’s
cost of producing x is x + 2, and II’s cost of producing y is 3y + 1. Suppose also that the
price function is p(x, y) = 17 − x − y, where x and y are the amounts produced by I and
II respectively. What is the equilibrium production, and what are the players’ equilibrium
payoffs?

2. Extend the Cournot model of Section 3.1 to three firms. Firm i chooses to produce
qi at cost cqi where c > 0. The selling price is P (Q) = (a − Q)+ where Q = q1 + q2 + q3.
What is the strategic equilibrium?

3. Modify the Bertrand model with differentiated products to allow sequential selec-
tion of the price as in Stackelberg’s variation of Cournot’s model. The dominant player
announces a price first and then the subordinate player chooses a price. Solve by backward
induction and compare to the SE for the simultaneous selection model.

4. Consider the Cournot duopoly model with the somewhat more realistic price func-
tion,

P (Q) =
{

1
4Q2 − 5Q + 26 for 0 ≤ Q ≤ 10,
1 for Q ≥ 10.

This price function starts at 26 for Q = 0 and decreases down to 1 at Q = 10 and then
stays there. Assume that the cost, c, of producing one unit is c = 1 for both firms. No
firm would produce more than 10 because the return for selling a unit would barely pay
for the cost of producing it. Thus we may restrict the productions q1, q2, to the interval
[0, 10].

(a) Find the monopoly production, and the optimal monopoly return.

(b) Show that if q2 = 5/2, then u1(q1, 5/2) is maximized at q1 = 5/2. Show that this
implies that q1 = q2 = 5/2 is an equilibrium production in the duopoly.

5.(a) Suppose in the Stackelberg model that the firms have different production costs.
Let c1 and c2 be the costs of production per unit for firms 1 and 2 respectively. Find the
Stackelberg equilibrium. For simpicity, you may assume that both c1 and c2 are small, say
less than a/3.

(b) Suppose in the Stackelberg model, Player I’s cost of producing x is x +2, and II’s
cost of producing y is 3y + 1. Suppose also that the price function is p(x, y) = 17− x− y,
where x and y are the amounts produced by I and II respectively. What is the equilibrium
production, and what are the players’ equilibrium payoffs?

6. Extend the Stackelberg model to three firms. For i = 1, 2, 3, Firm i chooses to
produce qi at cost cqi where c > 0. Firm 1 acts first in announcing the production q1. Then

III – 23



Firm 2 announces q2, and finally Firm 3 announces q3. The selling price is P (Q) = (a−Q)+

where Q = q1 + q2 + q3. What is the strategic equilibrium?

7. An Advertising Campaign. Two firms may compete for a given market of
total value, V , by investing a certain amount of effort into the project through advertising,
securing outlets, etc. Each firm may allocate a certain amount for this purpose. If firm 1
allocates x > 0 and firm 2 allocates y > 0, then the proportion of the market that firm 1
corners is x/(x+ y). The firms have differing difficulties in allocating these resources. The
cost per unit allocation to firm i is ci, i = 1, 2. Thus the profits to the two firms are

M1(x, y) = V · x

x + y
− c1x

M2(x, y) = V · y

x + y
− c2y

If both x and y are zero, the payoffs to both are zero.

(a) Find the equilibrium allocations, and the equilibrium profits to the two firms, as
a function of V , c1 and c2.

(b) Specialize to the case V = 1, c1 = 1, and c2 = 2.
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4. Cooperative Games

In one version of the noncooperative theory, communication among the players is
allowed but there is no machanism to enforce any agreement the players may make. The
only believable agreement among the players would be a Nash equilibrium because such
an agreement would be self-enforcing: no player can gain by unilaterally breaking the
agreement. In the cooperative theory, we allow communication among the players and
we also allow binding agreements to be made. This requires some mechanism outside the
game itself to enforce the agreements. With the extra freedom to make enforceable binding
agreements in the cooperative theory, the players can generally achieve a better outcome.
For example in the prisoner’s dilemma, the only Nash equilibrium is for both players to
defect. If they cooperate, they can reach a binding agreement that they both use the
cooperate strategy, and both players will be better off.

The cooperative theory is divided into two classes of problems depending on whether
or not there is a mechanism for transfer of utility from one player to the other. If there
such a mechanism, we may think of the transferable commodity as “money”, and assume
that both players have a linear utility for money. We may take the scaling of the respective
utilities to be such that the utility of no money is 0 and the utility of one unit of money is
1. In Section 2, we treat the transferable utility (TU) case. In Section 3, we treat the
nontransferable utility (NTU) case.

4.1 Feasible Sets of Payoff Vectors. One of the main features of cooperative games
is that the players have freedom to choose a joint strategy. This allows any probability
mixture of the payoff vectors to be achieved. For example in the battle of the sexes, the
players may agree to toss a coin to decide which movie to see. (They may also do this in
the noncooperative theory, but after the coin is tossed, they are allowed to change their
minds, whereas in the cooperative theory, the coin toss is part of the agreement.) The set
of payoff vectors that the players can achieve if they cooperate is called the feasible set.
The distinguishing feature of the TU case is that the players may make side payments
of utility as part of the agreement. This feature results in a distinction between the NTU
feasible set and the TU feasible set.

