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When using spectral methods, a consistent method for tuning the expansion order is 
often required, especially for time-dependent problems in which oscillations emerge in 
the solution. In this paper, we propose a frequency-dependent p-adaptive technique that 
adaptively adjusts the expansion order based on a frequency indicator. Using this p-
adaptive technique, combined with recently proposed scaling and moving techniques, we 
are able to devise an adaptive spectral method in unbounded domains that can capture 
and handle diffusion, advection, and oscillations. As an application, we use this adaptive 
spectral method to numerically solve Schrödinger’s equation in an unbounded domain and 
successfully capture the solution’s oscillatory behavior at infinity.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Unbounded domain problems arise in many scientific applications [1,2] and adaptive numerical methods are needed on 
many occasions, for instance, in solving Schrödinger’s equation in unbounded domains when the solution varies rapidly in 
time. As an important class of numerical algorithms, adaptive methods have witnessed numerous advances in their efficiency 
and accuracy [3–6]. However, despite considerable progress that has been made for spectral methods in unbounded domains 
[7], there are few adaptive methods that apply in unbounded domains.

In [8], adaptive scaling and moving techniques were proposed for spectral methods in unbounded domains and it was 
noted that adjusting the expansion order is necessary when the function displays oscillatory behavior that varies over time. 
In this paper, we first develop a frequency-dependent technique for spectral methods which adjusts the expansion order 
N (N + 1 basis functions are used to approximate the solution). This technique takes advantage of the frequency indicator 
defined in [8] and corresponds to p-adaptivity [9–11,21,22]. By adjusting the expansion order efficiently, our p-adaptive 
technique can be used to accurately solve problems with varying oscillatory behavior.

Although the work reported in [8] motivated us to develop a complementary p-adaptive technique using the same 
frequency indicator for the numerical solutions, the expansion order in [8] remained fixed, while in this work it is adaptively 
adjusted according to the dynamic behavior of the unknown functions. For instance, as demonstrated in Examples 6 and 
7 and in the subsequent discussion, solutions to Schrödinger’s equation that become increasingly oscillatory over time 
cannot be well approximated by the previously proposed scaling and moving techniques [8]. On the other hand, a p-
adaptive technique that only adjusts the expansion cannot successfully deal with diffusing and advecting solutions, which 
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are captured by the moving and scaling techniques described in [8], as shown in Examples 4, 5, and 8. Thus, an efficient and 
more complete adaptive spectral method should integrate moving, scaling, and p-adaptive techniques as outlined in Fig. 5.

By combining this p-adaptive technique with scaling and moving methods, we develop an adaptive spectral method that 
can capture diffusion, advection, and oscillations in unbounded domains. Since scaling and adjusting the expansion order 
both depend on the frequency indicator, we also investigate the interdependence of these two techniques. We demonstrate 
that appropriately adjusting the expansion order can facilitate scaling to more efficiently distribute allocation points. In turn, 
proper scaling can help avoid unnecessary increases in the expansion order when it does not increase accuracy, thereby 
avoiding unnecessary computational burden.

The significance of this adaptive spectral method is that it can capture the solution’s behavior in the whole domain 
R. We demonstrate the utility of our method by solving Schrödinger’s equation in R. Here, the unboundedness and the 
oscillatory nature of the solution pose two major numerical challenges [12]. Specifically, in the semiclassical regime, when 
the wavelength of the solution is small, the function becomes extremely oscillatory. Moreover, in certain situations, one has 
to work with a very large computational domain that is difficult to automatically determine.

Previous numerical methods which solve Schrödinger’s equation in unbounded domains usually truncate the domain 
into a finite subdomain and impose artificial boundary conditions, which may be nonlocal and complicated [12–15]. Our 
adaptive spectral method tackles the oscillatory problem directly in the original unbounded domain without the need to 
truncate it or to devise an artificial boundary condition.

In the next section, we first present a p-adaptive technique for spectral methods and use examples to illustrate its 
efficiency. In Section 3, we incorporate and study this technique within existing scaling and moving techniques and devise 
an adaptive spectral method in unbounded domains. Application of our adaptive spectral methods to numerically solving 
Schrödinger’s equation is given in Section 4. We summarize our results in Section 5 and propose directions for future work.

2. Frequency-dependent p-adaptivity

We present a frequency-dependent p-adaptive spectral method based on information extracted from only the numerical 
solution of time-dependent problems. In [8], we showed that a frequency indicator defined for spectral methods is par-
ticularly useful in measuring the contribution of high frequency modes in the numerical solution. Because high frequency 
modes decay more slowly, this indicator could be used to determine scaling in spectral methods applied to unbounded 
domains.

In this work, we will show that the frequency indicator can also be used to determine whether more or fewer basis 
functions are needed to refine or coarsen the numerical solution. Proper refining allows one to maintain accuracy when the 
solution becomes more oscillatory, while appropriate coarsening reduces computational costs without sacrificing accuracy.

Given a set of orthogonal basis functions {Bi(x)}∞i=0 under a specific weight function ω(x) > 0 in a domain �, the 
frequency indicator associated with the interpolation of a function

IN u(x) = U N(x) =
N∑

i=0

ui Bi(x) (2.1)

is defined as in [8]

F(U N) :=

⎛
⎜⎜⎜⎝

N∑
i=N−M+1

γiu2
i

N∑
i=0

γiu2
i

⎞
⎟⎟⎟⎠

1
2

, (2.2)

where γi = ∫
�

B2
i (x)ω(x)dx is the square of L2

ω-weighted norm of the basis function Bi(x). This frequency indicator measures 
the contribution of the M highest-frequency components to the L2

ω-weighted norm of U N . Here M is often chosen to be 
[ N

3 ] following the 2
3 -rule [16,17]. This indicator provides a lower bound for the error divided by the norm of the numerical 

solution ‖u−IN−M u‖ω
‖IN u‖ω

which is illustrated in [8]. Thus, the quality of the numerical interpolation U N can be measured by 
F(U N ).

For a time-dependent problem, the expansion order N may need adjusting dynamically, which can be reflected by the 
frequency indicator. If the frequency indicator increases, the lower bound for ‖u−IN−M u‖ω

‖IN u‖ω
will also increase. On the other 

hand, as N increases, the error ‖u − IN u‖ω as well as F(U N ) are expected to decrease. By sufficiently increasing the 
expansion order N , the frequency indicator as well as the error can be kept small. If the frequency indicator decreases, 
we can also consider decreasing N to relieve computational costs without compromising accuracy, as was done in [9]. The 
pseudo-code of the proposed p-adaptive technique is given in Algorithm 1.

The p-adaptive spectral method in Algorithm 1 for time-dependent problems consists of two ingredients: refinement 
(increasing N) and coarsening (decreasing N). The method maintains accuracy when there are emerging oscillations by 
increasing the expansion order N . It also decreases N when the expansion order is larger than needed to avoid unnecessary 
2
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Algorithm 1 Pseudo-code of the p-adaptive technique which may increase (refine) or decrease (coarsen) the expansion 
order N .

1: Initialize N, N0, γ ≥ 1, η0 = η > 1, �t , T , α, β , U N (0), Nmax, Nmin
2: t ← 0
3: f0 ← frequency_indicator(U N (t))
4: while t < T do
5: U N (t + �t) ← evolve(U N (t), �t)
6: f ← frequency_indicator(U N (t + �t))
7: l ← 0
8: if f > η f0 then # refinement is needed
9: while f > η f0 and l ≤ Nmax do

10: l ← l + 1
11: U N+1 ← refine(U N (t + �t))
12: N ← N + 1
13: f ← frequency_indicator(U N )

14: end while
15: f0 ← f
16: η ← γ η # renew η
17: else if f < f0/η0 then # coarsening could be considered
18: r ← False
19: while f < f0/η0 and N > Nmin do
20: Ũ N−1(t + �t) ← coarsen(U N (t + �t))
21: f ← frequency_indicator(Ũ N−1(t + �t))
22: if f < f0 then
23: f1 ← f
24: r ← True
25: U N−1(t + �t) ← Ũ N−1(t + �t)
26: N ← N − 1
27: end if
28: end while
29: if r then
30: f0 ← f1

31: end if
32: end if
33: t ← t + �t
34: end while

computation. In Algorithm 1, the frequency_indicator subroutine evaluates the frequency indicator defined in Eq. (2.2) for 
the numerical solution U N while the evolve subroutine is to obtain the numerical solution U N (t +�t) at the next timestep 
from U N (t).

