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EFFICIENT SCALING AND MOVING TECHNIQUES FOR
SPECTRAL METHODS IN UNBOUNDED DOMAINS∗
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Abstract. When using Laguerre and Hermite spectral methods to numerically solve PDEs in
unbounded domains, the number of collocation points assigned inside the region of interest is often
insufficient, particularly when the region is expanded or translated in order to safely capture the
unknown solution. Simply increasing the number of collocation points cannot ensure a fast conver-
gence to spectral accuracy. In this paper, we propose a scaling technique and a moving technique to
adaptively cluster enough collocation points in a region of interest in order to achieve fast spectral
convergence. Our scaling algorithm employs an indicator in the frequency domain that both is used to
determine when scaling is needed and informs the tuning of a scaling factor to redistribute collocation
points in order to adapt to the diffusive behavior of the solution. Our moving technique adopts an
exterior-error indicator and moves the collocation points to capture the translation. Both frequency
and exterior-error indicators are defined using only the numerical solutions. We apply our methods to
a number of different models, including diffusive and moving Fermi–Dirac distributions and nonlinear
Dirac solitary waves, and demonstrate recovery of spectral convergence for time-dependent simula-
tions. A performance comparison in solving a linear parabolic problem shows that our frequency
scaling algorithm outperforms the existing scaling approaches. We also show our frequency scaling
technique is able to track the blowup of average cell sizes in a model for cell proliferation. In addition
to the Laguerre and Hermite basis functions with exponential decay at infinity, we also successfully
apply the frequency-dependent scaling technique into rational basis functions with algebraic decay at
infinity.
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Hermite function, rational basis function, blowup
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1. Introduction. Many scientific models described by PDEs with divergent so-
lutions are set in unbounded domains. For example, in many models of cellular
proliferation, a “blowup” in which the average size of a population of cells becomes
uncontrolled and diverges over many generations of growth is possible [3]. The condi-
tions under which blowup occurs is difficult to determine analytically [1] but has been
explored numerically [25]. However, numerically tracking “blowup” behavior over long
times is extremely difficult, as it requires solving the problem in a truly unbounded
domain to capture the diverging mean size. There are many other problems in which
it is desirable to find a numerical solution in an unbounded domain, including the
stability of solitary waves arising from the nonlinear Dirac equation [14, 6], diffusion
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SCALING AND MOVING TECHNIQUES FOR SPECTRAL METHODS A3245

in a parabolic system [10], and solving a fractional PDE which allows a solution with
algebraic decay at infinity [28, 23].

Considerable progress has recently been made using spectral methods for solving
PDEs in unbounded domains [17]. Among existing spectral methods, the direct ap-
proach that is typically used is based on orthogonal basis functions defined on infinite
intervals, e.g., the Hermite and Laguerre spectral methods [5, 7, 23]. Rational basis
functions such as the modified mapped Gegenbauer functions (MMGFs) [22] are of
recently interest and can also be used. It has been demonstrated that the perfor-
mance of these spectral methods can be greatly improved when a proper coordinate
scaling is used [21, 17]. However, it is not clear how to systematically perform the
scaling, especially when transient behavior arises. A Hermite spectral method with
time-dependent scaling has been proposed for parabolic problems by introducing a
time-dependent scaling factor β(t) to meet the coercive condition [10]. Nonetheless,
the form of β(t) and related parameters are chosen based on specified knowledge of
parabolic models and thus cannot be easily generalized to other problems.

Motivated by the success of adaptive methods in bounded domains [13, 20, 9],
we propose two indicators to adaptively allocate a sufficient number of collocation
points to represent the unknown solution in the region of interest. The first indicator,
designed for matching the diffusion of unknown solutions, extracts the frequency-
space information of intermediate numerical solutions and isolates its high frequency
components. This frequency indicator not only provides a lower bound for the inter-
polation error but also measures the decay of the derivatives of the reference solution
as |x| → +∞. By tuning a scaling factor in our proposed scaling technique, the
frequency indicator can be maintained at a low level. However, the translation of
unknown solutions may also amplify the frequency indicator and thus may result in
larger errors for excessive scaling. To accommodate this scenario, a second, exterior-
error indicator is used to calculate an upper bound for the error in the exterior domain,
allowing one to capture translation via moving collocation points. Accordingly, for
problems that may involve both translation and diffusion in unbounded domains, the
above two indicators are combined in a “first moving then scaling” approach. Numer-
ical experiments demonstrate their ability to recover a faster spectral convergence for
time-dependent solutions.

The remainder of this paper is organized as follows. Section 2 introduces the fre-
quency indicator, connects it to the approximation error, and proposes the frequency-
dependent scaling technique for diffusion. Section 3 proposes the exterior-error-
dependent moving technique for translating problems. We then combine, in section 4,
the above two approaches to solve time-dependent problems involving both diffusion
and translation. Section 5 compares the frequency-dependent scaling with a time-
dependent scaling proposed in [10] for solving parabolic systems. Section 6 general-
izes the scaling technique to MMGFs which characterize algebraic decay at infinity.
Section 7 analyzes the efficiency of both scaling and moving techniques and discusses
their dependence on parameters. In section 8, we apply the frequency-dependent scal-
ing method to a PDE model describing structured cell populations to track blowup
behavior. Finally, we summarize our approaches and make concluding remarks in
section 9.

2. Frequency-dependent scaling. We formulate a scaling technique by ex-
tracting frequency domain information on the evolution of numerical solutions, the
pseudocode of which is presented in Algorithm 2.1. Our discussion utilizes the gener-
alized Laguerre functions of degree ℓ
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L̂(α,β)
ℓ (x) = L(α)

ℓ (βx)e−
β
2 x, β > 0,(2.1)

which are mutually orthogonal on the half-line Λ := (0,+∞) with the weight function

ω̂α(x) = xα, α > −1. Here L(α)
ℓ (x) denote the usual Laguerre polynomials [7], and

L̂(α,β)
ℓ (x) reduce to the usual Laguerre functions when β = 1. In this work, we regard

β to be the scaling factor and seek a time-dependent spectral approximation of u(x, t)
on Λ. Henceforth, for notational simplicity, the t-dependence will usually be omitted.

For any u ∈ L2
ω̂α

(Λ), the spectral approximation using the interpolation operator
IN,α,β is

u(x) ≈ U
(α,β)
N (x) = IN,α,βu =

N∑
ℓ=0

u
(α,β)
ℓ L̂(α,β)

ℓ (x),(2.2)

where the coefficients u
(α,β)
ℓ can be computed by using, e.g., the Laguerre–Gauss

collocation points x
(α,β)
j ,

u
(α,β)
ℓ =

1

γ
(α,β)
ℓ

N∑
j=0

L̂(α,β)
ℓ

(
x
(α,β)
j

)
u
(
x
(α,β)
j

)
ŵ

(α,β)
j , ℓ = 0, 1, . . . , N,(2.3)

where N is the expansion order (i.e., N+1 collocation points or N+1 basis functions),

γ
(α,β)
ℓ = (L̂(α,β)

ℓ , L̂(α,β)
ℓ )ω̂α

is the L2
ω̂α

inner product, ŵ
(α,β)
j denotes the corresponding

weight for collocation point x
(α,β)
j , and

u
(
x
(α,β)
j

)
= U

(α,β)
N

(
x
(α,β)
j

)
= IN,α,βu

(
x
(α,β)
j

)
, j = 0, 1, . . . , N.(2.4)

When the scaling factor is updated from β to β̃, the collocation points, weights, and
L2
ω̂α

-norms are updated according to

x
(α,β̃)
j =

β

β̃
x
(α,β)
j , ŵ

(α,β̃)
j =

βα+1

β̃α+1
ŵ

(α,β)
j , γ

(α,β̃)
ℓ =

βα+1

β̃α+1
γ
(α,β)
ℓ .(2.5)

The expansion coefficients u
(α,β̃)
ℓ can then be estimated through (2.3) where we may

use the approximation (2.2): u(x
(α,β̃)
j ) ≈ U

(α,β)
N (x

(α,β̃)
j ). This procedure constitutes

the scale subroutine in lines 9 and 17 of Algorithm 2.1.
To implement the scaling technique, one needs to determine when to apply it and

how to choose a new scaling factor β̃ such that spectral accuracy can be kept for a
prescribed expansion of order N . To this end, we propose a frequency indicator acting

on the numerical solution U
(α,β)
N :

F
(
U

(α,β)
N

)
=


N∑

ℓ=N−M+1

γ
(α,β)
ℓ

(
u
(α,β)
ℓ

)2

N∑
ℓ=0

γ
(α,β)
ℓ

(
u
(α,β)
ℓ

)2


1
2

,(2.6)

which measures the contribution of the M highest-frequency components to the L2
ω̂α

-

norm of U
(α,β)
N . The subroutine frequency indicator in lines 3, 6, 10, and 18 of

Algorithm 2.1 calculates this contribution in which we choose M = [N3 ] in view of the
often-used 2

3 -rule [8, 12].
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SCALING AND MOVING TECHNIQUES FOR SPECTRAL METHODS A3247

Algorithm 2.1. Pseudocode of spectral methods with frequency-dependent scaling.

