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Abstract

We consider the game in which b buyers each seek to purchase 1 unit of an indivisible
good from s sellers, each of whom has k units to sell. The good is worth 0 to each seller
and 1 to each buyer. Using results from Brownian motion, we find a closed form solution
for the limiting Shapley value as s and b increase without bound. This asymptotic value
depends upon the seller size k, the limiting ratio b/ks of buyers to items for sale, and the
limiting ratio [ks− b]/

√
b + s of the excess supply relative to the square root of the number

of market participants.
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1 Introduction

In this note we consider a simple market game with many symmetric buyers and sellers and

obtain a new asymptotic result regarding the Shapley value of this game. The approach used to

establish our result is related to classical limit theorems on convergence to tied down Brownian

motion (the Brownian bridge).

Shapley and Shubik [5] initiated the program of comparing the core, competitive outcome,

and Shapley values in symmetric games with many players. Since then, it has been established

that the Shapley value of a game and the competitive outcome are identical with a continuum

of non-atomic players ([1]). However, in an atomistic game this equivalence need not hold. This

is easily shown by the simple market game described in the next paragraph.

In our simple market game each of s sellers possesses k units of an indivisible good to sell,

and the good is worth 0 to each seller. There are b buyers each seeking to purchase 1 unit, and

the good is worth 1 to each buyer. (Here k, s, and b are positive integers.) This is the simplest

game that captures trade in a market with many agents. When k > 1, each seller is a “store”

with k units for sale.

Suppose that in this market game there are 1 million sellers, 1 millon plus 1 buyers, and

k = 1 so each seller has one object to sell. The core and the competitive equilibrium of this

game entail a price of 1 because demand for the good exceeds the amount available for sale. If

we add just two more sellers, the competitive price drops from 1 to 0. By contrast, the Shapley

value is near 1/2 in both cases.

This example exhibits a sharp discontinuity in the competitive equilibrium of this atomistic

market game. It also suggests that the Shapley value presents a smooth equilibrium without

any such discontinuity. Traditionally, this smoothing effect has been viewed as the natural

result of the Shapley value’s origins in cooperative game theory, involving the balancing of

probabilities of various coalitions being formed. However, recently there has been considerable

interest in non-cooperative rationales for the Shapley value. Two influential examples are Gul’s

[2] model of random bilaterial contracting and Hart and Mas-Colell’s [3] model of sequential

bilateral offers.

While the behavior of the Shapley value is clear when there are a small numbers of players,

its behavior is neither well understood nor, in general, easy to compute as the number of players

grows very large. Shapley and Shubik [5] analyzed this problem with k = 1 for two special cases

and provided asymptotic results. In the first case the ratio b/s of buyers to sellers is fixed at

b/s = α > 1: as the number of players increases, the Shapley value converges to 1 and coincides

with the core. When b/s = α < 1, the Shapley value converges to 0, as does the core. In the
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second case they analyzed, the excess of buyers over sellers is fixed so b/s → α = 1: the Shapley

value converges to 1/2 regardless of the value of the fixed excess. The core produces a price of

1 when the fixed excess is positive and a price of 0 when it is negative. With a fixed excess of

0, the core contains all prices in the range [0, 1].

In this note we show that the asymptotic Shapley value for this market game is not restricted

to the values 0, 1/2, and 1; instead, all values between 0 and 1 are possible. Let M ≡ b+s denote

the size of the market, and let d ≡ ks − b denote the excess supply. We provide a closed form

expression for the limit of the Shapley value of this game as a function of u ≡ limb,s→∞ d/
√

M .

As long as the difference d between units for sale and buyers grows in proportion to the square

root of the size of the market, the asymptotic Shapley value (for each unit) can take on any

intermediate value between 0 and 1.

2 The Closed Form Solution

We now present a closed form solution that gives the asymptotic Shapley value as s and b

increase to ∞. A particularly interesting aspect of our solution is that for each price p between 0

and 1, there are growth rates for s and b such that the Shapley value converges to p. This stands

in stark contrast to the other solution concepts which yield prices of 0, 1, or an indeterminate

price (or all prices) between 0 and 1.

To begin, set k = 1, where k is the number of units each seller possesses, and let V (b, s)

denote the Shapley value for a seller in this game (naturally, the value added by all players

is v ≡ min(b, s) so that each buyer’s Shapley value is [v − sV (b, s)]/b). To compute V (b, s),

consider those permutations of the b + s players in which a given seller is the i + 1st player.

There is some number j of buyers amongst the first i players in the permutation whence there

are i − j sellers amongst the first i players. This seller’s value added is 1 if the number j of

buyers is strictly greater than the number i − j of sellers: the seller’s value added is 1 if and

only if 2j > i. Clearly, the probability that this seller is the i + 1st player is 1/(b + s). The

product
(b
j

)(s−1
i−j

)

/
(s+b−1

i

)

of binomial coefficients is the probability that the first i players in a

permutation has j buyers and i− j sellers given that the i+1st player is a seller. Consequently,

V (b, s) can be written as

V (b, s) =
1

b + s

s+b−1
∑

i=0

∑

2j>i

(b
j

)(s−1
i−j

)

(s+b−1
i

) .

