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Abstract

years, hundreds of distinct clonal lineages.

of active HSCs.

Background: How a potentially diverse population of hematopoietic stem cells (HSCs) differentiates and proliferates
to supply more than 10" mature blood cells every day in humans remains a key biological question. We investigated
this process by quantitatively analyzing the clonal structure of peripheral blood that is generated by a population of
transplanted lentivirus-marked HSCs in myeloablated rhesus macaques. Each transplanted HSC generates a clonal
lineage of cells in the peripheral blood that is then detected and quantified through deep sequencing of the viral
vector integration sites (VIS) common within each lineage. This approach allowed us to observe, over a period of 4-12

Results: While the distinct clone sizes varied by three orders of magnitude, we found that collectively, they form a
steady-state clone size-distribution with a distinctive shape. Steady-state solutions of our model show that the
predicted clone size-distribution is sensitive to only two combinations of parameters. By fitting the measured clone
size-distributions to our mechanistic model, we estimate both the effective HSC differentiation rate and the number

Conclusions: Our concise mathematical model shows how slow HSC differentiation followed by fast progenitor
growth can be responsible for the observed broad clone size-distribution. Although all cells are assumed to be
statistically identical, analogous to a neutral theory for the different clone lineages, our mathematical approach
captures the intrinsic variability in the times to HSC differentiation after transplantation.
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Background

Around 10! new mature blood cells are generated in a
human every day. Each mature blood cell comes from
a unique hematopoietic stem cell (HSC). Each HSC,
however, has tremendous proliferative potential and con-
tributes a large number and variety of mature blood cells
for a significant fraction of an animal’s life. Traditionally,
HSCs have been viewed as a homogeneous cell pop-
ulation, with each cell possessing equal and unlimited
proliferative potential. In other words, the fate of each
HSC (to differentiate or replicate) would be determined
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by its intrinsic stochastic activation and signals from its
microenvironment [1, 2].

However, as first shown in Muller-Sieburg et al. [3],
singly transplanted murine HSCs differ significantly in
their long-term lineage (cell-type) output and in their
proliferation and differentiation rates [4—7]. Similar find-
ings have been found from examining human embry-
onic stem cells and HSCs in vitro [8, 9]. While cell-level
knowledge of HSC:s is essential, it does not immediately
provide insight into the question of blood homeostasis
at the animal level. More concretely, analysis of single-
cell transplants does not apply to human bone marrow
transplants, which involve millions of CD34-expressing
primitive hematopoietic and committed progenitor cells.
Polyclonal blood regeneration from such hematopoietic
stem and progenitor cell (HSPC) pools is more complex
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and requires regulation at both the individual cell and
system levels to achieve stable [10, 11] or dynamic [12]
homeostasis.

To dissect how a population of HSPCs supplies
blood, several high-throughput assay systems that can
quantitatively track repopulation from an individual stem
cell have been developed [6, 11, 13, 14]. In the experiment
analyzed in this study, as outlined in Fig. 1, each individual
CD34+ HSPC is distinctly labeled by the random incor-
poration of a lentiviral vector in the host genome before
transplantation into an animal. All cells that result from
proliferation and differentiation of a distinctly marked
HSPC will carry identical markings defined by the loca-
tion of the original viral vector integration site (VIS).
By sampling nucleated blood cells and enumerating their
unique VISs, one can quantify the cells that arise from
a single HSPC marked with a viral vector. Such studies
in humans [15] have revealed highly complex polyclonal
repopulation that is supported by tens of thousands of dif-
ferent clones [15-18]; a clone is defined as a population of
cells of the same lineage, identified here by a unique VIS.
These lineages, or clones, can be distributed across all cell
types that may be progeny of the originally transplanted
HSC after it undergoes proliferation and differentiation.
However, the number of cells of any VIS lineage across
certain cell types may be different. By comparing abun-
dances of lineages across blood cells of different types, for
example, one may be able to determine the heterogeneity
or bias of the HSC population or if HSCs often switch their
output. This type of analysis remains particularly difficult
in human studies since transplants are performed under
diseased settings and followed for only 1 or 2 years.
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We analyze here a systematic clone-tracking study that
used a large number of HSPC clones in a transplant
and competitive repopulation setting comparable to that
used in humans [19]. In these nonhuman primate rhesus
macaque experiments, lentiviral vector-marked clones
were followed for up to a decade post-transplantation
(equivalent to about 30 years in humans if extrapolated by
average life span). All data are available in the supplemen-
tary information files of Kim et al. [19]. This long-term
study allows one to distinguish clearly HSC clones from
other short-term progenitor clones that were included in
the initial pool of transplanted CD34+ cells. Hundreds to
thousands of detected clones participated in repopulat-
ing the blood in a complex yet highly structured fashion.
Preliminary examination of some of the clone populations
suggests waves of repopulation with short-lived clones
that first grow then vanish within the first 1 or 2 years,
depending on the animal [19].

Subsequent waves of HSC clones appear to rise and
fall sequentially over the next 4—12 years. This picture
is consistent with recent observations in a transplant-
free transposon-based tagging study in mice [20] and in
human gene therapy [15, 16]. Therefore, the dynamics
of a clonally tracked nonhuman primate HSPC repopula-
tion provides rich data that can inform our understanding
of regulation, stability, HSPC heterogeneity, and possibly
HSPC aging in hematopoiesis.

Although the time-dependent data from clonal repopu-
lation studies are rich in structure, in this study we focus
on one specific aspect of the data: the number of clones
that are of a certain abundance as described in Fig. 2.
Rather than modeling the highly dynamic populations

s

CD34+ cell
mobilization

autologous
transplantation

O oSe0
SRLD _at% . Koee
o 80 o Ce®
O *** OO OO

lentiviral marking

fraction of lentiviral vector-marked clones

50 108 145

10 2
time after transplant (months)

Fig. 1 Probing hematopoietic stem and progenitor cell (HSPC) biology through polyclonal analysis. a Mobilized CD34+ bone marrow cells from
rhesus macaques are first marked individually with lentiviral vectors and transplanted back into the animal after nonlethal myeloablative irradiation
[19]. Depending on the animal, 30-160 million CD34+ cells were transplanted, with a fraction ~0.07-0.3 of them being lentivirus-marked. The clonal
contribution of vector-marked HSPCs is measured from blood samples periodically drawn over a dozen years [19]. An average fraction f ~0.03-0.1
of the sampled granulocytes and lymphocytes in the peripheral blood was found to be marked. This fraction is smaller than the fraction of marked
CD34+ cells due probably to repopulation by surviving unmarked stem cells in the marrow after myeloablative conditioning. Within any
post-transplant sample, S = 1342-44,415 (average 10,026) viral integration sites of the marked cells were sequenced (see [14, 19] for details). b The
fraction of all sequenced VIS reads belonging to each clone is shown by the thickness of the slivers. Small clones are not explicitly shown
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Fig. 2 Quantification of marked clones. a Assuming each transplanted stem cell is uniquely marked, the initial number of CD34+ cells representing
each clone is one. b The pre-transplant clone size distribution is thus defined by the total number of transplanted CD34+ cells and is peaked at one
cell. Post-transplant proliferation and differentiation of the HSC clones result in a significantly broader clone size distribution in the peripheral blood.
The number of differentiated cells for each clone and the number of clones represented by exactly k cells, 5 years’ post-transplantation
(corresponding to Fig. 1a), are overlaid in (a) and (b) respectively. € Clone size distribution (blue) and the cumulative normalized clone size
distribution (red) of the pre-transplant CD34+ population. d After transplantation, clone size distributions in the transit-amplifying (TA) and
differentiated peripheral cell pools broaden significantly (with clones ranging over four decades in size) but reach a steady state. The corresponding
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of each clone, our aim here is to develop first a more
global understanding of how the total number of clones
represented by specific numbers of cells arises within a
mechanistically reasonable model of hematopoiesis. The
size distributions of clones present in the blood sampled
from different animals at different times are characterized
by specific shapes, with the largest clones being a factor
of 100-1000 times more abundant than the most rarely
detected clones. Significantly, our analysis of renormal-
ized data indicates that the clone size distribution (mea-
suring the number of distinct lineages that are of a certain
size) reaches a stationary state as soon as a few months
after transplantation (see Fig. 4 below). To reconcile the
observed stationarity of the clone size distributions with
the large diversity of clonal contributions in the context
of HSPC-mediated blood repopulation, we developed a
mathematical model that treats three distinct cell popula-
tions: HSCs, transit-amplifying progenitor cells, and fully
differentiated nucleated blood cells (Fig. 3). While multi-
stage models for a detailed description of differentiation
have been developed [21], we lump different stages of cell
types within the transit-amplifying progenitor pool into
one population, avoiding excess numbers of unmeasurable
parameters. Another important feature of our model is the