1: Initialize N , ν > 1, q < 1, ∆t, T , α, β, U
(α,β)
N (0), β

2: t← 0
3: f0 ← frequency indicator(U

(α,β)
N (t))

4: while t < T do
5: U

(α,β)
N (t+∆t)← evolve(U

(α,β)
N (t),∆t)

6: f ← frequency indicator(U
(α,β)
N (t+∆t))

7: if f > νf0 then
8: β̃ ← qβ

9: U
(α,β̃)
N ← scale(U

(α,β)
N (t+∆t), β̃)

10: f̃ ← frequency indicator(U
(α,β̃)
N )

11: while f̃ ≤ f and β̃ ≥ β do

12: β ← β̃

13: U
(α,β)
N (t+∆t)← U

(α,β̃)
N

14: f0 ← f̃
15: f ← f̃
16: β̃ ← qβ

17: U
(α,β̃)
N ← scale(U

(α,β)
N (t+∆t), β̃)

18: f̃ ← frequency indicator(U
(α,β̃)
N )

19: end while
20: end if
21: t← t+∆t
22: end while

If the frequency indicator F(U (α,β)
N ) increases over time, the contribution of high

frequency components to the numerical solution increases, indicating that the numer-
ical solution is decaying more slowly in x and that we need to adjust the scaling factor

to enlarge the computational domain [x
(α,β)
0 , x

(α,β)
N ] demarcated by the smallest and

largest collocation point positions. In line 7 of Algorithm 2.1, νf0 is the threshold at
some time t. If the value of the frequency indicator of the current numerical solution
f > νf0, then we consider scaling. The parameter ν is usually chosen to be slightly
larger than 1 to prevent the frequency indicator becoming too large without invoking
scaling.

However, the if condition is only a necessary condition. Only after we enter the
while loop in line 11 will we perform scaling, which aims to ensure that the frequency

indicator F(U (α,β)
N ) will not increase after scaling. Actually, this while loop tries to

minimize F(U (α,β)
N ) by geometrically shrinking the scaling factor β (q in line 16 is

the common ratio) to ensure sufficient scaling since F(U (α,β)
N ) is a lower bound for

the numerical error, as shown in (7.2). A more continuous adjustment is preferred
by setting q to be slightly less than 1, which may also prevent overshrinking of the
scaling factor within one single time step. Henceforth, we will choose q = 0.95 and
ν = 1/q. Moreover, at the initial time t = 0, we also ensure the frequency indicator
is small enough by choosing a suitable initial scaling factor.

In this work, the generalized Laguerre functions with α = 0 are used and the
relative L2

ω̂α
-error
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A3248 MINGTAO XIA, SIHONG SHAO, AND TOM CHOU

Error =
∥U (α,β)

N − u∥ω̂α

∥u∥ω̂α

(2.7)

is used to measure the quality of the spectral approximation U
(α,β)
N (x) to the reference

solution u(x). We always use the most updated scaling factor to calculate the above
error.

Example 1. We use the spreading Fermi–Dirac distribution

u(x, t) =
1

1 + e
x−5
2+t

(2.8)

to test the performance of the scaling algorithm, Algorithm 2.1. It can be readily
verified that the reference solution u(x, t) expands over time as shown in Figure 1(a).
The proposed frequency-dependent scaling with N = 40 effectively maintains the rel-
ative error under 10−10 up until time t = 10, whereas the error for the corresponding
unscaled solution rapidly grows to over 10−4 (see Figure 1(b)). We also plot, as u(x, t)

evolves, the history of the scaling factor β and frequency indicator F(U (α,β)
N ) in Fig-

ures 1(c) and 1(d), respectively. It is clear that the frequency indicator increases for
the unscaled solution as time evolves and that time-dependent scaling is required to
preserve the accuracy. The proposed frequency-dependent scaling technique detects
the error and shrinks the scaling factor in order to enlarge the computational domain
in accordance with the expansion of the reference solution. The spectral convergence
as a function of the expansion order N can also be recovered by Algorithm 2.1. The
errors at the final time, for the scaled and unscaled approaches, are displayed in Fig-
ure 1(e). The final scaling factors at t = 10 are 0.3213, 0.3560, 0.3747, 0.3945, 0.3945
for N = 25, 30, 35, 40, 45, respectively, having all decreased from the common initial
scaling factor of 2.5. Figures 1(e), (f) show very similar and expected behavior of the

Fig. 1. Numerical approximation to the diffusive Fermi–Dirac distribution u(x, t) given by
(2.8). The scaling algorithm, Algoritm 2.1, produces much more accurate solutions and recovers a
faster spectral convergence with respect to the expansion order N . As we expected, the frequency
indicator defined in (2.6) shows a similar behavior to the error defined in (2.7) against either time
or N . The data in last two plots are measured at t = 10.
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frequency indicator and error as a function of N . Since the error and the frequency
indicators behave similarly across time (see Figures 1(b, d)), we also expect them to
behave similarly with N . These similarities suggest a possible connection between the
error and the frequency indicator.

3. Exterior-error-dependent moving. Dynamics in unbounded domains can
be much richer than the simple diffusive behavior successfully captured by our
frequency-dependent scaling. Other physical mechanisms may induce, for example,
translation (Examples 2 and 3) and emerging oscillations (Example 4). A purely
scaling approach fails in these cases.

In this section, we develop an exterior-error-dependent moving method that will
be able to resolve a solution’s decay in an undetermined exterior domain Λe :=
(xL,+∞). Algorithm 3.1 presents the pseudocode of our exterior-error-dependent
moving technique. In the algorithm, we first need to determine the time-dependent
left-end point xL. Next, we move the spectral basis accordingly so that the spectral

approximation for an unknown function u(x) in Λe (denoted by U
(α,β)
N,xL

(x)) maintains
accuracy. To implement this procedure, we adopt an exterior-error indicator:

E(U (α,β)
N,xL

, xR) =
∥∂xU (α,β)

N,xL
· I(xR,+∞)∥ω̂α

∥∂xU (α,β)
N,xL

· I(xL,+∞)∥ω̂α

,(3.1)

which measures the proportion of the norm ∥∂xU (α,β)
N,xL

· I(xL,+∞)∥ω̂α
inside a prescribed

unbounded domain (xR,+∞).
The subroutine exterior error indicator in lines 5, 8, and 13 of Algorithm 3.1

calculates E(U (α,β)
N,xL

, xR). Here, following the often-used 2
3 -rule [8, 12], we choose

xR = x
(α,β)

[N+2
3 ]

from the collocation points x
(α,β)
j (j = 0, 1, . . . , N) in the exterior do-

main Λe.

Algorithm 3.1. Pseudocode of spectral methods with exterior-error-dependent moving.

1: Initialize N , ∆t, T , α, β, U
(α,β)
N,0 (0), µ > 1, dmax > δ > 0

2: t← 0
3: xL ← 0
4: xR ← x

(α,β)

[N+2
3 ]

5: e0 ← exterior error indicator(U
(α,β)
N,xL

(0), xR)
6: while t < T do
7: U

(α,β)
N,xL

(t+∆t)← evolve(U
(α,β)
N,xL

(t),∆t)

8: e← exterior error indicator(U
(α,β)
N,xL

(t+∆t), xR)
9: if e > µe0 then

10: (d0, U
(α,β)
N,xL+d0

)← move(U
(α,β)
N,xL

(t+∆t), δ, dmax, µe0)
11: xL ← xL + d0
12: xR ← xR + d0
13: e0 ← exterior error indicator(U

(α,β)
N,xL

(t+∆t), xR)
14: end if
15: t← t+∆t
16: end while
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Intuitively, if u(x) moves rightward in time, such as the moving Fermi–Dirac
distribution in Example 2, the spectral approximation at large distances may dete-

riorate and the exterior-error indicator E(U (α,β)
N,xL

) will increase. Consequently, the
moving mechanism is triggered in line 9 of Algorithm 3.1 and completed by updating
the left-end point xL = xL + d0 in line 11. Thus, the starting point of the spectral
approximation also moves rightward with time to capture the translation.

The displacement d0 = min{nδ, dmax} is determined by the move subroutine

in line 10, where n is the smallest integer satisfying E(U (α,β)
N,xL

, xR + nδ) < µe0, δ is
the minimum displacement, dmax is the maximum displacement, and µ represents
the threshold of the increase in the exterior-error indicator that we can tolerate. In
practice, dmax should be based on a prior knowledge of the maximum translation
speed of the function u(x). We usually choose µ ≳ 1 to prevent the exterior-error
indicator from becoming too large without invoking moving. The move subroutine

also generates U
(α,β)
N,xL+d0

from U
(α,β)
N,xL

.