When the ratio b/ks of buyers b to objects ks available for sale converges to 1, the limit of

the Shapley value V (b, s) converges to the expression with the integral given given in (1). This is

not intuitive. Nevertheless, upon reflection, it is unsurprising that the asymptotic Shapley value
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is closely related to tied down Brownian motion. To see the connection between V (b, s) and

tied down Brownian motion, fix k = 1, let b and s be given, define M = b+ s, and suppose that

b/s converges to α. For each of the
(M

s

)

permutations of the M players, think of the player in

the jth position as having arrived at time j/M . Define the random variable Xj to be 1 when the

player in the jth position is a buyer and −1 when the player in the jth position is a seller so that

in the limit E(Xj) = (α−1)/(α+1). The Shapley value is the fraction of time that an arriving

seller finds Sn =
∑M

j=1 Xj positive. If the Xj were independent, then {Sn : n = 0, 1, . . . ,M}
appropriately scaled would (by Donsker’s Theorem) converge to Brownian motion. But for each

and every permutation of the M players SM = b−s and, of course, the Xj are not independent.

Instead, {Sn : n = 0, 1, . . . ,M} converges to tied down Brownian motion.

More generally, when each seller is a store of integer size k with k ≥ 1, a similar argument

to the one above reveals that the expression for V (s, b), the Shapley value for each seller (who

has k units for sale), is

V (b, s) =
1

b + s

s+b−1
∑

i=0

∑

(k+1)j>ik

min{k, j − (i − j)k}
(b
j

)(s−1
i−j

)

(s+b−1
i

) .

Theorem: Suppose b, s → ∞ so that b/ks → α.

(a) If α < 1, then V (b, s) → 0.

(b) If α > 1, then V (b, s) → k.

(c) If α = 1, suppose that
ks − b√

b + s
→ u.

Then

V (b, s) → k2

√
2π

∫ ∞

0

x2

u2 + kx2
e−x2/2dx if u ≥ 0, (1a)

and

V (b, s) → k − k2

√
2π

∫ ∞

0

x2

u2 + kx2
e−x2/2dx if u ≤ 0. (1b)

Proof : We first write V in terms of a simple random walk. Take 0 < p < 1, let X1,X2, ... be

independent identically distributed Bernoulli random variables with

P (Xi = 1) = p, P (Xi = 0) = q = 1 − p,
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and let Sm = X1 + · · · + Xm be the corresponding partial sums. Setting N = b + s − 1, we see

that

P (Sb = j | SN = i) =
P (Sb = j)P (Ss−1 = i − j)

P (SN = i)
=

(b
j

)

pjqb−j
(s−1

i−j

)

pi−jqs−1−i+j

(

N
i

)

piqN−i
=

(b
j

)(s−1
i−j

)

(

N
i

) .

Therefore,

V (b, s) =
1

b + s

s+b−1
∑

i=0

∑

(k+1)j>ik

min{k, j − (i − j)k}P (Sb = j | SN = i)

=
1

N + 1

N
∑

i=0

E

{

min{k, (k + 1)Sb − ik}; (k + 1)Sb > ik | SN = i

}

,

=

∫ 1

0
E

{

min{k, Y (b, s, p)};Y (b, s, p) > 0 | SN = ⌊(N + 1)p⌋
}

dp, (2)

where Y (b, s, p) = (k + 1)Sb − k⌊(b + s)p⌋. Here ⌊a⌋ is the greatest integer ≤ a, and E(X;A)

means E(X1A) if X is a random variable and A is an event. Note that Y (b, s, p) depends on p

in two ways – explicitly in the second term, and implicitly through the distribution of the Xi’s

in the first.

The central limit theorem asserts that

Sb − bp√
Npq

⇒ N
(

0,
kα

kα + 1

)

,

where ⇒ denotes convergence in distribution and N (µ, σ2) is the normal distribution with mean

µ and variance σ2. A consequence of this is that the following conditional distribution is also

asymptotically normal, but with a smaller variance:

(

Sb − bp√
Npq

∣

∣

∣

∣

SN = ⌊(N + 1)p⌋
)

⇒ N
(

0,
kα

(kα + 1)2

)

. (3)

This is a special case of Theorem 4 of [4], but can be checked directly by writing

P (Sb = l | SN = m) = P (Sb = l)
P (SN−b = m − l)

P (SN = m)
,

and applying Stirling’s formula to the binomial coefficients that appear in the second factor

above for m = ⌊(N + 1)p⌋ and l = bp + y
√

Npq. Specifically, one obtains

P (SN−b = m − l)

P (SN = m)
→

√
kα + 1 e−y2(kα+1)/2.

This factor converts one normal density into the other.

By (3), the integrand in (2) tends to 0 if α < 1, to k if α > 1, and to

kP (Z ≥ u
√

p/(qk))
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if α = 1, where Z denotes a standard normal random variable. By the bounded convergence

theorem, this gives parts (a) and (b) of the theorem. If α = 1, it gives

V (b, s) → k

∫ 1

0
P (Z ≥ u

√

p/(qk))dp.

Now take u ≥ 0 (the case u ≤ 0 is similar). An interchange of the order of integration gives

∫ 1

0
P (Z ≥ u

√

p/(qk))dp =
1√
2π

∫ 1

0

∫ ∞

u
√

p/(qk)
e−x2/2dxdp =

1√
2π

∫ ∞

0

kx2

u2 + kx2
e−x2/2dx

as required.

Note that V (b, s) is the value per seller. The equilibrium market price for each unit of the

item is V (b, s)/k. In a large market, the closed form solution reveals that when 0 < u < ∞,

limb,s→∞V (b, s)/k is strictly increasing in k, with limit 1/2: when there is an excess supply

(ks > b), larger stores induce an increase in the equilibrium market price. (The opposite is true

when −∞ < u < 0.)
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