When players cooperate in a bimatrix game with matrices (A,B), they may agree to
achieve a payoff vector of any of the mn points, (aij , bij) for i = 1, . . . ,m and j = 1 . . . , n.
They may also agree to any probability mixture of these points. The set of all such payoff
vectors is the convex hull these mn points. Without a transferable utility, this is all that
can be achieved.

Definition. The NTU feasible set is the convex hull of the mn points, (aij , bij) for i =
1, . . . ,m and j = 1 . . . , n.

By making a side payment, the payoff vector (aij , bij) can be changed to (aij+s, bij−s).
If the number s is positive, this represents a payment from Player II to Player I. If s is
negative, the side payment is from Player I to Player II. Thus the whole line of slope −1
through the point (aij , bij) is part of the TU feasible set. And we may take probability
mixtures of these as well.
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Definition. The TU feasible set is the convex hull of the set of vectors of the form
(aij + s, bij − s) for i = 1, . . . ,m and j = 1 . . . , n and for arbitrary real numbers s.

As an example, the bimatrix game

(
(4, 3) (0, 0)
(2, 2) (1, 4)

)
(1)

has two pure strategic equilibria, upper left and lower right. This game has the NTU
feasible and TU feasible sets given in Figure 4.1.

(0,0)

(1,4)

(2,2)

(4,3)

(0,0)

(1,4)

(2,2)

(4,3)

The NTU Feasible Set The TU Feasible Set
Figure 4.1

If an agreement is reached in a cooperative game, be it a TU or an NTU game, it may
be expected to be such that no player can be made better off without making at least one
other player worse off. Such an outcome is said to be Pareto optimal.

Definition. A feasible payoff vector, (v1, v2), is said to be Pareto optimal if the only
feasible payoff vector (v′

1, v
′
2) such that v′

1 ≥ v1 and v′
2 ≥ v2 is the vector (v′

1, v
′
2) = (v1, v2).

In the example above, the Pareto feasible outcomes for the NTU game are simply
the vectors on the line segment joining the points (4, 3) and (1, 4). The Pareto optimal
outcomes for the TU game are the vectors on the line of slope −1 through the point (4, 3).

For more general convex feasible sets in the plane, the set of Pareto optimal points is
the set of upper right boundary points.
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4.2 Cooperative Games with Transferable Utility. In this section, we restrict
attention to the transferable utility case and assume that the players are “rational” in the
sense that, given a choice between two possible outcomes of differing personal utility, each
player will select the one with the higher utility.

The TU-Problem: In the model of the game, we assume there is a period of preplay
negotiation, during which the players meet to discuss the possibility of choosing a joint
strategy together with some possible side payment to induce cooperation. They also discuss
what will happen if they cannot come to an agreement; each may threaten to use some
unilateral strategy that is bad for the opponent.

If they do come to an agreement, it may be assumed that the payoff vector is Pareto
optimal. This is because if the players are about to agree to some feasible vector v and
there is another feasible vector, v′, that is better for one of the players without making
any other player worse off, that player may propose changing to the vector v′, offering to
transfer some of his gain in utility to the other players. The other players, being rational
would agree to this proposal.

In the discussion, both players may make some threat of what strategy they will take
if an agreement is not reached. However, a threat to be believable must not hurt the player
who makes it to a greater degree than the opponent. Such a threat would not be credible.
For example, consider the following bimatrix game.

(
(5, 3) (0,−4)
(0, 0) (3, 6)

)
(2)

If the players come to an agreement, it will be to use the lower right corner because it has
the greatest total payoff, namely 9. Player II may argue that she should receive at least
half the sum, 4 1

2
. She may even feel generous in “giving up” as a side payment some of

the 6 she would be winning. However, Player I may threaten to use row 1 unless he is
given at least 5. That threat is very credible since if Player I uses row 1, Player II’s cannot
make a counter-threat to use column 2 because it would hurt her more than Player I. The
counter-threat would not be credible.

In this model of the preplay negotiation, the threats and counter-threats may be made
and remade until time to make a decision. Ultimately the players announce what threats
they will carry out if agreement is not reached. It is assumed that if agreement is not
reached, the players will leave the negotiation table and carry out their threats. However,
being rational players, they will certainly reach agreement, since this gives a higher utility.
The threats are only a formal method of arriving at a reasonable amount for the side
payment, if any, from one player to the other.

The TU problem then is to choose the threats and the proposed side payment judi-
ciously. The players use threats to influence the choice of the final payoff vector. The
problem is how do the threats influence the final payoff vector, and how should the play-
ers choose their threat strategies? For two-person TU-games, there is a very convincing
answer.
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The TU Solution: If the players come to an agreement, then rationality implies
that they will agree to play to achieve the largest possible total payoff, call it σ,

σ = max
i

max
j

(aij + bij) (3)

as the payoff to be divided between them. That is they will jointly agree to use some row
i0 and column j0 such that ai0j0 + bi0j0 = σ. Such a joint choice 〈i0, j0〉, is called their
cooperative strategy. But they must also agree on some final payoff vector (x∗, y∗),
such that x∗ + y∗ = σ, as the appropriate division of the total payoff. Such a division may
then require a side payment from one player to the other. If x∗ > ai0j0 , then Player I
would receive a side payment of the difference, x∗ − ai0j0 , from Player II. If x∗ < ai0j0 ,
then Player II would receive a side payment of the difference, ai0j0 − x∗, from Player I.

