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Abstract

We establish an upper bound on the critical value of the process obtained by superim-

posing the voter model on the contact process in one dimension.

1 Introduction

In [1], we used a rather special technique to prove that the basic contact process in one dimension
survives if λ = 2. Durrett asked whether one could apply this technique to prove survival of the
process obtained by adding to it a voter model interaction. This process has the following
transition rates at site x:

0 → 1 at rate (λ+ θ)#(y : η(y) = 1, |y − x| = 1),

1 → 0 at rate 1 + θ#(y : η(y) = 0, |y − x| = 1).

In this note, we work out the details of the argument in this case. Here is the result:

Theorem 1. The process survives if

θ =
4
√
2λ

5

2 − 6λ2 − 2
√
2λ

3

2

8λ− 1
= 2λ

3

2

√
λ−

√
2

2
√
2λ− 1

.

Note that when θ = 0, λ = 2. The proof follows pages 168–174 of [3], using the notation there.
It has three parts. They are the analogues of Proposition 4.57, Exercise 4.59 and Proposition
4.58 there. The first provides a useful expression for the time derivatives Q(A) of the evolution at
t = 0. The second gives the log-convexity of the tail probabilities of the distribution determining
the initial renewal measure for the evolution, while the third uses this to prove the monotonicity
that is needed to show Q(A) ≤ 0 for all A.

Once these analogues are established, the proof of the theorem proceeds as in the case of the
contact process. There are two ways of viewing the argument. The fact that Q(A) ≤ 0 is used
to show either of the following:
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(a) f(A) = µ{η = 0 on A} is superharmonic for the dual chain.
(b) µt{η = 0 on A} ↓ in t, using the semigroup property of the process.

The second uses duality as well, since duality implies that the convex cone generated by the
functions 1{η=0 on A} is invariant under the semigroup.

The above theorem implies that the critical value λc grows at most like a multiple of θ
2

3 as
θ ↑ ∞. However, as proved in [4], the correct rate of growth is θ

1

2 .

2 Expression for the relevant derivatives

Using the generator, and letting µt be the distribution of the process at time t,

d

dt
µt{η = 0 on A} = (1 + 2θ)

∑

x∈A

µt{η(x) = 1, η = 0 on A\{x}}

−θ
∑

x∈A,y/∈A,|x−y|=1

µt{η(y) = 1, η = 0 on A\{x}}

−λ
∑

x∈A,y/∈A,|x−y|=1

µt{η(y) = 1, η = 0 on A}.

Therefore, the analogue of (4.48) is

Q(A) :=
d

dt
µt{η = 0 on A}

∣

∣

∣

∣

t=0

= (1 + 2θ)α
∑

j∈A

L(j)R(j)− α
∑

k/∈A,k+1∈A

L(k)[(λ + θ)R(k) + θρ(1)R(k + 1)]

−α
∑

k∈A,k+1/∈A

[(λ+ θ)L(k + 1) + θρ(1)L(k)]R(k + 1),

so

q(n) = (1 + 2θ)α

n
∑

j=1

F (j)F (n+ 1− j)− 2α[(λ+ θ)F (n+ 1) + θρ(1)F (n)], (1)

where F (n) =
∑∞

k=n ρ(k) and µ0 is the renewal measure corresponding to ρ, F . It follows that
the analogues of (4.49) and (4.50) are

∆q(1) = 2α[(λ+ θ)− (1 + λ+ 2θ)ρ(1) + (λ+ θ)ρ(2) + θρ2(1)]

and

∆q(m) = α

[

(1 + 2θ)
∑

k,l≥1;k+l=m

ρ(k)ρ(l)− 2θρ(1)ρ(m− 1)

−2ρ(m)[1 + λ+ 3θ − θρ(1)] + 2(λ+ θ)ρ(m+ 1)

]

for m > 1.
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Proposition 2. If A = {k1, . . . , kn} with k1 < · · · < kn,

Q(A) =
∑

k<l;k,l/∈A
k<kn,l>k1

L(k)R(l)∆q(l − k) + q(1)
∑

j /∈A
k1<j<kn

L(jR(j)

−(λ+ θ)α
∑

k∈A,k+1/∈A

L(k + 1)[R(k)− R(k + 1)]− (λ+ θ)α
∑

k/∈A,k+1∈A

[L(k + 1)− L(k)]R(k)

−2(λ + θ)α
∑

k,k+1/∈A

[L(k + 1)− L(k)][R(k)−R(k + 1)].

