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Abstract We demonstrate how path integrals often used in problems of theoretical physics
can be adapted to provide a machinery for performing Bayesian inference in function spaces.
Such inference comes about naturally in the study of inverse problems of recovering continu-
ous (infinite dimensional) coefficient functions from ordinary or partial differential equations,
a problem which is typically ill-posed. Regularization of these problems using L2 function
spaces (Tikhonov regularization) is equivalent to Bayesian probabilistic inference, using a
Gaussian prior. The Bayesian interpretation of inverse problem regularization is useful since
it allows one to quantify and characterize error and degree of precision in the solution of
inverse problems, as well as examine assumptions made in solving the problem—namely
whether the subjective choice of regularization is compatible with prior knowledge. Using
path-integral formalism, Bayesian inference can be explored through various perturbative
techniques, such as the semiclassical approximation, which we use in this manuscript. Pertur-
bative path-integral approaches, while offering alternatives to computational approaches like
Markov-Chain-Monte-Carlo (MCMC), also provide natural starting points for MCMC meth-
ods that can be used to refine approximations. In this manuscript, we illustrate a path-integral
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formulation for inverse problems and demonstrate it on an inverse problem in membrane
biophysics as well as inverse problems in potential theories involving the Poisson equation.

Keywords Inverse problems · Bayesian inference · Field theory · Path integral · Potential
theory · Semiclassical approximation

1 Introduction

One of the main conceptual challenges in solving inverse problems results from the fact
that most interesting inverse problems are not well-posed. One often chooses a solution that
is “useful,” or that optimizes some regularity criteria. Such a task is commonly known as
regularization, of which there are many variants. One of the most commonly used methods
is Tikhonov Regularization, or L2-penalized regularization [9,10,20,32,44].

Here we first demonstrate the concept behind Tikhonov regularization using one of the
simplest inverse problems, the interpolation problem. Tikhonov regularization, when applied
to interpolation, solves the inverse problem of constructing a continuous function ϕ : R

d → R

from point-wise measurements ϕobs at positions {xm} by seeking minima with respect to a
cost functional of the form

H [ϕ] = 1

2

M∑

m=1

1

s2
m

(ϕ(xm) − ϕobs(xm))2

︸ ︷︷ ︸
Hobs[ϕ]

+ 1

2

∑

α

γα

∫
|Dαϕ|2 dx

︸ ︷︷ ︸
Hreg[ϕ]

, (1)

where the constants 1/s2
m, γα > 0 are weighting parameters, and Dα = ∏d

j=1(−i∂x j )
α j is a

differential operator of order α = (α1, . . . , αd).
Assuming Dα is isotropic and integer-ordered, it is possible to invoke integration-by-parts

to write H [ϕ] in the quadratic form

H [ϕ] = 1

2

M∑

m=1

1

s2
m

(ϕ(xm) − ϕobs(xm))2 + 1

2

∫
ϕ(x)P(−�)ϕ(x) dx, (2)

where P(·) is a polynomial of possibly infinite order, � is the Laplacian operator, and we have
assumed that boundary terms vanish. In the remainder of this work, we will focus on energy
functionals of this form. This expression is known in previous literature as the Information
Hamiltonian [11].

Using this form of regularization serves two primary purposes. First, it selects smooth
solutions to the inverse problem, with the amount of smoothness controlled by Hreg. For
example, if only Hobs is used, the solution can be any function that connects the observations
ϕobs at the measured points x j , such as a piecewise affine solution. Yet, such solutions may
be physically unreasonable (not smooth). Second, it transforms the original inverse problem
into a convex optimization problem that possesses an unique solution [3,8]. If all of the
coefficients of P are non-negative, then the pseudo-differential-operator P(−�) is positive-
definite [22], guaranteeing uniqueness. These features of Tikhonov regularization make it
attractive; however, one needs to make certain choices. In practical settings, one will need to
chose both the degree of the differential operator and value of the parameters γα . These two
choices adjust the trade-off between data agreement and regularity.
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584 J. C. Chang et al.

1.1 Bayesian Inverse Problems

The problem of parameter selection for regularization is well-addressed in the context of
Bayesian inference, where regularization parameters can be viewed probabilistically as prior-
knowledge of the solution. Bayesian inference over continuous function spaces has been
applied to inverse problems in several contexts. One of the first applications of Bayesian
inference to inverse problems was in the study of quantum inverse problems [28], where
it was noted that Gaussian priors could be used to formulate field theories. Subsequently,
variants of this methodology have been used for model reduction [29] and applied to many
interpolation problems and inverse problems in fluid mechanics [6,19,43], geology [13,31,
38], cosmology [11,34], and biology [18].

There is a wealth of literature concerning the computational aspects of Bayesian inverse
problems. Many of these works on inverse problems are viewed through the framework and
language of data assimilation through Markov Chain Monte Carlo approaches [4,4,37,39,
40]. Approximation methods based on sparsity have also been developed [42]. Finally, there
is a large body of work on the theoretical aspects of maximum aposteriori inference for
Bayesian inverse problems including questions of existence of solutions and convergence to
solutions [7,25–27,43]

2 Field-Theoretic Formulation

Bayesian inference on ϕ entails the construction of a probability density π known as the
posterior distribution π(ϕ|ϕobs) which obeys Bayes’ rule,

π(ϕ|ϕobs) =

likelihood︷ ︸︸ ︷
Pr(ϕobs|ϕ)

prior︷ ︸︸ ︷
Pr(ϕ)

Z [0] (3)

where Z [0] is the partition function or normalization factor. The posterior density π is a
density in a space of functions. The inverse problem is then investigated by computing the
statistics of the posterior probability density π(ϕ|ϕobs) through the evaluation of Z [0]. The
solution of the inverse problem corresponds to the specific ϕ that maximizes π(ϕ|ϕobs),
subject to prior knowledge encoded in the prior probability density Pr(ϕ). This solution is
known as the mean field solution. The variance, or error, of the mean field solution is found
by computing the variance of the posterior distribution about the mean field solution.