overall effect of feedback and regulation, which we incor-
porate via a population-dependent cell proliferation rate
for progenitor cells.

The effective proliferation rate will be modeled using a
Hill-type suppression that is defined by the limited space
for progenitor cells in the bone marrow. Such a regula-
tion term has been used in models of cyclic neutropenia
[22] but has not been explicitly treated in models of clone
propagation in hematopoiesis. Our mathematical model
is described in greater detail in the next section and in
Additional file 1.

Our model shows that both the large variability and
the characteristic shape of the clone size distribution can
result from a slow HSC-to-progenitor differentiation fol-
lowed by a burst of progenitor growth, both of which are
generic features of hematopoietic systems across differ-
ent organisms. By assuming a homogeneous HSC pop-
ulation and fitting solutions of our model to available
data, we show that randomness from stochastic activa-
tion and proliferation and a global carrying capacity are
sufficient to describe the observed clonal structure. We
estimate that only a few thousand HSCs may be actively
contributing toward blood regeneration at any time. Our
model can be readily generalized to include the role of
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Fig. 3 Schematic of our mathematical model. Of the ~10°-107 CD34+ cells in the animal immediately after transplantation, C active HSCs are
distinctly labeled through lentiviral vector integration. U HSCs are unlabeled because they were not mobilized, escaped lentiviral marking, or
survived ablation. All HSCs asymmetrically divide to produce progenitor cells, which in turn replicate with an effective carrying capacity-limited rate
r. Transit-amplifying progenitor cells die with rate up, or terminally differentiate with rate w. The terminal differentiation of the progenitor cells occurs
symmetrically with probability # or asymmetrically with probability 1 — 5. This results in a combined progenitor-cell removal rate . = pp + nw. The
differentiated cells outside the bone marrow are assumed not to be subject to direct regulation but undergo turnover with a rate pq. The mean
total numbers of cells in the progenitor and differentiated populations are denoted N, and Ny, respectively. Finally, a small fraction ¢ < 1 of
differentiated cells is sampled, sequenced, and found to be marked. In this example, S = eNg = 5. Because some clones may be lost as cells
successively progress from one pool to the next, the total number of clones in each pool must obey C > C, > C4 > Cs. Analytic expressions for the
expected total number of clones in each subsequent pool are derived in Additional file 1. HSC hematopoietic stem cell, TA transit-amplifying
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heterogeneity and aging in the transplanted HSCs and
provides a framework for quantitatively studying physi-
ological perturbations and genetic modifications of the
hematopoietic system.

Mathematical Model

Our mathematical model explicitly describes three sub-
populations of cells: HSCs, transit-amplifying progenitor
cells, and terminally differentiated blood cells (see Fig. 3).
We will not distinguish between myeloid or lymphoid
lineages but will use our model to analyze clone size
distribution data for granulocytes and peripheral blood
mononuclear cells independently. Our goal will be to
describe how clonal lineages, started from distinguishable
HSCs, propagate through the amplification and terminal
differentiation processes.

Often clone populations are modeled directly by
dynamical equations for (), the number of cells of a
particular clone j identified by its specific VIS [23]. Since
all cells are identical except for their lentiviral marking,
mean-field rate equations for #;(¢) are identical for all j.
Assuming identical initial conditions (one copy of each
clone), the expected populations #;(¢) would be identical
across all clones j. This is a consequence of using identical
growth and differentiation rates to describe the evolution
of the mean number of cells of each clone.

Therefore, for cells in any specific pool, rather than
deriving equations for the mean number #; of cells of
each distinct clone j (Fig. 2a), we perform a hodograph
transformation [24] and formulate the problem in terms

of the number of clones that are represented by k cells,
cp = Z; Sk (see Fig. 2b), where the Kronecker § func-
tion &k, = 1 only when k = #; and is 0 otherwise.
This counting scheme is commonly used in the study of
cluster dynamics in nucleation [25] and in other related
models describing the dynamics of distributions of cell
populations. By tracking the number of clones of differ-
ent sizes, the intrinsic stochasticity in the times of cell
division (especially that of the first differentiation event)
and the subsequent variability in the clone abundances
are quantified. Figure 2a, b qualitatively illustrates #; and
¢k, pre-transplant and after 5 years, corresponding to the
scenario depicted in Fig. 1a. Cells in each of the three
pools are depicted in Fig. 3, with different clones grouped
according to the number of cells representing each clone.

The first pool (the progenitor-cell pool) is fed by HSCs
through differentiation. Regulation of HSC differentiation
fate is known to be important for efficient repopula-
tion [26, 27] and control [28] and the balance between
asymmetric and symmetric differentiation of HSCs has
been studied at the microscopic and stochastic levels
[29-32]. However, since HSCs have life spans comparable
to that of an animal, we reasoned that the total number of
HSCs changes only very slowly after the initial few-month
transient after transplant. For simplicity, we will assume,
consistent with estimates from measurements [33], that
HSCs divide only asymmetrically. Therefore, upon differ-
entiation, each HSC produces one partially differentiated
progenitor cell and one replacement HSC. How symmet-
ric HSC division might affect the resulting clone sizes is
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discussed in Additional file 1 through a specific model of
HSC renewal in a finite-sized HSC niche. We find that
the incorporation of symmetric division has only a small
quantitative effect on the clone size distribution that we
measure and ultimately analyze.

Next, consider the progenitor-cell pool. From Fig. 3, we
can count the number of clones ¢ represented by exactly k
cells. For example, the black, red, green, and yellow clones
are each represented by three cells, so c3 = 4. Each pro-
genitor cell can further differentiate with rate w into a
terminally differentiated cell. If progenitor cells undergo
symmetric differentiation with probability n and asym-
metric differentiation with probability 1 — 7, the effective
rate of differentiation is 2nw + (1 — Nw = (1 + .
In turn, fully differentiated blood cells (not all shown in
Fig. 3) are cleared from the peripheral pool at rate g, pro-
viding a turnover mechanism. Finally, each measurement
is a small-volume sample drawn from the peripheral blood
pool, as shown in the final panel in Fig. 3.