Example 2. In this example, we consider the moving Fermi–Dirac distribution

u(x, t) =
1

1 + e
x−5t

2

,(3.2)

which travels to the right at a speed of 5 without any shape change (see Figure 2(a)).
The scaling algorithm, Algorithm 2.1, equipped with the same parameters that worked
well for the diffusive Fermi–Dirac distribution in Example 1, fails to capture the trans-
lation. In fact, the errors of the scaled solutions are larger than those of unscaled ones
as shown in Figure 2(b). It seems that the decrease of the scaling factor (black curve
with asterisks in Figure 2(c)) cannot compensate for the increase in the frequency
indicator (black curve with asterisks in Figure 2(d)). In other words, the scaling
algorithm, Algorithm 2.1, mistakes translation as diffusion and performs excessive
scaling. In contrast, the exterior-error-dependent moving algorithm, Algorithm 3.1,

Fig. 2. Numerical approximation to the moving Fermi–Dirac distribution u(x, t) given by (3.2).
The moving algorithm, Algorithm 3.1, produces much more accurate solutions and recovers a faster
spectral convergence with respect to the expansion order N in the exterior domain Λe = (xL,+∞),
whereas a pure scaling fails to capture this translation. The data in (e) are measured at t = 10.
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with δ = 0.004, dmax = 0.04, and µ = 1.005 succeeds in producing a much more
accurate approximation to the moving Fermi–Dirac distribution given by (3.2) in
the exterior domain Λe, with errors kept under 10−11 up to time t = 10 (red curve
with left-pointing triangles in Figure 2(b)). The moving technique recovers a faster
spectral convergence with respect to the expansion order N as shown in Figure 2(e).

During the moving process, the exterior-error indicator E(U (α,β)
N,xL

, xR) is well con-
trolled (red curve with left-pointing triangles in Figure 2(f)) and the left-end point
of the exterior domain closely tracks the uniform linear motion (red curve with left-
pointing triangles in Figure 2(c)). The exterior-error indicator monotonically increases
for the unscaled and unmoved solutions (blue curve with squares in Figure 2(f)) and
oscillates rapidly for the scaled and unmoved solutions (black curve with asterisks in
Figure 2(f)). Moreover, the similarity between the relative error and the frequency
indicator as a function of time is again confirmed by comparing Figure 2(d) to Fig-
ure 2(b), thus providing strong evidence for the effectiveness of using the frequency
indicator (2.6). Spectral convergence in N is clearly observed for the moving spectral
method in Figure 2(e), while the error decays slowly with N for the unmoved spectral
method.

Example 3. Another class of dynamical systems are described by solitons or soli-
tary waves in which nonlinearities and dispersion balance each other. While solitons
have been well studied, there has been recent interest in nonlinear Dirac solitary
waves as they emerge naturally in many physical systems [6]. Stability of the non-
linear Dirac solitary waves on the whole line and its connection to the multihump
structure is a challenging topic of research [14, 27, 2]. In this example, we approxi-
mate a right-moving two-hump solitary wave, the explicit form of which is given in
[15] with v = 0.25, λ = 0.5, m = 1, x0 = −1.5, and Λ = 0.1. The reference solutions
are plotted in Figure 3(a).

Numerical results are displayed in Figure 3, where we set δ = 0.004, dmax = 0.012,
µ = 1.005. It can be readily observed there that the exterior-error-dependent moving

Fig. 3. Approximating a two-hump nonlinear Dirac solitary wave. The moving algorithm,
Algorithm 3.1, produces much more accurate solutions and recovers a faster spectral convergence
with respect to the expansion order N in the exterior domain Λe = (xL,+∞), whereas a pure
scaling approach fails to capture this translation. The data in (c) are measured at t = 15.
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A3252 MINGTAO XIA, SIHONG SHAO, AND TOM CHOU

algorithm, Algorithm 3.1, produces much more accurate solutions with errors kept
under 10−11 until the final time t = 15 (red curve with left-pointing triangles in
Figure 3(b)). The moving algorithm also recovers a faster spectral convergence with
respect to the expansion order N (see Figure 3(c)). The scaling-only algorithm, Algo-
rithm 2.1, fails to maintain the accuracy (black curve with asterisks in Figure 3(b)).
The similarity between the relative error and the frequency indicator is again con-
firmed by comparing Figure 3(d) to Figure 3(b).

In Examples 2 and 3, the exterior-error indicator (3.1) efficiently guides us in
finding an xL such that the moved spectral approximation retains accuracy in the
resulting exterior domain. The accuracy arises from the fact that the exterior-error
indicator is related to the upper bound of the error for asymptotically large x. If we

assume a large indicator E(U (α,β)
N,xL

, xR) > µ with µ ∈ (0, 1), then

E(U (α,β)
N,xL

, xR) > µ⇒ ∥∂xU (α,β)
N,xL

· I[xR,+∞)∥ω̂α
> µ∥∂xU (α,β)

N,xL
· I[xL,+∞)∥ω̂α

⇒ ∥∂xU (α,β)
N,xL

· I[xR,+∞)∥ω̂α+1 > µ∥∂xU (α,β)
N,xL

· I[xL,+∞)∥ω̂α+1 ,

and since ∥∂xU (α,β)
N,xL

·I(xL,+∞)∥ω̂α+1 are related to the upper bound of the interpolation
error ∥(IN,α,βu−u)I(xL,+∞)∥ω̂α

[16], a larger exterior-error indicator informs a wors-
ening approximation in the exterior domain (xR,∞) in terms of the approximation
in the whole domain (xL,∞). The solution in the interior domain Λi := (0, xL] is not
approximated by the basis functions used to approximate the solution in the exterior
domain. Obstacles to designing moving mesh methods in unbounded domains include
the construction of an interior numerical solution and its consistent coupling with the
exterior spectral approximation. More on these issues will be illustrated in Example 4.

Example 4. Let us approximate the following function in Λ:

u(x, t) =

{
cos(x− 10t), x ≤ 10t,

e−(x−10t)2 , x > 10t,
(3.3)

which represents a wave with period 2π traveling to the right with speed 10 and
exponentially decaying at infinity. The reference solution u(x, 10) is plotted by the
green curve with circles in Figure 4(a), which coincides with the red curve with left-
pointing triangles that approximates u seperately in Λi and Λe using different basis
funcitons. As shown by the blue curve with squares in Figure 4(a), applying a Laguerre
spectral approximation with N = 30 and β = 5 in Λ fails to accurately approximate
u(x, t). This failure arises because more oscillations emerge from x = 0 and translate
to +∞ as time evolves. Specifically, at t = 10, the reference solution u(x, t) possesses
32 extrema while any Laguerre spectral approximation (2.2) with N = 30 can have
at most 30 extrema, implying that the approximation is doomed to fail since all
oscillations cannot be captured. Simply increasing the number of basis functions
does little to help, even with different scaling factors as shown in Figure 4(b). The
ineffectiveness of increasing N is mainly due to the presence of oscillatory components
with significantly different frequencies in each of the two different domains. As shown
by the black curves with asterisks in Figures 4(a), (c), (d), the scaling technique is
also doomed to fail because it totally neglects this scale difference and only adjusts
the scaling factor to redistribute collocation points.

We propose a divide-and-conquer strategy to address Example 4, which can be
implemented by applying two subroutines within each time step. The first step is to

D
ow

nl
oa

de
d 

09
/2

5/
21

 to
 1

49
.1

42
.1

03
.8

2 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SCALING AND MOVING TECHNIQUES FOR SPECTRAL METHODS A3253

Fig. 4. Oscillations emanate from the left but the moving algorithm, Algorithm 3.1, generates
accurate solutions in the exterior domain Λe, with relative errors under 10−7 up to t = 10 with N =
30 (red curve with left-pointing triangles in (c)). By further coupling with a spectral approximation
using 80 Chebyshev polynomials in the interior domain Λi, we generate the whole solution with total
relative error, up until t = 10, under 2×10−5, as shown by the red curves with left-pointing triangles
in (a) and (d). The data in (b) are measured at t = 10.

use the exterior-error-dependent moving algorithm, Algorithm 3.1, to determine the
exterior spectral approximation for the exponential decay component of the reference
solution. The second step is to introduce a new spectral approximation in the re-
maining bounded interior domain Λi for the left-side oscillating component. The full
numerical solution in the half-line Λ is constructed from concatenating the solution
in the exterior domain Λe to the one in the interior domain Λi.