Suppose now that the players have selected their threat strategies, say p for Player
I and q for Player II. Then if agreement is not reached, Player I receives pTAq and Player
II receives pTBq. The resulting payoff vector,

D = D(p, q) = (pTAq,pTBq) = (D1,D2) (4)

is in the NTU feasible set and is called the disagreement point or threat point. Once
the disagreement point is determined, the players must agree on the point (x, y) on the line
x + y = σ to be used as the cooperative solution. Player I will accept no less than D1 and
Player II will accept no less than D2 since these can be achieved if no agreement is reached.
But once the disagreement point has been determined, the game becomes symmetric. The
players are arguing about which point on the line interval from (D1, σ−D1) to (σ−D2,D2)
to select as the cooperative solution. No other considerations with respect to the matrices
A and B play any further role. Therefore, the midpoint of the interval, namely

ϕ = (ϕ1, ϕ2) =
(

σ − D2 + D1

2
,
σ − D1 + D2

2

)
(5)

is the natural compromise. Both players suffer equally if the agreement is broken. The
point, ϕ, may be determined by drawing the line from D with 45◦ slope until it hits the
line x + y = σ as in Figure 4.2.

D

ϕ

(D1,σ−D1)

(σ−D2,D2)

Figure 4.2

III – 28



We see from (5) what criterion the players should use to select the threat point. Player
I wants to maximize D1−D2 and Player II wants to minimize it. This is in fact a zero-sum
game with matrix A − B:

D1 − D2 = pTAq − pTBq = pT(A − B)q. (6)

Let p∗ and q∗ denote optimal strategies of the game A − B for Players I and II
respectively, and let δ denote the value,

δ = Val(A − B) = p∗T(A − B)q∗. (7)

If Player I uses p∗ as his threat, then the best Player II can do is to use q∗, and con-
versely. When these strategies are used, the disagreement point becomes D∗ = (D∗

1 ,D∗
2) =

D(p∗, q∗). Since δ = p∗TAq∗ − p∗TBq∗ = D∗
1 − D∗

2 , we have as the TU solution:

ϕ∗ = (ϕ∗
1, ϕ

∗
2) =

(
σ + δ

2
,
σ − δ

2

)
. (8)

Suppose the players have decided on 〈i0, j0〉 as the cooperative strategy to be used,
where ai0j0 +bi0j0 = σ. To achieve the payoff (8), this requires a side payment of (σ+δ)/2−
ai0j0 from Player II to Player I. If this quantity is negative, the payment of ai0j0 −(σ+δ)/2
goes from Player I to Player II.

Examples. 1. Consider the TU game with bimatrix
(

(0, 0) (6, 2) (−1, 2)
(4,−1) (3, 6) (5, 5)

)
.

There is a PSE in the first row, second column, with payoff vector (6,2). This is the matrix
upon which Figure 4.2 is based. But we shall see that the optimal disagreement point is
in a somewhat different place than the one in the figure.

The maximum value of aij + bij occurs in the second row third column, so the coop-
erative strategy is 〈2, 3〉, giving a total payoff of σ = 10. If they come to an agreement,
Player I will select the second row, Player II will select the third column and both players
will receive a payoff of 5. They must still decide on a side payment, if any.

They consider the zero-sum game with matrix,

A − B =
(

0 4 −3
5 −3 0

)
.

The first column is strictly dominated by the last. The threat strategies are then easily
determined to be

p∗ = (.3, .7)T

q∗ = (0, .3, .7)T
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The value of this game is: δ = Val
(

4 −3
−3 0

)
= −9/10. Therefore from (8), the TU-value

is
ϕ∗ = ((10 − .9)/2, (10 + .9)/2) = (4.55, 5.45).

To arrive at this payoff from the agreed payoff vector, (5, 5), requires a side payment of
0.45 from Player I to Player II.

We may also compute the disagreement point, D∗ = (D∗
1 ,D∗

2).

D∗
1 = p∗TAq∗ = .3(6 · .3 − .7) + .7(3 · .3 + 5 · .7) = 3.41

D∗
2 = p∗TBq∗ = .3(2 · .3 + 2 · .7) + .7(6 · .3 + 5 · .7) = 4.31

It is easy to see that the line from D∗ to ϕ∗ is 45◦, because D∗
2 − D∗

1 = ϕ∗
2 − ϕ∗

1 = 0.9.

2. It is worthwhile to note that there may be more than one possible cooperative
strategy yielding σ as the sum of the payoffs. The side payment depends on which one
is used. Also there may be more than one possible disagreement point because there
may be more than one pair of optimal strategies for the game A − B. However, all such
disagreement points must be on the same 45◦ line, since the point ϕ depends on the
disagreement point only through the value, δ, and all disagreement points have the same
TU-value.

Here is an example containing both possibilities.
⎛
⎝ (1, 5) (2, 2) (0, 1)

(4, 2) (1, 0) (2, 1)
(5, 0) (2, 3) (0, 0)

⎞
⎠

There are two cooperative strategies giving total payoff σ = 6, namely 〈1, 1〉 and 〈2, 1〉.
The matrix A − B is ⎛

⎝−4 0 −1
2 1 1
5 −1 0

⎞
⎠

which has a saddle-point at 〈2, 3〉. Thus D = (2, 1) is the disagreement point, and the
value is δ = 1. Thus the TU cooperative value is ϕ = (7/2, 5/2).