In Line 11 of Algorithm 1, the refine subroutine uses U N to generate a new numerical solution with a larger expansion 
order U N+1 (refine), and in Line 20 the coarsen subroutine uses U N to generate a new numerical solution with a smaller 
expansion order U N−1 (coarsen). The refinement or coarsening is achieved by reconstructing the function values of U N+1

or U N−1 at the new set of collocation points {xi}:

U N±1(xi, t) = U N(xi, t), i = 0, ..., N ± 1, (2.3)

where U N+1 uses N + 2 basis functions for refinement and U N−1 uses N basis functions for coarsening.
In Algorithm 1, η f0 is the refinement threshold such that if the current frequency indicator f > η f0, we increase the 

expansion order N . The while loop starting in Line 9 ensures we either refine enough such that the frequency indicator, 
after increasing N , is smaller than the threshold η f0, or the maximal allowable expansion order increment within a single 
step Nmax is reached.

After increasing N , f0 is set to the current frequency indicator and η is multiplied by a factor γ ≥ 1, enabling us to 
dynamically adjust the refinement threshold for the next refinement in order to prevent increasing N too fast without 
substantially increasing accuracy. On the other hand, when an extremely large N is needed to match the increasingly 
oscillatory behavior of the numerical solution, we can set γ � 1 or even γ = 1, as we will do in Examples 6 and 9. We have 
observed numerically, as expected, that the larger η0, γ are, the more difficult it is to increase the expansion order.

We also consider reducing N when a large expansion order is not really needed and f0/η0 is the threshold for decreasing 
the expansion order. If the condition in Line 17 is satisfied and N > Nmin, the minimal allowable expansion order, and we 
have not increased N in the current step, on the contrary we consider decreasing the expansion order below Line 17. As long 
as the frequency indicator of the new numerical solution with the decreased expansion order F(U N−1) is smaller than f0, 
the frequency indicator recorded after previously adjusting the expansion order, reducing the expansion order is accepted; 
else reducing the expansion order is declined. Therefore, f0 after coarsening will not surpass f0 before coarsening. This 
procedure is described by the If condition in Line 22. If N is decreased, f0 will become the latest frequency indicator. In 
addition, if the current frequency indicator f ∈ [ f0

η0
, η f0], neither the refinement nor the coarsening subroutine is activated.

Algorithm 1 can be generalized to higher dimensions in a dimension-by-dimension manner. The expansion order for 
each dimension can change simultaneously within each timestep by using the tensor product of one-dimensional basis 
3
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Table 1
Typical choices of basis functions {Bi}∞i=0 and computational domain �.

Computational domain Bounded interval (0,∞) (−∞,∞)

Basis functions Jacobi polynomials Laguerre polynomials/functions Hermite polynomials/functions

functions, in much the same way moving and scaling algorithms were generalized to higher dimensions [8]. For example, 
for a two-dimensional problem, given

U 
N(x, y) :=
Nx∑

i=0

N y∑
j=0

ui, j Bi(x)B j(y) (2.4)

where 
N = (Nx, N y), the frequency indicator in the x-direction is defined as

Fx(U 
N) :=

⎛
⎜⎜⎜⎜⎝

Nx∑
i=Nx−Mx+1

N y∑
j=0

γiγ ju2
i, j

Nx∑
i=0

N y∑
j=0

γiγ ju2
i, j

⎞
⎟⎟⎟⎟⎠

1
2

, (2.5)

while the frequency indicator in y-direction is similarly defined. At each timestep, we keep N y fixed and use Fx to judge 
whether or not to renew Nx → Ñx; simultaneously, we fix Nx and use Fy to renew N y → Ñ y if adjusting the expansion 
order in y dimension is needed. Finally Nx, N y are updated to Ñx, Ñ y .

In this work, the relative L2
ω-error

Error = ‖U N − u‖ω

‖u‖ω
, (2.6)

is used to measure the quality of the spectral approximation U N (x) compared to the reference solution u(x). Table 1 lists 
some typical choices of orthogonal basis functions for different domains � that we use in this paper.

We provide two examples of using this p-adaptive technique in Algorithm 1 below, where the generalized Jacobi 
polynomials [18] are used. Theorem 3.41 in [18] gives an estimation for the interpolation error of a function u in the 
Jacobi-weighted Sobolev space for α, β > −1 as follows

‖∂

x (IN,α,βu − u)‖ωα+
,β+


≤ c

√
(N − m + 1)!

N! N
−(m+1)/2‖∂m
x u‖ωα+m,β+m , 0 ≤ 
 ≤ m ≤ N + 1, (2.7)

where c is a positive constant independent of m, N and u. When m > 0 and 
 = 0, the left hand side becomes the inter-
polation error ‖(IN,α,βu − u)‖ωα,β which may decrease with N . Therefore, by increasing the expansion order for the Jacobi 
polynomials it is generally true that the interpolation will be more accurate. Theorem 7.16 and Theorem 7.17 in [18] give 
similar error estimates for Laguerre and Hermite interpolations, which reveals that under some smoothness assumptions, 
the interpolation error decreases when the expansion order N increases.

Since unbounded domain problems may involve diffusive and advective behavior, we discuss and develop adaptive spec-
tral methods in unbounded domains in the next section.

Example 1. We numerically solve the PDE

∂t u =
(

x + 2

t + 1

)
∂xu, x ∈ [−1,1], (2.8)

with a Dirichlet boundary condition specified at x = 1 given as u(1, t) = cos 3(t + 1). This PDE admits an analytical solution

u(x, t) = cos((t + 1)(x + 2)). (2.9)

We solve it numerically by using Chebyshev polynomials with Chebyshev-Gauss-Lobatto quadrature nodes and weights. 
The Chebyshev polynomials are orthogonal under the weight function ω(x) = (1 − x2)− 1

2 , i.e., they correspond to Jacobi 
polynomials with α = β = − 1

2 . Since u(x, t) becomes increasingly oscillatory over time, an increasing expansion order is 
required to capture these oscillations. We start with N = 10 at t = 0, the parameters η = 1.5, γ = 1.1, Nmax = 3, Nmin = 0, 
and a timestep �t = 0.001. We use a third order explicit Runge-Kutta scheme to advance time.

The reference solution u(x, t) is plotted in Fig. 1(a). The increasing oscillations lead to a fast rise in the frequency 
indicator as the contribution from high frequency modes increases. Keeping the same number of basis functions over time 
will fail as it will be eventually incapable of capturing the shorter wavelength oscillations.
4



M. Xia, S. Shao and T. Chou Journal of Computational Physics 446 (2021) 110627
Fig. 1. Numerical solution of Eq. (2.8) with Chebyshev polynomials using Algorithm 1. For solutions that become increasingly oscillatory, the p-adaptive 
technique can increase the expansion order effectively to capture the oscillations and maintain a small error by keeping the frequency indicator low. A 
fixed N = 10 fails to maintain the frequency indicator and results in a larger error, whereas using a fixed N = 29, the largest expansion order appearing 
during the p-adaptive procedure, will not result in higher accuracy at t = 6 than the p-adaptive technique but requires a higher computational cost. The 
p-adaptive technique dynamically selects an expansion order N that saves computational costs while maintaining accuracy.