Figure 4(c) plots the error in the exterior domain against time and shows that the
errors of the moved solution with N = 30, δ = 0.008, dmax = 0.08, and µ = 1.001 are
kept under 10−7 up to time t = 10 (red curve with left-pointing triangles), confirming
that the Laguerre spectral approximation is accurate in the exterior domain. In fact,
the numerical values of xL obtained by the moving algorithm, Algorithm 3.1, are
consistent with the expected value of 10t as shown in (3.3). Coupling the exterior
solution with a spectral approximation using 80 Chebyshev polynomials in the interior
domain, we find a combined numerical solution with total relative error under 2×10−5

up to t = 10 (red curves with left-pointing triangles in Figures 4(a), (d)) using 111 =
31+80 total basis functions. By contrast, Figure 4(b) shows that the errors for direct
refinement using N = 180 are larger than 0.2.

It must be pointed out that when solving PDEs in unbounded domains, we may
need information about the solution in the exterior domain to construct the interior
numerical solution. Further discussion on this point can be found in Example 6.

4. Spectral methods incorporating both scaling and moving. For prob-
lems that involve both translation and diffusion in unbounded domains, we need to
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incorporate both the moving and scaling procedures. Since the scaling algorithm, Al-
gorithm 2.1, may mistake translation for diffusion and trigger an inappropriate scaling
as shown in Examples 2 and 3, we propose a “first moving then scaling” algorithm.
The associated pseudocode is described in Algorithm 4.1. A direct application of
Algorithm 4.1 to Example 1 recovers exactly the same results as Algorithm 2.1 since
the moving procedure is not invoked. When Algorithm 4.1 is applied to Examples
2 and 3, it gives the same results as Algorithm 3.1 since the scaling mechanism is
not triggered. That is, the combined moving-scaling algorithm, Algorithm 4.1, can
deal with both translation-only and diffusion-only problems since it can distinguish
translation from diffusion.

Algorithm 4.1. Pseudocode of spectral methods with both scaling and moving.

1: Initialize N , ν > 1, q < 1, ∆t, T , α, β, U
(α,β)
N (0), β, µ > 1, dmax > δ > 0,

xR(0) = x
(α,β)

[N+2
3 ]

2: t, xL ← 0

3: xR ← x
(α,β)

[N+2
3 ]

4: f0 ← frequency indicator(U
(α,β)
N,xL

(x, t))

5: e0 ← exterior error indicator(U
(α,β)
N,xL

(0), xR)
6: while t < T do
7: xR ← x

(α,β)

[N+2
3 ]

8: U
(α,β)
N,xL

(x, t+∆t)← evolve(U
(α,β)
N,xL

(x, t)),∆t)

9: e← exterior error indicator(U
(α,β)
N,xL

(x, t+∆t), xR)
10: if e > µe0 then

11: (d0, U
(α,β)
N,xL+d0

)← move(U
(α,β)
N,xL

(x, t+∆t), δ, dmax, µe0)
12: xL ← xL + d0
13: e0 ← exterior error indicator(U

(α,β)
N,xL

(x, t+∆t), xR)
14: end if
15: f ← frequency indicator(U

(α,β)
N,xL

(x, t+∆t))
16: if f > νf0 then
17: β̃ ← qβ

18: U
(α,β̃)
N,xL

← scale(U
(α,β)
N,xL

(x, t+∆t), β̃)

19: f̃ ← frequency indicator(U
(α,β̃)
N,xL

)

20: while f̃ ≤ f and β̃ ≥ β do

21: β ← β̃

22: U
(α,β)
N,xL

(x, t+∆t)← U
(α,β̃)
N,xL

23: f0 ← f̃
24: f ← f̃
25: β̃ ← qβ

26: U
(α,β̃)
N,xL

← scale(U
(α,β)
N,xL

(x, t+∆t), β̃)

27: f̃ ← frequency indicator(U
(α,β̃)
N,xL

)
28: end while
29: end if
30: t← t+∆t
31: end while
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Algorithm 4.1 can be extended to unbounded domains in multiple dimensions in a
dimension-by-dimension manner by using the tensor product of one-dimensional basis
functions. For example, consider the two-dimensional spectral approximation

(4.1) U
(α⃗,β⃗)
N,xL,yL

(x, y) :=

Nx∑
ℓ=0

Ny∑
m=0

u
(α⃗,β⃗)
ℓ,m L̂(αx,βx)

ℓ (x)L̂(αy,βy)
m (y)

in Λx
e ×Λy

e := (xL,+∞)× (yL,+∞) where α⃗ = (αx, αy) and β⃗ = (βx, βy). We choose
the exterior-error indicator in the x-dimension to be

Ex
(
U

(α⃗,β⃗)
N,xL,yL

(x, y), xR

)
:= E

(
Ũ

(αx,βx)
N,xL

(x), xR

)
,(4.2)

Ũ
(αx,βx)
N,xL

(x) :=

∫
Λy

e

U
(α⃗,β⃗)
N,xL,yL

(x, y)dy.(4.3)

Similarly, Ey(U (α⃗,β⃗)
N,xL,yL

(x, y), yR) gives the exterior-error indicator in the y-dimension.

Accordingly, we use Ex(U (α⃗,β⃗)
N,xL,yL

, xR) to judge the if statement in line 10 of Algo-
rithm 4.1. If satisfied, then the move subroutine in line 11 will move the solution in

the x-direction via xL → xL + dx0 . Simultaneously, we use Ey(U (α⃗,β⃗)
N,xL,yL

(x, y), yR) to
determine the shift in the y-direction.

To allow scaling in the x-direction, the corresponding frequency indicator can be
defined as

Fx

(
U

(α⃗,β⃗)
N,xL,yL

)
:=


Nx∑

ℓ=Nx−Mx+1

Ny∑
m=0

γ
(αx,βx)
ℓ γ

(αy,βy)
m

(
u
(α⃗,β⃗)
ℓ,m

)2

Nx∑
ℓ=0

Ny∑
m=0

γ
(αx,βx)
ℓ γ

(αy,βy)
m

(
u
(α⃗,β⃗)
ℓ,m

)2


1
2

,(4.4)

where Mx = [Nx

3 ] and Nx, Ny are the expansion orders in the x- and y-directions,
respectively. Similarly, we define Fy to be the frequency indicator in the y-direction.
We first keep βy fixed and use Fx to evaluate the if statement in line 16 for scaling.
If scaling in the x-direction is needed, then the while loop in line 20 will update the
scaling factor to β̃x. Simultaneously, we fix βx and use Fy to update the scaling factor

in the y-direction to β̃y. After that, the scaling factors for time t +∆t are set to β̃x

and β̃y.

Example 5. We will investigate the performance of Algorithm 4.1 in a two-
dimensional unbounded domain by considering the function

u(x, y, t) = cos
( xy

400

)
· 1

1 + e
x−6t−2−t cos(t)

2+0.3t

· 1

1 + e
y−4t−2−t sin(t)

2+0.4t

, x, y, t > 0,(4.5)

which displays both advective and diffusive behavior. This function exhibits oscilla-
tions in space from the factor cos( xy

400 ), an exponential decay, and a translation to
infinity with time-varying velocity v⃗ = (vx, vy) = (6 + cos(t), 4 + sin(t)). The nu-
merical results shown in Figure 5 are generated using a time step ∆t = 0.01, the
same parameters in the x- and y- directions, and Nx = 40, µx = 1.003, δx = 0.005,
dxmax = 0.1.

As expected, only the combined scaling-moving algorithm, Algorithm 4.1, keeps
the errors in the exterior domain under 10−11 (up to the final time t = 4), as shown by
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Fig. 5. A two-dimensional oscillatory function with both translation and diffusion given by
(4.5). Only the combined moving-scaling algorithm, Algorithm 4.1, produces accurate solutions in
the exterior domain with errors kept under 10−11 up to t = 4. The need for combining moving
and scaling is evident. For simplicity, we only used Fx (the frequency indicator in the x-direction),
Ey (the exterior-error indicator in the y-direction), and yL (the left end of Λy

e ) as an example.
The corresponding curves for Fy, Ex, and xL are very similar and not shown. Here, we used
Nx = Ny = 40, and the initial scaling factors: βx = βy = 2.5.

the error curves in Figure 5(a). This accuracy is achieved because the corresponding
frequency indicator and exterior-error indicator are controlled by our “first moving
then scaling” techniques; see, Algorithm, e.g., Fx in Figure 5(b) and Ey in Figure 5(c).

Although the moving algorithm, Algorithm 3.1, may accurately capture the func-
tion near the left end of the exterior domain, the resulting exterior-error indicator
does not stay low enough to preserve accuracy in the exterior domain Λx

e × Λy
e , as

shown by the green curves with asterisks in Figures 5(a), (c), (d). The moving al-
gorithm neglects the diffusion and thus uses an improper (smaller) xR and yR. The
right choice for these two variables depends on proper scaling for the diffusion, re-
vealing why we need to update xR in line 7 of Algorithm 4.1 after scaling. That is,
the moving determines xL while the scaling determines xR, making it necessary to
combine moving with scaling.

