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Abstract

Diverse T and B cell repertoires play an important role in mounting effective immune

responses against a wide range of pathogens and malignant cells. The number of

unique T and B cell clones is characterized by T and B cell receptors (TCRs and

BCRs), respectively. Although receptor sequences are generated probabilistically by

recombination processes, clinical studies found a high degree of sharing of TCRs and

BCRs among different individuals. In this work, we use a general probabilistic model

for T/B cell receptor clone abundances to define “publicness” or “privateness” and

information-theoretic measures for comparing the frequency of sampled sequences

observed across different individuals. We derive mathematical formulae to quantify

the mean and the variances of clone richness and overlap. Our results can be used to

evaluate the effect of different sampling protocols on abundances of clones within an

individual as well as the commonality of clones across individuals. Using synthetic and

empirical TCR amino acid sequence data, we perform simulations to study expected

clonal commonalities across multiple individuals. Based on our formulae, we compare

these simulated results with the analytically predicted mean and variances of the
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repertoire overlap. Complementing the results on simulated repertoires, we derive

explicit expressions for the richness and its uncertainty for specific, single-parameter

truncated power-law probability distributions. Finally, the information loss associated

with grouping together certain receptor sequences, as is done in spectratyping, is

also evaluated. Our approach can be, in principle, applied under more general and

mechanistically realistic clone generation models.

Keywords T cell repertoire · Diversity · Public/private clones · Overlap · Sampling

1 Introduction

A major component of the adaptive immune system in most jawed vertebrates is the

repertoire of B and T lymphocytes. A diverse immune repertoire allows the adaptive

immune system to recognize a wide range of pathogens (Xu et al. 2020). B and T cells

develop from common lymphoid progenitors (CLPs) that originate from hematopoietic

stem cells (HSCs) in the bone marrow. B cells mature in the bone marrow and spleen

while developing T cells migrate to the thymus where they undergo their maturation

process. After encountering an antigen, naive B cells may get activated and differentiate

into antibody-producing plasma cells, which are essential for humoral (or antibody-

mediated) immunity. In recognizing and eliminating infected and malignant cells, T

cells contribute to cell-mediated immunity of adaptive immune response.

T-cell receptors bind to antigenic peptides (or epitopes) that are presented by major

histocompatibility complex (MHC) molecules on the surface of antigen-presenting

cells (APCs). T cells that each carry a type of TCR mature in the thymus and undergo

V(D)J recombination, where variable (V), diversity (D), and joining (J) gene segments

are randomly recombined (Alt et al. 1992; Travers et al. 1997). The receptors are het-

erodimeric molecules and mainly consist of an α and a β chain while only a minority,

about 1–10% (Girardi 2006), of TCRs consists of a δ and a γ chain. The TCR α and γ

chains are made up of VJ and constant (C) regions. Additional D regions are present in

β and γ chains. During the recombination process, V(D)J segments of each chain are

randomly recombined with additional insertions and deletions. After recombination,

only about 5% or even less (Yates 2014) of all generated TCR sequences are selected

based on their ability to bind to certain MHC molecules (“positive selection”) and to

not trigger autoimmune responses (“negative selection”). These naive T cells are then

exported from the thymus into peripheral tissue where they may interact with foreign

peptides that are presented by APCs. The selection process as well as subsequent

interactions are specific to an individual.

The most variable parts of TCR sequences are the complementary determining

regions (CDRs) 1, 2, and 3, located within the V region, among which the CDR3β

is the most diverse (Abbas et al. 2021). Therefore, the number of distinct receptor

sequences, the richness R, of TCR repertoires is typically characterized in terms of

the richness of CDR3β sequences. Only about 1% of T cells express two different

TCRβ chains (Davodeau et al. 1995; Padovan et al. 1995; Schuldt and Binstadt 2019),

whereas the proportion of T cells that express two different TCRα chains may be as

high as 30% (Rybakin et al. 2014; Schuldt and Binstadt 2019).
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B cells can also respond to different antigens via different B cell receptors (BCRs)

that are comprised of heavy and light chains. As with TCRs, the mechanism underlying

the generation of a diverse pool of BCRs is VDJ recombination in heavy chains and

VJ recombination in light chains. Positive and negative selection processes sort out

about 90% of all BCRs that react too weakly or strongly with certain molecules (Tus-

siwand et al. 2009). As a result of the various recombination and joining processes

and gene insertions and deletions, the practical theoretical maximum repertoire size

�0 of the variable region of BCR and TCR receptors can be ∼ 1014−1020 (Davis

and Bjorkman 1988; Venturi et al. 2008; Zarnitsyna et al. 2013; Lythe et al. 2016).

This value is comparable to the possible number of amino acid sequences of typi-

cal length ∼ 11−12. However, many of these sequences are not viable, are removed

through thymic selection, or are have such low probability occuring that they are never

expected to be produced in an organism’s lifetime. Thus, the effective number of TCR

variable regions that are produced and that can contribute to the organism’s repertoire

size, �, should be much less than �0. Estimating the true size of BCR and TCR reper-

toires realized in an organism is challenging since the majority of such analyses are

based on small blood samples, leading to problems similar to the “unseen species”

problem in ecology (Laydon et al. 2015). Nonetheless, the number of unique TCRs

realized in organisms has been estimated to be about 106 for mice (Casrouge et al.

2000) and about 108 for humans (Soto et al. 2020). B-cell repertoire size for humans is

estimated to be 108−109 (DeWitt et al. 2016). These values are significantly smaller

than �0 and might be used as an effective �.

Each pool of BCR and TCR sequences realized in one organism i can be seen as a

subset Ui of the set of all possible species-specific sequences S. Sequences that occur

in at least two different organisms i and j (i.e., sequences that are elements of Ui ∩U j )

are commonly referred to as “public” sequences (Laydon et al. 2015) while “private”

sequences occur only in one of the individuals tested. The existence of public TCRβ

sequences has been established in several previous works (Putintseva et al. 2013;

Robins et al. 2010; Shugay et al. 2013; Soto et al. 2020). More recently, a high degree

of shared sequences has been also observed in human BCR repertoires (Briney et al.

2019; Soto et al. 2019).

The notions of public and private clonotypes have been loosely defined. Some refer-

ences use the term “public sequence” to refer to those sequences that “are often shared

between individuals” (Shugay et al. 2013) or “shared across individuals” (Greiff et al.

2017). Recently, Elhanati et al. (2018) and Ruiz Ortega et al. (2023) have formulated

a mathematical and statistical framework to quantify “publicness” and “privateness.”

Building on these works, we derive a set of measures that enable us to quantify immune

repertoire properties, including the expected total richness, the expected numbers of

public and private clones, and their variances (confidence levels), all expressed in

terms of the general set of clone generation probabilities or clone populations. One of

our metrics is the expected “M-overlap” or “M-publicness,” defined as the expected

number of clones that appear in samples drawn from M separate individuals. This

quantity is a clinically interpretable limit of the expected “sharing number” defined

in Elhanati et al. (2018). Similarly, we define M-private clones as clones that are not

shared by all M individuals, i.e., occurring in at most M − 1 individuals.
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In the next section, we first give an overview of the mathematical concepts that are

relevant to characterize TCR and BCR distributions. We then formulate a statistical

model of receptor distributions in Sect. 3. In Sects. 3.1 and 3.2, we derive quanti-

ties associated with receptor distributions in single organisms and across individuals,

respectively. We will primarily focus on the overlap of repertoires across individuals

and on the corresponding confidence intervals that can be used to characterize “pub-

lic” and “private” sequences of immune repertoires. Formulae we derived are listed in

Table 1. In Sect. 4, we use synthetic and empirical TCR amino acid sequence data and

perform simulations to compare theoretical predictions of repertoire overlaps between

different individuals with corresponding observations. Finally, when analyzing empir-

ical sequence data, one may use continuous approximations (Elhanati et al. 2018; Ruiz

Ortega et al. 2023) and averaging (i.e., coarse-graining) methods that change the infor-

mation content in the underlying dataset. Coarse-graining of TCR and BCR data may

also be a result of the employed sequencing techniques (Gorski et al. 1994; Fozza

et al. 2017). In Sect. 6, we therefore briefly discuss the information loss associated

with analyzing processed cell data. We discuss our results and conclude our paper in

Sect. 7. Our source codes are publicly available at GitLab (2022).