Note that the transplanted CD34+ cells contain both
true HSCs and progenitor cells. However, we assume that
at long times, specific clones derived from progenitor
cells die out and that only HSCs contribute to long-lived
clones. Since we measure the number of clones of a cer-
tain size rather than the dynamics of individual clone
numbers, transplanted progenitor cells should not dra-
matically affect the steady-state clone size distribution.
Therefore, we will ignore transplanted progenitor cells
and assume that after transplantation, effectively only U
unlabeled HSCs and C labeled (lentivirus-marked) HSCs
are present in the bone marrow and actively asymmet-
rically differentiating (Fig. 3). Mass-action equations for
the expected number of clones c; of size k are derived
from considering simple birth and death processes with
immigration (HSC differentiation):

d
g = afck_1 —ck| +r[(k—Dex1 — keg]

HSC differentiation progenitor birth (1)

+ w [k + Deggr — kex],

progenitor death

where k = 1,2,...,C and ¢(t) = C — > 32, k()
is the number of clones that are not represented in the
progenitor pool. Since C is large, and the number of
clones that are of size comparable to C is negligible, we
will approximate C — 00 in our mathematical deriva-
tions. We have suppressed the time dependence of c(¢)
for notational simplicity. The constant parameter « is the
asymmetric differentiation rate of all HSCs, while r and
w are the proliferation and overall clearance rates of pro-
genitor cells. In our model, HSC differentiation events
that feed the progenitor pool are implicitly a rate-a Pois-
son process. The appreciable number of detectable clones
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(Fig. 1b) implies the initial number C of HSC clones is
large enough that asymmetric differentiation of individ-
ual HSCs is uncorrelated. The alternative scenario of a
few HSCs undergoing synchronized differentiation would
not lead to appreciably different results since the result-
ing distribution ¢ is more sensitive to the progenitor cells’
unsynchronized replication and death than to the statistics
of the immigration by HSC differentiation.

The final differentiation from progenitor cell to periph-
eral blood cell can occur through symmetric or asym-
metric differentiation, with probabilities n and 1 — 7,
respectively. If parent progenitor cells are unaffected after
asymmetric terminal differentiation (i.e., they die at the
normal rate ), the dynamics are feed-forward and the
progenitor population is not influenced by terminal dif-
ferentiation. Under symmetric differentiation, a net loss of
one progenitor cell occurs. Thus, the overall progenitor-
cell clearance rate can be decomposed as u = u, + no.
We retain the factor 1 in our equations for modeling ped-
agogy, although in the end it is subsumed in effective
parameters and cannot be independently estimated from
our data.

The first term in Eq. 1 corresponds to asymmetric dif-
ferentiation of each of the C active clones, of which ¢, are
of those lineages with population k already represented
in the progenitor pool. Differentiation of this subset of
clones will add another cell to these specific lineages,
reducing c¢i. Similarly, differentiation of HSCs in lineages
that are represented by k — 1 progenitor cells adds cells
to these lineages and increases ci. Note that Eq. 1 are
mean-field rate equations describing the evolution of the
expected number of clones of size k. Nonetheless, they
capture the intrinsic dispersion in lineage sizes that make
up the clone size distribution. While all cells are assumed
to be statistically identical, with equal rates «, p, and
w, Eq. 1 directly model the evolution of the distribution
¢k (2) that arises ultimately from the distribution of times
for each HSC to differentiate or for the progenitor cells
to replicate or die. Similar equations have been used to
model the evolving distribution of virus capsid sizes [34].

Since the equations for ¢ (¢) describe the evolution of
a distribution, they are sometimes described as master
equations for the underlying process [34, 35]. Here we
note that the solution to Eq. 1, c(£), is the expected
distribution of clone sizes. Another level of stochasticity
could be used to describe the evolution of a probability
distribution Py(b;t) = Py(bg, by, ..., pr; t) over the inte-
ger numbers bi. This density represents the probability
that at time ¢, there are by unrepresented lineages, b; lin-
eages represented by one cell in the progenitor pool, by
lineages represented by two cells in the progenitor pool,
and so on. Such a probability distribution would obey
an Nj,-dimensional master equation rather than a one-
dimensional equation, like Eq. 1, and once known, can
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be used to compute the mean ¢ (t) = Y p, brP(b;¢t). To
consider the entire problem stochastically, the variability
described by probability distribution P, would have to be
propagated forward to the differentiated cell pool as well.
Given the modest number of measured data sets and the
large numbers of lineages that are detectable in each, we
did not attempt to use the data as samples of the distri-
bution Pj, and directly model the mean values ci instead.
Variability from both intrinsic stochasticity and sampling
will be discussed in Additional file 1.

After defining u(¢) as the number of unlabeled cells in
the progenitor pool, and N (£) = u(%) +> pe; ke (2) as the
total number of progenitor cells, we find & = (r—p)u+all
and

dN,(8)
det

Without regulation, the total population N, (t — o0) will
either reach N, ~ a(U + C)/(u — r) for u > r or will
exponentially grow without bound for r > . Complex
regulation terms have been employed in deterministic
models of differentiation [28] and in stochastic models of
myeloid/lymphoid population balance [36]. For the pur-
pose of estimating macroscopic clone sizes, we assume
regulation of cell replication and/or spatial constraints in
the bone marrow can be modeled by a simple effective
Hill-type growth law [22, 37]:

=a U+ C)+ (r— u) Np(t). )

pK

r=rie) = 9K

®3)

where p is the intrinsic replication rate of an isolated pro-
genitor cell. We assume that progenitor cells at low density
have an overall positive growth rate p > p. The parame-
ter K is the progenitor-cell population in the bone marrow
that corresponds to the half-maximum of the effective
growth rate. It can also be interpreted as a limit to the
bone marrow size that regulates progenitor-cell prolifera-
tion to a value determined by K, p, and p and is analogous
to the carrying capacity in logistic models of growth [38].
For simplicity, we will denote K as the carrying capacity
in Eq. 3 as well. Although our data analysis is insensi-
tive to the precise form of regulation used, we chose the
Hill-type growth suppression because it avoids negative
growth rates that confuse physiological interpretation. An
order-of-magnitude estimate of the bone marrow size (or
carrying capacity) in the rhesus macaque is K ~ 10°. Ulti-
mately, we are interested in how a limited progenitor pool
influences the overall clone size distribution, and a simple,
single-parameter (K) approximation to the progenitor-cell
growth constraint is sufficient.

Upon substituting the growth law r(N},) described by
Eq. 3 into Eq. 2, the total progenitor-cell population
Np(t — o0) at long times is explicitly shown in Additional
file 1: Eq. A19 to approach a finite value that depends
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strongly on K. Progenitor cells then differentiate to supply
peripheral blood at rate (1 4 n)w so that the total number
of differentiated blood cells obeys

dNq(2)
de

At steady state, the combined peripheral nucleated
blood population is estimated to be Ng ~ 10°-10%° [39],
setting an estimate of Ng/Np, ~ (1 + nw/puq ~ 1-
10. Moreover, as we shall see, the relevant factor in our
steady-state analysis will be the numerical value of the
effective growth rate r, rather than its functional form.
Therefore, the chosen form for regulation will not play a
role in the mathematical results in this paper except to
define parameters (such as K) explicitly in the regulation
function itself.