As we have mentioned in Example 4, numerically solving evolving PDEs in un-
bounded domains requires both the interior solution U interior

xL(t) (x, t) in Λi(t) = (0, xL(t)]

and the exterior solution U
(α,β)
N,xL(t)(x, t) in Λe(t)=(xL(t), +∞) after applying the divide-

and-conquer strategy. When using the moving-scaling algorithm, Algorithm 4.1, to
march the solution from t to t + ∆t, if the moving mechanism is not triggered (i.e.,
xL is unchanged), then the interior and exterior solutions can be updated individu-
ally in the normal way. If it is triggered, extra steps are needed to approximate the
solution in the enlarged interior domain Λi(t+∆t) = Λi(t)∪ (Λe(t)\Λe(t+∆t)) since
xL(t+∆t) = xL(t) + d0 after running line 12 of Algorithm 4.1.
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In the next example, we will test the ability of Algorithm 4.1 to solve a one-
dimensional PDE where we will use the intermediate (unmoved) exterior solution

U
(α,β)
N,xL(t)(x, t + ∆t) (obtained immediately after running line 8) to interpolate the

required function values in Λi(t+∆t) \ Λi(t).

Example 6. We solve the following first order PDE:

∂tu(x, t) +

(
2 +

x− 2t

2 + t

)
∂xu(x, t) = 0(4.6)

with initial data u(x, 0) = (1 + e
x
2 )−1 and Dirichlet boundary condition u(0, t) =

(1 + e
−2t
2+t )−1. The analytical solution is a moving and diffusive Fermi–Dirac distribu-

tion, u(x, t) = (1 + e
x−2t
2+t )−1, which travels rightward to infinity at a speed of 2. A

simple numerical scheme for evolving (4.6) is employed here for testing the perfor-
mance of Algorithm 4.1 within the divide-and-conquer strategy.

Specifically, we adopt the Laguerre spectral approximation (2.2) in the exterior
domain, the first order backward finite difference method in the interior domain,
and the second order improved Euler scheme in time. We use a nonuniform mesh,
e.g., 10 Gauss–Lobatto points, to avoid possible poor resolution in the tiny interior
domain 0 < xL < dmax at short times. For xL ≥ dmax, a uniform mesh with spacing
∆x = δ = 0.02 is used so new grid points in Λi(t + ∆t) \ Λi(t) can be easily added.
The other parameters were set to N = 40, µ = 1.004, dmax = 0.2, and ∆t = 0.001.

The results summarized in Figure 6 clearly show that, up to the final time t = 5,
the proposed divide-and-conquer strategy maintains the errors in the whole domain
Λ = Λi ∪ Λe under 2 × 10−4 (red curve with left-pointing triangles in Figure 6(a)).
Algorithm 4.1 succeeds in capturing the translation, as shown by the red curve with
left-pointing triangles in Figure 6(b), thus determining the exterior domain Λe. With-
out this strategy, a straightforward use of the Laguerre spectral approximation in Λ
leads to huge errors as indicated by the blue curve with right-pointing triangles in
Figure 6(a).

Figure 6(c) shows that the frequency indicator is always kept under 3 × 10−10

as shown by the black curve with asterisks, a sufficiently small lower error bound
for scaling, by continually shrinking the scaling factor shown as the black curve with
asterisks in Figure 6(b). The exterior-error indicator is always maintained around 0.2
as shown by the red curve with left-pointing triangles in Figure 6(c), which implies
the error in (xR,+∞) divided by the error in Λe is almost unchanged, ensuring small
errors at infinity. Figure 6(d) plots |U(x, t) − u(x, t)| at different times (U(x, t) and
u(x, t) denote the numerical and analytical solution, respectively). There is a clear
divide near xL arising from the different numerical treatments between the interior
and exterior domains.

5. Performance comparison in solving parabolic PDEs. We now apply
the frequency-dependent scaling algorithm, Algorithm 2.1, to solve

∂tu(x, t)− ∂xxu(x, t) = f(x, t)(5.1)

in R×Λ, and compare our results with those obtained with the time-dependent scaling
method developed in [10]. First, we need to generalize our scaling approach from Λ to

R by using the scaled Hermite functions: Ĥ(β)
ℓ (x) = Hℓ(βx)e

−(βx)2/2 with Hℓ being
the Hermite polynomials [16]. Similarly, we use β to denote the scaling factor and the
frequency indicator defined in (2.6).
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Fig. 6. Numerical results obtained by the moving-scaling algorithm, Algorithm 4.1, for the
one-dimensional problem in (4.6). The proposed divide-and-conquer strategy maintains the errors
in the whole domain Λ = Λi∪Λe under 2×10−4 until the final time t = 5 where the exterior domain
Λe is determined by the “first moving then scaling” technique built into Algorithm 4.1. We adopt
the Laguerre spectral approximation (2.2) with N = 40 in the exterior domain Λe = (xL,+∞),
the first order backward finite difference method with spacing ∆x = 0.02 in the interior domain
Λi = (0, xL], and the second order improved Euler time marching scheme with ∆t = 0.001. The last
plot displays the absolute difference between the numerical solution U(x, t) and the analytical one
u(x, t) at different times.

A standard Galerkin Hermite spectral method is used to find a solution U
(β)
N =∑N

ℓ=0 u
(β)
ℓ Ĥ

(β)
ℓ (x) in V

(β)
N = span{Ĥ(β)

0 (x), . . . , Ĥ(β)
N (x)} satisfying the initial condi-

tion and (
∂tU

(β)
N , v

)
+
(
∂xU

(β)
N , ∂xv

)
= (f, v) ∀ v ∈ V

(β)
N ,(5.2)

where (·, ·) is the conventional inner product in L2(R) space. The Galerkin discretiza-
tion (5.2) is stable in the sense that

(
∂xU

(β)
N , ∂xU

(β)
N

)
=

N+1∑
ℓ=0

ℓ+ 1

2

(
u
(β)
ℓ

)2

−
N−2∑
ℓ=0

√
(ℓ+ 1)(ℓ+ 2)u

(β)
ℓ u

(β)
ℓ+2(5.3)

is strictly positive and can be controlled by (N + 1)∥U (β)
N ∥22 = (N + 1)

∑N
ℓ=0(u

(β)
ℓ )2.

By contrast, a time-dependent scaling factor

β(t) =
1

2
√
δ0(δt+ 1)

(5.4)
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was taken in [10] to fix the instability of the Petrov–Galerkin discretization by tuning
the parameters δ0 and δ.

Example 7. We apply the frequency-dependent scaling algorithm, Algorithm 2.1,
to Example 6.1 in [10]. In order to facilitate comparison, we also adopt the same
second order accurate Crank–Nicholson scheme to march (5.2) and the same errors
EN and EN,∞ to measure the accuracy. Table 1 presents the numerical errors with
different time steps and expansion orders where the second order accuracy in time
and the spectral convergence in space are clearly demonstrated. Table 2 compares
the errors EN without scaling to those obtained using the scaling algorithm, Algo-
rithm 2.1, and the time-dependent scaling method in [10] on the same mesh. Both
scaling methods produce much more accurate numerical results but the proposed
frequency-dependent scaling keeps the errors around or below 10−7, outperforming
the time-dependent scaling of [10].

The scaling factor adjusted adaptively by the frequency indicator (2.6) takes on
the value β = 0.5357 at t = 1 for all choices of time steps shown in Table 2, whereas the
time-dependent scaling factor in [10] decreases to β = 0.3536 at t = 1 (equation (5.4)).
The smaller scaling factor arises from the stability requirement β′(t)+ 2β3(t) ≤ 0, an
initial value of 0.5, and using δ0 = δ = 1 in (5.4) [10] and prevents the error from
decreasing when the time step is refined from 1/4000 to 1/16000 (see the third column
of Table 2). There is no accuracy improvement without scaling when the time step is
decreased as shown in the second column of Table 2, where a scaling factor is fixed to
β = 0.85. Regardless of what time step is used in the unscaled method, the error EN

experiences a sudden increase across t ∈ [0.3, 0.7], rising from below 10−6 to about
10−4, as it fails to capture the diffusion. A similar observation was shown in Table
6.1 of [10].

6. Application to rational basis functions. Apart from the Laguerre and
Hermite functions with exponential decay at infinity, rational basis functions which
characterize algebraic decay at infinity are increasingly of research interest [22].

Table 1
Numerical results for the parabolic problem in (5.1): Errors associated with the frequency-

dependent scaling algorithm 2.1 at t = 1 with different time step and expansion order N .

Time step N EN (1) Order EN,∞(1) Order

10−1

25

2.500e-04 2.182e-04
10−2 2.499e-07 2.000 2.227e-06 1.991
10−3 2.500e-09 2.000 2.227e-08 2.000
10−4 2.555e-10 1.991 2.350e-10 1.977

1/40000

10 2.203e-04 1.619e-04
15 2.189e-07 N−16.85 4.335e-08 N−20.29

20 1.353e-09 N−17.68 8.880e-09 N−13.52

25 4.840e-11 N−14.93 6.183e-11 N−11.94

Table 2
Numerical results for the parabolic problem in (5.1): Comparison of the errors at t = 1 with

N = 20.