This view of inverse problems also leads naturally to the use of functional integration
and perturbation methods common in theoretical physics [24,45]. Use of the probabilistic
viewpoint allows for exploration of inverse problems beyond mean field, with the chief
advantage of providing a method for uncertainty quantification.

As shown in [13,28], Tikhonov regularization has the probabilistic interpretation of
Bayesian inference with a Gaussian prior distribution. That is, the regularization term in
Eq. 2 combines with the data term to specify a posterior distribution of the form

π(ϕ|ϕobs) = 1

Z [0]e−H [ϕ]

= 1

Z [0] exp

{
−

M∑

m=1

1

s2
m

(ϕ(xm) − ϕobs(xm))2

}

︸ ︷︷ ︸
likelihood (exp{−Hobs})

exp

{
−1

2

∫
ϕ(x)P(−�)ϕ(x) dx

}

︸ ︷︷ ︸
prior (exp{−Hreg})

(4)
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where the partition function

Z [0] =
∫

Dϕe−H [ϕ] =
∫

Dϕe−Hreg[ϕ]
︸ ︷︷ ︸

dW [ϕ]
e−Hobs[ϕ] (5)

is a sum over the contributions of all functions in the separable Hilbert space {ϕ : Hreg[ϕ] <

∞}. This sum is expressed as a path integral, which is an integral over a function space. The
formalism for this type of integral came about first from high-energy theoretical physics [14],
and then found application in nearly all areas of physics as well as in the representation of
both Markovian [5,15,35], and non-Markovian [16,36] stochastic processes. In the case of
Eq. 5, where the field theory is real-valued and the operator P(−�) is self-adjoint, a type of
functional integral based on abstract Wiener measure may be used [23]. The abstract Wiener
measure dW [ϕ] used for Eq. 5 subsumes the prior term Hreg, and it is helpful to think of it
as a Gaussian measure over lattice points taken to the continuum limit.

When the functional integral of the exponentiated energy functional can be written in the
form

Z [0] =
∫

Dϕ exp

{
−1

2

∫∫
ϕ(x)A(x, x′)ϕ(x′) dx dx′ +

∫
b(x)ϕ(x) dx

}
, (6)

then the probability density is Gaussian in function-space and the functional integral of Eq. 6
has the solution [45]

Z [0] = exp

{
1

2

∫∫
b(x)A−1(x, x′)b(x′) dx dx′ − 1

2
log det A

}
. (7)

The operators A(x, x′) and A−1(x, x′) are related through the relationship
∫

A(x, x′)A−1(x′, x′′) dx′ = δ(x − x′′). (8)

Upon neglecting Hobs, the functional integral of Eq. 5 can be expressed in the form
of Eq. 6 with A(x, x′) = P(−�)δ(x − x′). The pseudo-differential-operator P(−�)

acts as an infinite-dimensional version of the inverse of a covariance matrix. It encodes
the a-priori spatial correlation, implying that values of the function ϕ are spatially cor-
related according to a correlation function (Green’s function) A−1(x, y) = G(x, y) :
R

d × R
d → R through the relationship implied by Eq. 8, P(−�)G(x, y) = δ(x − y)

so that G(x, y) = ( 1
2π

)d ∫
Rd e−ik·(y−x) 1

P(|k|2)
dk where P(|k|2) is the symbol of the pseudo-

differential-operator P(−�). It is evident that when performing Tikhonov regularization, one
should chose regularization that is reflective of prior knowledge of correlations, whenever
available.

2.1 Mean Field Inverse Problems

We turn now to the more-general problem, where one seeks recovery of a scalar function ξ

given measurements of a coupled scalar functionϕ over interior points xm , and the relationship
between the measured and desired functions is given by a partial differential equation

F(ϕ(x), ξ(x)) = 0 x ∈ 
 \ ∂
. (9)

As before, we regularize ξ using knowledge of its spatial correlation, and write a posterior
probability density
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π[ϕ, ξ |ϕobs]

= δ (F(ϕ, ξ))

Z [0] exp

{
−1

2

∫ M∑

m=1

δ(x − xm)
(ϕ(x) − ϕobs(x))2

s2
m

dx − 1

2

∫
ξ(x)P(−�)ξ(x) dx

}
,

where we have used the Dirac-delta function δ to specify that our observations are taken with
noise s2

m at certain positions xm , and an infinite-dimensional delta functional δ to specify
that F(ϕ, ξ) = 0 everywhere. Using the inverse Fourier-transform, one can represent δ in
path-integral form as δ (F(ϕ, ξ)) = ∫ Dλe−i

∫
λ(x)F(ϕ(x),ξ(x)) dx, where λ(x), is a Fourier

wavevector. The reason for this notation will soon be clear. We now have a posterior proba-
bility distribution of three functions ϕ, ξ, λ of the form

π [ϕ, ξ, λ(x)|ϕobs] = 1

Z [0] exp {−H [ϕ, ξ, λ]} , (10)

where the partition functional is

Z [0] =
∫∫∫

DϕDξDλ exp {−H [ϕ, ξ, λ]} , (11)

and the Hamiltonian

H [ϕ, ξ, λ;ϕobs] = 1

2

∫ M∑

m=1

δ(x − xm)
(ϕ(x) − ϕobs(x))2

s2
m

dx

+1

2

∫
ξ(x)P(−�)ξ(x) dx + i

∫
λ(x)F(ϕ, ξ) dx, (12)

is a functional of ϕ, ξ , and the Fourier wave vector λ(x). Similar Hamiltonians, providing a
probabilistic model for data in the context of inverse problems, have appeared in previous
literature [11,28,43], where they have been referred to as Information Hamiltonians.