However, a much more accurate approximation can be obtained (see Fig. 1(b)) with our p-adaptive method which main-
tains the frequency indicator (see Fig. 1(c)) by increasing the number of basis functions (shown in Fig. 1(d)). Furthermore, 
the coarsening subroutine for decreasing the expansion order described in the while loop in Line 17 will not be triggered 
(shown in Fig. 1(d)). The largest expansion order N = 29 appearing during the p-adaptive procedure occurs at t = 6. For 
comparison, we also plot the error and the frequency indicator for fixed N = 29 (black curves in Figs. 1(b, c)). Using a fixed 
N = 29 does not lead to a more accurate result at t = 6 than the p-adaptive technique starting from N = 10 because a 
larger expansion order is not needed when t is small. On our laptop, the solution in t ∈ [0, 6], using fixed N = 29, took 
339.0469 seconds to evaluate while p-adaptive method required only 294.9531 seconds. Therefore, the p-adaptive method 
maintained accuracy while requiring a lower computational cost. In this and subsequent examples, we record the runtime 
as a measure of computational costs. All computations were performed using MATLAB with double precision running on a 
laptop with a 4-core i7-8550U Intel CPU running at 1.80 GHz.

When directly approximating the reference solution in Eq. (2.9), we can achieve 10−8 accuracy with only 20 basis 
functions. However, when numerically solving Eq. (2.8), the error will accumulate due to the increasing oscillatory behavior 
which will require even more basis functions to achieve the same accuracy as the direct approximation to Eq. (2.9). Thus, 
the oscillatory behavior of the solution poses additional difficulties and requires even more refinement when numerically 
solving a PDE.

Next, we present an example in which we apply the proposed p-adaptive technique to approximate a function which is 
oscillatory over time and contains a singularity.
5
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Fig. 2. The p-adaptive technique applied to evaluating the singular function in Eq. (2.10). The function u(x, t) becomes more oscillatory when t ∈ [0, 1] ∪
[2, 6] and less oscillatory when t ∈ [1, 2] and has a singularity at x = 1. The error of the approximation decreases very slowly with increasing expansion 
order due to this singularity. Applying the p-adaptive technique straightforwardly in the whole domain [−1, 1] cannot substantially increase accuracy due 
to its failure to approximate the singularity. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Example 2. We approximate the function

u(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − x)−0.01 sin ((2t + 1)(x + 1)) , t ∈ [0,1),

(1 − x)−0.01 sin ((5 − 2t)(x + 1)) , t ∈ [1,2),

(1 − x)−0.01 sin ((2(t − 2) + 1)(x + 1)) , t ≥ 2,

(2.10)

where x ∈ [−1, 1] and t ∈ [0, 6], by Chebyshev polynomials with Chebyshev-Gauss quadrature nodes and weights. The func-
tion carries a singularity at x = 1 as lim

x→1
|u(x, t)| = +∞ except when t satisfies u(1, t) = 0. Away from the singularity, the 

function becomes more oscillatory in t ∈ [0, 1] ∪ [2, 6] and less oscillatory when t ∈ [1, 2] as shown in Fig. 2(a). The expan-
sion order should be increased or decreased appropriately when the function becomes more or less oscillatory to maintain 
accuracy or to relieve computational burden.

As clearly shown in [23], the error when using spectral methods to approximate u(x, t) in Eq. (2.10) with the Jacobi 
basis functions is about 10−4, as shown in Figs. 2(b, c), where we approximate Eq. (2.10) with and without the p-adaptive 
technique by setting the initial expansion order N = 25, η = 1.1 and γ = 1.1. It can be seen that directly approximating u
in Eq. (2.10) leads to a large error even with the p-adaptive technique (red curve in Fig. 2(b)). Large errors are accompanied 
by large frequency indicators as shown in Fig. 2(c). This error cannot be significantly reduced by simply increasing the 
expansion order (up to N = 110 shown in Fig. 2(d)) because of the singularity at x = 1. Both the error and frequency 
indicator decay very slowly with increasing N due to the failure in approximating the singularity.

In order to accurately approximate u(x, t), we divide the interval x ∈ [−1, 1] into I
 = [−1, 0.99) and Ir = [0.99, 1]
to isolate a small neighborhood around the singularity and approximate the function separately in the two subdomains. 
Fig. 3(a) plots the distribution of errors associated with approximating u(x, 6) in the whole domain [−1, 1] by using a 
fixed expansion order N = 38 and by using a fixed expansion order N = 26 in the subdomain I
 and N = 11 in Ir . By 
separating the domain, the resulting errors are smaller in both subdomains. Next, we apply the p-adaptive technique in both 
subdomains. In I
 , the function is nonsingular and its varying oscillatory behavior resulting from the factor sin((2t + 1)(x +
1)), t ∈ [0, 1), sin ((5 − 2t)(x + 1)) , t ∈ [1, 2) or sin((2(t − 2) + 1)(x + 1)), t ≥ 2 in Eq. (2.10) requires proper adjustment of the 
expansion order. In Ir , the function is dominated by the singular term (1 −x)−0.01. In this two-subdomain approximation, we 
6
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Fig. 3. Dividing the function in Eq. (2.10) into the domains [−1, 1] = [−1, 0.99) ∪ [0.99, 1] and using the p-adaptive technique to separately approximate 
u(x, t) in each subdomain. Dividing the domain and separating the neighborhood of the singularity leads to improved accuracy compared to approximating 
u(x, t) in the whole function [−1, 1]. In the subdomain I
 , oscillatory behavior dominates and properly adjusting the expansion order N
 by the p-adaptive 
technique is necessary (red curve in (d)). In the subdomain Ir , adjusting the expansion order Nr is not essential (blue curve with circles in (d)).

set η = 1.05, γ = 1.1, an initial expansion order N = 10, Nmax = 15, Nmin = 0 for the numerical solution U
 in subdomain 
I
 , and η = 1.2, γ = 1.1, an initial expansion order N = 5, Nmax = 9, Nmin = 0 for the numerical solution Ur in subdomain 
Ir . The timestep is �t = 0.01.

Fig. 3 displays the numerical results of first dividing the domain into two subdomains I
 ∪ Ir and then approximating 
the function separately in each of them. As shown in Fig. 3(b), the errors for the p-adaptive methods in the subdomains I

and Ir are smaller presumably because the frequency indicators in both subdomains can be better controlled, as shown in 
Fig. 3(c). To approximate the varying oscillatory behavior in I
 we need to adjust N
 (the expansion order for U
) while to 
approximate u(x, t) in the neighborhood of the singularity in Ir does not rely on adjusting the expansion order (Fig. 3(d)). 
Thus, by using this domain separation strategy to isolate the neighborhood of the singularity, the p-adaptive technique can 
be used to capture varying oscillatory behavior, leading to higher accuracy if the singular behavior is appropriately captured.

Finally, we present an example of a two-dimensional problem in [−1, 1]2.

Example 3. We approximate the function

u(x, y, t) = cos
(
xy(5 − 2|t − 5

2 |)) + y10−4|t−5/2| sin
(
4x(5 − 2|t − 5

2 |)) , (x, y) ∈ [−1,1]2 (2.11)

by Legendre polynomials (corresponding to Jacobi polynomials with α = β = 0) with Legendre-Gauss-Lobatto quadrature 
nodes and weights in both dimensions. Within t ∈ [0, 52 ], the function becomes more oscillatory over time in both di-
mensions, requiring increasing expansion orders. For t ∈ [ 5

2 , 72 ], the error for approximation with fixed expansion orders in 
both dimensions decreases because the function becomes less oscillatory, and therefore a reduction in expansion orders 
in both directions can be used to reduce computational effort without compromising accuracy. Since the function is not 
symmetric in x and y, the adjustment of expansion order is anisotropic. We show that Algorithm 1 can appropriately in-
crease Nx, N y when t < 5

2 and reduce Nx, N y when t ≥ 5
2 . We take Nx = N y = 36 at t = 0 with a timestep �t = 0.01, and 

γx = γy = 1.1, ηx = ηy = 1.1, Nmax,x = Nmax,y = 3, Nmin,x = Nmin,y = 0. The maximum expansion orders during t ∈ [0, 5] are 
Nx = 64 and N y = 51 for the p-adaptive method, which we also use as fixed expansion orders for comparison.
7
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Fig. 4. Using the p-adaptive technique to approximate the two-dimensional function in Eq. (2.11) with Legendre polynomials. Refinement is applied in each 
direction simultaneously to capture increasing oscillations in both directions. Coarsening is applied when large expansion orders are not needed. Anisotropic 
oscillatory behavior requires adjusting the expansion order in each direction differently. The frequency indicators in both dimensions are kept low, leading 
to a small error.