2 Mathematical Concepts

Although receptor sequences and cell counts are discrete quantities, using contin-

uous functions to describe their distribution may facilitate the mathematical analysis

of the quantities that we derive in the subsequent sections. For example, a continuous

approximation (i.e., a “density-of-states approximation”) has been used to characterize

the number of T cell receptor sequences possible within a continuous range of genera-

tion probabilities (Murugan et al. 2012; Elhanati et al. 2018; Ruiz Ortega et al. 2023).

Another instance of a continuous cell statistics approximation involves employing

power laws to describe the rank-abundance curves associated with immune reper-

toires (see, e.g., Gaimann et al. 2020). We therefore briefly review some elementary

concepts associated with continuous distributions and their discretization.

Let p(x) be the probability density associated with the distribution of traits, as

depicted in Fig. 1a. The probability that a certain trait occurs in [x, x +dx) is p(x) dx .

The corresponding discretized distribution elements are

pi :=
∫ (i+1)�

i�

p(x) dx, (1)

where � is the discretization step size of the support of p(x). If we discretize the

values of probabilities, the number of clones with a certain relative frequency pi is

given by the clone count

ck :=
∑

i

1 (kδ ≤ pi < (k + 1)δ) , (2)

where the indicator function 1 = 1 if its argument is satisfied and 0 otherwise. As

shown in Fig. 1b, the parameter δ defines an interval of frequency values and modulates

the clone-count binning. Figures 1b, c show how pi and ck are constructed from a con-

tinuous distribution p(x). If p(x) is not available from data or a model, an alternative
123
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Fig. 1 Sampling from a continuous distribution, described in terms of an underlying probability density p(x)

and number density n(x). The probability density p(x) (solid red line) and the Riemann sum approximation

to the probability (red bars of width �) are shown in panel (a). The probability that a trait in the interval

[x, x + dx) arises is p(x)dx . As shown in (b), this distribution can be discretized directly by the intervals

[i�, (i + 1)�) (red bars) defining discrete traits and their associated probabilities pi (see Eq. (1)). The

probabilities pi can be transformed into clone counts ck (the number of identities i that are represented by

k individuals) using Eq. (2), which are shown in (c). A finite sample of a population described by p(x)

yields the binary outcome shown in (d). In this example, the total number of samples is N = 41 and since

the trait space x is continuous, the probability that the exact same trait arises in more than one sample is

almost surely zero. Light blue bars in panel (e) represent number counts ni binned according to �. The

probabilities p̂i = ni /N provide an approximation of pi . Clone counts for the empirical p̂i are calculated

according to Eq. (3) and shown in (f) (Color figure online)

representative starts with the number density n(x), which can be estimated by sampling

a process which follows p(x). The probability that a continuous trait x is drawn twice

from a continuous distribution p(x) is almost surely zero. Hence, the corresponding

number counts n(x) are either 1 if X ∈ [x, x + dx) (i.e., if trait X is sampled) or 0

otherwise, as shown in Fig. 1d, e. We say that X is of clonotype i if X ∈ [i�, (i +1)�)

(1 ≤ i ≤ �) and we use ni to denote the number of cells of clonotype i . Then, if

� denotes the effective number of different clonotypes, the total T-cell (or B-cell)

population is N ≡
∑�

i=1 ni . The relative empirical abundance of clonotype i is thus

p̂i = ni/N (see Fig. 1e), satisfying the normalization condition
∑

i p̂i = 1. Besides

the simple discrete estimate p̂i = ni/N , one can also reconstruct p(x) from n = {ni }
using methods such as kernel density estimation. The corresponding empirical clone

count derived from the number representation ni is defined as

ĉk :=
�

∑

i=1

1(ni , k) (3)
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Fig. 2 Schematic of sampling of multiple species from multiple individuals. A central process produces

(through V(D)J recombination) TCRs. Individuals select for certain TCRs resulting in population n
(m)
i

of

T cells with receptor i in individual m, for a total T-cell count N (m) =
∑�

i n
(m)
i

. The selection of TCR

i by individual m (in their individual thymuses) is defined by the parameter θ
(m)
i

which gives an effective

probability p
(m)
i

≡ θ
(m)
i

p
(0)
i

. A sample with cell numbers S(m) ≪ N (m) is drawn from individual m and

sequenced to determine s
(m)
i

, the number of cells of type i in the subsample drawn from individual m

and shown in Fig. 1f. The indicator function 1(a, b) with arguments a, b ∈ Z≥0

is equal to 1 if a = b and 0 otherwise. Clone counts can be used to describe T

cell repertoires, especially if clone identities are not important. Simple birth-death-

immigration models can also be cast in terms of, e.g., expected clone counts E[ĉk(t)]
(Goyal et al. 2015; Lewkiewicz et al. 2019).

3 Whole Organism Statistical Model

Using the mathematical quantities defined above, we develop a simple statistical model

for BCR and TCR sequences distributed among individuals. Although our model is

applicable to both BCR and TCR sequences, we will primarily focus on the charac-

terization of TCRs for simplicity. B cells undergo an additional process of somatic

hypermutation and class switching leading to a more dynamic evolution of the more

diverse B cell repertoire (Elhanati et al. 2015). By focusing on naive T cells, we can

assume their populations are generated by the thymus via a single, simple effective

process.

Assume a common universal recombination process (see Fig. 2) in T-cell develop-

ment that generates a cell carrying TCR of type 1 ≤ i ≤ �0 with probability p
(0)
i .

Here, �0 ≫ � is the theoretical number of ways the full TCR sequence can be con-

structed which is itself much larger than the effective number � that appears in an

individual after thymic selection. Although each new T cell produced carries TCR i

with probability p
(0)
i , many sequences i are not realized given thymic selection (that

eliminates ∼ 98% of them), the finite number of T cells produced over a lifetime

(Travers et al. 1997; Yates 2014; Lythe et al. 2016), or the extremely low generation
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probability of some clones. These effects are invoked to truncate �0 to � ≪ �0.

However, we will see in Sect. 5, explicit scaling relastionships for the limit � ≫ 1

can be found for general power-law ordered probabilities pi .

Besides VDJ recombination (Slabodkin et al. 2021), thymic selection and subse-

quent death, activation, and proliferation occur differently across individuals 1 ≤ m ≤
M and may be described by model parameters θ

(m)
i . Such a model translates the funda-

mental underlying recombination process into a population of n
(m)
i T cells with TCR

i and total population N (m) =
∑�

i=1 n
(m)
i in individual m. The connection between

p
(0)
i , θ

(m)
i and n

(m)
i , N (m) might be described by dynamical models, deterministic or

stochastic, such as those presented in Dessalles et al. (2022).

At any specific time, individual m will have a cell population configuration n(m) ≡
(n

(m)
1 , n

(m)
2 , . . . , n

(m)
� ) with probability P(n(m)|θ (m), N (m)). Each individual can be

thought of as a biased sample from all cells produced via the universal probabilities

p
(0)
i . We can approximate individual probabilities p

(m)
i ≡ θ

(m)
i p

(0)
i , 1 ≤ i ≤ �,

where the number of effective TCRs � for individual m might have as upper bound

� ∼ 1014, if, for example, we are considering just the CDR3 region of the β chain.

Assuming a time-independent model (e.g, a model in steady-state), we can describe the

probability of a T-cell population n(m) in individual m by a multinomial distribution

over individual probabilities p(m) ≡ {p
(m)
i }:

P({n(m)}|{p(m), N (m)}) = N (m)!
�

∏

i=1

[p
(m)
i ]n

(m)
i

n
(m)
i !

, (4)

where
∑�

i=1 n
(m)
i ≡ N (m) and

∑�
i=1 p

(m)
i ≡ 1. Thus, each individual can be thought

of as a “sample” of the “universal” thymus. Neglecting genetic relationships amongst

individuals, we can assume them to be independent with individual probabilities p
(m)
i .

These are the probabilities that a randomly drawn cell from individual m is a cell

of clone i . Repeated draws (with replacement) would provide the samples for the

estimator p̂
(m)
i = n

(m)
i /N (m), assuming n

(m)
i are counted and N (m) is also known or

estimated. This representation allows us to easily express the probabilities of any con-

figuration n(m) analytically. A dynamical model for n
(m)
i cannot be directly described

by our simple probabilities p
(m)
i . A mechanistically more direct model could incor-

porate the production rate of clone i T cells from the thymus, the proliferation and

apoptosis rates of clone i cells, and interactions manifested as, e.g., carrying capacity

as model parameters. Probability distributions for n(m), as a function of birth, death,

and immigration rates, have been found in Dessalles et al. (2018) and can also be used,

instead of Eq. (4), to construct probabilities.