Maximization of the posterior probability distribution, also known as Bayesian maximum
a posteriori estimation inference, is performed by minimization of the corresponding energy
functional (Eq. 12) with respect to the functions ϕ, ξ, λ. One may perform this inference by
solving the associated Euler–Lagrange equations

P(−�)ξ + δ

δξ(x)

∫
λ(x)F(ϕ, ξ) dx = 0, (13)

M∑

n=1

δ(x − xn)(ϕ(x) − ϕobs(x)) + δ

δϕ(x)

∫
λ(x)F(ϕ, ξ) dx = 0 (14)

F(ϕ, ξ) = 0, (15)

where λ(x) here serves the role of a Lagrange multiplier. Solving this system of partial
differential equations simultaneously allows one to arrive at the solution to the original
Tikhonov-regularized inverse problem. Now, suppose one is interested in estimating the
precision of the given solution. The field-theoretic formulation of inverse problems provides
a way of doing so.

2.2 Beyond Mean-Field—Semiclassical Approximation

The functions ϕ, ξ, λ : R
d → R each constitute scalar fields.1 Field theory is the study of

statistical properties of such fields through evaluation of an associated path integral (func-

1 We will use Greek letters to denote fields
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tional integral). Field theory applied to Bayesian inference has appeared in prior literature
under the names Bayesian Field theory [13,28,43], and Information Field Theory [11].

In general, field theory deals with functional integrals of the form

Z [J ] =
∫

Dϕ exp

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
−

[
1

2

∫∫
ϕ(x)A(x, x′)ϕ(x′) dx dx′ +

∫
V [ϕ(x)] dx

]

︸ ︷︷ ︸
H [ϕ]

+
∫

J (x)ϕ(x) dx

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (16)

where the Hamiltonian of interest is recovered when the source J = 0, and the potential
function V is nonlinear in ϕ. Assuming that after non-dimensionalization, V [ϕ] is relatively
small in comparison to the other terms, one is then able to expand the last term in formal
Taylor series so that after integrating over the Gaussian part of the integral as in Eq. 7,

Z [J ] =
∫

Dϕ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
exp

[
−1

2

∫∫
ϕ(x)A(x, x′)ϕ(x′) dx dx′ +

∫
J (x)ϕ(x) dx

]

︸ ︷︷ ︸
Gaussian

×
(

1 −
∫

V [ϕ] dx + . . .

)
⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

∝ exp

[
−V

(
δ

δ J

)]
exp

(
1

2

∫∫
J (x)A−1(x, x′)J (x′) dx dx′

)
. (17)

In this way, Z [J ] can be expressed in series form as moments of a Gaussian distribution. The
integral is of interest because one can use it to recover moments of the desired field through
functional differentiation,

〈
∏

k

ϕ(xk)

〉
= 1

Z [0]
∏

k

δ

δ J (xk)
Z [J ]

∣∣∣∣∣
J=0

. (18)

This approach is known as the weak-coupling approach [45]. For this expansion to hold,
however, the external potential V must be small in size compared to the quadratic term. This
assumption is not generally valid during Tikhonov regularization, as common rules of thumb
dictate that the data fidelity and the regularization term should be of similar order of magni-
tude [2,41]. Another perturbative approach—the one that we will take in this manuscript—is
to expand the Hamiltonian in a functional Taylor series

H [ϕ] = H [ϕ�] + 1

2

∫∫
δ2 H [ϕ�]

δϕ(x)ϕ(x′)
(ϕ(x) − ϕ�(x))(ϕ(x′) − ϕ�(x′)) dx dx′ + . . . (19)

about its extremal point ϕ�. To the second order (as shown), the expansion is known as
the semiclassical approximation [17] which provides an approximate Gaussian density for
the field ϕ. Corrections to the semiclassical expansion can be evaluated by continuing this
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588 J. C. Chang et al.

expansion to higher orders, where evaluation of the functional integral can be aided by the
use of Feynman diagrams [14].

2.3 Monte-Carlo for Refinement of Approximations

The Gaussian approximation is useful because Gaussian densities are easy to sample. One
may sample a random fieldϕ(x) from a Gaussian distribution with inverse-covariance A(x, x′)
by solving the stochastic differential equation

1

2

∫
A(x, x′)ϕ(x′) dx′ = η(x), (20)

where η is the unit white noise process which has mean 〈η(x)〉 = 0, and spatial correla-
tion

〈
η(x)η(x′)

〉 = δ(x − x′). With the ability to sample from the approximating Gaussian
distribution of Eq. 19, one may use Monte-Carlo simulation to sample from the true distrib-
ution by weighting the samples obtained from the Gaussian distribution. Such an approach
is known as importance sampling [30], where samples ϕi are given importance weights wi

according to the ratio wi = exp
(−Happrox + Htrue

)
/

∑
j w j . Statistics of ϕ may then be

calculated using the weighted samples; for instance expectations can be approximated as
〈g(ϕ(x))〉 ≈ ∑

i wi g(ϕi (x)). Using this method, one can refine the original estimates of the
statistics of ϕ.