However, there is another saddle-point at 〈2, 2〉 that, of course, has the same value
δ = 1. But this time the disagreement point is ϕ = (1, 0). All such disagreement points
must be on the 45◦ line through ϕ.

If 〈2, 1〉 is used as the cooperative strategy, the resulting vector payoff of (4, 2) requires
that Player I pay 1/2 to Player I. If 〈1, 1〉 is used as the cooperative strategy, the resulting
vector payoff of (5, 1) requires that Player I pay 3/2 to Player II.

4.3 Cooperative Games with Non-Transferable Utility.

We now consider games in which side payments are forbidden. It may be assumed
that the utility scales of the players are measured in noncomparable units. The players
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may argue, threaten, and come to a binding agreement as before, but there is no monetary
unit with which the players can agree to make side payments. The players may barter
goods that they own, but this must be done within the game and reflected in the bimatrix
of the game.

We approach NTU games through the Nash Bargaining Model. This model is
based on two elements assumed to be given and known to the players. One element is a
compact (i.e. bounded and closed), convex set, S, in the plane. One is to think of S as the
set of vector payoffs achievable by the players if they agree to cooperate. It is the analogue
of the NTU-feasible set, although it is somewhat more general in that it does not have to
be a polyhedral set. It could be a circle or an ellipse, for example. We refer to S as the
NTU-feasible set.

The second element of the Nash Bargaining Model is a point, (u∗, v∗) ∈ S, called
the threat point or status-quo point. Nash viewed the bargaining model as a game
between two players who come to a market to barter goods. For him, the players have the
option of not entering into any trade agreement at all, and it was natural for him to take
the status-quo point as (u∗, v∗) = (0, 0) ∈ S. The subsequent theory allows (u∗, v∗) to be
an arbitrary point of S.

Given an NTU-feasible set, S, and a threat point, (u∗, v∗) ∈ S, the problem is to decide
on a feasible outcome vector for this game that will somehow reflect the value of the game
to the players. That is, we want to find a point, (ū, v̄) = f(S, u∗, v∗), to be considered a
“fair and reasonable outcome” or “solution” of the game for an arbitrary compact convex
set S and point (u∗, v∗) ∈ S. In the approach of Nash, “fair and reasonable” is defined by
a few axioms. Then it is shown that these axioms lead to a unique solution, f(S, u∗, v∗).
Here are the axioms.

Nash Axioms for f(S, u∗, v∗) = (ū, v̄).

(1) Feasibility. (ū, v̄) ∈ S.

(2) Pareto Optimality. There is no point (u, v) ∈ S such that u ≥ ū and v ≥ v̄
except (ū, v̄) itself.

(3) Symmetry. If S is symmetric about the line u = v, and if u∗ = v∗, then ū = v̄.

(4) Independence of irrelevant alternatives. If T is a closed convex subset of S,
and if (u∗, v∗) ∈ T and (ū, v̄) ∈ T , then f(T, u∗, v∗) = (ū, v̄).

(5) Invariance under change of location and scale. If T = {(u′, v′) : u′ =
α1u + β1, v

′ = α2v + β2 for (u, v) ∈ S}, where α1 > 0, α2 > 0, β1, and β2 are given
numbers, then

f(T, α1u
∗ + β1, α2v

∗ + β2) = (α1ū + β1, α2v̄ + β2).

Analysis of the Axioms. It is useful to review the axioms to see which might be
weakened or changed to allow other “solutions”.

The first axiom is incontrovertible. The agreed outcome must be feasible.
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The second axiom reflects the rationality of the players. If the players work together
and reach agreement, they would not accept (u, v) as the outcome if they could also achieve
(û, v̂) with û > u and v̂ > v. However, the second axiom is slightly stronger than this. It
says that they would not accept (u, v) if they could achieve (û, v̂) with û ≥ u and v̂ > v
(or û > u and v̂ ≥ v). This plays no role in the main case of the theorem (when there
is a (u, v) ∈ S such that u > u∗ and v > v∗). But suppose S consists of the line from
(0,0) to (0,1), inclusive, and (u∗, v∗) = (0, 0). Player I can achieve a payoff of 0 without
entering into any agreement. So to agree to the point (0,1) requires a weak kind of altruistic
behavior on his part. It is true that this agreement would not hurt him, but still this weak
altruism does not follow from the assumed rationality of the players.

The third axiom is a fairness axiom. If the game is symmetric in the players, there is
nothing in the game itself to distinguish the players so the outcome should be symmetric.

The fourth axiom is perhaps the most controversial. It says that if two players agree
that (ū, v̄) is a fair and reasonable solution when S is the feasible set, then points in S far
away from (ū, v̄) and (u∗, v∗) are irrelevant. If S is reduced to a convex subset T ⊂ S,
then as long as T still contains (ū, v̄) and (u∗, v∗), the players would still agree on (ū, v̄).
But let S be the triangle with vertices (0,0), (0,4) and (2,0), and let the threat point be
(0,0). Suppose the players agree on (1,2) as the outcome. Would they still agree on (1,2)
if the feasible set were T , the quadralateral with vertices (0,0), (0,2), (1,2) and (2,0)?
Conversely, if they agree on (1,2) for T , would they agree on (1,2) for S? The extra points
in S cannot be used as threats because it is assumed that all threats have been accounted
for in the assumed threat point. These extra points then represent unattainable hopes or
ideals, which Player II admits by agreeing to the outcome (1,2).