It is evident from Fig. 4(a) that fixing the number of basis functions to Nx = N y = 37 in each dimension leads to an 
approximation which deteriorates while the proposed p-adaptive spectral method is able to keep the error small. The p-
adaptive technique can maintain the same accuracy as using Nx = 64 and N y = 51, as shown in Fig. 4(a), but requires only 
2.3681 ×103 seconds of run-time compared to 2.5365 ×103 seconds when using fixed Nx = 64, N y = 51. This example con-
firms that the p-adaptive technique can reduce computational burden by appropriate adjustment of the expansion order. 
Furthermore, when t ∈ [ 5

2 , 5] we see that with fixed expansion orders Nx = 64 and N y = 51 the approximation error de-
creases, indicating that coarsening can be tolerated to relieve computational burden while maintaining accuracy. Algorithm 1
first tracks increasing oscillations by increasing expansion orders in both x and y directions. When t ≥ 5

2 , Algorithm 1 senses 
a decrease in the frequency indicator and decreases both Nx and N y adaptively (Fig. 4(b)) without compromising accuracy 
(blue and black curves in Fig. 4(a)). Overall, Algorithm 1 preserves accuracy for all times while avoiding excessive values of 
Nx and N y when they are not needed.

Since sin(4x(5 − 2|t − 5
2 |)) is the most oscillatory term in u(x, y, t), the function is more oscillatory in x than in y for 

t ∈ [0, 52 ]. Therefore, the expansion orders should be adjusted anisotropically and we expect Nx needs to be increased more 
than N y in order to keep Fx small, which is indeed observed (Fig. 4(b)). That is, the proposed p-adaptive technique can 
successfully sense the function’s heterogeneity and adjust the expansion orders differently in each dimension. Over time, 
both Fx and Fy in the p-adaptive approximation are maintained as well as when Nx = 64 and N y = 51 are fixed (Figs. 4(c, 
d)), leading to satisfactory error control.

3. Adaptive spectral methods in unbounded domains

Unbounded domain problems are often more difficult to solve numerically than bounded domain problems. Diffusion and 
advection in unbounded domains necessitates knowledge of the solution’s behavior at infinity. To distinguish and handle 
diffusive and advective behavior in unbounded domains, techniques for scaling and moving basis functions are proposed in 
[8]. When combining scaling, moving, refinement and coarsening, we can devise a comprehensive adaptive spectral approach 
for unbounded domains. A flow chart of our overall approach is given in Fig. 5. The scaling, refinement and coarsening 
techniques all rely on a common frequency indicator.
8
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Algorithm 2 Pseudo-code of the frequency-dependent scaling technique which adjusts the scaling factor β .

1: f ← frequency_indicator(U (α,β)
N (t + �t))

2: if f > ν f1 then # try decreasing β
3: β̃ ← qβ

4: U (α,β̃)
N ← scale(U (α,β)

N (t + �t), β̃)

5: f̃ ← frequency_indicator(U (α,β̃)
N )

6: while f̃ ≤ f and β̃ ≥ β do

7: β ← β̃

8: U (α,β)
N (t + �t) ← U (α,β̃)

N

9: f1 ← f̃
10: f ← f̃
11: β̃ ← qβ

12: U (α,β̃)
N ← scale(U (α,β)

N (t + �t), β̃)

13: f̃ ← frequency_indicator(U (α,β̃)
N )

14: end while
15: else if f < f1 then # try increasing β
16: β̃ ← β/q

17: U (α,β̃)
N ← scale(U (α,β)

N (t + �t), β̃)

18: f̃ ← frequency_indicator(U (α,β̃)
N )

19: while f̃ ≤ f and β̃ ≤ β do
20: β ← β̃

21: U (α,β)
N (t + �t) ← U (α,β̃)

N

22: f1 ← f̃
23: f ← f̃
24: β̃ ← β/q

25: U (α,β̃)
N ← scale(U (α,β)

N (t + �t), β̃)

26: f̃ ← frequency_indicator(U (α,β̃)
N )

27: end while
28: end if

As is stated in [8], advection may cause a false increase in the frequency indicator. Thus, we must first compensate for 
advection by the moving technique before we consider either scaling or adjusting the expansion order. Next, as the cost 
of changing the scaling factor is lower than increasing the expansion order, we implement scaling before adjusting the 
expansion order. Only if scaling cannot maintain the frequency indicator below the refinement threshold do we consider 
increasing the expansion order. Coarsening is also considered after scaling if the frequency indicator decreases below the 
threshold.

As was done in [8], we also decrease the scaling factor β by multiplying it by a common ratio q < 1 if the current 
frequency indicator is larger than the scaling threshold f > ν f1. The scaling we perform here contains an additional step: 
when the current frequency indicator decreases and is below f1, we consider increasing the scaling factor β by dividing 
it by the common ratio q as long as the frequency indicator decreases after increasing β . When f ∈ [ f1, ν f1], β is nei-
ther increased nor decreased. Thus, at each step, the scaling factor β may be either increased or decreased as long as the 
frequency indicator decreases after adjusting the scaling factor. A decrease in the scaling factor indicates that the alloca-
tion points are more efficiently distributed. These changes avoid unnecessary computational burden that may arise if N is 
excessively increased. We briefly describe our modified scaling subroutine for one timestep in Algorithm 2.

For simplicity, we assume that the function is moving rightward so we need to move the basis functions rightward. 
Therefore, (xR , ∞) is the “exterior domain” of the spectral approximation on which we wish to control the error as illus-
trated in [8]. For Laguerre polynomials/functions the parameter xL in the algorithm in Fig. 5 denotes the starting point for 
the approximation, while for Hermite polynomials/functions xL represents the translation of Hermite polynomials/functions, 
i.e., we use {Hi(x − xL)} or {Ĥi(x − xL)}. Let U (β)

N,xL
be the spectral approximation with the scaling factor β . The exterior-error 

indicator for the semi-unbounded domain is defined in [8] and we can generalize it to R when using Hermite polynomi-
als/functions

E(U (β)
N,xL

, xR) = ‖∂xU (β)
N,xL

· I(xR ,+∞)‖ωβ

‖∂xU (β)
N,xL

· I(−∞,+∞)‖ωβ

, (3.1)

where ωβ is the weight function and xR is taken to be x(β)

[ 2N+2
3 ] for Hermite functions/polynomials and x(α,β)

[ N+2
3 ] for Laguerre 

functions/polynomials [8] in view of the often-used 2
3 -rule. The difference between the choices of xR for Hermite and 

Laguerre basis functions arises because the allocation points for Hermite functions are symmetrically distributed around 
their center while those for Laguerre functions are one-sided, to the right of the starting point xL in the axis. If the solution 
u(x) moves rightward in time, the spectral approximation at large distances may deteriorate and the exterior-error indicator 
9
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Fig. 5. Flow chart of an adaptive spectral method in unbounded domains that includes moving, scaling, refinement and coarsening techniques.

E(U (β)
N,xL

, xR) will increase. This means that the moving mechanism will be triggered and the starting point of the spectral 
approximation will need to be updated by xL → xL + d0 with the displacement determined by d0 = min{nδ, dmax}. Here n is 
the smallest integer satisfying E(U (β)

N,xL
, xR +nδ) < μe0, δ is the minimum displacement, dmax is the maximum displacement, 

and μ represents the threshold of the increase in the exterior-error indicator (the current value of which is given by e0) 
that we can tolerate.