3.1 Single Individual Quantities

First, we focus on quantities intrinsic to a single individual organism; thus, we can

suppress the “m = 1” label. Within an individual, we can use clone counts to define

measures such as the richness
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R(n):=
�

∑

i=1

1(ni ≥ 1) =
∑

k≥1

�
∑

i=1

1(ni , k) ≡
∑

k≥1

ĉk, (5)

where ĉk ≡
∑�

i=1 1(ni , k) is defined in Eq. (3) (the number of clones that are of

size k). Other diversity/entropy measures such as Simpson’s indices, Gini indices,

etc. Rempala and Seweryn (2013) and Xu et al. (2020) can also be straightforwardly

defined. Given the clone populations n, the individual richness can be found by direct

enumeration of Eq. (5).

We can also express the richness in terms of the underlying probabilities p associated

with the individual by first finding the probability ρi that a type-i cell appears at all

among the N cells within said individual. This probability is

ρi ≡ P(ni ≥ 1|p, N ) = 1 − (1 − pi )
N (6)

and corresponds to that of a binary outcome, either appearing or not appearing. Higher

order probabilities like ρi j (both i- and j-type cells appearing in a specific individual)

can be computed using the marginalized probability

P(ni , n j |p, N ) =
N ! p

ni

i p
n j

j (1 − pi − p j )
N−ni −n j

ni ! n j ! (N − ni − n j )!
(7)

to construct

ρi j ≡ P(ni , n j ≥ 1|p, N )

= 1 + (1 − pi − p j )
N − (1 − pi )

N − (1 − p j )
N .

(8)

Higher moments can be straightforwardly computed using quantities such as

ρi jk ≡ P(ni , n j , nk ≥ 1|p, N )

= 1 − (1 − pi − p j − pk)
N −

∑

ℓ=i, j,k

(1 − pℓ)
N +

∑

q �=ℓ=i, j,k

(1 − pq − pℓ)
N . (9)

These expressions arise when we compute the moments of R [defined by Eq. (5)]

in terms of the probabilities p. Using the single-individual multinomial probability

P(n|p, N ) (Eq. (4)) allows us to express moments of the richness in a single individual

in terms of the underlying system probabilities p. The first two are given by

E[R(p)] =
∑

n

�
∑

i=1

1(ni ≥ 1)P(n|p, N ) =
�

∑

i=1

P(ni ≥ 1|p, N ) =
�

∑

i=1

ρi ,

E[R2(p)] =
∑

n

[

�
∑

i=1

1(ni ≥ 1)

]2
P(n|p, N )

=
�

∑

i, j=1

P(ni , n j ≥ 1|p, N ) ≡ E[R] +
�

∑

j �=i

ρi j .

(10)
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3.2 Multi-individual Quantities

Here, we consider the distribution n(m) across different individuals and construct

quantities describing group properties. For example, the combined richness of all

TCR clones of M individuals is defined as

R(M)({n(m)}):=
∑

k≥1

�
∑

i=1

1

( M
∑

m=1

n
(m)
i , k

)

. (11)

To express the expected multi-individual richness in terms of the underlying individual

systems probabilities p(m), we weight Eq. (11) over the M-individual probability

PM ({n(m)}|{p(m), N (m)}) ≡
M
∏

m=1

P({n(m)}|{p(m), N (m)}), (12)

and sum over all allowable n(m). For computing the first two moments of the total-

population richness in terms of p(m), we will make use of the marginalized probability

ρ̃i that clone i appears in at least one of the M individuals

ρ̃i ≡ P

( M
∑

m=1

n
(m)
i ≥ 1

∣

∣

∣
{p(m), N (m)}

)

= 1 − P

(

n
(m)
i = 0 ∀ m

)

= 1 −
M
∏

m=1

(

1 − p
(m)
i

)N (m)

.

(13)

Note that ρ̃i >
∏M

m=1 ρ
(m)
i describes the probability that a type i cell occurs at all

in the total population, while
∏M

m=1 ρ
(m)
i describes the probability that a type i cell

appears in each of the M individuals.

We will also need the joint probability that clones i and j both appear in at least

one of the M individuals P
(
∑M

m=1 n
(m)
i ≥ 1,

∑M
ℓ=1 n

(ℓ)
j ≥ 1|{p(m), N (m)}

)

, which

we can decompose as

P
(

M
∑

m=1

n
(m)
i ≥ 1,

M
∑

ℓ=1

n
(ℓ)
j ≥ 1

∣

∣{p(m), N (m)}
)

= 1 − P
(

M
∑

m=1

n
(m)
i ≥ 1,

M
∑

ℓ=1

n
(ℓ)
j = 0

∣

∣{p(m), N (m)}
)

− P
(

M
∑

m=1

n
(m)
i = 0,

M
∑

ℓ=1

n
(ℓ)
j ≥ 1

∣

∣{p(m), N (m)}
)

− P
(

M
∑

m=1

n
(m)
i =

M
∑

ℓ=1

n
(ℓ)
j = 0

∣

∣{p(m), N (m)}
)

.

(14)
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Upon using Eqs. (4) and (7), we find

P
(

M
∑

m=1

n
(m)
i ≥ 1,

M
∑

ℓ=1

n
(ℓ)
j = 0

∣

∣{p(m), N (m)}
)

=
M
∏

m=1

(

1 − p
(m)
i

)N (m)

−
M
∏

m=1

(

1 − p
(m)
i − p

(m)
j

)N (m)

,

(15)

allowing us to rewrite Eq. (14) as

ρ̃i j ≡ P
(

M
∑

m=1

n
(m)
i ≥ 1,

M
∑

ℓ=1

n
(ℓ)
j ≥ 1

∣

∣{p(m), N (m)}
)

= 1 −
M
∏

m=1

(

1 − p
(m)
i

)N (m)

−
M
∏

m=1

(

1 − p
(m)
j

)N (m)

+
M
∏

m=1

(

1 − p
(m)
i − p

(m)
j

)N (m)

.

(16)

Note also that ρ̃i j >
∏M

m=1 ρ
(m)
i j .

Using the above definitions, we can express the mean total-population richness as

E[R(M)({p(m)})] =
∑

n(m)

�
∑

i=1

∑

k≥1

1

( M
∑

ℓ=1

n
(ℓ)
i , k

)

∏M
m=1 P({n(m)}|{p(m), N (m)})

=
�

∑

i=1

P

( M
∑

m=1

n
(m)
i ≥ 1

∣

∣

∣
{p(m), N (m)}

)

=
�

∑

i=1

[

1 −
M
∏

m=1

(1 − p
(m)
i )N (m)

]

≡
�

∑

i=1

ρ̃i

= � −
�

∑

i=1

M
∏

m=1

(1 − p
(m)
i )N (m)

≈ � −
�

∑

i=1

e−
∑M

m=1 p
(m)
i N (m)

,

(17)

where the last approximation holds for p
(m)
i ≪ 1, N (m) ≫ 1. The second moment

of the total M-population richness can also be found in terms of E[R(M)] and

Eq. (16),
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0

Fig. 3 Three individuals with overlapping cell number distributions n
(m)
i

, m = 1, 2, 3. The richness R(3) is

the total number of distinct TCRs found across all individuals, and is defined in Eq. (11). The overlap K (3)

is the number of TCR clones found in all three individuals, as defined in Eq. (19). For visual simplicity, the

set of clones i present in each individual are drawn to be contiguous. When considering subsampling of cells

from each individual, K (M) will be reduced since some cell types i will be lost. The corresponding values,

s
(m)
i

, K
(M)
s , and R

(M)
s can be constructed from Eqs. (23) and (24) reflecting the losses from subsampling

E

[ (

R(M)({p(m)})
)2 ]

=
∑

{n(M)}

[

�
∑

i=1

1

( M
∑

m=1

n
(m)
i ≥ 1

)

]2 M
∏

m=1

P

(

{n(m)}|{p(m), N (m)}
)

=
�

∑

i, j=1

P

( M
∑

m=1

n
(m)
i ≥ 1,

M
∑

ℓ=1

n
(ℓ)
j ≥ 1

∣

∣

∣
{p(m), N (m)}

)

=
�

∑

i=1

P

( M
∑

m=1

n
(m)
i ≥ 1

∣

∣

∣
{p(m), N (m)}

)

+
�

∑

i �= j

P

( M
∑

m=1

n
(m)
i ≥ 1,

M
∑

ℓ=1

n
(ℓ)
j ≥ 1

∣

∣

∣
{p(m), N (m)}

)

= E[R(M)({p(m)})] +
�

∑

i �= j

ρ̃i j .