The fifth axiom, just reflects the understanding that the utilities of the players are
separately determined only up to change of location and scale. Thus, if one of the players
decides to change the location and scale of his utility, this changes the numbers in the
bimatrix, but does not change the game. The agreed solution should undergo the same
change.

Theorem. There exists a unique function f satisfying the Nash axioms. Moreover, if
there exists a point (u, v) ∈ S such that u > u∗ and v > v∗, then f(S, u∗, v∗) is that point
(ū, v̄) of S that maximizes (u−u∗)(v−v∗) among points of S such that u ≥ u∗ and v ≥ v∗.

Below we sketch the proof in the interesting case where there exists a point (u, v) ∈ S
such that u > u∗ and v > v∗. The uninteresting case is left to the exercises.

First we check that the point (ū, v̄) in S+ = {(u, v) ∈ S : u ≥ u∗, v ≥ v∗} indeed
satisfies the Nash axioms. The first 4 axioms are very easy to verify. To check the fifth
axiom, note that

if (u − u∗)(v − v∗) is maximized over S+ at (ū, v̄),
then (α1u − α1u

∗)(α2v − α2v
∗) is maximized over S+ at (ū, v̄),

so (α1u + β1 − α1u
∗ − β1)(α2v + β2 − α2v

∗ − β2) is maximized over S+ at (ū, v̄),
hence (u′ −α1u

∗ − β1)(v′ −α2v
∗ − β2) is maximized over T+ at (α1ū + β1, α2v̄ +β2),

where T+ = {(u′, v′) ∈ S+ : u′ = α1u + β1, v
′ = α2v + β2}.
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To see that the axioms define the point uniquely, we find what (ū, v̄) must be for
certain special sets S, and extend step by step to all closed convex sets. First note that if
S is symmetric about the line u = v and (0, 0) ∈ S, then axioms (1), (2), and (3) imply
that f(S, 0, 0) is that point (z, z) ∈ S farthest up the line u = v. Axiom 4 then implies
that if T is any closed bounded convex subset of the half plane Hz = {(u, v) : u + v ≤ 2z}
where z > 0, and if (z, z) ∈ T and (0, 0) ∈ T , then f(T, 0, 0) = (z, z), since such a set T is
a subset of a symmetric set with the same properties.

Now for an arbitrary closed convex set S and (u∗, v∗) ∈ S, let (û, v̂) be the point of

S+ that maximizes (u − u∗)(v − v∗). Define α1, β1, α2, and β2 so that
{

α1u
∗ + β1 = 0

α1û + β1 = 1

and
{

α2v
∗ + β2 = 0

α2v̂ + β2 = 1 , and let T be as in axiom 5. According to the invariance of (û, v̂)

under change of location and scale, the point (1, 1) = (α1û + β1, α2v̂ + β2) maximizes
u · v over T ∗. Since the slope of the curve uv = 1 at the point (1, 1) is −1, the set T ,
being convex, is a subset of H1, and so by the last sentence of the previous paragraph,
f(T, 0, 0) = (1, 1). By axiom 5, f(T, 0, 0) = (α1ū+β1, α2v̄+β2) where f(S, u∗, v∗) = (ū, v̄).
Since (α1ū + β1, α2v̄ + β2) = (1, 1) = (α1û + β1, α2v̂ + β2), we have ū = û and v̄ = v̂, so
that (û, v̂) = f(S, u∗, v∗).

Here is a geometric interpretation. (See Figure 4.3.) Consider the curves (hyperbolas)
(u − u∗)(v − v∗) = c for a constant c. For large enough c, this curve will not intersect
S. Now bring c down until the curve just osculates S. The NTU-solution is the point of
osculation.

S

(u*,v*)

(u-u*)(v-v*)=c

c=4
c=2
c=1

(u,v)

Figure 4.3

Moreover, at the point (ū, v̄) of osculation, the slope of the curve is the negative of
the slope of the line from (u∗, v∗) to (ū, v̄). (Check this.)

Examples. 1. Let S be the triangle with vertices (0, 0), (0, 1) and (3, 0), and let the
threat point be (0, 0)as in Figure 4.4. The Pareto optimal boundary is the line from (0, 1)
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to (3, 0) of slope −1/3. The curve of the form u · v = c that osculates this line must have
slope −1/3 at the point of osculation. So the slope of the line from (0,0) to (ū, v̄) must
be 1/3. This intersects the Pareto boundary at the midpoint, (3/2, 1/2). This is therefore
the NTU-solution.

S

(u*,v*) 1 2 3

1

(u,v)=(1.5,.5)

Figure 4.4

2. Let the NTU-feasible set be the ellipse, S = {(x, y) : (x − 2)2 + 4(y − 1)2 ≤ 8}.
Let the threat point be (u∗, v∗) = (2, 1). The situation looks much like that of Figure 4.3.
The point (x, y) ∈ S that maximizes the product, (x − 2)(y − 1), is the NTU-solution.
This point must be on the Pareto optimal boundary consisting of the arc of the ellipse
from (2, 1 +

√
2) to (2 + 2

√
2, 1). On this arc, y − 1 =

√
2 − (x − 2)2/4, so we seek

x ∈ [2, 2 + 2
√

2] to maximize (x − 2)(y − 1) = (x − 2)
√

2 − (x − 2)2/4. The derivative
of this is

√
2 − (x − 2)2/4 − (x − 2)2/4

√
2 − (x − 2)2/4. Setting this to zero reduces to

(x−2)2 = 4, whose roots are 2±2. Since x ∈ [2, 2+2
√

2], we must have x = 4, and y = 2.
Therefore (ū, v̄) = (4, 2) is the NTU-solution of the game.