For the scaling subroutine we need the following parameters: the common ratio q < 1 that we use to geometrically 
shrink/increase the scaling factor, the parameter describing the threshold for considering shrinking the scaling factor ν; a 
predetermined lower bound for the scaling factor β and an upper bound β . For the moving subroutine, required parameters 
include the minimal displacement for the moving technique δ, the maximal displacement within a single timestep dmax, 
and the parameter of the threshold for activating the moving technique μ. At t = 0, we ensure the frequency indicator 
and the exterior-error indicator are relatively small by choosing a suitable initial scaling factor β and an appropriate initial 
translation of basis functions xL , respectively.

The scale and move tests are shown in Fig. 5 while exterior_error_indicator calculates the exterior-error indicator 
for the moving subroutine. A detailed discussion on the scaling and moving techniques is given in [8]. Note that after the 
expansion order N has changed, we need to renew the threshold for scaling, the threshold for subsequent adjustment of 
the expansion order, as well as the threshold for moving, as indicated in Fig. 5. After first applying the moving technique, 
adjusting the expansion order and scaling both depend on the frequency indicator and aim to keep the frequency indicator 
low to control the error. The relationship and interdependence between them is key to understanding and justifying the 
first-scaling-then-adjusting expansion-order procedure in Fig. 5. Thus, we need to investigate how the proposed scaling 
technique will affect our p-adaptive technique and how these two techniques interact with each other. We use two examples 
containing both diffusive and oscillatory behavior to investigate how the two techniques will be activated and influence each 
10
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Table 2
Error, β , and N at t = 5 for different η and γ with both p-adaptive and scaling techniques.

γ
η

1.2 1.5 2 4

1.05
1.305e-05

1.434, 67
2.346-05

1.434, 64
7.687e-05

1.362, 58
6.030e-05

2.053, 55

1.1
2.500e-05

1.510, 62
5.396e-05

1.434, 69
5.513e-05

1.673, 66
6.030e-05

2.053, 55

1.2
4.451e-05

1.853, 56
5.512e-05

1.673, 56
8.927e-05

1.673, 53
8.706e-05

1.853, 53

1.5
1.369e-04

1.589, 52
8.927e-05

1.673, 53
1.099e-04

1.761, 52
8.702e-05

1.951, 53

Table 3
Error and N at t = 5 for different η and γ with the p-adaptive technique but without the scaling technique, β = 4.

γ
η

1.2 1.5 2 4

1.05
1.316e-05

79
3.720e-05

71
9.724e-05

65
2.364e-04

59

1.1
4.372e-05

70
6.544e-05

67
9.823e-05

64
2.607e-04

58

1.2
9.724e-05

65
1.534e-04

62
1.597e-04

61
2.607e-04

58

1.5
2.364e-03

59
2.364e-04

59
2.607e-04

58
3.508e-04

56

other. In Example 4, both refinement and reducing β are needed for matching increasing oscillatory and diffusive behavior 
of the solution; in Example 5, a less oscillatory and diffusive solution over time implies that coarsening and increasing β
may be considered.

Example 4. We approximate the function

u(x, t) = exp

[
− x

(bt + a)

]
cos x, t ∈ R+ (3.2)

with the generalized Laguerre function basis {L̂(α,β)

i (x)}∞i=0 discussed in [8] with the parameter α = 0. The magnitude of 
oscillations for this function, exp(− x

(bt+a)
), increases over time, requiring proper scaling. Under a variable transformation y =

x
bt+a , u(x, t) can be rewritten as u(y, t) = cos ((bt + a)y)exp(−y), indicating that the solution is increasingly oscillatory in y
as time increases. Thus, if we reduce the scaling factor β to match the diffusive behavior of the solution, proper refinement 
is also required. In other words, diffusive and oscillatory behavior is coupled in this example. We carry out numerical 
experiments using the algorithm described in Fig. 5 with different (η, γ ) to investigate how scaling and refinement influence 
each other. We deactivate the moving technique by setting dmax = 0 since the solution exhibits no intrinsic advection. Even if 
we had allowed moving, it was hardly activated. We set �t = 10−3, N = 50 at t = 0 and a = 2, b = 0.7. q = v−1 = 0.95, β =
0.3, β = 10, Nmin = 0, Nmax = 3 and choose the initial scaling factor β = 4.

In Tables 2 and 3 the error in R+ is recorded in the lower-left part of each entry while the scaling factor β and 
expansion order N at t = 5 is recorded in the upper-right. By comparing entries in each column/row for smaller η, γ , both 
tables show the expansion order N is likely to be increased more when the threshold for refinement η f0 is lower.

We see from Table 2 that with more refinement β tends to be smaller. This interaction between p-adaptivity and scaling 
arises because more refinement leads to a larger expansion order N and a smaller scaling threshold ν f1. Since scaling will 
only be performed if the frequency indicator after scaling decreases, proper refinement is not likely to lead to over-scaling. 
Moreover, by comparing N at t = 5 between Tables 2 and 3, we see that N tends to be smaller with the scaling technique for 
the same γ , η. This implies that without scaling, the refinement procedure is more often activated, leading to a larger N to 
compensate for the incapability of scaling alone to maintain a low frequency indicator. This results in a larger computational 
burden without an improvement in accuracy. This behavior has been expected from the design of Algorithm 5 since we put 
scaling before refinement so that redistribution of collocation points is tried first to avoid unnecessary refinement when the 
increase in frequency indicator results from diffusion instead of oscillation.

Example 5. We approximate the function

u(x, t) = exp [−(bt + a)x] cos x, x, t ∈R+ (3.3)
11
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Table 4
Error, β and N at t = 5 for different η0 and γ with/without scaling for the p-adaptive technique.

η 1.2 1.5 2 4

Scaled
6.514e-10

5.728, 11
8.885e-12

7.032, 13
1.260e-11

6.347, 13
1.255e-14

6.681, 17

Unscaled
2.707e-12

4, 20
8.127e-11

4, 28
9.417e-15

4, 31
9.672e-15

4, 30

with the generalized Laguerre function basis with the parameter α = 0. The magnitude of oscillations for this function, 
exp(−(bt + a)x), decreases over time and increasing the scaling factor β to more densely redistribute the allocation 
points is needed. Furthermore, under the variable transformation y = (bt + a)x, u(x, t) can be rewritten as u(y, t) =
cos( y

bt+a ) exp(−y). Since the oscillations decrease with y, one can reduce the expansion order. We consider coarsening 
with or without scaling to investigate whether increasing β can facilitate coarsening (and save computational effort) or 
result in higher accuracy. We carry out numerical experiments using the algorithm described in Fig. 5 and different (η, γ )

and also deactivate the moving technique by setting dmax = 0 since the solution exhibits no intrinsic advection. We set 
�t = 10−3, N = 50 at the beginning and set the parameters a = b = 1/2, q = v−1 = 0.95, β = 0.3, β = 10, Nmin = 0, Nmax = 3
and initial scaling factor β = 4. We use a different threshold η0 for coarsening and we have checked numerically that the 
parameter γ in the refinement subroutine will not affect the coarsening subroutine in this example.

In Table 4 the error in R+ is recorded in the lower-left part of each entry while the scaling factor β and expansion 
order N at t = 5 is recorded in the upper-right. By comparing entries in each row we see that a smaller η0 will lead to 
easier coarsening and a smaller N at t = 5. Since the approximation with larger N is always better, whether we can achieve 
the same level of accuracy with a smaller expansion order N if proper scaling is implemented is of interest. The initial 
approximation error is 1.960 ×10−9 and the approximation will not worsen after coarsening regardless of η0 because in the 
p-adaptive subroutine coarsening is allowed only when the post-coarsening frequency indicator remains below the previous 
threshold f0. Moreover, by comparing the two rows in Table 4 we see that if the solution concentrates and becomes less 
diffusive, increasing β and more efficiently redistributing the allocation points allows the scaling technique to achieve high 
accuracy with fewer expansion orders than without the scaling technique.