3 Examples

3.1 Interpolation of the Height of a Rigid Membrane or Plate

We first demonstrate the field theory for inverse problems on an interpolation problem where
one is able to determine the regularizing differential operator based on prior knowledge. This
example corresponds to the interpolation example mentioned in the Sect. 1. Consider the
problem where one is attempting to identify in three-dimensions the position of a membrane.
For simplicity, we assume that one is interested in obtaining the position of the membrane
only over a restricted spatial domain, where one can use the Monge parameterization to
reduce the problem to two-dimensions and define the height of the membrane ϕ : R

2 → R.
Suppose one is able to measure the membrane in certain spatial locations {xm}, but one

seeks to also interpolate the membrane in regions that are not observable. Physically, models
for fluctuations in membranes are well known, for instance the Helfrich free-energy [12]
suggests that one should use a regularizing differential operator

P(−�) = β(κ�2 − σ�) β, σ, κ > 0, (21)

where σ and κ are the membrane tension and bending rigidity, respectively. The Hamiltonian
associated with the Helfrich operator is

H [ϕ;ϕobs] = 1

2

∫ M∑

m=1

δ(x − xm)

s2
m

(ϕ(x) − ϕobs(x))2 dx + 1

2

∫
ϕ(x)P(−�)ϕ(x) dx, (22)

and the mean-field solution for ϕ corresponds to the extremal point of the Hamiltonian, which
is the solution of the corresponding Euler–Lagrange equation

δH

δϕ
=

M∑

m=1

δ(x − xm)

s2
m

(ϕ(x) − ϕobs(x)) + P(−�)ϕ(x) = 0. (23)
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To go beyond mean-field, one may compute statistics of the probability distribution Pr(ϕ) ∝
e−H [ϕ], using the generating functional which is expressed as a functional integral

Z [J ] ∝
∫

Dϕ exp

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1

2

∫∫
ϕ(x)

[
δ(x − x′)

M∑

m=1

δ(x′ − xm)

s2
m

+ P(−�)δ(x − x′)
]

︸ ︷︷ ︸
A(x,x′)

×ϕ(x′) dx dx′ +
∫ [

M∑

m=1

ϕobs(x)δ(x − xm)

s2
m

+ J (x)

]
ϕ(x) dx

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

,

(24)

where we have completed the square. According to Eq. 7, Eq. 24 has the solution

Z [J ] ∝ exp

{
1

2

∫∫
J (x)A−1(x, x′)J (x′) dx′ dx+

∫
J (x)

M∑

m=1

ϕobs(xm)A−1(x, xm)

s2
m

dx

}
.

(25)

Through functional differentiation of Eq. 25, Eq. 18 implies that the mean-field solution is

〈ϕ(x)〉 =
M∑

m=1

ϕobs(xm)A−1(x, xm)

s2
m

, (26)

and variance in the solution is
〈
ϕ(x) − 〈ϕ(x)〉 , ϕ(x′) − 〈

ϕ(x′)
〉 〉

= A−1(x, x′). (27)

To solve for these quantities, we compute the operator A−1, which according to Eq. 8,
satisfies the partial differential equation

M∑

m=1

δ(xm − x)

s2
m

A−1(x, x′′) + P(−�)A−1(x, x′′) = δ(x − x′′). (28)

Using the Green’s function for P(−�),

G(x, x′) = −1

2πβσ

[
log

(|x − x′|) + K0

(√
σ

κ
|x − x′|

)]
, (29)

we find

A−1(x, x′′) =
known︷ ︸︸ ︷

G(x, x′′)−
M∑

m=1

known︷ ︸︸ ︷
G(x, xm)

unknown︷ ︸︸ ︷
A−1(xm, x′′)
s2

m
. (30)

To calculate A−1(x, x′), we need A−1(xm, x′), for m ∈ {1, . . . , M}. Solving for each of
these simultaneously yields the equation

A−1(x, x′) = G(x, x′) − Gs(x) (I + �)−1 G(x′), (31)
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where Gs(x) ≡
[

G(x,x1)

s2
1

,
G(x,x2)

s2
2

, . . . ,
G(x,xM )

s2
M

]
, G(x) ≡ [G(x, x1), G(x, x2), . . . ,

G(x, xM )], and �i j ≡ G(xi , x j )/s2
i .

Figure 1 shows an example of the use of the Helfrich free energy for interpolation.
A sample of a membrane undergoing thermal fluctuations was taken as the object of recovery.
Uniformly, 100 randomly-placed, noisy observations of the height of the membrane were
taken. The mean-field solution for the position of the membrane and the standard error in
the solution are presented. The standard error is not uniform and dips to approximately the
measurement error at locations where measurements were taken.

3.2 Source Recovery for the Poisson Equation

Now consider an example where the function to be recovered is not directly measured. This
type of inverse problem often arises when considering the Poisson equation in isotropic
medium:

�ϕ(x) = ρ(x). (32)

Measurements of ϕ are taken at points {xm} and the objective is to recover the source function
ρ(x). Previous researchers have explored the use of Tikhonov regularization to solve this
problem [1,21]; here we quantify the precision of such solutions.