(18)

Given n(m) of all individuals, we can also easily define the number of distinct TCR

clones that appear in all of M randomly selected individuals, the “M-overlap” or

“M-publicness”

K (M)({n(m)}):=
�

∑

i=1

M
∏

m=1

∑

k(m)≥1

1(n
(m)
i , k(m)). (19)

Figure 3 provides a simple example of three individuals each with a contiguous dis-

tribution of cell numbers n
(m)
i that overlap.

As with Eqs. (5) and (10), we can express the overlap in terms of the underlying

individual probabilities p(m) by weighting Eq. (19) by the M-population probability
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∏M
m=1 P(n(m)|p(m), N (m)) (see Eq. (4)) to find

E[K (M)({p(m)})] =
∑

{n(m)}

[

�
∑

i=1

M
∏

m=1

1(n
(m)
i ≥ 1)

]

PM ({n(m)}|{p(m), N (m)})

=
�

∑

i=1

M
∏

m=1

P(n
(m)
i ≥ 1|{p(m), N (m)})

=
�

∑

i=1

M
∏

m=1

[

1 −
(

1 − p
(m)
i

)N (m)
]

≡
�

∑

i=1

M
∏

m=1

ρ
(m)
i

(20)

E

[ (

K (M)({p(m)})
)2 ]

=
∑

{n(m)}

[

�
∑

i=1

M
∏

m=1

1(n
(m)
i ≥ 1)

]2

PM ({n(m)}|{p(m), N (m)})

=
�

∑

i, j=1

M
∏

m=1

P(n
(m)
i , n

(m)
j ≥ 1|{p(m), N (m)})

=
�

∑

i=1

M
∏

m=1

[

1 − (1 − p
(m)
i )N (m)

]

+
�

∑

j �=i

M
∏

m=1

[

1 + (1 − p
(m)
i − p

(m)
j )N (m) − (1 − p

(m)
i )N (m)− (1 − p

(m)
j )N (m)

]

≡ E[K (M)({p(m)})] +
�

∑

j �=i

M
∏

m=1

ρ
(m)
i j .

(21)

The expected number of clones shared among all M individuals, E[K (M)], provides a

natural measure of M-overlap. Clearly,E[K (M)] < E[K (M ′)] if M > M ′. As with M-

publicness, we can identify the expected M-privateness as �−E
[

K (M)
]

, the expected

number of clones that are not shared by all M individuals, i.e., that occur in at most

M − 1 individuals. This “privateness” is related to a multi-distribution generalization

of the “dissimilarity probability” of samples from two different discrete distributions

(Hampton and Lladser 2012). Variations in M-overlap associated with a certain cell-

type distribution are captured by the variance var
[

K (M)
]

= E
[

(K (M))2
]

−E
[

K (M)
]2

.

If the total number of sequences � is very large, parallelization techniques (see Sect. 4)

should be employed to evaluate the term
∑�

j �=i

∏M
m=1 ρ

(m)
i j in E

[

(K (M))2
]

.

A more specific definition of overlap or privateness may be that a clone must appear

in at least some specified fraction of M tested individuals. To find the probability that

Mi ≤ M individuals share at least one cell of a single type i , we use the Poisson bino-

mial distribution describing independent Bernoulli trials on individuals with different
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success probabilities ρ
(m)
i ≡ ρ(n

(m)
i ≥ 1):

P(Mi |{p
(m)
i }) =

∑

A∈FMi

∏

m∈A

ρ
(m)
i

∏

ℓ∈Ac

(1 − ρ
(ℓ)
i ), (22)

where FMi
is the set of all subsets of Mi integers that can be selected from the set

(1, 2, 3, . . . , M) and Ac is the complement of A. Equation (22) gives a probabilistic

measure of the prevalence of TCR i across M individuals. For example, one can use it

to define a mean frequency E[Mi ]/M . One can evaluate Eq. (22) recursively or using

Fourier transforms, particularly for M < 20 (Chen and Liu 1997; Hong 2013).

3.3 Subsampling

The results above are described in terms of the entire cell populations n(m) or their

intrinsic generation probabilities p(m). In practice, one cannot measure n
(m)
i or even

N (m) in any individual m. Rather, we can only sample a much smaller number of cells

S(m) ≪ N (m) from individual m, as shown in Fig. 2. Within this subsample from

individual m, we can count the number s
(m)
i of type-i cells. Since only subsamples

are available, we wish to define quantities such as probability of occurrence, richness,

and overlap in terms of the cell counts s(m) ≡ {s(m)
i } in the sample extracted from an

individual. Quantities such as sampled richness and overlap can be defined in the same

way except with s(m) as the underlying population configuration. To start, first assume

that the cell count n in a specific individual is given. If that individual has N cells of

which S are sampled, the probability of observing the population s = {s1, s2, . . . , s�}
in the sample is given by (assuming all cells are uniformly distributed and randomly

subsampled at once, without replacement) (Chao and Lin 2012)

P(s|n, S, N ) = 1
(

N
S

)

�
∏

i=1

(

ni

si

)

,

�
∑

i=1

si = S. (23)

The probability that cell type j appears in the sample from an individual with popu-

lation n can be found by marginalizing over all s j �=i , giving

σi ≡ P(si ≥ 1|n, S, N ) = 1 −
(

N−ni

S

)

(

N
S

)
. (24)

This result can be generalized to more than one TCR clone present. For example, the

probability that both clones i and j are found in a sample is

σi j ≡ P(si , s j ≥ 1|n, S, N ) = 1 +
(N−ni −n j

S

)

(

N
S

)
−

(

N−ni

S

)

(

N
S

)
−

(N−n j

S

)

(

N
S

)
. (25)
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Using Eq. (23) as the probability distribution, we can also find the probability that

clone i appears in any of the M S(m)-sized samples

σ̃i ≡ P

( M
∑

m=1

s
(m)
i ≥ 1

∣

∣

∣
{n(m), S(m), N (m)}

)

= 1 −
M
∏

m=1

(N (m)−n
(m)
i

S(m)

)

(

N (m)

S(m)

)

, (26)

and the joint probabilities that clones i and j appear in any sample

σ̃i j ≡ P

( M
∑

m=1

s
(m)
i ≥ 1,

M
∑

ℓ=1

s
(ℓ)
j ≥ 1

∣

∣

∣
{n(m), S(m), N (m)}

)

= 1 +
M
∏

m=1

(N (m)−n
(m)
i −n

(m)
j

S(m)

)

(

N (m)

S(m)

)

−
M
∏

m=1

(N (m)−n
(m)
i

S(m)

)

(

N (m)

S(m)

)

−
M
∏

m=1

(N (m)−n
(m)
j

S(m)

)

(

N (m)

S(m)

)

.