To distinguish and quantify the clonal structure within

= (1 + moNp — (1aNg. (4)

the peripheral blood pool, we define yi,k) to be the num-
ber of clones that are represented by exactly # cells in the
differentiated pool and k cells in the progenitor pool. For
example, in the peripheral blood pool shown in Fig. 3,
ygg) = ygg) = yis) = yég) = 1. This counting of
clones across both the progenitor and peripheral blood
pools is necessary to balance progenitor-cell differenti-
ation rates with peripheral blood turnover rates. The
evolution equations for y,(qk) can be expressed as
dyy” ® ok *) K
a (1+n)wk (ynq _J’; ))+(”+1)Md)’n+1—”l¢bdy£, ),
(5)
(k)

where y(()k) =cxr—Y voyyn represents the number of pro-
genitor clones of size k that have not yet contributed to
peripheral blood. The transfer of clones from the progen-
itor population to the differentiated pool arises through
y(()k) and is simply a statement that the number of clones in
the peripheral blood can increase only by differentiation
of a progenitor cell whose lineage has not yet populated
the peripheral pool. The first two terms on the right-hand
side of Eq. 5 represent immigration of clones represented
by n — 1 and # differentiated cells conditioned upon immi-
gration from only those specific clones represented by k&
cells in the progenitor pool. The overall rate of addition of
clones from the progenitor pool is thus (1+n)wk, in which
the frequency of terminal differentiation is weighted by
the stochastic division factor (14-7). By using the Hill-type
growth term r(Np) from Eq. 3, Eq. 1 can be solved to find
¢ (¢), which in turn can be used in Eq. 5 to find yﬁ,k) (). The
number of clones in the peripheral blood represented by
exactly n differentiated cells is thus y,(£) = Y ro; yﬁ,k) ).
As we mentioned, Egs. 1 and 5 describe the evolution of
the expected clone size distribution. Since each measure-
ment represents one realization of the distributions cg(¢)
and y,(t), the validity of Egs. 1 and 5 relies on a sufficiently
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large C such that the marked HSCs generate enough
lineages and cells to allow the subsequent peripheral
blood clone size distribution to be sampled adequately.
In other words, measurement-to-measurement variability
described by e.g., (cx(&)cp (£)) — {(cx(t)){cx (2)) is assumed
negligible (see Additional file 1). Our modeling approach
would not be applicable to studying single HSC trans-
plant studies [4—6] unless the measured clone sizes from
multiple experiments are aggregated into a distribution.

Finally, to compare model results with animal blood
data, we must consider the final step of sampling
small aliquots of the differentiated blood. As derived in
Additional file 1: Eq. A1l, if S marked cells are drawn
and sequenced successfully (from a total differentiated cell
population Nj), the expected number of clones (m(¢))
represented by k cells is given by

(mp(t)) = F(q,t) — F(g — 1,2)

= Ce)k 6
= Zeizg( /f‘) )’l(t); ( )

where ¢ = S/Ny < 1 and F(g,t) = ZZ:O(mk(t)) is the
sampled, expected cumulative size distribution. Upon fur-
ther normalization by the total number of detected clones
in the sample, Cs(¢) = F(S,t) — F(0, t), we define

F(g,t) — F(0,0)

Qg,t) = m (7)

as the fraction of the total number of sampled clones that
are represented by g or fewer cells. Since the data repre-
sented in terms of Q will be seen to be time-independent,
explicit expressions for ¢, yﬁ,k), (mg), and Q(gq) can be
derived. Summarizing, the main features and assumptions
used in our modeling include:

® A neutral-model framework [40] that directly
describes the distribution of clone sizes in each of the
three cell pools: progenitor cells, peripheral blood
cells, and sampled blood cells. The cells in each pool
are statistically identical.

e A constant asymmetric HSC differentiation rate «.
The appreciable numbers of unsynchronized HSCs
allow the assumption of Poisson-distributed
differentiation times of the HSC population. The
level of differentiation symmetry is found to have
little effect on the steady-state clone size distribution
(see Additional file 1). The symmetry of the terminal
differentiation step is also irrelevant for
understanding the available data.

e A simple one-parameter (K) growth regulation model
that qualitatively describes the finite maximum size
of the progenitor population in the bone marrow.
Ultimately, the specific form for the regulation is
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unimportant since only the steady-state value of the
growth parameter r affects the parameter fitting.

Using only these reasonable model features, we are able
to compute clone size distributions and compare them
with data. An explicit form for the expected steady-state
clone size distribution (my) is given in Additional file 1:
Eq. A32, and the parameters and variables used in our
analysis are listed in Table 1.

Results and discussion

In this section, we describe how previously published data
(the number of cells of each detected clone in a sample
of the peripheral blood, which are available in the supple-
mentary information files of Kim et al. [19]) are used to
constrain parameter values in our model. We emphasize
that our model is structurally different from models used
to track lineages and clone size distributions in retinal
and epithelial tissues [41, 42]. Rather than tracking only
the lineages of stem cells (which are allowed to undergo
asymmetric differentiation, symmetric differentiation, or
symmetric replication), our model assumes a highly pro-
liferative population constrained by a carrying capacity K
and slowly fed at rate o by an asymmetrically dividing
HSC pool of C fixed clones. We have also included ter-
minal differentiation into peripheral blood and the effects
of sampling on the expected clone size distribution. These
ingredients yield a clone size distribution different from
those previously derived [41, 42], as described in more
detail below.

Stationarity in time
Clonal contributions of the initially transplanted HSC
population have been measured over 4—12 years in four
different animals. As depicted in Fig. 4a, populations of
individual clones of peripheral blood mononuclear cells
from animal RQ5427, as well as all other animals, show
significant variation in their dynamics. Since cells of any
detectable lineage will number in the millions, this vari-
ability in lineage size across time cannot be accounted for
by the intrinsic stochasticity of progenitor-cell birth and
death. Rather, these rises and falls of lineages likely arise
from a complicated regulation of HSC differentiation and
lineage aging. However, in our model and analysis, we do
not keep track of lineage sizes n;. Instead, define Q(v)
as the fraction of clones arising with relative frequency
v = fg/S or less (here, g is the number of VIS reads of any
particular clone in the sample, f is the fraction of all sam-
pled cells that are marked, and S is the total number of
sequencing reads of marked cells in a sample). Figure 4b
shows data analyzed in this way and reveals that Q(v)
appears stationary in time.

The observed steady-state clone size distribution is
broad, consistent with the mathematical model developed



Goyal et al. BMC Biology (2015) 13:85

Page 8 of 14

Table 1 Model parameters and variables. Estimates of steady-state values are provided where available. We assume little prior
knowledge on all but a few of the more established parameters. Nonetheless, our modeling and analysis place constraints on
combinations of parameters, allowing us to fit data and provide estimates for steady-state values of U 4+ C ~ 103-10* and

a(Np + K)/(pK) ~ 0.002-0.1

Symbol Parameter or variable Estimate Ref.

o Single HSC asymmetric differentiation rate ~0.1-0.3 per month [46,51]

p Free progenitor-cell proliferation rate

Hp Progenitor-cell death rate

nd Differentiated cell death rate ~0.01-0.3 per day [52, 53]

n Symmetric differentiation probability

1) Terminal differentiation rate

K Progenitor-cell capacity ~10°

u Number of active unmarked HSCs

C Number of active viral-marked HSCs

G Number of progenitor clones Additional file 1: Eq. A23
(@ Number of differentiated clones Additional file 1: Eq. A23
Cs Number of sampled clones Additional file 1: Eq. A24
S Number of sequences read ~103-10* [14]

Ck Number of progenitor clones of size k

u Unlabeled progenitor-cell population

Np Total progenitor-cell population

Ny Total differentiated blood population ~10%-10'0

y,gk) Number of differentiated clones of size n

arising from progenitors of size k

above. The handful of most populated clones constitutes
up to 1-5 % of the entire differentiated blood population.
These dominant clones are followed by a large number
of clones with fewer cells. The smallest clones sampled
in our experiment correspond to a single read g = 1,
which yields a minimum measured frequency vyin = f/S.
A single read may comprise only 1074-1072 % of all

differentiated blood cells. Note that the cumulative dis-
tribution Q(v) exhibits higher variability at small sizes
simply because fewer clones lie below these smaller sizes.