Time step No scaling Time-dependent
scaling in [10]

Frequency-dependent
scaling in Algorithm 2.1

1/250 3.969e-04 2.598e-06 3.998e-07
1/1000 3.910e-04 1.189e-06 2.503e-08
1/4000 3.390e-04 1.117e-06 2.085e-09
1/16000 3.390e-04 1.117e-06 1.381e-09
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In this section we generalize our scaling technique to solve a fractional heat equa-
tion, the solution of which displays algebraic decay at infinity. We shall use MMGFs

[22]: R
(λ,β)
n (x) = (1 + (βx)2)−(λ+1)/2Cλ

n(βx/
√

1 + (βx)2) with Cλ
n being the Gegen-

bauer polynomial of order n, which behaves like (sign(x))n (2λ)n
n! (1+(βx)2)−(1+λ)/2 as

|x| → +∞. We still use β to be the scaling factor and define the frequency indicator

for the spectral decomposition U
(β)
N =

∑N
i=0 u

(β)
i R

(λ,β)
i (x) in the same way as (2.6).

Example 8. We numerically solve the fractional heat equation on R in [29, 28]:

ut + (−∆)su = f(x, t), s ∈ (0, 1),(6.1)

which admits an analytic solution u(x, t) = (( x
t+0.5 )

2 + 1)−1/2 for an appropriate
source function. Therefore, we choose λ = 0 in MMGFs, which decay at a rate of
(1+ (βx)2)−1/2, to match the decaying behavior of the analytic solution. Clearly, the
solution is diffusive over time, requiring us to decrease the scaling factor β. Figure 7
gives the numerical results for s = 0.1, 0.2, and 0.8, where we have adopted the
improved Euler scheme in evolve of Algorithm 4.1, and set ∆t = 0.005, N = 20, q =
ν−1 = 0.95, and β0 = 2. In Figures 7(c), (f), (i), it is easily observed that the scaling
factor β matches the intrinsic scaling of the analytic solution and decreases from 2 to
about 0.6 over time, during which the errors are well maintained under 10−6 for all

0 0.2 0.4 0.6 0.8 1
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10-6

10-4

10-2

0 0.2 0.4 0.6 0.8 1
10-10

10-5
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0.6

1

1.4

1.8

2.2

0 0.2 0.4 0.6 0.8 1
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1.8

2.2

0 0.2 0.4 0.6 0.8 1
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0 0.2 0.4 0.6 0.8 1
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1
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2.2

Fig. 7. Errors, frequency indicators, and scaling factors obtained with MMGFs in solving (6.1)
for s = 0.1 (the first row), 0.5 (the second row), and 0.8 (the third row). Both the error and the
frequency indicator are well maintained owing to an approriate adjustment of the scaling factor.
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three fractional orders (see the red curves in Figures 7(a), (d), (g)). Failure to adjust
β leads to a fast increasing frequency indicator (see the blue curves in Figures 7(b),
(e), (h)) as well as a much larger error (see the blue curves in Figures 7(a), (d), (g)).
Comparing the red curves in Figures 7(a), (d), (g) with ones in Figures 7(b), (e), (h),
we have observed that the strong correlation of the error and the frequency indicator
is again confirmed with these rational MMGF basis functions. Thus we can conclude
that, no matter what s in (6.1) is, the frequency-dependent scaling is still effective
in MMGFs as long as they are able to capture the decaying behavior of the unknown
solution at infinity. For functions which display different algebraic decaying behavior
at infinity, it should also work well after choosing an appropriate λ in MMGFs to
match the algebraic decaying. In a word, the proposed frequency-dependent scaling
technique can be successfully generalized to the rational basis functions.

7. Analysis of the scaling and moving techniques. We first illustrate the ef-
fectiveness of the frequency-dependent scaling in maintaining small errors. Second, we
analyze how the moving technique controls the errors in the exterior domain. Finally,
we use two examples to show how both techniques are sensitive to the parameters.

7.1. Numerical analysis. The success of the scaling algorithm, Algorithm 2.1,
is rooted in the connection between the frequency indicator (2.6) and the evolu-
tion of the information embedded in the numerical solutions. Let Âr

α,β(Λ) be the
anisotropically weighted Sobolev space. For any integer r ≥ 0, its seminorm and
norm are |u|Âr

α,β
= ∥∂̂r

xu∥ω̂α+r and ∥u∥Âr
α,β

=
√∑r

k=0 |u|2Âk
α,β

, respectively, with

∂̂xu = ∂xu+
β
2u. For any u ∈ Âr

α−1,β(Λ)∩ Âr
α,β(Λ) with integer r ≥ 1, a direct corol-

lary of Theorem 3.5 in [7] for estimating the interpolation error using the Laguerre
functions is

∥IN,α,βu− u∥ω̂α ≤ c(βN)
1−r
2

(
β−1|u|Âr

α−1,β
+

(
1 + β− 1

2

)
(lnN)

1
2 |u|Âr

α,β

)
,(7.1)

where c denotes a generic positive constant which does not depend on α, β, N , or
any function. This error estimate plays a crucial role in the formal development
and successful implementation of our scaling and moving techniques. For simplicity
we only consider diffusive behavior without translation, set xL = 0, and drop the
subscript xL.

There are two reasons for us to use the frequency indicator given in (2.6). Starting
with M = [n3 ] and a sufficiently large expansion order N , we have

1

2
F(U (α,β)

N ) ≈ 1

2

∥IN,α,βu− IN−M,α,βu∥ω̂α

∥IN,α,βu∥ω̂α

≤ 1

2

∥u− IN,α,βu∥ω̂α + ∥u− IN−M,α,βu∥ω̂α

∥IN,α,βu∥ω̂α

≤ ∥u− IN−M,α,βu∥ω̂α

∥IN,α,βu∥ω̂α

,(7.2)

which provides an estimate to the lower bound of ∥u − IN−M,α,βu∥ω̂α
. Minimizing

F(U (α,β)
N ) in Algorithm 2.1 may reduce the lower bound of the interpolation error.

Moreover, a straightforward application of the interpolation error estimator (7.1) to
the two terms in the first numerator of (7.2) yields

(
N∑

ℓ=N−M+1

γ
(α,β)
ℓ

(
u
(α,β)
ℓ

)2)1/2

≤ cF (βN)
1−r
2

(
β−1|u|Âr

α−1,β
+
(
1 + β− 1

2

)
(lnN)

1
2 |u|Âr

α,β

)
,

(7.3)
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where the constant cF ≡ (1 + 2
r−1
2 )c. Thus, we find

F
(
U

(α,β)
N

)
≤ cF (βN)

1−r
2

(
β−1

|u|Âr
α−1,β

∥U(α,β)
N ∥ω̂α

+
(
1 + β− 1

2

)
(lnN)

1
2

|u|Âr
α,β

∥U(α,β)
N ∥ω̂α

)
,(7.4)

implying that ∀ ε ∈ (0, 1), we may choose a sufficiently large N such that F(U (α,β)
N ) <

ε. This constitutes the first reason for us to take into account the frequency indica-
tor (2.6).

Secondly the frequency indicator F(U (α,β)
N ) can be used to measure the decay of

the reference solution’s derivatives as x tends to infinity. According to inequality (7.4),

if |u|Âr
α−1,β

/∥U (α,β)
N ∥ω̂α

is fixed, a larger F(U (α,β)
N ) implies a larger |u|Âr

α,β
/∥U (α,β)

N ∥ω̂α
.

Given any s ∈ Λ (e.g., s =
√

2x
(α,β)
N

), if

F
(
U

(α,β)
N

)
> cF (βN)

1−r
2

|u|Âr
α−1,β

∥U(α,β)
N ∥ω̂α

(
β−1 + s

(
1 + β− 1

2

)
(lnN)

1
2

)
,(7.5)

then ∫ s2

2

0

(∂̂r
xu(x))

2xα+rdx <

∫ +∞

s2

2

(∂̂r
xu(x))

2xα+rdx.(7.6)

The verification of the inequality (7.6) can be finished by contradiction. First we can
combine (7.4) and (7.5) to find

s|u|Âr
α−1,β

< |u|Âr
α,β

.(7.7)

If (7.6) does not hold, we would have

|u|2
Âr

α,β

=

∫ +∞

0

(∂̂r
xu(x))

2xα+rdx ≤ 2

∫ s2

2

0

(∂̂r
xu(x))

2xα+rdx

≤ 2 · s
2

2

∫ s2

2

0

(∂̂r
xu(x))

2xα+r−1dx ≤ s2
∫ +∞

0

(∂̂r
xu(x))

2xα+r−1dx = s2|u|2
Âr

α−1,β

,

which would contradict the inequality (7.7). Intuitively, basis functions of higher
degree decay more slowly than those of lower degree, so an increase in the frequency
indicator implies slower decay at infinity. This slower spatial decay as time increases
requires using a larger computational domain which is achieved by decreasing β. In
other words, as the frequency indicator increases, the norm of ∂̂r

xu(x) · I(s2/2,+∞)(x)

becomes larger than that of ∂̂r
xu(x) · I(0,s2/2)(x), implying scaling is indeed needed

to enlarge the computational domain because ∥∂̂r
xu · I(x>s2/2)∥ω̂α

is the dominant

component of ∥∂̂r
xu∥ω̂α

.
Next, we show that increasing xL in the moving technique may control the er-

rors in the exterior domain when the generalized Laguerre functions are adopted.