(27)

Quantities such as richness and publicness measured within samples from the group

can be analogously defined in terms of clonal populations s(m):

Rs(s):=
∑

k≥1

�
∑

i=1

1(si , k), (28)

R(M)
s ({s(m)}):=

∑

k≥1

�
∑

i=1

1
(

M
∑

m=1

s
(m)
i , k

)

, (29)

and

K (M)
s ({s(m)}):=

�
∑

i=1

M
∏

m=1

∑

k(m)≥1

1(s
(m)
i , k(m)). (30)

For a given n(m), these quantities can be first averaged over the sampling distribution

Eq. (23) to express them in terms of n(m) and to explicitly reveal the effects of random

sampling. The first two moments of Rs, R
(M)
s , and K

(M)
s expressed in terms of n(m)

can be easily found by weighting Eqs. (28), (29), and (30) by P(s|n, S, N ) and

P(M) =
∏M

m=1 P(s(m)|n(m), S(m), N (m)):

E[Rs(n)] = � − 1
(

N
S

)

�
∑

i=1

(

N − ni

S

)

≡
�

∑

i=1

σi ,

E
[(

Rs(n)
)2] = E[Rs(n)] +

�
∑

i �= j

σi j

(31)
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E
[

R(M)
s ({n(m)})

]

=
∑

{s(m)}

�
∑

i=1

1

( M
∑

m=1

s
(m)
i ≥ 1

)

∏M
m=1 P({s(m)}|{n(m), S(m), N (m)})

=
�

∑

i=1

P

( M
∑

m=1

s
(m)
i ≥ 1

∣

∣

∣
{n(m), S(m), N (m)}

)

= � −
�

∑

i=1

M
∏

m=1

(N−n
(m)
i

S

)

(

N
S

)
≡

�
∑

i=1

σ̃i ,

E

[

(

R(M)
s ({n(m)})

)2
]

=
∑

{n(m)}

[

�
∑

i=1

1

( M
∑

m=1

s
(m)
i ≥ 1

)

]2 M
∏

m=1

P({s(m)}|{n(m), S(m), N (m)})

=
�

∑

i, j=1

M
∏

m=1

P

( M
∑

m=1

s
(m)
i ,

M
∑

ℓ=1

s
(m)
j ≥ 1

∣

∣

∣
{n(m), S(m), N (m)}

)

= E
[

R(M)
s ({n(m)})

]

+
�

∑

i �= j=1

σ̃i j ,

(32)

E
[

K (M)
s ({n(m)})

]

=
∑

{s(m)}

�
∑

i=1

M
∏

m=1

1(s
(m)
i ≥ 1)P(s(m)|{n(m), S(m), N (m)})

=
�

∑

i=1

M
∏

m=1

P(s
(m)
i ≥ 1|{n(m), S(m), N (m)})

=
�

∑

i=1

M
∏

m=1

⎡

⎢

⎣
1 −

(N (m)−n
(m)
i

S(m)

)

(

N (m)

S(m)

)

⎤

⎥

⎦
≡

�
∑

i=1

M
∏

m=1

σ
(m)
i ,

E

[

(

K (M)
s ({n(m)})

)2
]

=
∑

{s(m)}

[

�
∑

i=1

M
∏

m=1

1(s
(m)
i ≥ 1)

]2 M
∏

m=1

P({s(m)}|{n(m), S(m), N (m)})

=
�

∑

i, j=1

M
∏

m=1

P(s
(m)
i , s

(m)
j ≥ 1|{n(m), S(m), N (m)})

≡ E
[

K (M)
s ({n(m)})

]

+
�

∑

i �= j

M
∏

m=1

σ
(m)
i j .

(33)

123



Mathematical Characterization of Private and Public... Page 17 of 31 102

All of the above quantities can also be expressed in terms of the underlying prob-

abilities p(m) rather than the population configurations n(m). To do so, we can further

weight Eqs. (31), (32), and (33) over the probability Eq. (4) to render these quantities

in terms of the underlying probabilities p(m). However, we can also first convolve

Eq. (23) with the multinomial distribution in Eq. (4) (suppressing the individual index

m)

P(s|p, S, N ) =
∑

n

P(s|n, S, N )P(n|p, N ), (34)

along with the implicit constraints
∑�

i=1 ni ≡ N and
∑�

i=1 si = S to find

P(s|p, S) = S!
�

∏

i=1

p
si

i

si !
,

�
∑

i=1

si = S, (35)

which is a multinomial distribution identical in form to P(n|p, N ) in Eq. (4), except

with n replaced by s and N replaced by S. Uniform random sampling from a multi-

nomial results in another multinomial. Thus, if we use the full multi-individual

probability

PM ({s(m)}|{p(m), S(m)}) ≡
M
∏

m=1

P({s(m)}|{p(m), S(m)}) (36)

to compute moments of the sampled richness and publicness, they take on the same

forms as the expressions associated with the whole-organism quantities. For exam-

ple, in the p representation, the probability that clone i appears in the sample from

individual m is

ρ
(m)
i (S) ≡ P(s

(m)
i ≥ 1|{p(m), S(m)}) = 1 − (1 − p

(m)
i )S(m)

, (37)

in analogy with Eq. (6), while the two-clone joint probability in the sampled from

individual m becomes

ρ
(m)
i j (S) ≡ P(s

(m)
i , s

(m)
j ≥ 1|{p(m), S(m)})

= 1 + (1 − p
(m)
i − p

(m)
j )S(m)− (1 − p

(m)
i )S(m)− (1 − p

(m)
j )S(m)

,
(38)

in analogy with Eq. (8). Similarly, for the overlap quantities, in analogy with Eqs. (13)

and (16), we have

ρ̃i (S) ≡ P

( M
∑

m=1

s
(m)
i ≥ 1

∣

∣

∣
{p(m), S(m)}

)

= 1 − P

(

s
(m)
i = 0 ∀ m

)

= 1 −
M
∏

m=1

(

1 − p
(m)
i

)S(m)

.

(39)
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ρ̃i j (S) ≡ P

( M
∑

m=1

s
(m)
i ≥ 1,

M
∑

ℓ=1

s
(ℓ)
j ≥ 1

∣

∣

∣
{p(m), S(m)}

)

= 1 −
M
∏

m=1

(

1 − p
(m)
i

)S(m)

−
M
∏

m=1

(

1 − p
(m)
j

)S(m)

+
M
∏

m=1

(

1 − p
(m)
i − p

(m)
j

)S(m)

.

(40)

The expressions for the sampled moments E[Rs(p)], E[R2
s (p)], E

[

R
(M)
s ({p(m)})

]

,

E
[(

R
(M)
s ({p(m)})

)2]
, E[K (M)

s ({p(m)})], and E
[(

K
(M)
s ({p(m)})

)2]
follow the same

form as their unsampled counterparts given in Eqs. (10), (17), (18), (20), and (21),

except with ρ
(m)
i , ρ

(m)
i j , ρ̃i , and ρ̃i j replaced by their ρ

(m)
i (S), ρ

(m)
i j (S), ρ̃i (S), and

ρ̃i j (S) counterparts. This simplifying property arises because of the conjugate nature

of the multinomial distributions (4), (35), and (34).

In addition to simple expressions for the moments of K
(M)
s , we can also find expres-

sions for the probability distribution over the values of K
(M)
s . In terms of n(m), since

the probability that s
(m)
i ≥ 1 in the samples from all 1 ≤ m ≤ M individuals

is σi ≡
∏M

m=1 P(s
(m)
i ≥ 1|{n(m), S(m), N (m)}) =

∏M
m=1 σ

(m)
i , the probability that

exactly k clones are shared by all M samples is

P(K (M)
s = k|{σ (m)

i }) =
∑

A∈Fk

∏

i∈A

(

M
∏

m=1

σ
(m)
i

)

∏

j∈Ac

[

1 −
M
∏

m=1

σ
(m)
j

]

, (41)

where Fk is the set of all subsets of k integers that can be selected from the set

{1, 2, 3, . . . , K (M)} and Ac is the complement of A. Equation (41) is the Poisson

binomial distribution, but this time the underlying success probabilities
∏M

m=1 σ
(m)
i

across all M individuals vary with TCR clone identity i .

Finally, inference of individual measures from subsamples can be formulated. One

can use the sampling likelihood function P(s|n, S, N ), Bayes’ rule, and the multino-

mial (conjugate) prior P(n|p, N ) to construct the posterior probability of n given a

sampled configuration s:

P(n|s, S, N , p) = P(s|n, S, N )P(n|p, N )
∑

n P(s|n, S, N )P(n|p, N )
. (42)

The normalization in Eq. (42) has already been found in Eqs. (34) and (35). Thus, we

find the posterior

P(n|s, S, N , p) = (N − S)!
�

∏

i=1

p
ni −si

i

(ni − si )!
,

�
∑

i=1

(ni − si ) = N − S (43)
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Fig. 4 Sampling from shifted uniform distributions. a Synthetic TCR or BCR distributions of M = 3

individuals. The distributions in individuals 1, 2, and 3 are indicated by solid black, dashed blue, and dash-

dotted red lines, respectively. Each individual has 105 cells uniformly distributed across 1000 clones (100

cells per clone). The sampled group richness R
(3)
s is 1500. b Samples of size S(m) have been generated to

compute the relative overlaps between individuals 1 and 2 (blue disks), 2 and 3 (green inverted triangles), 1

and 3 (orange squares), and 1–3 (red triangles). The solid lines show the corresponding analytical solutions

E
[

K
(M)
s

]

/R
(3)
s (see Eq. (20)). Dashed grey lines show the maximum possible relative overlaps 500/1500 ≈

0.33 and 750/1500 = 0.5. c The Fano factor var
[

K
(M)
s

]

/E
[

K
(M)
s

]

associated with relative overlaps

between individuals 1 and 2 (solid blue line), 2 and 3 (dash-dotted green line), 1 and 3 (dashed orange line),

and 1–3 (solid red line) as a function of the number of sampled cells S(m) (Color figure online)

in terms of the hyperparameters p. Using this posterior, we can calculate the expecta-

tion of the whole organism richness R =
∑

k≥1

∑�
i=1 1(ni , k),

E[R(s, p)] = � −
∑

j |s j =0

(

1 − p j

)N−S
, (44)

which depends on the sampled configuration only through the sample-absent clones

j . Bayesian methods for estimating overlap between two populations from samples

have also been recently explored (Larremore 2019).