Although engraftment occurs within a few weeks and
total blood populations N, and Ng (and often immune
function) re-establish themselves within a few months
after successful HSC transplant [43, 44], it is still

rescaled clone size
o

time (months)

and underestimate low population clones

5 10 20 50 108

---2 months
---8 months
---13 months
19 months
25 months
32 months
43 months
50 months
56 months
---67 months

fraction of clones Q(v)

4

-2
10
rescaled clone size v

Fig. 4 Rescaled and renormalized data. a Individual clone populations (here, peripheral blood mononuclear cells of animal RQ5427) show
significant fluctuations in time. For clarity, only clones that reach an appreciable frequency are plotted. b The corresponding normalized clone size
distributions at each time point are rescaled by the sampled and marked fraction of blood, v = g/S x f, where g is the number of reads of a
particular clone within the sample. After an initial transient, the fraction of clones (dashed curves) as a function of relative size remains stable over
many years. For comparison, the dot-dashed gray curves represent binomial distributions (with S = 10% and 10* and equivalent mean clone sizes)
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surprising that the clone size distribution is relatively
static within each animal (see Additional file 1 for other
animals). Given the observed stationarity, we will use the
steady-state results of our mathematical model (explic-
itly derived in Additional file 1) for fitting data from each
animal.

Implications and model predictions

By using the exact steady-state solution for ¢ (Additional
file 1: Eq. A21) in Additional file 1: Eq. A18, we can explic-
itly evaluate the expected clone size distribution ()
using Eq. 6, and the expected cumulative clone fraction
Q(g) using Eq. 7. In the steady state, the clone size dis-
tribution of progenitor cells can also be approximated
by a gamma distribution with parameters a = «/r and
F=r/u:ce ~ *k~11% (see Additional file 1: Eq. A27).
In realistic steady-state scenarios near carrying capacity,
r=r(Np) S u,as calculated explicitly in Additional file 1:
Eq. A20. By defining 7 = r/u = 1 — §, we find that § is
inversely proportional to the carrying capacity:

<1 (8)

The dependencies of (m1,) on § and @ = «/r are displayed
in Fig. 5a, in which we have defined w = (1 + n)w/uq.

Although our equations form a mean-field model for the
expected number of measured clones of any given size,
randomness resulting from the stochastic differentiation
times of individual HSCs (all with the same rate ) is taken
into account.

This is shown in Additional file 1: Eqs. A36—A39, where
we explicitly consider the fully stochastic population of a

Page 9 of 14

single progenitor clone that results from the differentia-
tion of a single HSC. Since independent unsynchronized
HSCs differentiate at times that are exponentially dis-
tributed (with rate «), we construct the expected clone
size distribution from the birth—death—immigration pro-
cess [45] to find a result equivalent to that derived from
our original model (Eq. 1 and Additional file 1: Eq. A21).
Thus, we conclude that if ¢ = «/r is small, the shape
of the expected clone size distribution is mainly deter-
mined at short times by the initial repopulation of the
progenitor-cell pool.

Our model also suggests that the expected number
of sampled clones relative to the number of active
transplanted clones (see Additional file 1: Eq. A24) can be
expressed as:

c - 1—(1— 8)6”") ©)
o EW
~ (),

where the last approximation is accurate for ew « 1 and
Cs/C < 1. The clonal diversity one expects to measure
in the peripheral blood sample is sensitive to the com-
bination of biologically relevant parameters and rates &
and a = «o/r. Figure 5b shows the explicit dependence of
the fraction of active clones on a and the combination of
parameters defining 8, for ew = e(1+n)w/jq = 5x107°.

Our analysis shows how scaled measurable quanti-
ties such as Cs/C and C~!(m,) depend on just a few
combinations of experimental and biological parame-
ters. This small domain of parameter sensitivity reduces
the number of parameters that can be independently

— a=0.01, &/(ew) = 0.01
-- a=0.1, 8/(sw) = 0.01
— q=0.01, &(ew) = 0.001

C'(m,) x(0.01/a)

———— ————
0 50 100 150

ew =5x107°
04-
03~ \§§\\\
02
01- S

e

Fig. 5 Clone size distributions and total number of sampled clones. a Expected clone size distributions €~ (mg) derived from the approximation in
Additional file 1: Eq. A32 are plotted for various a and §/(ew) [where w = (1 + n)w/q4]. The nearly coincident solid and dashed curves indicate that
variations in @ mainly scale the distribution by a multiplicative factor. In contrast, the combination §/(ew) controls the weighting at large clone sizes
through the population cut-off imposed by the carrying capacity. Of the two controlling parameters, the steady-state clone size distribution is most
sensitive to R = §/(ew). The dependence of data-fitting on these two parameters is derived in Additional file 1 and discussed in the next section. b
Forew =5 x 1072, the expected fraction Cs/C of active clones sampled as a function of In § and «. The expected number of clones sampled
increases with carrying capacity K, HSC differentiation rate a = «/r, and the combined sampling and terminal differentiation rate ew
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extracted from clone size distribution data. For exam-
ple, the mode of terminal differentiation described by 7,
clearly cannot be extracted from clonal tracking mea-
surements. Similarly, models that are more detailed of
the complex regulation processes would introduce addi-
tional parameters that are not resolved by these exper-
iments. Nonetheless, we shall fit our data and known
information contained in the experimental protocol to our
model to estimate biologically relevant parameters, such
as the total number of activated HSCs U + C, and thus
indirectly C.

Model fitting

Our mathematical model for (my) (and F(g) and
Q(g)) includes numerous parameters associated with the
processes of HSC differentiation, progenitor-cell ampli-
fication, progenitor-cell differentiation, peripheral blood
turnover, and sampling. Data fitting is performed using
clone size distributions derived separately from the read
counts from both the left and right ends of each VIS
(see [14] for details on sequencing). Even though we fit
our data to (my) using three independent parameters,
a = a/r, ¥ = r/u, and ew, we found that within the
relevant physiological regime, all clone distributions cal-
culated from our model are most sensitive to just two
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combinations of parameters (see Additional file 1 for an
explicit derivation):
_EwW 1+ nwS
r T In(1/") 8  Napmdd
(10)

where the last approximation for R is valid when 1 —
r = § « 1. While the fits are rather insensitive to ew
this parameter can fortunately be approximated from esti-
mates of S and the typical turnover rate of differentiated
blood. Consequently, we find two maximum likelihood
estimates (MLEs) for 4 and R at each time point. It is
important to note that fitting our model to steady-state
clone size distributions does not determine all of the phys-
iological parameters arising in our equations. Rather, they
provide only two constraints that allow one to relate their
values.

For ease of presentation, henceforth we will show all
data and comparisons with our model equations in terms
of the fraction Q(v) or Q(q) (Figs. 4b and 6a, b). Figure
6a, b shows MLE fitting to the raw data (my) plotted in
terms of the normalized but unrescaled data Q(g) for two
different peripheral blood cell types from two animals
(RQ5427 and RQ3570). Data from all other animals are
shown and fitted in Additional file 1, along with overall

10l o 10° 10°
a*=0.01
0.8 R*=70
a*=0.0025 10%
0.6 R*=400
0.4 o g
$ 10° / \ o
T 02 = | \ T
C RQ5427-PBMC| 9 LR <
@ 0.0 T2 38
o 0. ;T 10 10° §
o 10° 10t 102 10° © 0 10 20 30 40 50 60 =
o 5 5
-6 © 5 -1 _g_)
c 1.0 5 10 /- 10 £
o g
= (o) Ee)
S 08 Ee] o]
-g € / N
2 10 g
0.6 < E
/ 107 g
0.4 \ /
<l 103 \ /
0.2[~ o
RQ3570 - Grans
0.0 102 102
10° 10* 102 10° 0 5 10 15 20 25 30 35
clone size g time (months)

Fig. 6 Data fitting. a Fitting raw (not rescaled, as shown in Figure 4) clone size distribution data to (my) from Eq. 6 at two time points for animal
RQ5427. The maximum likelihood estimates (MLEs) are (a* ~ 0.01,R* ~ 70) and (a* ~ 0.0025, R* ~ 400) for data taken at 32 (blue) and 67 (red)
months post-transplant, respectively. Note that the MLE values for different samples vary primarily due to different values of S (@and hence ¢) used in
each measurement. b For animal RQ3570, the clone fractions at 32 (blue) and 38 (red) months yield (a* ~ 0.04, R* ~ 30) and (a* ~ 0.1, R* ~ 60),
respectively. For clarity, we show the data and fitted models in terms of Q(q). € Estimated number of HSCs U + C (circles) and normalized
differentiation rate a (squares) for animal RQ5427.d U + C and a for animal RQ3570. Note the temporal variability (but also long-term stability) in the
estimated number of contributing HSCs. Additional details and fits for other animals are qualitatively similar and given in Additional file 1. HSC
hematopoietic stem cell, PBMC, peripheral blood mononuclear cell Grans, granulocytes
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goodness-of-fit metrics. Raw cell count data are given in
Kim et al. [19].