Proof. Letting the six displays following (4.52) of [3] be denoted by A1, . . . , A6, the analogue of
A1 is

1

1 + 2θ

∑

k<l;k,l/∈A
k<kn,l>k1

L(k)R(l)

[

α−1∆q(l − k) + 2(1 + λ+ 3θ − θρ(1))ρ(l − k)

−2(λ+ θ)ρ(l − k + 1)

]

− 2
λ+ θ + θρ(1)

1 + 2θ

∑

k,k+1/∈A
k1<k<kn

L(k)R(k + 1).

(2)

This is obtained by solving the equation for ∆q(m) above for the convolution
∑

k+l=m ρ(k)ρ(l)
and using it to eliminate the convolution appearing in the first term on the right of (4.52).

Displays A2, A3, A4, A5, A6 are unchanged. However, since the expression for ∆q(m) above
has a term involving ρ(m− 1), they need to be supplemented with (letting ρ(0) = 0)

∑

k<l;k,l/∈A
k<kn,l>k1

L(k)R(l)ρ(l − k − 1) =
∑

k/∈A
k1<k<kn

L(k)R(k + 1) +
∑

l /∈A
k<k1<l

R(l)ρ(l − k − 1)

=
∑

k/∈A
k1<k<kn

L(k − 1)R(k) +
∑

k/∈A
k<kn<l

L(k)ρ(l − k − 1),
(3)

∑

k/∈A
k<kn<l

L(k)ρ(l − k − 1)−
∑

k/∈A
k<kn<l

L(k)ρ(l − k) =
∑

k/∈A
k<kn

L(k)ρ(kn − k) = L(kn), (4)

and
∑

l /∈A
k<k1<l

R(l)ρ(l − k − 1)−
∑

l /∈A
k<k1<l

R(l)ρ(l − k) =
∑

l /∈A
l>k1

R(l)ρ(l − k1) = R(k1). (5)

After using (2), A2, A3, A4 and (3) as in the case of the contact process, one obtains an
expression for Q(A) that is the sum of

∑

k<l;k,l/∈A
k<kn,l>k1

L(k)R(l)∆q(l − k) + q(1)
∑

j /∈A
k1<j<kn

L(jR(j),

terms that contain the factor (λ + θ), and terms that contain the factor αθρ(1). The terms
containing the factor (λ + θ) are the same that would appear if θ were zero, so they contribute
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the remainder of the expression given in the statement of the proposition – see (4.47) in [3].
Therefore it suffices to show that the sum of the terms containing the factor αθρ(1) vanishes.

These terms are

−
∑

k/∈A
k<kn<l

L(k)ρ(l − k)−
∑

l /∈A
k<k1<l

R(l)ρ(l − k) +
∑

k/∈A
k<kn<l

L(k)ρ(l − k − 1) +
∑

l /∈A
k<k1<l

R(l)ρ(l − k − 1)

−2
∑

k,k+1/∈A
k1<k<kn

L(k)R(k + 1)−
∑

k/∈A
k+1∈A

L(k)R(k + 1)−
∑

k∈A
k+1/∈A

L(k)R(k + 1)

+
∑

l /∈A
k1<l<kn

L(l − 1)R(l) +
∑

k/∈A
k1<k<kn

L(k)R(k + 1).

By (4) and (5), the first four sums above contribute L(kn) +R(k1). The L(kn) and R(k1) terms
cancel the summand corresponding to k = kn in the seventh sum and the summand corresponding
to k = k1 − 1 in the sixth sum respectively. It follows that the sum of the terms containing the
factor αθρ(1) in Q(A) vanishes.

3 Logconvexity of the tail probabilities

By (1), q(n) ≡ 0 is equivalent to 2λF (2) = 1 and

(1 + 2θ)

n−1
∑

k=2

F (k)F (n+ 1− k) + (2 + 2θ + θ/λ)F (n) = 2(λ+ θ)F (n+ 1), n ≥ 2.

Letting

φ(u) =

∞
∑

n=1

F (n)un,

multiplying the above convolution equation by un+1 and summing, gives

λ(1 + 2θ)φ2(u)− [2λ(λ+ θ) + (2λ− 1)θu]φ(u) + 2λ(λ+ θ)u = 0.