Making the assumption that ρ is correlated according to the Green’s function of the
pseudo-differential-operator P(−�), we write the Hamiltonian

H [ϕ, ρ, λ;ϕobs] = 1

2

∫ M∑

m=1

δ(x − xm)

s2
m

(ϕ(x) − ϕobs(x))2 dx + 1

2

∫
ρ(x)P(−�)ρ(x) dx

+ i
∫

λ(x) (�ϕ(x) − ρ(x)) dx. (33)

The extremum of H [ϕ, ρ, λ;ϕobs] occurs at (ϕ�, ρ�), which are found through the corre-

sponding Euler–Lagrange equations
(

δH
δϕ

= 0, δH
δρ

= 0, δH
iδλ = 0

)
,

M∑

m=1

δ(x − xm)

s2
m

(ϕ�(x) − ϕobs(x)) + P(−�)�2ϕ�(x) = 0,

ρ� = �ϕ�. (34)

In addition to the extremal solution, we can also evaluate how precisely the source function
has been recovered by considering the probability distribution given by the exponentiated
Hamiltonian,

π(ρ(x)|{ϕobs(xi )}) = 1

Z [0]

× exp

{
−1

2

∫ M∑

m=1

δ(x − xm)

s2
m

(ϕ(x) − ϕobs(x))2 dx − 1

2

∫
�ϕ(x)P(−�)�ϕ(x) dx

}
,

(35)

where we have integrated out the λ and ρ variables by making the substitution ρ = �ϕ. To
compute the statistics of ϕ, we first compute Z [J ], the generating functional which by Eq. 7
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has the solution

Z [J ] ∝ exp

{
1

2

∫∫
�J (x)A−1(x, x′)�x′ J (x′) dx′ dx

+
∫

J (x)�

M∑

m=1

ϕobs(xm)A−1(x, xm)

s2
m

dx
}
, (36)

where

A(x, x′) = �2 P(−�)δ(x − x′) + δ(x − x′)
M∑

m=1

δ(x − xm)

s2
m

(37)

and A−1 is defined as in Eq. 8. The first two moments have the explicit solution given by the
generating functional,

δZ [J ]
δ J (x)

∣∣∣∣
J=0

=
(

M∑

m=1

ϕobs(xm)�A−1(x, xm)

s2
m

)
Z [0]

δ2 Z [J ]
δ J (x)δ J (x′)

∣∣∣∣
J=0

= Z [0]
[
��x′ A−1(x, x′)

+
(

M∑

m=1

ϕobs(xm)�A−1(x, xm)

s2
m

) (
M∑

k=1

ϕobs(xk)�x′ A−1(x′, xk)

s2
k

) ]
.

These formulae imply that our mean-field source has the solution

〈ρ(x)〉 =
M∑

m=1

ϕobs(xm)�A−1(x, xm)

s2
m

, (38)

subject to the weighted unbiasedness condition
∑

m ϕ(xm)/s2
m = ∑

m ϕobs(xm)/s2
m , and the

variance in the source has the solution
〈
ρ(x) − 〈ρ(x)〉 , ρ(x′) − 〈

ρ(x′)
〉 〉

= ��x′ A−1(x, x′). (39)

The inverse operator A−1 is solved in the same way as in the previous section, yielding for
the fundamental solution G satisfying P(−�)�2G(x) = δ(x),

A−1(x, x′) = G(x, x′) − Gs(x) (I + �)−1 G(x′), (40)

where G, Gs and � are defined as they are in Eq. 31.
As an example, we recover the source function in R

2 shown in Fig. 2a. This source was
used along with a uniform unit dielectric coefficient to find the solution for the Poisson
equation that is given in Fig. 2b. Noisy samples of the potential field were taken at 125
randomly-placed locations (depicted in Fig. 2c). For regularization, we sought solutions for
ρ in the Sobolev space H2(R2). Such spaces are associated with the Bessel potential operator
P(−�) = β(γ − �)2. Using 125 randomly placed observations, reconstructions of both ϕ

and ρ were performed. The standard error of the reconstruction is also given.
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3.3 Recovery of a Spatially-Varying Dielectric Coefficient Field

Finally, consider the recovery of a spatially varying dielectric coefficient ε(x) by inverting
the Poisson equation

∇ · (ε∇ϕ) − ρ = 0, (41)

where ρ is now known, and ϕ is measured. This problem is more difficult than the problems
in the previous sections. While Eq. 41 is bilinear in ε and ϕ, the associated inverse problem
of the recovery of ε given measurements of ϕ is nonlinear, since ε does not relate linearly to
data in ϕ. This situation is also exacerbated by the fact that no closed-form solution for ε as
a function of ϕ exists.

Assuming that the gradient of the dielectric coefficient is spatially correlated according
to the Gaussian process given by P(−�), we work with the Hamiltonian

H [ϕ, ε, λ; ρ, ϕobs] = 1

2

M∑

m=1

∫
δ(x − xm)

s2
m

|ϕ(x) − ϕobs(x)|2 dx

− 1

2

∫
ε(x)�P(−�)ε(x) dx + i

∫
λ(x) [∇ · (ε∇ϕ) − ρ] dx, (42)

which yields the Euler–Lagrange equations

∇ · (ε∇ϕ) − ρ = 0, (43)

−�P(−�)ε − ∇λ · ∇ϕ = 0, (44)

M∑

j=1

δ(x − x j )

s2
j

(ϕ(x) − ϕobs(x)) + ∇ · (ε∇λ) = 0. (45)

We have assumed that ε is sufficiently regular such that
∫ ∇ε(x) · P(−�)∇ε(x) dx < ∞,

thereby imposing vanishing boundary-conditions at |x| → ∞. The Lagrange multiplier λ

satisfies the Neumann boundary conditions ∇λ = 0 outside of the convex hull of the observed
points. In order to recover the optimal ε, one must solve these three PDEs simultaneously.
A general iterative strategy for solving this system of partial differential equations is to use
Eq. 43 to solve for ϕ, use Eq. 44 to solve for ε, and use Eq. 45 to solve for λ. Given λ and ϕ,
the left-hand-side of Eq. 44 provides the gradient of the Hamiltonian with respect to ε which
can be used for gradient descent. Eqs. 43 and 45 are simply the Poisson equation.