4 Simulations

The sampling theory derived in the previous sections is useful for understanding the

effect of different sampling distributions on measurable quantities such as the propor-

tion of shared TCRs and BCRs among different individuals. Figures 4 and 5 show

two examples of receptor distributions, along with the respective relative overlaps and

Fano factors, for three individuals. To illustrate our methodology clearly and con-

cisely, we utilize three shifted uniform distributions as models of synthetic sequence
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distributions in Fig. 4. In this example, the number of TCR or BCR sequences per indi-

vidual is N (m) = 105, (m = 1, 2, 3), and the sampled group richness R
(3)
s = 1500.

Based on the abundance curves shown in Fig. 4a, we can readily obtain the over-

laps between individuals 1–3 (solid black, dashed blue, and dash-dotted red lines),

as well as between all pairs of individuals. The maximum possible overlap, nor-

malized by R
(3)
s , between all three individuals and between individuals 1 and 3 is

500/1500 ≈ 0.33. For the two remaining pairs, the corresponding maximum relative

overlap, normalized by the richness associated with all three sampled individuals, is

750/1500 = 0.5.

Using S(m) < N (m) sampled cells from each individual, we observe in Fig. 4b

that the increase of E[K (M)
s ]/R

(3)
s with S(m) is well-described by Eq. (20). In Fig. 4c,

we plot the Fano factor var[K (M)
s ]/E[K (M)

s ] as a function of the number of sampled

cells S(m) from each individual. For sample sizes of about 1000 (i.e., about 1% of

the total sequence population), the Fano factor is between 0.4 (for overlaps between

individuals 1 and 2 and between individuals 2 and 3) and 0.6 (for the overlap between

individuals 1–3). As sample sizes reach about 5% of the total number of sequences

(105), the variance var[K (M)
s ] becomes negligible with respect to the expected overlap

E[K (M)
s ].

As an example of an application to empirical TRB CDR3 data, we used the

SONIA package (Elhanati et al. 2014) to generate amino acid sequence data for

three individuals, each with N (m) = 105 cells. The combined richness across all

individuals is R
(3)
s = 284, 598. We show the abundances of all sequences in Fig. 5a.

The majority of sequences has an abundance of 1 while only very few sequences

have abundances that exceed 5. Figure 5b shows the expected number of shared

sequences as a function of the sampled number of cells S(m). To evaluate Eq. (33),

we compute the binomial terms in σ̃i and σ̃i j by expanding them according to,

e.g.,

(N (m)−n
(m)
i

S(m)

)

(

N (m)

S(m)

)

=
n

(m)
i

∏

ℓ=1

(

1 − S(m)

N (m) − n
(m)
i + ℓ

)

, (45)

where S(m)/N (m) is the sample fraction drawn from the mth individual. For large ni ,

other approximations, including variants of Stirling’s approximations can be employed

for fast and accurate evaluation of binomial terms.

We compare these number-representation results with the p-representation results

by using the estimates p̂
(m)
i = n

(m)
i /N (m) in ρ

(m)
i (S) and ρ

(m)
i j (S) to compute the

quantities in Eqs. (20) and (21). If the number of sampled cells S(m) is not too large,

the analytic approximation of using p̂
(m)
i in ρ

(m)
i (S) to calculate E[K (M)

s ]/R
(3)
s is

fairly accurate, as shown by the dashed curves in Fig. 5b. Since the abundances of the

majority of sequences are very small, finite-size effects lead to deviations from the

naive approximation (37) as the numbers of sampled cells S(m) grows large. Of course,

we can also extract generation probabilities from SONIA and directly use Eq. (20) and

ρ
(m)
i (S) from Eq. (37) to find the p-representation M-overlap E[K (M)

s ({p(m)})]/R
(3)
s .
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Fig. 5 Sampling from empirical TRB CDR3 distributions and overlap measures in the number represen-

tation. a Distributions of TRB CDR3 cells in M = 3 individuals. We used the SONIA package (Elhanati

et al. 2014) to generate 105 TRB CDR3 sequences for each individual. The sampled group richness

R
(3)
s was found to be 284, 598. Equal sample sizes S(m) were then drawn. b Relative overlaps between

individuals 1 and 2 (blue disks), 2 and 3 (green inverted triangles), 1 and 3 (orange squares), and 1–3

(red triangles). The solid lines plot the corresponding analytical solutions E
[

K
(M)
s ({n(m)})

]

/R
(3)
s found

in Eqs. (33). The dashed curves correspond to using using the estimator p̂
(m)
i

= n
(m)
i

/N (m) in the

expression E
[

K
(M)
s ({p(m)})

]

/R
(3)
s (Eq. (20) evaluated using ρ

(m)
i

(S) from Eq. (37)). c The Fano fac-

tor var
[

K
(M)
s

]

/E
[

K
(M)
s

]

associated with relative overlaps between individuals 1 and 2 (solid blue line), 2

and 3 (dash-dotted green line), 1 and 3 (dashed orange line), and 1–3 (solid red line) as a function of the

number of sampled cells S(m) (Color figure online)

To examine the variance associated with a given expected number of shared empiri-

cal TRB CDR3 sequences, we show the Fano factor var[K (M)
s ]/E[K (M)

s ] as a function

of the sample size S(m) in Fig. 5c. For the shown sample sizes up to S(m) = 3×104, the

Fano factor is larger than about 0.85, indicating a relatively large variance var[K (M)
s ].

In addition to reporting mean values of measures of sequence sharing (i.e., “overlap” or

“publicness”) when analyzing empirical receptor sequence data (Elhanati et al. 2018;

Ruiz Ortega et al. 2023), we thus recommend to compute var[K (M)
s ] to determine

corresponding confidence intervals.

Calculations were performed on an AMD® Ryzen Threadripper 3970 usingNumba

to parallelize the calculation of Eqs. (33) and
∑�

j �=i

∏M
m=1 ρ

(m)
i j used in var[K (M)].

5 Explicit Forms for Power-Law Probabilities

All of our results thus far assume a model or estimate of pi or ni , as well as knowledge of

at least�. For our formulae to be useful, the theoretical maximum richness� also needs

to be estimated or modeled. Numerous parametric and nonparametric approaches
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have been developed in the statistical ecology literature (Chao and Lee 1992; Wang

and Lindsay 2005; Gotelli and Colwell 2011; Colwell et al. 2012; Gotelli and Chao

2013; Chiu et al. 2014; Chao and Lin 2012; Chao et al. 2020), as well as expectation

maximization methods to self-consistently estimate richness and most likely clone

population n (Kaplinsky and Arnaout 2016).