The time-dependent errors and expansion orders are plotted in Fig. 6 where the p-adaptive method is compared with 
the non-p-adaptive method when scaling is applied. From Figs. 6(a, c) we can observe that both scaled and unscaled 
methods maintain the error below the initial approximation error. Yet, upon comparing Fig. 6(b) to Fig. 6(d) it is readily 
seen that the scaled method leads to appropriate coarsening while succeeding in maintaining low error, but the unscaled 
method will increase N when increasing the expansion order is not actually needed, resulting in additional unnecessary 
computational burden. In Fig. 6(e) the scaled and p-adaptive spectral method with η0 = 4 is compared with the scaling-
only spectral method. We see that the errors for both methods are almost the same but the p-adaptive method can reduce 
unnecessary computation by decreasing N adaptively while still maintaining a low error, and the approximation error for 
the p-adaptive method fluctuates due to a decreasing N . Fig. 6(f) shows that the scaling factor β is increased more in the 
p-adaptive method, implying that the reason why the p-adaptive method can achieve the same accuracy as non-p-adaptive 
method with a smaller expansion order is that it can redistribute the allocation points more efficiently. Finally, we conclude 
that all three methods: scaling, p-adaptive+scaling, and p-adaptive methods can maintain the error well below the initial 
approximation error, but the combined p-adaptive+scaling method can achieve this with the smallest expansion order and 
is therefore the most efficient method among them.

4. Applications in solving the Schrödinger equation

In this section, we apply our adaptive spectral methods described in Fig. 5 to solve Schrödinger’s equation in unbounded 
domains

i∂tψ(x, t) = −∂2
x ψ(x, t) + V (x)ψ(x, t) + V ex(x, t)ψ(x, t), x ∈R, (4.1)

which is equivalent to the PDE discussed in [14]

i∂t u(x, t) =
[
−(∂x + i A(x, t))2 + V (x, t)

]
u(x, t) (4.2)

under the transformation u(x, t) = ei
∫ t

0 V ex(x,s)dsψ(x, t). Here, we shall use spectral methods with the Hermite function basis. 
The solution is complex, so in the spectral decomposition the coefficients of the basis functions are complex. The major 
difference here is that in [14], Schrödinger’s equation is solved in a bounded domain (x−, x+) with absorbing boundary 
conditions. Using spectral methods, we are able to solve Schrödinger’s equation without truncating the domain.

We solve the weak form of Eq. (4.1)

(∂tψ, v) = −i(∂xψ,∂x v) − i((V (x) + V ex(x, t))ψ, v), v ∈ L2(−∞,∞), (4.3)

which is to find �β
(t, x) := ∑N

i=0 ψ
β

(t)Ĥβ
(x − xL) in V β = span{Ĥβ

(x − xL)}N satisfying the initial condition and
N,xL i,xL i N,xL i i=0

12
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Fig. 6. Approximation to Eq. (3.3) with scaling and p-adaptive techniques. Increasing β by scaling can save computational burden while maintaining accuracy 
by more efficiently redistributing allocation points. The approximation error is controlled below the initial approximation error for both scaled and unscaled 
p-adaptive methods, but the expansion order of the scaled method is smaller. On the other hand, adjusting the scaling factor without decreasing N will 
not achieve higher accuracy.

(∂t�
β
N,xL

, v) + i(∂x�
β
N,xL

, ∂x v) = −i((V (x) + V ex(x, t))�N,xL , v), ∀v ∈ V β
N,xL

. (4.4)

We denote ψβ
N,xL

(t) := (ψ
β

0,xL
(t), ..., ψβ

N,xL
(t)), which can be analytically solved to advance time

ψ
β
N,xL

(tn+1) = exp

⎡
⎣−i

tn+1∫
tn

(Dβ
N + V β

N,xL
(t))dt

⎤
⎦ψ

β
N,xL

(tn) (4.5)

where Dβ ∈R(N+1)×(N+1) is a symmetric matrix with entries
N

13
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(Dβ
N)
 j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− β2
√


(
 + 1) j = 
 + 2,

− β2
√

(
 − 2)(
 − 1) j = 
 − 2,

β2 


2
j = 
,

0 otherwise,

(4.6)

and the matrix V β
N,xL

(t) ∈R(N+1)×(N+1) has entries

(V β
N,xL

(t))
 j =
∞∫

−∞
(V (x) + V ex(x, t))Ĥβ


−1(x − xL)Ĥβ

j−1(x − xL)dx. (4.7)

The evaluation of exp(−i 
∫ tn+1

tn
(Dβ

N + V β
N,xL

(t))dt)ψβ
N,xL

(tn) is performed as follows. First, we denote Ṽ β
N,xL

≈ ∫ tn+1
tn

V β
N,xL

(t)dt
where the integration is evaluated by Gauss-Legendre formula. Therefore, when calculating the matrix-vector product 
Ṽ β

N,xL
XN for a vector XN := (X1, ..., XN) ∈RN+1, its 
th component is

(Ṽ N,xL XN)
 =
N∑

j=0

N∑
s=0

Ĥβ

−1(xβ

s )Ĥβ

j (xβ
s )

[
V (xβ

s + xL) + 5
18 V ex(xβ

s + xL, tn + 1
2 (1 −

√
3
5 )dt)

+ 4
9 V ex(xβ

s + xL, tn + dt
2 ) + 5

18 V ex(xβ
s + xL, tn + 1

2 (1 +
√

3
5 )dt)

]
X j�t

(4.8)

where �t = tn+1 − tn . We can first calculate

N∑
j=0

Ĥβ

j (xβ
s )

[
V (xβ

s + xL) + 5
18 V ex(xβ

s + xL, tn + 1
2 (1 −

√
3
5 )dt)

+ 4
9 V ex(xβ

s + xL, tn + d
2 ) + 5

18 V ex(xβ
s + xL, tn + 1

2 (1 +
√

3
5 )dt)

]
X j�t (4.9)

for each subindex s; then, evaluating (Ṽ β
N,xL

XN )
 for each subindex 
 will only require an O (N) operation. In this 
way, given any arbitrary potentials V (x), V ex(x, t) we can calculate Ṽ β

N,xL
XN in O (N2) operations without explicitly 

calculating entries in Ṽ β
N,xL

. We approximate the matrix-vector product exp
[
−i(Dβ

N�t + Ṽ N,xL )
]
ψ

β
N,xL

(tn) by rewriting 

exp
[
−i(D N�t + Ṽ N,xL )

]
ψ

β
N,xL

(tn) = exp
[
− 1

m i(D N�t + Ṽ N,xL )
]m

ψ
β
N,xL

(tn), which is introduced as the “scaling and squar-

ing” method in [19], and approximate the matrix-vector product exp
[
− 1

m i(D N�t + Ṽ N,xL )
]

XN by truncating the infinite 

Taylor expansion series 
∑∞

j=0
1

m j j!
[
−i(D N�t + Ṽ N,xL )

] j
XN . Here, we take m = 3.

As mentioned in Section 1, two main numerical difficulties when solving Schrödinger’s equation are the unbounded-
ness and the oscillatory behavior of the solutions. In fact, the solution may be increasingly oscillatory behavior at infinity 
over time, making it very hard to solve in the unbounded domain. However, with our adaptive spectral methods, we can 
efficiently solve Schrödinger’s equation in unbounded domains accurately and capture these oscillations.

We now revisit the examples of linear Schrödinger’s equations discussed in [14], nonlinear Schrödinger’s equations dis-
cussed in [24], and their semiclassical limits studied in [25]. In the following examples, curves labeled “adaptive” indicate 
that scaling, moving, and p-adaptive techniques are all applied as described in Fig. 5, while curves labeled “non-adaptive” 
indicate none of the three adaptive techniques is applied. Results obtained by applying some of the three techniques are 
marked by curves named by the corresponding techniques that are applied.