3. Consider the game with bimatrix (1), whose NTU-feasible set is given in Figure
4.1(a). What should be taken as the threat point? If we take the view of Nash, that either
player may refuse to enter into agreement, thus leaving the players at the status-quo point
(0, 0), then we should add this strategy of non-cooperation to the player’s pure strategy
sets. The resulting bimatrix of the game is really

⎛
⎝ (4, 3) (0, 0) (0, 0)

(2, 2) (1, 4) (0, 0)
(0, 0) (0, 0) (0, 0)

⎞
⎠ (9)

This has the same NTU-feasible set as Figure 4.1(a). We may take the threat point to be
(u∗, v∗) = (0, 0). The Pareto optimal boundary is the line segment from (1,4) to (4,3). This
line has slope −1/3. However, the line of slope 1/3 from the origin intersects the extension
of this line segment at a point to the right of (4,3). This means that x ·y increases as (x, y)
travels along this line segment from (1,4) to (4,3). The NTU-solution is therefore (4,3).

The Lambda-Transfer Approach. There is another approach, due to Lloyd Shap-
ley, for solving the NTU-problem that has certain advantages over the Nash approach.
First, it relates the solution to the corresponding solution to the TU-problem. Second, it
avoids the difficult-to-justify fourth axiom. Third, the threat point arises naturally as a
function of the bimatrix and does not have to be specified a priori. Fourth, it extends to
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more general problems, but when specialized to the problems with status-quo point (0,0),
it gives the same answer as the Nash solution.

The main difficulty with the NTU-problems is the lack of comparability of the utilities.
If we pretend the utilities are measured in the same units and apply the TU-theory to arrive
at a solution, it may happen that the TU-solution is in the NTU-feasible set. If it happens
to be in the NTU-feasible set, the players can use it as the NTU-solution since it can be
achieved without any transfer of utility. But what can be done if the TU-solution is not
in the NTU-feasible set?

Recall that the utilities are not measured in the same units. Someone might suggest
that an increase of one unit in Player 1’s utility is worth an increase of λ units in Player 2’s
utility, where λ > 0. If that were so, we could analyze the game as follows. If the original
bimatrix is (A,B), we first consider the game with bimatrix (λA,B), solve it for the TU-
solution, and then divide Player 1’s payoff by λ to put it back into Player 1’s original units.
This is called the λ-transfer game. By the methods of Section 4.2, the TU-solution to
the game with bimatrix (λA,B) is the vector ((σ(λ) + δ(λ))/2, (σ(λ) − δ(λ))/2), where

σ(λ) = max
ij

{λaij + bij} and δ(λ) = Val(λA − B).

The solution to the λ-transfer game is then found by dividing the first coordinate by λ,
giving

ϕ(λ) = (ϕ1(λ), ϕ2(λ)) =
(σ(λ) + δ(λ)

2λ
,
σ(λ) − δ(λ)

2
)

(10)

If the point ϕ(λ) is in the NTU-feasible set, it could, with the justification given earlier,
be used as the NTU-solution.

It turns out that there generally exists a unique value of λ, call it λ∗, such that ϕ(λ∗)
is in the NTU-feasible set. This ϕ(λ∗) can be used as the NTU-solution. The value of λ∗

is called the equilibrium exchange rate.

The problem now is to find λ so that ϕ(λ) is in the NTU-feasible set. In general,
this may not be easy without the assistance of a computer because Val(λA − B) is not a
simple function of λ.

However, in one case the problem becomes easy. This occurs for bimatrix games,
(A,B), when the matrices A and −B have saddle points in the same position in the
matrix. Such bimatrix games, when played as NTU games, are said to be fixed threat
point games. Whatever be the value of λ in such games, the matrix game, λA − B,
which is used to determine the threat point, has a saddle point at that same position in
the matrix. Thus, the threat strategy of the λ-transfer game will not depend on λ and
the threat point is easy to determine. For example, in the game with bimatrix (9), the
fixed threat strategy is the lower right corner, because both A and −B have saddle points
there.

For NTU-games with a fixed threat point, the λ-transfer solution, ϕ(λ∗), turns out
to be the same as the Nash solution. So in this case we may find the λ-transfer solution
by using the method already described to find the Nash solution.
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To see why this is so, consider as an example the game with bimatrix,

(
(−1, 1) (1, 3)
(0, 0) (3,−1)

)
(11)

Both A and −B have saddlepoints in the lower left corner. Therefore, λA − B =(
−λ − 1 λ − 3

0 3λ + 1

)
has a saddle point in the lower left corner, whatever be the value

of λ ≥ 0. So, (0,0) is a fixed threat point of the game.