To explore how our results depend on parameters such as �, we derive approxi-

mate analytic expressions when the identical individual probabilities p
(m)
i = pi obey

truncated power-law distributions:

pi = i−ν

Hν(�)
, p j ≤ pi if ν ≥ 0, j ≤ i, i, j = 1, 2, . . . , �, (46)

where Hν(�) ≡
∑�

j=1 j−ν . Such power laws are good approximations to measured

ranked T cell clone abundances (Gaimann et al. 2020). If � is sufficiently large, we

would like to show under what conditions the expectations of our diversity measures

converge quickly to �-independent values. By approximating
∑�

i=1(1 − pi )
N ≈

∑�
i=1 e−N pi ≈

∫ �

1 e−N/(Hν (�)zν )dz in Eq. (6) we find in the large � limit

E[R(ν = 0)]
N

≈ x(1 − e−1/x ), x ≡ �/N

E[R(ν = 1
2
)]

N
≈ x

[

1 − 2E
(

3, 1
2x

)]

, x ≡ �/N

E[R(ν = 1)]
N

≈ 1 − log N

log �
+ log(log �)

log �
,

E[R(ν > 1)]
N 1/ν

≈ x
[

1 − 1
ν

E
(

1 + 1
ν
, x−ν

ζ(ν)

)]

, x ≡ �/N 1/ν

(47)

where the exponential integral is defined by E(x, y) ≡
∫ ∞

1 t−x e−yt dt and ζ(ν) is the

Riemann zeta function. Consistent with known biology and previous estimates (Zar-

nitsyna et al. 2013; Lythe et al. 2016), we take the large-� limit where x > 1. From

Eqs. (47), we see that the expected richnesses converge to fixed values for large enough

� and all values of ν �≈ 1. The rescaled expected richnesses are plotted as functions

of x = �/N or x = �/N 1/ν in Fig. 6a.

Analogous cutoff-insensitive results can be found for the variance var[R2(ν)] as

well as other quantities. A good approximation for the variance is

var[R(ν)] = E[R2(ν)] −
(

E[R(ν)]
)2

≈
�

∑

i=1

e−pi N
(

1 − e−pi N
)

≈ �
ν

(

E
(

1 + 1
ν
, N

Hν (�)�ν

)

− E
(

1 + 1
ν
, 2

Hν (�)�ν

))

,

(48)
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Fig. 6 Expected richness and uncertainty under power law-distributed probabilities pi following Eq. (46).

a Expected richness for different values of ν that lead to simple scaling and dependence only on x =
�/N ,�/N 1/ν . For large x , the expected rescaled richnessesE[R(ν)]/N andE[R(ν > 0)]/N 1/ν converge.

Since the normalization of the expected richness (by N 1/ν ) for ν > 1 is different than for ν = 0, 1
2 ,

(normalized by N ), E[R(ν > 0)]/N 1/ν converges to greater values, but limx→∞ E[R(ν > 0)] remains

< 1. b From the variances E[R2(ν)], we construct the squared coefficient of variation and plot CV2 N ≡
Nvar[R(ν)]/(E[R(ν)])2 as a function of x = �/N (or CV2(ν > 1)N 1/ν for as a function of x = �/N 1/ν ).

For large x , CV2 ≈ 1/N for ν = 0, 1/2 but CV2 N 1/ν ∼ 0 for ν = 2, 3.

where the power-law assumption in Eq. (46) is used in the last approximation.

The normalized squared coefficients of variation CV2 ≡ var[R(ν)]/(E[R(ν)])2 for

representative ν are found to be

CV2
ν=0 N ≈ e−1/x

x(1 − e−1/x )
, x ≡ �/N

CV2
ν=1/2 N ≈ 2

x

E(3, 1
2x

) − E(3, 1
x
)

(

1 − 2E(3, 1
2x

)
)2

, x ≡ �/N

CV2
ν=1 N ≈

log �
[

log(� log �) − log 4N
]

[

log(� log �) − log N
]2

,

CV2
ν>1 N 1/ν ≈ 1

νx

E
(

1 + 1
ν
, x−ν

ζ(ν)

)

− E
(

1 + 1
ν
, 2x−ν

ζ(ν)

)

(

1 − 1
ν

E
(

1 + 1
ν
, x−ν

ζ(ν)

))2
, x ≡ �/N 1/ν

(49)

Plots of the CV of the richness under power-law system probabilities are shown in

Fig. 6b. We see that the squared CVs converge in the large x limit to N−1 for ν = 0, 1/2

and vanish for ν > 1.

The behavior of the sampled M-overlap, E[K (M)
s ({p(m)})], can also be quantified

under the power-law probability distribution. By using Eq. (20) and ρi (S) (Eq. (37),

assuming equal probabilities p
(m)
i = pi and sample sizes S(m) = S across individuals),

we find

E

[

K (M)
s ({p(m)})

]

=
�

∑

i=1

M
∏

m=1

ρ
(m)
i (S) ≈

�
∑

i=1

(

1 − e−pi S
)M

. (50)

123



102 Page 24 of 31 L. Böttcher et al.

Fig. 7 The expected M-overlap E[K (M)
s ({p(m)})]. a Log-log plot of M-overlap as a function of individual

sample size S using pi = i−1/2/H1/2(�) (ν = 1/2) and � = 107. M = 2, 4, 8 are shown, with

exponentially decreasing M-overlap as M is increased. b Fixing M = 4, a log-log plot ofE[K (4)
s (ν = 1/2)]

against S for different values of � = 5 × 106, 107 and 5 × 107. c E[K (M)
s (ν)] plotted against ν for fixed

� = 107 and different M . (d) With � = 107, a log-log plot of E[K (M)
s (ν = 1/2)] as a function of the

number M of individuals sampled with S = 104, 105, 106. In all panels, the dashed curves plot the analytic

approximation for ν � 0.7 given in the second line of (51). In (c), the ν = 0 limit matches the expression

given by the first line in (51). The approximations given in (51) are especially accurate for large S and larger

M and ν

This expression can be further simplified in the large � limit for specific ν,

E[K (M)
s (ν = 0)] = �

(

1 − (1 − 1/�)S
)M

≈ �

(

1 − e−S/�
)M

,

E[K (M)
s (ν � 0.7)] =

�
∑

i=1

(

1 − (1 − pi )
S
)M

≈
�

∑

i=1

exp
[

− Me
− Si−ν

Hν (�)

]

∼
[

1 − e
− S

Hν (�)

]M
(

S

Hν(�) log M

)1/ν

, S,
S

Hν(�)
≫ 1.

(51)

The last approximation is most accurate for ν > 1 where Hν(� → ∞) converges

and the prefactor in brackets is ≈ 1. For sufficiently large S, it still provides a rough

estimate of M-overlap for smaller values of ν. Asymptotic expressions for even smaller

values of ν can be found in the S/Hν(�) ≪ 1 limit, but this limit yields very low

expected M-overlap and is typically less informative.

Figure 7 plots the M-overlap E[K (M)
s (ν)] as a function of sample size, power-

law ν, and M . For comparison, the analytic approximation for ν � 0.7 (51) is also

plotted by the dashed curves. Equation (51) and plots such as those in Fig. 7a, b could
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be useful for estimating the sample size S required in order to observe a specific

overlap between the immune repertoires of M selected individuals. For instance, with

M = 4 individuals, a repertoire size of � = 107, and a sequence distribution exponent

ν = 0.5, an expected M-overlap of approximately 1 can be achieved with a sample

size of S = 104.

Since the (1/Hν(�))1/ν term in Eq. (51) increases with ν, we expect that an

effectively smaller repertoire size (recall pi ∼ i−ν and larger ν leades to fewer

larger-population clones), that the expected M-overlap increases with ν. However,

the (S/ log M)1/ν factor decreases with ν since larger S give rise to a larger number of

ways clones sampled from different individuals can “avoid” each other. These features

give rise to a maximum in E[K (M)
s (ν)], as shown in Fig. 7c.

Using Eqs. (33) and (38), we can also straightforwardly evaluate the variance

of the M-overlap. For ν = 0 and uniform pi = 1/�, var[K (M)
s (ν = 0)] ≈

�(1−e−S/�)M
(

1 − (1 − e−S/�)M
)

. We find the variances of the M-overlap, as with

our other metrics, are well approximated by that of a binomial process in the S → ∞
limit and when values of ν are modest: var[K (M)

s ] ≈ �
E[K (M)

s ]
�

(

1− E[K (M)
s ]

�

)

. Modest

deviations from this approximation arise for finite S and large values of ν.

6 Sampling Resolution and Information Loss

We end with a brief discussion of information loss upon coarse-graining which arises

when analyzing lower-dimensional experimental/biochemical classifications of clones

that are commonly used. Such lower-dimensional representations can be obtained

through spectratyping (Gorski et al. 1994; Fozza et al. 2017). For TCRs, spectratyping

groups sequences together and produces compressed receptor representations describ-

ing CDR3 length, frequency, and associated beta variable (TRBV) genes (Gkazi et al.