Solving gives

φ(u) =
2λ(λ+ θ) + (2λ− 1)θu−

√

D(u, λ)

2λ(1 + 2θ)
,

where
D(u, λ) = 4λ2(λ+ θ)2 − 4λ(λ+ θ)(2λ+ θ + 2λθ)u+ (2λ− 1)2θ2u2.

We will consider (λ, θ) pairs for which D(1, λ) = 0.
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Proposition 3. Write

1 + u
√
a−

√

(1− u)(1− au) =
∞
∑

n=1

cnu
n.

If a ≥ 0, then cn ≥ 0 and c2n ≤ cn−1cn+1 for n ≥ 2 (i.e., cn is logconvex). The sequence is
decreasing if a < 1 and increasing if a > 1.

Proof. Here are the first few values of the sequence:

c1 =
1

2
(1 +

√
a)2, c2 =

1

8
(1− a)2, c3 =

1

16
(1− a)2(1 + a), c4 =

1

128
(1− a)2(5 + 6a+ 5a2).

Using generating functions, one can check that the sequence {cn, n ≥ 2} satisfies the recurrence

2(n+ 1)cn+1 = (2n− 1)(1 + a)cn − 2(n− 2)acn−1 (6)

and can be expressed as

cm =
Cm−1

22m−1
(1 + am)−

m−1
∑

j=1

Cj−1Cm−j−1

22m−2
aj , m ≥ 2, (7)

where

Cn =
1

n+ 1

(

2n

n

)

.

is the nth Catalan number. The fact that cn > 0 follows from (7), together with the convexity
of aj as a function of j and the recursion

Cn+1 =
n

∑

i=0

CiCn−i.

To check the logconvexity, we appeal to Theorem 3.10 in [5]. Using the notation in that paper,
we find that A = 6a(1 + a), B = −12a, and C = 6(1 + a). Therefore the present situation is
covered by case (ii) of that theorem. For the final statement, note that the logconvexity of cn
implies that

cn+1

cn
↑ L.

Dividing the recursion (6) by ncn and passing to the limit shows that L = 1 or L = a. Since

c3
c2

=
1 + a

2
,

which lies between a and 1, the result follows.

Corollary 4. If D(1, λ) = 4λ4−8λ3−12λ2θ−8λθ2+θ2 = 0 and 4(1+θ)λ3+6θλ2+6θ2λ−θ2 ≥ 0,
then ρ(k) ≥ 0 and F (k)2 ≤ F (k − 1)F (k + 1).

Proof. Apply the proposition with

a =
(2λ− 1)2θ2

8λ3(1 + θ) + 4λ2θ(3 + θ) + 8λθ2 − θ2
.
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4 Monotonicity of L and R

In Lemma 2.12 of [1] and Proposition 4.58 of [3], this monotonicity was proved for the specific
F being used and under the assumption that ρ(k) is logconvex respectively. Here we prove it
assuming the weaker assumption of logconvexity of F .

Proposition 5. Consider the renewal measure µ corresponding to ρ, F . If F is logconvex, then
for k1 < · · · < km,

µ{η(k1) = · · · = η(km) = 0 | η(n) = 1}
is nondecreasing in n for n > km.

Proof. Let u(n) be the corresponding renewal sequence. By breaking the complementary event
up according to the leftmost i for which η(i) = 1,

µ{η(k1) = · · · = η(km) = 0 | η(n) = 1} = 1−
m
∑

j=1

u(n−kj)µ{η(k1) = · · · = η(kj−1) = 0 | η(kj) = 1}.

Since u(n) ↓ by Theorem 2 of [2], the result follows.

5 Limitations to this technique

One might ask whether one can do better using a different renewal measure. The answer is
basically no. For the technique to work, we must have Q(A) ≤ 0 for all A. Recalling that
q(n) = Q({1, 2, . . . , n}), this would imply that the expression in (1) is nonnegative for each
n ≥ 1. Summing it on n and letting x =

∑∞
n=1

, gives

(1 + 2θ)x2 − 2x[λ+ θ + θρ(1)] + 2(λ+ θ) ≤ 0.

Using q(1) ≤ 0, which implies that ρ(1) ≤ 2λ−1

2λ
, this forces the discriminant of the above quadratic

to be negative if

θ > 4λ
3

2

√
λ−

√
2

2
√
2λ− 1

,

which is only a factor of 2 larger than expression in the statement of the theorem.
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