For quantifying error in the mean-field recovery, we seek a formulation of the problem of
recovering ε using the path integral method. We are interested in the generating functional
Z [J ] = ∫∫∫ DϕDεDλ exp

(−H [ϕ, ε, λ] + ∫
Jε dx

)
. Integrating in λ and ϕ, yields the

marginalized generating functional

Z [J ] =
∫

Dε exp

{
−H [ε; ρ, ϕobs] +

∫
J (x)ε(x) dx

}

=
∫

Dε exp

{
−1

2

M∑

m=1

∫
δ(x − xm)

s2
m

[ϕ(ε(x)) − ϕobs(x)]2 dx

−1

2

∫
ε(x)(−�)P(−�)ε(x) dx +

∫
J (x)ε(x) dx

}
. (46)

To approximate this integral, one needs an expression for the ϕ as a function of ε. To
find such an expression, one can use the product rule to write Poisson’s equation as ε�ϕ +
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∇ε · ∇ϕ = ρ. Assuming that ∇ε is small, one may solve Poisson’s equation in expansion
of powers of ∇ε by using the Green’s function L(x, x′) of the Laplacian operator to write
ϕ(x) = ∫

L(x, x′) ρ(x′)
ε(x′) dx′ − ∫

L(x, x′)∇x′ log ε(x′) · ∇x′ϕ(x′) dx′, which is a Fredholm
integral equation of the second kind. The function ϕ then has the Liouville–Neumann series
solution

ϕ(x) =
∞∑

n=0

ϕn(x) (47)

ϕn(x) =
∫

K (x, y)ϕn−1(y) dy n ≥ 1 (48)

ϕ0(x) =
∫

L(x, y)
ρ(y)

ε(y)
dy (49)

K (x, y) = ∇y ·
[

L(x, y)∇y log ε(y)
]
, (50)

where ∇ε is assumed to vanish at the boundary of reconstruction. Taken to two terms in the
expansion of ϕ(ε) given in Eqs. 47–50, the second-order term in the Taylor expansion of
Eq. 46 is of the form (see Appendix)

δ2 H

δε(x)δε(x′)
∼ −�P(−�)δ(x − x′) +

M∑

m=1

am(x, x′).

This expression, evaluated at the solution of the Euler-Lagrange equations ε�, ϕ�, provides
an an approximation of the original probability density from which the posterior variance〈
ε(x) − ε�(x), ε(x′) − ε�(x′)

〉 = A−1(x, x′) can be estimated. To find this inverse operator,
we discretize spatially and compute the matrix A−1

i j = A−1(xi , x j ),

A−1 = (I + GA−1
m )−1G,

where I is the identity matrix, G is a matrix of values [(−�)P(−�)δ(x, x′)]−1, A−1
m =[

δx
∑

m am(x, x′)
]−1

, and δx is the volume of a lattice coordinate.
As an example, we present the recovery of a dielectric coefficient in R

1 over the compact
interval x ∈ [0, 1] of a dielectric coefficient shown in Fig. 3a given a known source function
(10 × 1x∈[0,1]). A solution to the Poisson equation given Eq. 41 is shown in Fig. 3b. For
regularization, we use the operator P(−�) = β(γ − �), and assume that ∇ε → 0 at the
boundaries of the recovery, which are outside of the locations where measurements are taken.

For this reason, we take the Green’s function G of the differential operator − d2

dx2 P(− d2

dx2 ) =
− d2

dx2 β(γ − d2

dx2 ) to vanish along with its first two derivatives at the boundary of recovery.
The point-wise standard error and the posterior covariance are shown in Fig. 3c, d, respec-

tively. Monte-Carlo corrected estimates are also shown. Note that approximate point-wise
errors are much larger than the Monte-Carlo point-wise errors. This fact is due in-part to
inaccuracy in using the series solution for the Poisson equation given in Eq. 47, which relies
on ∇ε to be small. While the approximate errors were inaccurate, the approximation was
still useful in providing a sampling density for use in importance sampling.
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4 Discussion

In this paper we have presented a general method for regularizing ill-posed inverse prob-
lems based on the Bayesian interpretation of Tikhonov regularization, which we investigated
through the use of field-theoretic approaches. We demonstrated the approach by considering
two linear problems—interpolation (Sect. 3.1) and source inversion (Sect. 3.2), and a non-
linear problem—dielectric inversion (Sect. 3.3). For linear problems Tikhonov regularization
yields Gaussian functional integrals, where the moments are available in closed-form. For
non-linear problems, we demonstrated a perturbative technique based on functional Taylor
series expansions, for approximate local density estimation near the maximum a-posteriori
solution of the inverse problem. We also discussed how such approximations can be improved
based on Monte-Carlo sampling (Sect. 2.3).

Our first example problem was that of membrane or plate interpolation. In this problem the
regularization term is known based on a priori knowledge of the physics of membranes with
bending rigidity. The Helfrich free energy describes the thermal fluctuations that are expected
of rigid membranes, and provided us with the differential operator to use for Tikhonov
regularization. Using the path integral, we were able to calculate an analytical expression
for the error in the reconstruction of the membrane surface. It is apparent that the error in
the recovery depends on both the error of the measurements and the distance to the nearest
measurements. Surprisingly, the reconstruction error did not explicitly depend on the misfit
error.