HSC asymmetric differentiation rate

The MLE for a = «/r, a*, was typically in the range
102-10"!. Given realistic parameter values, this quantity
mostly provides an estimate of the HSC relative differ-
entiation rate a* ~ «/(up + nw). The smallness of a*
indicates slow HSC differentiation relative to the progen-
itor turnover rate 1, and the final differentiation rate nw,
consistent with the dominant role of progenitor cells in
populating the total blood tissue. Note that besides the
intrinsic insensitivity to ew, the goodness-of-fit is also
somewhat insensitive to small values of a* due to the
weak dependence of ¢y ~ 1/k1~“ on a (see Additional
file 1). The normalized relative differentiation rates esti-
mated from two animals are shown by the squares (right
axis) in Fig. 6¢, d.

Number of HSCs

The stability of blood repopulation kinetics is also
reflected in the number of estimated HSCs that contribute
to blood (shown in Fig. 6¢, d). The total number of HSCs
is estimated by expressing U + C in terms of the effec-
tive parameters, R and 4, which in turn are functions of
microscopic parameters (o, p, ip, id, W, and K) that can-
not be directly measured. In the limit of small sample size,
S <« R*K, however, we find U + C = S/(R*a*) (see
Additional file 1), which can then be estimated using the
MLEs a* and R* obtained by fitting the clone size distribu-
tions. The corresponding values of U/ + C for two animals
are shown by the circles (left axis) in Fig. 6¢, d. Although
variability in the MLEs exists, the fluctuations appear sta-
tionary over the course of the experiment for each animal
(see Additional file 1).

Conclusions

Our clonal tracking analysis revealed that individual
clones of HSCs contributed differently to the final differ-
entiated blood pool in rhesus macaques, consistent with
mouse and human data. Carefully replotting the raw data
(clone sizes) in terms of the normalized, rescaled cumu-
lative clone size distribution (the fraction of all detected
clones that are of a certain size or less) shows that these
distributions reach steady state a few months after trans-
plantation. Our results carry important implications for
stem cell biology. Maintaining homeostasis of the blood is
a critical function for an organism. Following a myeloab-
lative stem cell transplant, the hematopoietic system must
repopulate rapidly to ensure the survival of the host. Not
only do individual clones rise and fall temporally, as previ-
ously shown [19], but as any individual clone of a certain
frequency declines, it is replaced by another of similar
frequency. This exchange-correlated mechanism of clone
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replacement may provide a mechanism by which over-
all homeostasis of hematopoiesis is maintained long term,
thus ensuring continued health of the blood system.

To understand these observed features and the
underlying mechanisms of stem cell-mediated blood
regeneration, we developed a simple neutral popula-
tion model of the hematopoietic system that quantifies
the dynamics of three subpopulations: HSCs, transit-
amplifying progenitor cells, and fully differentiated
nucleated blood cells. We also include the effects of global
regulation by assuming a Hill-type growth rate for pro-
genitor cells in the bone marrow but ignore cell-to-cell
variation in differentiation and proliferation rates of all
cells.

Even though we do not include possible HSC het-
erogeneity, variation in HSC activation, progenitor-cell
regulation, HSC and progenitor-cell aging (progenitor
bursting), niche- and signal molecule-mediated controls,
or intrinsic genetic and epigenetic differences, solutions to
our simple homogeneous HSC model are remarkably con-
sistent with observed clone size distributions. As a first
step, we focus on how the intrinsic stochasticity in just the
cellular birth, death, and differentiation events gives rise
to the progenitor clone size distribution.

To a large extent, the exponentially distributed first HSC
differentiation times and the growth and turnover of the
progenitor pool control the shape of the expected long-
time clone size distribution. Upon constraining our model
to the physiological regime relevant to the experiments,
we find that the calculated shapes of the clone size dis-
tributions are sensitive to effectively only two composite
parameters. The HSC differentiation rate « sets the scale
of the expected clone size distribution but has little effect
on the shape. Parameters, including carrying capacity K,
active HSCs U + C, and birth and death rates p, w, 1}, 114,
influence the shape of the expected clone size distribution
(myg) only through the combination R, and only at large
clone sizes.

Our analysis allowed us to estimate other combinations
of model parameters quantitatively. Using a MLE, we find
values for the effective HSC differentiation rate a* ~
1072-10"! and the number of HSCs that are contributing
to blood within any given time frame U/ + C ~ 103-10%,
Since the portion of HSCs that contribute to blood may
vary across their typical life span L ~ 25 years, the total
number of HSCs can be estimated by (U + C) x L/,
where T ~ 1 year [19]. Our estimate of a total count
of ~3 x 10*-3 x 10° HSCs is about 30-fold higher than
the estimate of Abkowitz et al. [33] but is consistent with
Kim et al. [19]. Note that the ratio of C to the total
number of initially transplanted CD34+ cells provides a
measure of the overall potency of the transplant towards
blood regeneration. In the extreme case in which one
HSC is significantly more potent (through, e.g., a faster
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differentiation rate), this ratio would be smaller. An exam-
ple of this type of heterogeneity would be an HSC with
one or more cancer-associated mutations, allowing it to
out-compete other transplanted normal HSCs. Hence, our
clonal studies and the associated mathematical analysis
can provide a framework for characterizing normal clonal
diversity as well as deviations from it, which may provide
a metric for early detection of cancer and other related
pathologies.

Several simplifying assumptions have been invoked in
our analysis. Crucially, we assumed HSCs divided only
asymmetrically and ignored instances of symmetric self-
renewal or symmetric differentiation. The effects of sym-
metric HSC division can be quantified in the steady-state
limit. In previous studies, the self-renewal rate for HSCs
in primates is estimated as 4—-9 months [46, 47], which
is slightly longer than the short timescale (~2—4 months)
on which we observe stabilization of the clone size distri-
bution. Therefore, if the HSC population slowly increases
in time through occasional symmetric division, the clone
size distribution in the peripheral blood will also shift
over long times. The static nature of the clone distribu-
tions over many years suggests that size distributions are
primarily governed by mechanisms operating at shorter
timescales in the progenitor pool. For an HSC population
(such as cancerous or precancerous stem cells [48]) that
has already expanded through early replication, the ini-
tial clone size distribution within the HSC pool can be
quantified by assuming an HSC pool with separate car-
rying capacity Kysc. Such an assumption is consistent
with other analyses of HSC renewal [49]. All our results
can be used (with the replacement C — Kygc) if the
number of transplanted clones C > Kysc because repli-
cation is suppressed in this limit. When Kysc > C >
1, replicative expansion generates a broader initial HSC
clone size distribution (see Additional file 1). The result-
ing final peripheral blood clone size distribution can still
be approximated by our result (Eq. 6) if the normalized
differentiation rate a < 1, exhibiting the insensitivity of
the differentiated clone size distribution to a broadened
clone size distribution at the HSC level. However, if HSC
differentiation is sufficiently fast (¢ & 1), the clonal distri-
bution in the progenitor and differentiated pools may be
modified.