After increasing xL to xL + d, U
(α,β)
N,xL

(x)eβx/2 and U
(α,β)
N,xL+d(x)e

βx/2 are two identi-
cal polynomials of order N since they pass through the same N + 1 different points:

(x
(α,β)
i +d, U

(α,β)
N,xL

(x
(α,β)
i +d)eβ(x

(α,β)
i +d)/2), i = 0, . . . , N , i.e., U

(α,β)
N,xL+d(x) = U

(α,β)
N,xL

(x)
for any x ∈ (xL + d,∞). Then we have
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N,xL+d(x, t)I(x>xL+d)

∥∥∥2
ω̂α

=
∥∥∥U (α,β)

N,xL
(x, t)I(x>xL+d)

∥∥∥2
ω̂α

≤
∥∥∥U (α,β)

N,xL
(x, t)I(x>xL)

∥∥∥2
ω̂α

,(7.8) ∥∥∥(u(x, t)− U
(α,β)
N,xL

(x, t))I(x>xL+d)

∥∥∥
ω̂α

≤
∥∥∥(u(x, t)− U

(α,β)
N,xL

(x, t))I(x>xL)

∥∥∥
ω̂α

.(7.9)

That is, both the norm of U
(α,β)
N,xL

and the error ∥(u(x) − U
(α,β)
N,xL

)I(x>xL)∥ω̂α will not
increase as xL increases. Furthermore, when solving a time-dependent PDE,

ut(t, x) = Dx(t)u(t, x), x, t ∈ Λ,(7.10)

where Dx(t) represents a differential operator that only involves spatial derivatives.

Let U
(α,β)
N,xL

(x, tn) denote its numerical solution at tn. Then we have that there exists
d ≥ 0 such that∥∥∥U (α,β)

N,xL+d(x, tn+1)I(x>xL+d)

∥∥∥
ω̂α

≤
∥∥∥U (α,β)

N,xL
(x, tn)I(x>xL)

∥∥∥
ω̂α

,(7.11)

the verification of which is given in the following.

Denoting uN,xL
= (U

(α,β)
N,xL

(x
(α,β)
0 ), . . . , U

(α,β)
N,xL

(x
(α,β)
N ))T , we define the translation

operator matrix T
(α,β)
N (s) acting on uN,xL

such that T
(α,β)
N (s)uN,xL

= (U
(α,β)
N,xL

(x
(α,β)
0 +

s), . . . , U
(α,β)
N,xL

(x
(α,β)
N +s)T . It is readily observed that T

(α,β)
N (s+t) = T

(α,β)
N (s)T

(α,β)
N (t)

for s, t ∈ Λ, and T
(α,β)
N (0) is an identity matrix. That is, T

(α,β)
N (s ∈ Λ) forms a

semigroup. We denote its generator, L̂(α,β)
N,p := lims→∞

T
(α,β)
N (s)−T

(α,β)
N (0)

s , and then

T
(α,β)
N (s) = esL̂

(α,β)
N,p . Since the Laguerre functions tend to 0 at +∞, lims→+∞ T

(α,β)
N (s)

= 0, indicating ∥eL̂
(α,β)
N,p ∥ŵα,β < 1 where the matrix norm ∥ · ∥ŵα,β is induced from the

vector norm ∥uN,xL
∥2ŵα,β :=

∑N
ℓ=0(U

(α,β)
N,xL

(x
(α,β)
ℓ ))2ŵ

(α,β)
ℓ . After discretizing Dx(t)

in (7.10) with some numerical schemes, we will obtain uN,xL
(tn+1) = D

(α,β)
N (tn)

uN,xL
(tn), D

(α,β)
N (tn) ∈ R(N+1)×(N+1). Let uN,xL+d(tn+1) := T

(α,β)
N (d)uN,xL

(tn+1)

where we choose d = −ln ∥D(α,β)
N (tn)∥ŵα,β/ln ∥eL̂

(α,β)
N,p ∥ŵα,β . Then we are able to

readily verify that ∥uN,xL+d(tn+1)∥ŵα,β ≤ ∥uN,xL
(tn+1)∥ŵα,β , which directly gives

(7.11) using ∥uN,xL
(t)∥ŵα,β = ∥U (α,β)

N,xL
(x, t)I(x>xL)∥ω̂α .

7.2. Sensitivity analysis. The scaling in Algorithm 2.1 adopts two parameters
q, ν, and the moving in Algorithm 3.1 adopts two parameters δ, µ, too. Below we would
like to use two examples to investigate how these parameters affect the performance
and then discuss some intuitive rules for setting them.

Example 9. First we discuss the scaling technique’s dependence on q and ν via
solving 

∂u

∂t
+

x− 5

2 + t
· ∂u
∂x

= 0,

u(x, 0) =
1

1 + e
x−5
2

.
(7.12)

Its analytic solution is u(x, t) = 1/(1 + e
x−5
2+t ), diffusive over time, and thus requires

decreasing β. Table 3 records the scaling factor β in the bottom-left and the error
in the upper-right at t = 10 where the improved Euler scheme is called in evolve of
Algorithm 2.1, and we have set ∆t = 0.004, β0 = 3, and N = 24. It can be observed
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Table 3
Errors (upper-right) and scaling factors (bottom-left) at t = 10 for different ν and q in solving

(7.12) with Algorithm 2.1. A smaller ν facilitates scaling and results in more timely scaling and a
smaller error, while a larger q can scale the basis functions in a more “continuous” manner and let
the scaling factor better match the function. That is, setting q ≲ 1 and ν ≳ 1 will be a good choice
for the scaling technique.

ν
q

0.6 0.8 0.9 0.95

1.05
0.3888

5.7526e-07
0.3221

5.8297e-07
0.2659

5.2818e-07
0.3663

5.2500e-07

q−1
0.2333

6.9708e-07
0.3221

5.8293e-07
0.2954

5.3177e-07
0.3663

5.2488e-07

√
2

0.3888
6.4207e-07

0.2557
5.8117e-07

0.2954
5.2836e-07

0.3855
5.2640e-07

√
3

0.3888
7.1155e-07

0.3221
6.1260e-07

0.3283
5.4353e-07

0.3855
5.2370e-07

2
0.3888

7.5526e-07
0.3221

6.5640e-07
0.3647

5.5429e-07
0.4058

5.2492e-07

Table 4
Errors in Λe (upper-right) and xL (bottom-left) at t = 5 for different µ and δ in solving (7.13)

with Algorithm 3.1 and a fixed dmax = 0.05. Increasing µ makes the moving less sensitive to
translation and results in a smaller xL given the same δ. On the other hand, increasing δ to be too
large overincreases xL and leads to unnecessary additional computational cost. So setting µ ≳ 1 and
δ ≪ 1 could work well for the moving.

µ
δ

0.0005 0.001 0.002 0.005

1.0001
9.9985

2.0687e-07
9.9990

2.0687e-07
10.0000

2.0687e-07
25.0000

8.3063e-07

1.0002
3.0320

5.2547e+12
9.9990

2.0687e-07
10.0000

2.0687e-07
25.0000

8.3063e-07

1.0005
0.3635

8.9856e+16
1.0420

9.3629e+15
9.9980

2.0688e-07
24.9950

8.3062e-07

1.001
0.1745

1.1390e+17
0.3650

6.2077e+16
1.0880

5.3087e+15
24.9900

8.3061e+08

there that given the same q, the numerical solution tends to be less accurate with a
larger ν. This is because if we lift the scaling threshold, the time to do scaling will be
delayed and error will accumulate. On the other hand, if we compare errors in each
row of Table 3, it can be discovered that with the same ν, larger q will give better
results, since adjusting scaling factor in a more “continuous” manner could prevent
overadjusting the scaling factor within one single time step or failing to adjust the
scaling factor timely, and therefore adjust the scaling factor to best match diffusivity
of the solution. Therefore, we could conclude that setting q ≲ 1 and ν ≳ 1 for the
scaling technique would generate good results.