Example 6. We numerically solve the Schrödinger’s equation which was considered in Example 1 of [14] and take V =
V ex = 0 in Eq. (4.1), admitting the analytic solution

�(x, t) = 1√
ζ + it

exp

[
ik(x − kt) − (x − 2kt)2

4(ζ + it)

]
, (4.10)

where k is related to the propagation speed of the beam and ζ determines the width of the beam. The absolute values of 
the real part of �(x, t = 0, 0.5, 1) are plotted in Fig. 7(a), illustrating the increasingly oscillatory and diffusive behavior in 
the rightward propagating solution. Treatment of this solution will thus require scaling, moving, and p-adaptive techniques. 
The imaginary parts of the reference solution (not plotted) over time are also increasingly oscillatory. We shall apply the 
algorithm described in Fig. 5. We set ζ = 0.3, k = 1, and initialize N = 50 at t = 0. Other parameters are set to q = ν−1 =
14
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Fig. 7. Numerical solution of Schrödinger’s equation with vanishing potentials. Applying scaling, moving, and p-adaptive techniques can successfully capture 
diffusive advective, and oscillatory behavior of the solution and yields an accurate numerical solution that prevents the frequency indicator from growing 
too fast. The exterior-error indicator is also kept small by moving the basis functions rightward to avoid a deteriorating approximation at ∞. Failure to 
incorporate any of the moving, scaling, or p-adaptive techniques results in a much larger error.

0.95, μ = 1.0002, d0 = 0.005, β = 0.3, β = 2, dmax = 0.1, Nmax = 6, Nmin = 0, η = 1.1, γ = 1.05, and �t = 0.005. Note that 
with zero potential, Eq. (4.5) reduces to

ψ
β
N(tn+1) = exp

[
−iDβ

N dt
]
ψ

β
N(tn). (4.11)

When all four techniques are applied, the error is the smallest (shown in Fig. 7(b)) since we can keep the exterior error 
indicator in (xR , ∞) small (shown in Fig. 7(c)) by matching the solution’s intrinsic advection. We can simultaneously prevent 
the frequency indicator from growing too fast (shown in Fig. 7(d)), thus ensuring a small error bound.

From the reference solution one observes that increasing the expansion order over time is an intrinsic requirement and 
failure to do so prevents the capture of the increasing oscillations, leading to a huge error. As the function becomes in-
creasingly oscillatory as x → ∞, moving the basis rightward requires correspondingly more refinement (shown in Fig. 7(e)). 
However, the p-adaptive method alone cannot compensate for the inability to capture diffusion and advection, resulting in 
an inaccurate approximation. We have also checked that apart from what is shown in Fig. 7, applying any single scaling, 
15
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Fig. 8. Numerical solution of the 2-D Schrödinger’s equation (4.12). Applying scaling and p-adaptive techniques can capture diffusive and oscillatory behavior 
of the solution. The solution is heterogeneous in each dimension and requires adjusting the scaling factors and frequency indicators differently in x- and 
y-directions.

moving or p-adaptive technique, or combining any two of them will all result in a much larger error than employing all 
three techniques indicated in Fig. 5. The adaptive spectral method produced an error of 3.4572 × 10−8 and required 162.6 
seconds of laptop run-time. If we use a fixed N = 116, which is the largest expansion order during t ∈ [0, 1], while activating 
the scaling and moving techniques 199.2 seconds of run-time is required for an error of 2.0661 × 10−8. This example ver-
ifies that the p-adaptive technique can provide computational savings through adaptive adjustment of the expansion order 
while maintaining an equivalent accuracy as by using the largest expansion order.

Example 7. We solve the following 2-D Schrödinger’s equation in R2 ×R+:

i∂tψ(x, y, t) = −�ψ(x, y, t), (4.12)

that admits the diffusive and increasingly oscillatory analytic solution

�(x, y, t) = 1√
ζx + it

exp

[
− x2

4(ζx + it)

]
1√

ζy + it
exp

[
y2

4(ζy + it)

]
. (4.13)

The function is heterogeneous and requires different scaling and adjustment of the expansion orders in each dimension. 
We shall still solve the weak form by similar schemes described in Eqs. (4.4) and (4.5) to advance time. Since the function 
is not advecting over time, we deactivate the moving technique by setting the maximal displacement to be 0. We set 
ζx = 0.5, ζy = 0.3 in Eq. (4.13) giving rise to a function that is more oscillatory and diffusive in x. The initial scaling factors 
are βx = 1, βy = 1.2 and the initial expansion orders were set to Nx = N y = 50, with constraints Nx,min = N y,min = 0, 
Nx,max = N y,max = 6. We used the scaling parameters qx = qy = ν−1

x = ν−1
y = 0.95 and the p-adaptivity parameters ηx =

ηy = 1.02, γx = γy = 1.
Because the frequency indicators are applied in both directions, the spectral method with the p-adaptive and scaling 

techniques leads to the smallest error (Fig. 8(a)). In Fig. 8(b) we plot frequency indicators in the x-direction and show that 
the spectral method with both scaling and p-adaptive techniques gives rise to the smallest values. Furthermore, since the 
function is more diffusive and oscillatory in x, βx , the scaling factor in x is decreased more than βy when only scaling is 
used, as shown in Fig. 8(c). Expansion orders Nx in both scaling and scaling + p-adaptive methods increases faster than N y , 
as shown in Fig. 8(d). Fig. 8(d) also shows that proper scaling can avoid unnecessary increases in the expansion order, in 
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Fig. 9. Numerical solution of the nonlinear Schrödinger’s equation (4.14). The solution translates rightward which may cause a false increase in the frequency 
indicator leading to a large error if the moving technique is not applied. If moving is not applied, the expansion order will need to be increased to give an 
accurate solution. However, by properly moving the basis functions rightward using the moving technique, accuracy can be maintained without increasing 
the expansion order. Therefore, the moving technique is required in addition to the p-adaptive method.

this case, N y . As shown in Fig. 8(a), increasing the expansion order without scaling leads to an even larger error at t = 1
than that obtained under pure scaling.

For comparison, we also use the spectral method without the p-adaptive technique and fix the expansion orders Nx =
124, N y = 80, the largest values reached under the p-adaptive and scaling techniques. The error 3.1852 ×10−5 is comparable 
to the error 3.0366 ×10−5 of the adaptive method, but the run-time 7.1705 ×104 seconds (when using fixed Nx = 124, N y =
80) is significantly larger than the 4.9508 × 104 seconds necessary for the adaptive method. Therefore, using the p-adaptive 
technique to adjust the expansion order efficiently can significantly reduce computational costs without sacrificing accuracy.

Example 8. We numerically solve the following nonlinear Schrödinger’s equation in R [24]:

i∂tψ = ∂2
x ψ + 2|ψ |2ψ, ψ(x,0) = 2e−2ixsech(2x), (4.14)

which admits an analytic solution

ψ(x,0) = 2e−2ixsech(2x − 8t). (4.15)

Clearly, the function translates rightward, requiring a corresponding translation of the basis functions. In Example 5 we 
have demonstrated that successfully capturing the diffusive behavior of the numerical solution by the scaling technique 
can prevent unnecessary increase of the expansion order. Here, we show that successfully capturing the advective behavior 
of the solution can also help avoid unnecessary increase of the expansion order, reducing computational costs. Since the 
solution does not exhibit diffusive behavior, we use the algorithm described in Fig. 5 but deactivate the scaling technique.

For the p-adaptive technique, we set η = 1.3, γ = 1, Nmax = 20, and Nmin = 0 while for the moving technique we set 
μ = 1.00005, δ = 0.0005, dmax = 0.01, the initial expansion order N = 120, the scaling factor β = 1.3, and set the timestep 
�t = 0.0005. An explicit third order Runge Kutta scheme is used to forward time.