To understand the temporal dynamics of clone size dis-
tributions, a more detailed numerical study of our full
time-dependent neutral model is required. Such an analy-
sis can be used to investigate the effects of rapid temporal
changes in the HSC division mode [41]. Temporal mod-
els would also allow investigation into the evolution of
HSC mutations and help unify concepts of clonal sta-
bility (as indicated by the stationarity of rescaled clone
size distributions) with ideas of clonal succession [10, 11]
or dynamic repetition [12] (as indicated by the temporal
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fluctuations in the estimated number U + C of active
HSCs). Predictions of the time-dependent behavior of
clone size distributions will also prove useful in guid-
ing future experiments in which the animals are physi-
ologically perturbed via e.g., myeloablation, hypoxiation,
and/or bleeding. In such experimental settings, regula-
tion may also occur at the level of HSC differentiation
() and a different mathematical model may be more
appropriate.

We have not addressed the temporal fluctuations in
individual clone abundances evident in our data (Fig. 4a)
or in the wave-like behavior suggested by previous stud-
ies [19]. Since the numbers of detectable cells of each VIS
lineage in the whole animal are large, we believe these fluc-
tuations do not arise from intrinsic cellular stochasticity
or sampling. Rather, they likely reflect slow timescale HSC
transitions between quiescent and active states and/or
HSC aging [50]. Finally, subpopulations of HSCs that
have different intrinsic rates of proliferation, differentia-
tion, or clearance could then be explicitly treated. As long
as each subtype in a heterogeneous HSC or progenitor-
cell population does not convert into another subtype,
the overall aggregated clone size distribution (m) will
preserve its shape. Although steady-state data are insuf-
ficient to provide resolution of cell heterogeneity, more
resolved temporal data may allow one to resolve differ-
ent parameters associated with different cell types. Such
extensions will allow us to study the temporal dynamics
of individual clones and clone populations in the con-
text of cancer stem cells and will be the subject of future
work.

Additional file

Additional file 1: Mathematical appendices and data fitting.
(PDF 327 kb)
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Additional Files: Mathematical Appendices and Data Fitting

Here, we provide additional details of our model, including explicit derivations of the sampled clone size distribution,
clone size distributions in the steady-state limit, and the effective parameters that accurately describe our data. We
also describe the maximum likelihood estimation used to estimate these parameters.

Derivation of sampled clone size distribution:

We first derive an expression for the expected clone size distribution (m (t)) in a sample of the differentiated blood,
as given by Eq. 6. Define s;, to be the number of cells sampled from the %8 clone of those that are represented by
£ cells. At any time, the probability that the configuration s, is observed in a sample of S cells can be written

Na ve

Py = TTIL(, )

£=1j=1

(A1)

N”’

s
where X = E£71 Z;’[ , 8je, the factor N it s represents the probability that s;, cells were drawn from the
Ng within a sample of S cells, and ( ) is the number of ways of drawing s, cells. Finally, the last Kronecker

d—function forces the sum over all s, to equal the total number of cells sampled and sequenced. In any particular
sample, the number of clones with size k is exactly

Yn

n=1m=1

The expected value of this quantity is

Ng vy

(mi(®) =D P DD Srsy (A3)

{s} £=075=1

which can be found by using the generating function G(z,t) = 352 (m(t)) 2"

Ng e )
G(=t:8) =3 PUsHD > =%t
{s} £=0j=1
(A4)
Na v
- ZP({s} e 833 =] |
£=0j=1 B=0

After using the Fourier representation of the Kronecker § —function in Eq. Al, 27d,, = foz" €' dq, we can further
reduce the generating function to

e Ng e 0 gias a8
e =gl MR O]
27dq _;,s0(, 2 i |
:goyeS!/ QZe s ( )H[( 1)]
where
L0y etas
o(t,z) = ZO (S) N 2. (A6)

Note that o(¢, z) = (1 + ze*?/N4)*, and that [Ti—, [0(5,1)]¥% = (1 + €"?/Ng)™Nd. Since Nq > S > 1, and
Ng ~ 10° — 109, we can take the large Ny limit before the large S limit to find (1 4 €' /N4)Nd ~ exp [e],
o(l, z) ~ exple"?zl/N4], and
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(2, 8) Zy[S‘/ Wz—qcxp{A (z)eiq] e 119 (AT)

where Ay(z) = 1+ £(z —1)/Ng. Note that the integral is simply Euler’s integral for 1/T'(S + 1). Namely, we find

2md . . A
/ dgq exp[Ae(z)elq] o—ias _ 1 e /d£ g (5D
0

27
AS
_ ¢(2) . (A8)
(S +1)
Since AZ = (14 £(z —1)/Na)® = (1 + (S/Na)b(z —1)/5)° = "SE=D/Nd for § > 1, we find, for
e=S/Na <1,
G(z,t;8) Zy@(t A (2) = D ye(t)e =Y, (A9)
=0

Next, we define the fraction of clones of size 1 < g < S or less. This distribution includes unrepresented or lost
clones, and is defined as F'(q,t) = >.7_,(m;(t)). By using Eq. A9 and the definition of G(z,1), we find

(ns)’

yn(t)- (A10)

q oo
Fan=23 3 ™
The expected clone size distribution is thus defined as

oo

e (L)F
(mi(t)) = F(k,t) = F(k—1,8) = > e Tyg(t). (A11)

In general, further development of F'(k,t) and (my(t)) requires numerical solution of ¢ (t) and

ye(t) = 272, y(k) (t). The time-dependence of F'(q, t) is further complicated by the time-dependence of
e(t) = S/Na(t), requiring the solution to Eq. 4.

The variability of m, due to sampling can be also estimated by calculating (mym,/), which we write as

Ng wve Ng Yy
(memyy) ZP({S} ST (sie—k) DD (s — k). (A12)
£=0j=1 0'=0j4'=1

This calculation requires evaluation of the two-dimensional generating function

Gz, 2 1) = S (m(®)my ()22 (A13)

k,k!

After using Eq. Al for P({s}) in Eq. A12 and performing some algebra, we find

G(z,2',t) ZA[ (2,2 )y () y,r (1) — ZBZ 2, 2" )y, t)+ZCE 22" Yyo(t), (A14)
2,0

where
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ezl — 1) e(z—1)¢

A&e/(z,zl): 1+ S S

ezl = 1) e(z—1)¢
S + S

Be(z,2") =1+

e(zz —1)¢

Cu(z2') =1
0(22") + S

Using (1 4+ x/5)° ~ €®, and expanding in powers of z and z’, we find

, N
(miBmu (8) = | D ye(t)e ™" d) Zu (t)e™=* (f;).
¢ (A15)
Caer (20 (0 (0"
_Z 226' Ek/' +Z @5. Op ot -
The diagonal variance is simply
K k
(0 = (ma0)* = S e {1 - e*“%}
—2el

= (mx(t)) Zy[ %. (A16)

The second term is much smaller than the first except for very small values of k. Therefore, the relative fluctuation
in my, due to sampling is

(m(O) = (me®)? _ 1
(m(t)) ~ LV me @)

(A17)

explicitly indicating that the relative fluctuations in the measured number of clones of size k decreases as the
square-root of its expected value.