Example 10. In this example we would like to test how different choices of µ and
δ affect Algorithm 3.1’s capability in capturing translation through solving

∂tu+ 2∂xu = 0,

u(x, 0) =
1

1 + e
x
2
.

(7.13)

Its analytic solution is u(x, t) = 1/(1 + e
x−2t

2 ) and moves right at the speed of 2.
Table 4 records xL in the bottom-left and the errors in Λe in the upper-right at
t = 5, where the improved Euler scheme is used in evolve of Algorithm 3.1 and
we have set N = 40, ∆t = 0.001, and β0 = 3. It should be noted that we have
fixed dmax = 0.05, which is much larger than the actual translation with one single
time step: 0.002, for the purpose of testing. According to the numerical results in
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Table 4, we observed that, when fixing δ, increasing µ makes the moving less sensitive
to translation and eventually fail to capture the translation, which leads to huge errors
and is not desired. On the other hand, by fixing µ and comparing xL in each row
for different δ, we discovered that increasing δ allows xL to increase more in a single
time step and leads to a larger xL. Yet when µ is too small or δ is too large, the
moving mechanism may generate an xL which is larger than real translation, which
will result in an unnecessarily large interior domain (0, xL) and efforts in solving the
interior domain problem in Λi as more nodes are required in Λi. Hence we can set
µ ≳ 1 and δ ≪ 1 in implementing Algorithm 3.1 for achieving more accurate capture
of translation.

8. Applications to structured cell population models. One example of an
application requiring the solution of PDEs in an unbounded domain is the structured
population models that track populations of cells endowed with attributes such as
their size. The standard sizer-timer model for the density of cells with age near a
and size near x is formulated in [11], and generalizations to include stochasticity in
growth rate are studied in [19, 4]. Here we address a continuum model describing a
stochastic model for cell populations [24]:

∂n

∂t
+

∂n

∂a
+

∂(ng)

∂x
− 1

2

∂2(σ2n)

∂x2
= −D(x, a, t)n(x, a, t), (x, a) ∈ Λ× Λ,(8.1)

where n(a, x, t) describes the density of cells with respect to age a and size x at
time t, g(a, x, t) is the mean growth rate of an individual cell, and σ2(a, x, t) is the
variance of stochasticity in the growth rate, i.e., dx = gdt + σdBt, for an individual
cell. The fluctuating growth rate manifests itself as a diffusive term. The right-hand
side of (8.1) represents cell division occurring with division rate D(x, a, t). Dirichlet
boundary conditions are imposed at x = 0, n(0, a, t) = n0(a, t), and at x = +∞,
n(+∞, a, t) = 0 if we assume that there are no cells of infinite size. More importantly,
the boundary condition at a = 0 should account for two daughter cells (one of size x
and one of size y − x) from the binary fission of a mother cell of size y > x:

n(x, 0, t) = 2

∫ +∞

0

da

∫ +∞

x

dy D̃(y, x, a, t)n(y, a, t),(8.2)

where D̃(y, x, a, t) is the differential division rate representing the rate that a cell
of age a and size y gives birth to a daughter cell of size x < y. Integrating over
the daughter cell’s size x, D and D̃ satisfy D(y, a, t) =

∫ y

0
D̃(y, x, a, t)dx, reflecting

cell number conservation. Finally, to maintain biomass conservation during division,
D̃(y, x, a, t) = D̃(y− x, x, a, t). The prefactor 2 in (8.2) indicates that a cell of size y
gives birth to one daughter cell of size y − x and another of size x.

The nonlocal boundary condition (8.2) for cell proliferation plays an essential
role in depicting how cell division affects the cell population size and age structure
and presents a major obstacle in numerical computation as the integration is taken in
the unbounded domain (x,+∞)× (0,+∞). Another numerical challenge arises from
a possible blowup behavior in which

(8.3) lim
t→+∞

⟨x(t)⟩ = lim
t→+∞

∫ +∞
0

∫ +∞
0

xn(a, x, t)dadx∫ +∞
0

∫ +∞
0

n(a, x, t)dadx
= +∞.

Whether blowup can occur is of biological interest [3, 25] and has been predicted
within certain cell proliferation models (8.1) under specific conditions [3].
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Existing numerical methods such as the finite volume method in [25] typically
truncate the unbounded domain into a bounded domain and therefore cannot accu-
rately capture long time blowup behavior of ⟨x(t)⟩. The need for numerical solutions
in the unbounded domain Λ × Λ for (8.1) and (8.2) is thus evident. We apply the
scaling technique built in to Algorithm 2.1 only in the x-dimension for tracking the
increasing ⟨x(t)⟩, considering the age distribution is often presumed to be stable since
no cell could live too long without division. A standard two-dimensional pseudospec-
tral method with the generalized Laguerre functions is used in (a, x)-space, coupled
with a third-order TVD Runge–Kutta time discretization in t.

Example 11. We solve (8.1) and (8.2) with g(x, a, t) = t+7, σ2(x, a, t) = 2(t+6)x,
D(x, a, t) = x/(t+ 5), D̃(y, x, a, t) = 1/(t+ 5). These parameters lead to the analytic
solution n(x, a, t) = ete−2a exp(−x/(5 + t)), which produces the mean size ⟨x(t)⟩ =
5+ t. This result shows that the average size is unbounded as it grows linearly in time
and thus, for general cases, requires proper scaling in the x-dimension. Here we adopt
the same expansion order N in both size x- and age a-dimensions. For the nonlocal
boundary condition given in (8.2), we also use N + 1 Laguerre–Robatto collocation
points in each dimension to perform the numerical integration.

Figure 8 presents the numerical results with the initial scaling factors (βx, βa) =
(0.9, 1) and a time step of 0.002. We observe that the frequency-dependent scaling
algorithm, Algorithm 2.1, in the x-dimension shows a faster spectral convergence with
N than that of the unscaled algorithm (see Figure 8(a)). That is, both the sizer-timer

Fig. 8. Numerical results obtained by the scaling algorithm, Algorithm 2.1, for the structured
cell population proliferation model (8.1) with the nonlocal boundary (8.2): The scaled method gives
better results than the unscaled one till t = 10. The latter experiences a growth in error because
inappropriate scaling factors are used, whereas the former gains a faster spectral convergence in the
expansion order N . We adopt the same N in both size x- and age a-dimensions and set N = 20 for
the last three plots. The frequency-dependent scaling is applied only in the x-dimension for tracking
the blowup behavior in (8.3). The frequency indicator in the x-dimension is kept around 10−6

through constantly shrinking the scaling factor βx to capture the blowup. The average size of the
scaled solution is in good agreement with that of the analytical solution, i.e., ⟨x(t)⟩ = 5 + t.
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model (8.1) in unbounded domain and the nonlocal boundary condition (8.2) are well
resolved by the Laguerre spectral approximation with frequency-dependent scaling.
When fixing N = 20, the unscaled numerical solution experiences an error growth to
1.143e-02 till t = 10 for using inappropriate scaling factors, whereas the error of the
scaled solution is less than 8.662e-06 (see Figure 8(b)). The frequency indicator in the
x-dimension is kept around 10−6 (red curve with left-pointing triangles in Figure 8(c))
by continuously shrinking the scaling factor βx from 0.9 to 0.2766 for tracking the
blowup (black curve with asterisks in Figure 8(d)). The average size of the scaled
solution behaves almost exactly like ⟨x(t)⟩ = 5 + t and the value at t = 10 is 15.001
(see the red curve with left-pointing triangles in Figure 8(d)). Note that the scaling in
the a-dimension will really not be triggered even when we apply the scaling algorithm
for both x- and a-dimensions.

9. Summary and conclusions. The key to making spectral approximations in
unbounded domains more efficient is to allocate collocation points in an economical
manner such that crucial regimes of unknown solutions can be resolved accurately.
This is essentially an adaptive numerical method for PDEs in unbounded domains, for
which there are very few studies compared with its bounded-domain counterpart. Us-
ing the standard language of adaptive methods, the proposed scaling technique based
on the frequency indicator can be regarded as r-adaptivity to redistribute collocation
points via adjusting the scaling factor, while the proposed moving technique based on
the exterior-error indicator is similar to h-adaptivity to add collocation points in the
interior subdomain. Both indicators utilize only the numerical solution and do not
require prior knowledge of unknown solutions.

A promising direction will be to extend the scaling and moving techniques to
hyperbolic cross spaces [18] which may significantly reduce the cost of numerical
simulations in high dimensions. We are also carrying out more rigorous numerical
analysis of the proposed techniques as well as more detailed discussion on how to
choose the related parameters in solving different problems. Finally, apart from the
proposed scaling and moving techniques, a p-adaptive technique [26] which can be
applied to time-dependent problems with oscillatory behavior will also be investigated.

Acknowledgments. The authors are sincerely grateful to the handling editor
and referees for their patience and very valuable suggestions.
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