The second example problem was the reconstruction of the source term in the Poisson
equation given measurements of the field. In this problem, the regularization is not known
from physical constraints and we demonstrated the use of a regularizer chosen from a general
family of regularizers. This type of regularization is equivalent to the notion of weak solutions
in Sobolev spaces. Since the source inversion problem is linear, we were able to analytically
calculate the solution as well as the error of the solution. Again, the reconstruction error did
not explicitly depend on the misfit error.

The last example problem was the inversion of the dielectric coefficient of Poisson’s
equation from potential measurements. This problem was nonlinear, yielding non-Gaussian
path-integrals. We used this problem to demonstrate the technique of semiclassical approxi-
mation for use in Bayesian inverse problems.

The reliability of the semiclassical approximation depends on how rapidly the posterior
distribution falls off from the extremum or mean field solution. Applying the semiclassical
approximation to the Information Hamiltonian (Eq. 12), one sees that the regularization only
contributes to terms up to second order. Higher-order terms in the expansion rely only on the
likelihood term in the Hamiltonian. Since the data error is assumed to be normally distributed
with variance s2

m , one expects each squared residual (ϕ(xm) − ϕobs(xm))2 to be O(s2
m). For

this reason, each observation contributes a term of O(1) to the Hamiltonian. As a result, there
is an implicit large prefactor of O(M) in the Hamiltonian, where M is defined as before as
the number of observations. The first order correction to the semiclassical method is then
expected to be O(1/M).

4.1 Future Directions

By putting inverse problems into a Bayesian framework, one gains access to a large toolbox of
methodology that can be used to construct and verify models. In particular, Bayesian model
comparison [33] methods can be used for identifying the regularization terms to be used
when one does not have prior information available about the solution. Such methods can
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also be used when one has some knowledge of the object of recovery, modulo the knowledge
of some parameters. For instance, one may seek to recover the height of a plate or membrane
but not know the surface tension or elasticity. Then, Bayesian methods can be used to recover
probability distributions for the regularization parameters along with the object of recovery.

Finally, Tikhonov regularization works naturally in the path integral framework because
it involves quadratic penalization terms which yield Gaussian path integrals. It would be
interesting to examine other forms of regularization over function spaces within the path
integral formulation, such as L1 regularization.

Acknowledgments This material is based upon work supported by the National Science Foundation under
Agreement No. 0635561. JC and TC also acknowledge support from the National Science Foundation through
grant DMS-1021818, and from the Army Research Office through grant 58386MA. VS acknowledges support
from UCLA startup funds.

Appendix: Functional Taylor Approximations for the Dielectric Field Problem

We wish to expand the Hamiltonian

H [ε; ρ, ϕobs] = 1

2

M∑

m=1

∫
δ(x − xm)

s2
m

[ ∞∑

n=0

ϕn(ε(x)) − ϕobs(x)

]2

dx

+ 1

2

∫
ε(x)(−�)P(−�)ε(x) dx (51)

about its extrema ε∗. We take variations with respect to ε(x) to calculate its first functional
derivative,

∫
∂ H

∂ε(x)
φ(x) dx =

∫
(−�)P(−�)ε(x)φ(x) dx + lim

h→0

d

dh

1

2

M∑

m=1

∫
δ(x − xm)

s2
m

×
[ ∞∑

n=0

ϕn(ε(x) + hφ(x)) − ϕobs(x)

]2

dx

=
∫

(−�)P(−�)εφ dx + lim
h→0

M∑

m=1

∫
δ(x − xm)

s2
m

× (ϕ(x) − ϕobs(x))
d

dh
ϕ0(ε(x) + hφ(x)) dx

+ lim
h→0

M∑

m=1

∫
δ(x − xm)

s2
m

(ϕ(x) − ϕobs(x))
d

dh
ϕ1(ε(x) + hφ(x)) dx

+ lim
h→0

M∑

m=1

∫
δ(x − xm)

s2
m

(ϕ(x) − ϕobs(x))

∞∑

n=2

d

dh
ϕn(ε(x) + hφ(x)) dx

︸ ︷︷ ︸
I1

(52)
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Let us define the quantities

K̃ (y, z) = ∇z ·
[

L(y, z)∇z

(
φ(z)
ε(z)

)]

ϕ̃0(x) = −
∫

L(x, y)
ρ(y)φ(y)

ε2(y)
dy

�(x) =
M∑

m=1

δ(x − xm)

s2
m

(ϕ(x) − ϕobs(x)) .

Through direct differentiation we find that

I1 =
∞∑

n=2

∫
�(x)K (x, yn)

⎛

⎝
n−1∏

j=1

K (y j+1, y j )

⎞

⎠ ϕ̃0(y1) dx
n∏

k=1

dyk

+
∞∑

n=2

∫
�(x)K̃ (x, yn)

⎛

⎝
n−1∏

j=1

K (y j+1, y j )

⎞

⎠ ϕ0(y1) dx
n∏

k=1

dyk

+
∞∑

n=2

∫
�(x)K (x, yn)

n−1∑

k=0

⎛

⎜⎜⎝K̃ (yk+1, yk)

n−1∏

j=1
j �=k

K (y j+1, y j )

⎞

⎟⎟⎠ ϕ0(y1) dx
n∏

k=1

dyk .