2018). In addition to coarse-grained representations of sequencing data, some stud-

ies (Elhanati et al. 2018; Ruiz Ortega et al. 2023) use continuous approximations to

describe the distribution of receptor sequences. Estimators of entropy and their errors

have been developed for subsampling from discrete distributions (Schürmann 2004;

Grassberger 2022). Therefore, in this section, we focus on quantifying differences in

information content that are associated with (i) using continuous approximations of

discrete sequencing data, and (ii) coarse-graining already-discretized (i.e., spectratyp-

ing) distributions.

Given a discrete random variable X describing � “traits” and taking on possible

values {x1, x2, . . . , x�}, let pi = P(X = xi ). The entropy of this probability distribu-

tion is given by Hp = −
∑�

i=1 pi log pi . Similarly, one might define the differential

entropy for a continuous random variable taking on values in the interval [a, b] as

Sp = −
∫ b

a
p(x) log p(x) dx . It is well-known that the differential entropy is not a

suitable generalization of the entropy concept to continuous variables (Jaynes 1963)

since it is not invariant under change of variables and can be negative. These issues

can be circumvented by introducing the limiting density of discrete points. Here, we

present a more direct approach that will be sufficient for our application. For a prob-

ability density function p : [a, b] → R
+
0 we introduce a discretizing morphism D�
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Fig. 8 The information loss L as a function of the number of discretization bins B. The loss is least as

the number of integration bins B → ∞. a The solid black line shows the information loss associated with

discretizing a truncated power law (see Eq. (54)), and the dashed grey line is a guide-to-the-eye (power

law) with slope −0.6. b Grey dots show the information loss associated with coarse graining a discrete

and uniform random variable with initially � = 1000 traits. The solid curve shows the corresponding

analytical result for the difference in information L = − log(B/�) between discretizing a continuous

uniform distribution of � = 1000 traits using B bins

so that

qi =
∫ a+i�

a+(i−1)�

p(x)dx, i = 1, 2, . . . , B. (52)

describes a random variable taking on values in each of the (b − a)/� = B bins.

To quantify the amount of information lost in this discretization step, consider the

entropy Hq = −
∑B

i=1 qi log qi ∼ log � in the � → 0 limit.

If we want to evaluate any information loss as a difference between the (finite)

differential entropy Sp and the (diverging) entropy Hq we need to account for this

logarithmic contribution by defining the corresponding information loss as

L(�) = |(Sp − log �) − Hq |. (53)

By absorbing the logarithmic contribution into the differential entropy, we find the

correct continuous entropy according to Jaynes (1963) using the limiting density of

discrete points.

As an example, we compute the information loss associated with discretizing the

truncated power law

p(x) =
{

1

γ (
1
2
,1)

e−x
√

x
, if 0 ≤ x ≤ 1

0, else
, (54)

where γ (s, x) =
∫ x

0 t s−1e−t dt is the lower incomplete gamma function. The distribu-

tion Eq. (54) gives rise to few high-abundance clones and many low-abundance clones,

as typical for TCR receptor sequences (Xu et al. 2020). Analytic expressions for the

discretized probabilities qi are lengthy, so we numerically compute qi to evaluate the

information loss L(�). Equation (53) is plotted as a function of the number of bins

B = 1/� in Fig. 8a. The information loss decreases with the number of bins, as this
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results in the discrete distribution gathering more information about its continuous

counterpart.

While the connection between continuous probability distributions and their dis-

cretized counterparts has important consequences for sampling, information loss also

occurs in spectratyping when an already discrete random variable is coarse grained.

In this scenario, the information loss can be quantified uniquely (up to a global mul-

tiplicative constant) by the entropy difference of the distributions (Baez et al. 2011).

The difference between the full Hp = −
∑�

i=1 pi log pi and the coarse-grained

Hq = −
∑B

i=1 qi log qi can be explicitly evaluated for uniformly distributed prob-

abilities.

For any number B < � we can define a coarse graining procedure that yields only B

traits by defining the bin size � = ceil(�/B) and grouping together � traits into each

bin. The last bin might be smaller than the other bins or even empty. The information

loss of this procedure is shown in Fig. 8b for an initially uniform distribution of

� = 1000 traits. Across certain ranges of B, plateaus can build since our coarse

graining might add zero probabilities. However, we can instead start from a continuous

distribution and compare the discretization with � = 1000 bins to any other binning

with B ≤ �.

Comparing a coarse-grained uniform distribution with B bins to the discretized

distribution with � bins yields the information loss with respect to the initial discrete

distribution L = − log(B/�) ≥ 0. We plot this analytical prediction against the

information loss L associated with coarse graining an already discrete distribution in

Fig. 8b, showing them to be well-aligned.

7 Discussion and Conclusions

Quantifying properties of cell-type or sequence distributions is an important aspect

of analyzing the immune repertoire in humans and animals. Different methods have

been developed to estimate TCR and BCR diversity indices such as the total number

of distinct sequences in an organism (i.e., species richness) (Rempala and Seweryn

2013; Kaplinsky and Arnaout 2016; Xu et al. 2020). Another quantity of interest is

the number of clones that are considered “public” or “private,” indicating how often

certain TCR or BCR sequences occur across different individuals.

Public TCRβ and BCR sequences have been reported in a number of clinical stud-

ies (Putintseva et al. 2013; Robins et al. 2010; Shugay et al. 2013; Soto et al. 2020;

Briney et al. 2019; Soto et al. 2019). However, the terms “public” and “private” clono-

types are often based on different and ambiguous definitions. According to Shugay

et al. (2013), a “public sequence” is a sequence that is “often shared between individ-

uals” (Shugay et al. 2013), while Greiff et al. (2017) refers to a sequence as public if

it is “shared across individuals”. In addition to ambiguities in the definition of what

constitutes a private/public sequence, overlaps between the immune repertoires of

different individuals are often reported without specifying confidence intervals, even

though variations may be large given small sample sizes and heavy tailed sequence

distributions.
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In this work, we provided mathematical definitions for “public” and “private” clones

in terms of the probabilities of observing a number of clones across M selected indi-

viduals, complementing related work that introduced the notion of “sharing number

M” (i.e., the expected number of sequences which will be found in exactly M individ-

uals) to quantify the expected overlap between cell-sequence samples (Elhanati et al.

2018; Ruiz Ortega et al. 2023). Besides defining individual repertoire probability dis-

tributions, our results include analytic expressions for individual and multi-individual

expected richness and expected overlap as given by Eqs. (5), (10), (17), (19), and (20).

Additionally, using Eqs. (28) to (33), we derived expressions for the expected richness

and expected overlap in subsamples. The variability of quantities (second moments)

such as the M-overlap and subsampled overlap were also derived. Studies analyzing

the similarities and differences associated with immune repertoires of different indi-

viduals (see, e.g., Elhanati et al. 2018; Soto et al. 2020; Ruiz Ortega et al. 2023) may

utilize our results on second moments of overlap measures to quantify the statistical

significance of their findings. Our results are summarized in Table 1 where we provide

expectations and second moments of all quantities as a function the cell population

configurations n(m) or as a function of the underlying clone generation probabilities

p(m), as is generated by models such as SONIA (Elhanati et al. 2014).

Further inference of richness and overlap given sample configurations can be devel-

oped using our results. For example, the parametric inference of expected richness in

an individual given a sampled configuration s can be found using the multinomial

model and Bayes’ rule, as presented in Eq. (44).

While our results depend on knowledge of � and N , we show using power-law

probability distributions and explicit expressions in Eqs. (47) and (49) that the richness

is insensitive to � in the large N and �/N limits. Therefore, even though � may be

impossible to accurately estimate, power-law probability distributions generally render

our results robust to uncertainty in �. Analytic or semi-analytic expressions for the

overlap quantities can also be derived. We leave this exercise to the reader.

Finally, in the context of coarse-graining, or spectratyping (Ciupe et al. 2013), we

have discussed methods that are useful to quantify the information loss associated

with different levels of coarse graining TCR and BCR sequences. The results pre-

sented here are based on an assumption of simple multinomial distributions as the

underlying population model. A number of mechanistically more realistic probabil-

ity distributions have been derived for neutral, noninteracting clone populations in

steady state (Dessalles et al. 2018). These include log series and negative binomial

distributions each requiring tailored calculations for the corresponding richness and

overlap.
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