Spectral methods including the moving technique can achieve the highest accuracy and maintain the smallest frequency 
indicator as shown by the green and red curves in Figs. 9(a, b), respectively. Since the oscillatory behavior of the solution 
does not varying over time and the function translates to the right with speed 4s−1, the p-adaptive technique will not be 
activated as long as we properly move the basis functions rightward. Translation can be accurately captured by the moving 
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Fig. 10. Numerical solution of Schrödinger’s equation with non-vanishing potentials. Rapidly increasing oscillations of the solution over time requires much 
refinement and proper scaling to maintain accuracy. It is again verified that proper scaling can avoid unnecessary refinement and avoid unnecessary 
computational burden by adaptively adjusting the scaling factor. Without scaling, the expansion order soon reaches the upper bound for N (the expansion 
order of the reference solution) and the approximation soon deteriorates due to an inability to further increase N or adjust β and maintain a low frequency 
indicator. Failure to accommodate the p-adaptive technique will also result in a larger error because of an inability to capture the oscillatory behavior.

technique (Figs. 9(c, d)). However, as shown in Fig. 9(d), without the moving technique, the p-adaptive method increases 
the expansion order to maintain accuracy, resulting in a higher computational cost. As mentioned in [8], translation will 
induce a false increase in the frequency indicator. Successfully resolving the translation can be used to prevent unnecessary 
increases in the expansion order. In this example, the moving and p-adaptive technique requires 2.1569 × 103 seconds 
of run-time while the p-adaptive technique without moving required 3.8235 × 103 seconds. Thus, it is important to first 
properly move the basis functions before adjusting the expansion order.

Next, we numerically solve Schrödinger’s equation with non-vanishing potentials.

Example 9. We numerically solve the following standard Schrödinger’s equation (4.1) equivalent to Example 2 in [14] with 
the potentials

V ex(x, t) = 50√
π

sin(10t)

x∫
−∞

exp(−z2)dz, V (x) = −10
[

e−10(x−1)2 + e−10(x+1)2
]
. (4.16)

Given an even function as the initial condition for Example 2 in [14], the solution is also an even function and the solution 
of Eq. (4.1) obeys |ψ(−x, t)| = |ψ(x, t)|. No bias towards −∞ or +∞ is preferred. Therefore, we use the Hermite function 
basis and apply the algorithm described in Fig. 5 but deactivate the moving technique by setting dmax = 0. We use the 
same initial condition as in Example 6 and set η = 1.025, γ = 1, q = 0.95, ν = q−1, Nmin = 0, N = 200, β = 0.3, β = 2, and 
β0 = 1.3 at t = 0 with the maximum expansion order increment in each step Nmax = 20.

The reason we set γ = 1 is that the expansion order N needs to be increased quickly to catch up with the rapidly 
increasing oscillatory behavior of the numerical solution. We set a uniform timestep �t = 0.01 and use only the scaling 
technique with fixed N = 2500 to find the reference solution. For the p-adaptive method, we added an additional restriction 
that the expansion order of the reference solution cannot exceed N = 2500.

We can easily see that the spectral method with both scaling and p-adaptive techniques outperforms the non-adaptive 
spectral method or with only one of these two techniques employed (shown in Fig. 10(a)). The frequency indicator of 
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Fig. 11. Numerical solution of Schrödinger’s equation (4.17) in the small ε limit using the time-dependent potential given in Eq. (4.18). Rapidly increasing 
oscillations of the solution require significant refinement by the p-adaptive technique in order to maintain accuracy. The expansion order increases faster 
over time as ε becomes smaller. In general, the p-adaptive technique is appropriate for solving Eq. (4.17) in the mesoscopic regime for ε that is not too 
small.

using both scaling and p-adaptive techniques is also the smallest (Fig. 10(b)), and the similarity between the frequency 
indicator and error is again confirmed as stated in [8]. Moreover, the unscaled method will result in a larger expansion order 
(Fig. 10(a)), leading to excessive refinement with no improvement in accuracy (Fig. 10(a)). In this example, the coarsening 
procedure will not lead to a large increase in the frequency indicator and does not significantly compromise accuracy 
(Figs. 10(b, c)). Finally, the scaling factors of the p-adaptive spectral method and the non-p-adaptive spectral method trend 
similarly over time; they both decrease after experiencing an initial, transient increase (Fig. 10(d)).

Example 10. Finally, we consider solving Schrödinger’s equation,

i∂tψ(x, t) = −ε∂2
x ψ(x, t) + 1

ε
V (x, t), (4.17)

in the semiclassical regime in which the solution can become more oscillatory over time, especially when ε → 0+ as 
illustrated in [25]. A p-adaptive technique to increase the expansion order is thus needed. We investigate whether our p-
adaptive technique can successfully solve Eq. (4.17) as ε → 0+ and how the evolution of expansion order N depends on 
ε.

We assume a time-dependent potential

V (x, t) = sin(t/8)exp(−10x2) (4.18)

which is even in R and use the same even initial condition as in Example 6. Since the solution remains even, no translation 
of the basis functions is needed. Therefore, as in Example 9, we deactivate the moving technique by setting dmax = 0. We 
set η = 1.02, γ = 1, q = 0.95, ν = q−1, Nmin = 0, N = 100, β = 0.3, β = 2, and β0 = 1.3 at t = 0 and impose a maximum 
expansion order increment Nmax = 24 at each timestep �t = 0.01. As a reference solution, we solve Eq. (4.17) using a fixed 
N = 2500 with the scaling technique and investigate the cases ε = 0.1, 0.01, and 0.001.

Since the solution increases its oscillations faster as ε becomes smaller, the expansion order needs to be increased 
accordingly. As shown in Fig. 11, under the p-adaptive technique, the smaller the ε, the faster the rate of increase of the 
expansion order N . In this example, no intrinsic diffusion of the solution is detected and scaling is not activated in the 
p-adaptive technique as long as the expansion order is properly increased. Figs. 11(b, c, d) show the errors for ε = 0.1, 0.01, 
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and 0.001, respectively. Without adaptive methods, the errors increase significantly as ε decreases, but by employing p-
adaptivity, the expansion order is adjusted to control the errors, dramatically reducing their increase across time, as shown 
in Figs. 11(b, c).

When ε becomes even smaller, the solution becomes extremely oscillatory and the expansion order needs to be increased 
too fast even for the current implementation of the p-adaptive method to accommodate (see ε = 0.001 in Fig. 11(d)). 
Very small ε in Eq. (4.17) poses an intrinsic numerical difficulty that requires extremely large expansion order N . In the 
extremely small ε regime, methods like Magnus-Zassenhaus splittings [25], which becomes more accurate as ε → 0+ , could 
be used. Thus, our p-adaptive technique is most applicable to the mesoscopic regime of a Schrödinger’s equation of the 
form Eq. (4.17) in which ε is not too small. Nonetheless, our p-adaptive technique can efficiently capture oscillations and 
complements existing methods designed for very small ε.

5. Summary and conclusion

In this paper, we proposed a frequency-dependent p-adaptive technique that adjusts the expansion order for spectral 
methods. We demonstrated its applicability to time-dependent problems with varying oscillatory behavior. In order to de-
velop efficient numerical methods for problems requiring solutions in unbounded domains, we also combined the p-adaptive 
technique with scaling (r-adaptivity) and moving (h-adaptivity) methods to devise a complete adaptive spectral method that 
can successfully deal with diffusion, advection, and oscillation. Through a number of numerical examples, we explored the 
relationship among the three building blocks: the scaling, moving, and p-adaptive techniques. In particular, the proposed 
p-adaptive technique enables us to adjust the expansion order dynamically, boosting efficiency of the spectral method. We 
also investigated the relationship between scaling and p-adaptive techniques for spectral methods in unbounded domains, 
both of which depend on the same frequency indicator.

Our adaptive spectral method was also used to numerically solve different variations of Schrödinger’s equation. The 
solutions to these examples can contain rapid oscillations across the whole domain that evolve in time, posing numeri-
cal difficulties for existing numerical methods that truncate the domain. However, this type of problem can be efficiently 
resolved by our p-adaptive spectral methods. We find the proposed approaches are most effective in the mesoscopic, semi-
classical regime of Schrödinger’s equation where ε is not too small.

Further analysis of the proposed methods can be performed. The relationship among the adaptive techniques for spectral 
methods, scaling, moving, refinement and coarsening, can be further studied and rigorous numerical analysis for these 
techniques should be investigated. Furthermore, fast algorithms with mapped Chebyshev polynomials for solving PDEs in 
unbounded domains have been developed using the fast Fourier transform [20]. Thus, generalizing these adaptive methods 
for mapped Jacobi polynomials may be a compelling future research direction.
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