Integrating in x:

I1 =
∞∑

n=2

M∑

m=1

ϕ(xm) − ϕobs(xm)

s2
m

∫
K (xm, yn)

⎛

⎝
n−1∏

j=1

K (y j+1, y j )

⎞

⎠ ϕ̃0(y1)

n∏

k=1

dyk

+
∞∑

n=2

M∑

m=1

ϕ(xm) − ϕobs(xm)

s2
m

∫
K̃ (xm, yn)

⎛

⎝
n−1∏

j=1

K (y j+1, y j )

⎞

⎠ ϕ0(y1)

n∏

k=1

dyk

+
∞∑

n=2

M∑

m=1

ϕ(xm) − ϕobs(xm)

s2
m

∫
K (xm, yn)

n−1∑

k=1

⎛

⎜⎜⎝K̃ (yk+1, yk)

n−1∏

j=1
j �=k

K (y j+1, y j )

⎞

⎟⎟⎠

× ϕ0(y1)

n∏

k=1

dyk .

We shift φ(·) → φ(x), and integrate-by-parts to find

I1 = −
∞∑

n=2

M∑

m=1

ϕ(xm) − ϕobs(xm)

s2
m

∫
K (xm, yn)

⎛

⎝
n−1∏

j=1

K (y j+1, y j )

⎞

⎠

× L(y1, x)
ρ(x)

ε2(x)
φ(x) dx

n∏

k=1

dyk

+
∞∑

n=2

M∑

m=1

ϕ(xm) − ϕobs(xm)

s2
m

∫
φ(x)

ε(x)
∇ ·
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[
L(xm, x)∇ (K (x, yn−1))

]
⎛

⎝
n−2∏

j=1

K (y j+1, y j )

⎞

⎠ ϕ0(y1) dx
n∏

k=1

dyk

+
∞∑

n=2

M∑

m=1

ϕ(xm) − ϕobs(xm)

s2
m

∫
K (xm, yn)

n−1∑

k=1⎛

⎜⎜⎝
φ(x)

ε(x)
∇ · [

L(yk+1, x)∇K (x, yk−1)
] n−2∏

j=1
j �=k

K (y j+1, y j )

⎞

⎟⎟⎠ ϕ0(y1) dx
n∏

k=1

dyk .

Note that all boundary terms disappear since we can take φ to disappear on the boundary.
With I1 computed, we find

δH

δε(x)
= (−�)P(−�)ε(x) −

M∑

m=1

ϕ(xm) − ϕobs(xm)

s2
m

[
L(xm, x)

ρ(x)

ε2(x)

]

+
M∑

m=1

ϕ(xm) − ϕobs(xm)

s2
mε(x)

∇ · [L(xm, x)∇ϕ0(x)]

−
M∑

m=1

ϕ(xm) − ϕobs(xm)

s2
m

(
ρ(x)

ε2(x)

) ∫
K (xm, y1)L(x, y1) dy1

−
∞∑

n=2

M∑

m=1

ϕ(xm) − ϕobs(xm)

s2
m

∫
K (xm, yn)

⎛

⎝
n−1∏

j=1

K (y j+1, y j )

⎞

⎠

× L(y1, x)
ρ(x)

ε2(x)

n∏

k=1

dyk

+
∞∑

n=2

M∑

m=1

ϕ(xm) − ϕobs(xm)

s2
mε(x)

∫
∇ · [

L(xm, x)∇ (K (x, yn−1))
]

×
⎛

⎝
n−2∏

j=1

K (y j+1, y j )

⎞

⎠ ϕ0(y1)

n∏

k=1

dyk

+
∞∑

n=2

M∑

m=1

ϕ(xm) − ϕobs(xm)

s2
mε(x)

∫
K (xm, yn)

n−1∑

k=1

⎛

⎜⎜⎝∇ · [
L(yk+1, x)∇K (x, yk−1)

] n−2∏

j=1
j �=k

K (y j+1, y j )

⎞

⎟⎟⎠ ϕ0(y1)

n∏

k=1

dyk . (53)

Taken to two terms in the series expansion for ϕ, the first variation is

δH

δε(x)
∼ (−�)P(−�)ε(x) +

M∑

m=1

ϕ(xm) − ϕobs(xm)

s2
mε(x)

×
[
∇L(x, xm) · ∇ϕ0(x) − ρ(x)

ε(x)

∫
K (xm, y1)L(x, y1) dy1

]
. (54)
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To calculate the second-order term in the Taylor-expansion, we take another variation.
Truncated at two terms in the expansion for ϕ:

δ2 H

δε(x)δε(x′)
= (−�)P(−�)δ(x − x′) +

M∑

m=1

am(x, x′), (55)

where after canceling like terms,

am(x, x′) = δ(x − x′)ϕ(xm) − ϕobs(xm)

s2
mε2(x′)

[
2ρ(x′)
ε(x′)

∫
K (xm, y1)L(x′, y1) dy1

− ∇x′ L(x′, xm) · ∇x′ϕ0(x′) − L(xm, x′)ρ(x′)
ε(x′)

]

− ϕ(xm) − ϕobs(xm)

s2
m

{
∇L(x, xm) · ∇x′ L(x, x′) ρ(x′)

ε(x)ε2(x′)

+ ρ(x)

ε2(x)ε(x′)
∇L(x, x′) · ∇x′ L(xm, x′)

}

+
[
∇L(x, xm) · ∇ϕ0(x) − ρ(x)

ε(x)

∫
K (xm, y1)L(x, y1) dy1

]

× 1

s2
mε(x)ε(x′)

[
∇x′ L(x′, xm) · ∇x′ϕ0(x′) − ρ(x′)

ε(x′)

∫
K (xm, y1)L(x′, y1) dy1

]
.

It is using this expression that we can construct an approximate probability density for our
field ε.
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