The Nash solution is a point, (ū, v̄), on the NTU-feasible set, S, such that the line
through (ū, v̄) with slope equal to the negative of the slope of the line from (0,0) to (ū, v̄)
is a tangent line to S at the point (ū, v̄). Now if we change scale on the x-axis by λ∗ = v̄/ū,
the point (ū, v̄) goes into (λ∗ū, v̄) = (v̄, v̄). The line from (0,0) to (v̄, v̄) is now the diagonal
line and the slope of the tangent line at (v̄, v̄) is now −1. Therefore, (v̄, v̄) is the TU-
solution of the λ∗-transfer game, and so (ū, v̄) is also the λ-transfer solution! In addition,
the the equilibrium exchange rate is just λ∗.

In this example, λ∗ = 2, and the NTU-solution is (1.25, 2.5).

This argument is perfectly general and works even if the fixed threat point is not the
origin. (Just change location along both axes so that the fixed threat point is the origin.)
The λ-transfer solution is just the Nash solution, and the equilibrium exchange rate is just
the slope of the line from the threat point to the Nash solution.

When there is no fixed threat point, one must use a direct method of finding that
value of λ such that the point (10) is in the NTU-feasible set. Exercise 6 gives an idea of
what is involved.

4.4 End-Game with an All-In Player. Poker is usually played with the “table-
stakes” rule. This rule states that each player risks only the amount of money before him
at the beginning of the hand. This means that a player can lose no more than what is in
front of him on the table. It also means that a player cannot add to this amount during
the play of a hand.

When a player puts all the money before him into the pot, he is said to be “all-in”.
When a player goes all-in, his money and an equal amount matched by each other player
still contesting the pot is set aside and called the main pot. All further betting, if any,
occurs only among the remaining players who are not all in. These bets are placed in a
side pot. Since the all-in player places no money in the side pot, he/she is not allowed to
win it. The winner of the main pot is the player with the best hand and the winner of
the side pot is the non-all-in player with the best hand. Betting in the side pot may cause
a player to fold. When this happens, he/she relinquishes all rights to winning the main
pot as well as the side pot. This gives the all-in player a subtle advantage. Occasionally,
a player in the side pot will fold with a winning hand which allows the all-in player to
win the main pot, which he would not otherwise have done. This possibility leads to some
interesting problems.
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As an example, consider End-Game in which there is an all-in player. Let’s call the all-
in player Player III. He can do nothing. He can only watch and hope to win the main pot.
Let’s assume he has four kings showing in a game of 5 card stud poker. Unfortunately for
him, Player II has a better hand showing, say four aces. However, Player I has a possible
straight flush. If he has the straight flush, he beats both players; otherwise he loses to
both players. How should this hand be played? Will the all-in player with the four kings
ever win the main pot?

We set up an idealized version of the problem mathematically. Let A denote the
size of the main pot, and let p denote the probability that Player I has the winning hand.
(Assume that the value of p is common knowledge to the players.) As in End-Game, Player
I acts first by either checking or betting a fixed amount B. If Player I checks, he wins A
if he has the winning hand, and Player II wins A otherwise. Player III wins nothing. If
Player I bets, Player II may call or fold. If Player II calls and Player I has a winning hand,
Player I wins A + B, Player II loses B, and Player III wins nothing. If Player II calls and
Player I does not have the winning hand, Player I loses B and Player II wins A + B and
Player III wins nothing. If Player II folds and Player I has the winning hand, Player I
wins A and the others win nothing. But if Player II folds and Player I does not have the
winning hand, Player III wins A and the others win nothing.

(A+B,−B,0) (A,0,0) (−B,A+B,0) (0,0,A)

(0,A,0)

N

I I

II

p 1− p

bet bet check

call fold call fold

As in Basic Endgame, Player I never gains by checking with a winning hand, so Player
I has two pure strategies, the honest strategy (bet with a winning hand, fold with a losing
hand) and the bluff strategy (bet with a winning or losing hand). Player II also has two
pure strategies, call , and fold . Player III has no strategies so the payoffs of the three
players may be written in a 2 by 2 table as follows.

( call fold
honest (p(A + B),−pB + (1 − p)A, 0) (pA, (1 − p)A, 0)
bluff (p(A + B) − (1 − p)B, −pB + (1 − p)(A + B), 0) (pA, 0, (1 − p)A)

)

Ordinarily, A will be somewhat larger than B, and p will be rather small. The analysis
does not depend very much on the actual values of these three numbers, so it will be easier
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to understand if we take specific values for them. Let’s take A = 100, B = 10 and p = 1/10.
Then the payoff matrix becomes

( call fold
honest (11, 89, 0) (10, 90, 0)
bluff (2, 98, 0) (10, 0, 90)

)

This is a constant-sum game for three players, but since Player III has no strategy choices
and since coalitions among players are strictly forbidden by the rules of poker, it is best
to consider this as non-constant-sum game between Players I and II. Removing the payoff
for Player III from consideration, the matrix becomes

( call fold
honest (11, 89) (10, 90)
bluff (2, 98) (10, 0)

)
(12)

First note that row 1 weakly dominates row 2, and if row 2 is removed, column 2
dominates column 1. This gives us an equilibrium at (row 1, column 2), with payoff
(10,90). Player I cannot gain by betting with a losing hand. Even if the bluff is successful
and Player II folds, Player III will still beat him. Worse, Player II may call his bluff and
he will lose the bet.

So it seems that Player I might as well be honest. The result is that Player I never
bluffs and Player II always folds when Player I bets, and the payoff is (10,90,0). This is
the accepted and time-honored course of action in real games in poker rooms around the
world. But let’s look at it more closely.

As long as Player II uses column 2, it doesn’t hurt Player I to bluff. In fact, there are
more equilibria. The strategy pair (1 − p, p) for Player I and column 2 for Player II is a
equilibrium provided p ≤ 1/99 (Exercise 7(a)). The equilibrium with p = 1/99 has payoff
(10, 89 1

11 , 10
11 ). This takes payoff from Player II and gives it to Player III, something Player

II wants to avoid. She may be willing to concede a small fracion of her winnings to avoid
this.

Player I can play this equilibrium without loss. In fact, he can try for more by bluffing
with probability greater than p = 1/99. If he does this, Player II’s best reply is column
1. If Player I uses p = 1/9 and Player II uses column 2, Player I’s average payoff is still
11(8/9) + 2(1/9) = 10. A value of p between 1/99 and 1/9 encourages Player II to play
column 1, and then Player I’s average payoff will be greater than 10. So Player I wants
more than 10, and Player II wants Player I not to use row 2.

Noncooperative games that are repeated in time in which side payments are not al-
lowed may be considered as NTU cooperative games, in which the results of play over time
take the place of preplay negotiations. If this game is analyzed as an NTU game by the
methods of this section, the resulting payoff is (105

6 , 89 1
6 , 0) (Exercise 7(b)). This may be

achieved by Player I always playing row 1, and Player II playing column 1 with probability
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5/6. In other words, Player II calls 5 times out of 6, even though she knows that Player I
never bluffs. (Another way of achieving this payoff is to have Player II call all the time,
and to have Player I bluff with probability 1/54.)

4.5 Exercises.

1. For the following bimatrix games, draw the NTU and TU feasible sets. What are
the Pareto optimal outcomes?

(a)
(

(0, 4) (3, 2)
(4, 0) (2, 3)

)
(b)

(
(3, 1) (0, 2)
(1, 2) (3, 0)

)

2. There is also a feasible set for non-cooperative games. For a non-cooperative
bimatrix game, (A,B), the players cannot coodinate their mixed strategies, so the non-
cooperative feasible set is just

{(u, v) = (pT Aq,pT Bq) : p ∈ X∗, q ∈ Y ∗}

This set may not be polyhedral. It may not even be convex. Graph the non-cooperative

feasible set for the Battle of the Sexes with bimatrix
(

(2, 1) (0, 0)
(0, 0) (1, 2)

)
. Note that the

players cannot achieve a payoff of (3/2, 3/2) using independent mixed strategies.

2. Find the cooperative strategy, the TU solution, the side payment, the optimal
threat strategies, and the disagreement point for the two matrices (1) and (2) of Sections
4.1 and 4.2.

3. Find the cooperative strategy, the TU solution, the side payment, the optimal
threat strategies, and the disagreement point for the following matrices of Exercise 2.5.5.
For (a), you may want to use the Matrix Game Solver on the web at
http://www.math.ucla.edu/̃ tom/gamesolve.html.

(a)

⎛
⎜⎝

(−3,−4) ( 2,−1) ( 0, 6) ( 1, 1)
( 2, 0) ( 2, 2) (−3, 0) ( 1,−2)
( 2,−3) (−5, 1) (−1,−1) ( 1,−3)
(−4, 3) ( 2,−5) ( 1, 2) (−3, 1)

⎞
⎟⎠.

(b)

⎛
⎜⎜⎜⎝

( 0, 0) ( 1,−1) ( 1, 1) (−1, 0)
(−1, 1) ( 0, 1) ( 1, 0) ( 0, 0)
( 1, 0) (−1,−1) ( 0, 1) (−1, 1)
( 1,−1) (−1, 0) ( 1,−1) ( 0, 0)
( 1, 1) ( 0, 0) (−1,−1) ( 0, 0)

⎞
⎟⎟⎟⎠.

4. Let S = {(x, y) : y ≥ 0 and y ≤ 4 − x2} be the NTU-feasible set.

(a) Find the NTU-solution if (u∗, v∗) = (0, 0).

(b) Find the NTU-solution if (u∗, v∗) = (0, 1).
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5. Find the NTU-solution and the equilibrium exchange rate for the following fixed
threat point games.

(a)

⎛
⎝ (6, 3) (0, 0) (0, 0)

(1, 8) (4, 6) (0, 0)
(0, 0) (0, 0) (0, 0)

⎞
⎠. (b)

(
(1, 0) (−1, 1) (0, 0)
(3, 3) (−2, 9) (2, 7)

)
.

6. Find the NTU-solution and the equilibrium exchange rates of the following games
without a fixed threat point.

(a)
(

(5, 2) (0, 0)
(0, 0) (1, 4)

)
. (b)

(
(3, 2) (0, 5)
(2, 1) (1, 0)

)
.

7. (a) In Endgame with an all-in player with the values A = 100, and B = 10, show
that the strategy pair (1 − p, p) for Player I and column 2 for Player II is an equilibrium
pair with payoff (10, 90(1 − p), 90p) provided 0 ≤ p ≤ 1/99. Show that these are the only
equilibria. Show that if p = 1/99, Players I and II only get their safety levels.

(b) Find the TU solution of this game. Show that the TU solution is in the NTU
feasible set and so is also the NTU solution.
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