Steady-state solution:

As was discussed, the total peripheral blood population in the animals recovered quickly, usually within a few weeks
after transplantation. Moreover, from our data, the overall qualitative shape of the clone size distribution also
reaches steady-state only after a few months post-transplant, with no discernible systematic time-dependence.
Therefore, we consider the steady-state solutions to our model (Egs. 1 and 5). Henceforth, all quantities will be
assumed to be those at steady-state. First, we can start from n. = 1 and inductively solve for the steady-state form
of Egs. 5 to find

i 2 (wk)™ 14+ 71w
=3 g =3 I e, o L (A18)

1
k=0 k=0 Hd

Before this solution can be effectively used in Eq. A10, an explicit expression for the steady-state progenitor clone
size distribution ¢y, is needed.

The total steady-state progenitor population is given by the solution to aC + [r(Np) — pu]Np, = 0. The
population-limited growth rate is given by Eq. 3 and the steady-state progenitor cell population is explicitly

N, 1

a
K 2 p K

2
4
u+C p \/(gUJrC p71> i aU+C (A19)

Z 1 ,
+ ot =

where ;1 = pp + nw. After using Eq. A19 in Eq. 3, we find explicitly
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(A20)

2
P <

r(Np) =
+C 1 +C
U P \/(a U

2
4a U+C
) oK

S

=

The total differentiated cell population found from Nq = (14+n)wNp — paNg = 0 is
Ng = (1 + n)wNp/pg = wNp. Upon using these expressions in the steady-state limit of Eq. 1, we obtain

aC (1 —7)* £
=~ "/ ?,
Cr>1 %l (a+k) e:I—];[aJr ]
(A21)
oo
co :C—ch:C(l—f)a,
k=1
where
N,
G.EEE% and ’FET( ») (A22)
s ur n
From these results, the total number of clones in each compartment can be explicitly found:
Cp =>ep=C[1-(1-m"],
k=1
oo oo oo
Ci =3 Sl =0 (a2)
n=1k=1 k=1
- (=)
=Cl|l—(——7-— .
1—7re-w
For the total expected number of clones observed in the sample,
oo oo oo
_ _ —ee (L)’
o =Smy =33 O,
j=1 j=1¢=1
oo oo B ]C 0 _
_ Z Z(l _e 25) (wﬂ) e ke,
k=1¢=1 ’ (A24)
— - e,
k=1
1-7 )a]

= (
1—re-w(—e=9)

where we have explicitly used Eq. A18 for y, and Eq. A21 for cj. This result can be further reduced in two limits

1 1 =7\ (1-17)
cl—|— ., Ew > —
Twe 2—7
Cs =~ (A25)
1_F
aC cwr s cw K ( 77“).
1-— T
As expected, the total numbers of clones present in each pool follow the progression
(A26)

CZ=Cp2Cq>C,
with significant loss of clones due to sampling (Cq > Cs) only in the second case of Eq. A25 describing sample

sizes S < paNg(1 — 7)/(w7). Note that for clone sizes k >> a, cj, in Eq. A21 can be approximated by
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1— 1
Chsa & AKSTIFE [1 - % 1o (E)] , (A27)
where
aC
A= —— (1 — 7). A28
F(aJrl)( ) (A28)

Finally, in steady-state, using Eq. A18 in Eq. A10, we find the cumulative clone size distribution

(£ (k) e

Il
MQ
gl
gl

F(Q) - Ck

i—oizoi=o I ¢
2T 1,0 k)Y

= Z Z i:]*’r 5) (’UJE‘) wkck (A29)
oo Pla+1) :
> I'(q + 1, ewk)

SRS

T(g+1)

E
Il
<)

where a steepest descents approximation in € < 1 was used to derive the final approximation. The expected
cumulative clone size frequency Q(q) is obtained by subtracting off the unrepresented clones (mg) = F'(0) and
normalizing by the total expected number of clones Cs = F'(S) — F(0).

A number of numerical procedures can be used to evaluate Q(g) using the final approximation in Eq. A29. For large
values of ¢, and small ew, the ratio of I'—functions is near unity for k < (¢ + 1)/(ew), and quickly decreases to
zero for larger k. One approach for numerically evaluating F'(q) is to explicitly separate small ¢ and small k terms
in the sum. For small k, the exact form of ¢, should be used. For larger k, the asymptotic form (Eq. A27) can be
used and the sum can be approximated as an integral. We find that even for small values ¢ & 5, this approximation
results in a relative error < 1%. Even the crudest approximation of replacing the sum by the integral

T'(q+1,cwk) (Q+1)/(Ew)
F(q) ~ Z e ™ co +/ (A30)
= T+

and using the asymptotic form Eq. A27, provides a reasonable estimate of F'(g). This rough approximation also
provides an informative analytical expression:

ra et e (o (1)) -0 (o 500 ()] (s

This approximation shows that our distributions depend most strongly on only a = a/r and R = (ew)/In(1/7)
(Eq. 10). Since 7 = 1 — (U + C) /(K (p — p)) is only very slightly smaller than unity, In(1/7) is a small positive
number and A/ In“(1/7) =~ aC'. Since (mgq) = F(q) — F(q — 1), an approximate form useful for estimating the
clone size distribution is

(mgq) = aC[['(a,q/R) — T(a, (¢ +1)/R)] . (A32)

Within physiologically-relevant regimes, our data can be well-fitted to (mj) by varying just a and R. The other
physiological parameters, K, p, 1, U 4+ C, etc., are then related to each other through the most likely numerical
values a* and R™ found from fitting the data.

Consider the total number of active HSC cells, U + C, and the ratio of the rate of HSC differentiation to the rate
of self-renewal of progenitor cells, or/p. Once the best fit parameters a™ and R* have been estimated from fitting
clonal frequency distributions, U + C and «/p can be expressed in terms of K, S, and A = p/p — 1. Note that S,
the number of sequencing reads detected in each sample, is an experimentally determined parameter.

To find these relationships, we first assume that ew/R* = (S/Na)(w/pa)/R* = S/(R*Np) < 1 and
S/(R*K) < 1. By using the definition of R, we find 7 = e S/(B"Np) 1 — S/(R*Np). Since

7= (A +1)K/(Np + K) also, these two independent expressions for 7 furnish a quadratic equation for Ny, in
terms of R*. After comparing the positive root of this equation to the definition of the steady-state progenitor
population Ny, (Eq. A19), we find

(%) (UIJQC> ~ (A+f)R*K' (A33)
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Eq. A33 can be then used to find an expression for IV}, that is independent of «/p and U + C'. Using this form of
Ny, in the definition a = a/r = (/p) [Np /K + 1], we find an explicit expression for the best-fit value
a/p = a*K/(Ny + K). Further assuming that S/(R*K) < A, we find

(5) =5t b3 ()

Note that to lowest order, or/p can be estimated from a™ and A = p/p — 1. Finally, substituting
(a/p) = a™ /(A + 1) from solving Eq. A34 into Eq. A33, we find

U+C= (A35)

a*R*’

which is independent of K and A. Note that these parameters can be extracted out of the many parameters in the
model because of the limiting values of 7 < 1 and ew < 1. Our model allows one to make predictions on the
number of expected clones in each pool, Cp,, Cq4, and the measured Cs (Eqs. A23-A24), as well as expected clone
size distributions (Eq. A32) as functions of sampling fraction &, turnover rate w, effective differentiation rate a, and
effective growth rate 7. However, from the functional forms of C},, Cq, Cs, and because 7 ~ 1, the numerical
determination of the number of clones in each pool is highly sensitive to high values of R and low values of a.

Expected clone size distributions from stochastic clones sizes:

Here, we explicitly show how the neutral assumption (identical transition rates and fitness for all clones) of our
populations allows mean-field equations for the expected clone size distribution to be derived from considerations of
the stochastic dynamics of an individual clone. Analysis of individual clones is more natural in settings where each
clone can be easily isolated and imaged, such as in epidermal systems and geometries [42, 54, 55]. An important
feature of our neutral model is that the steady-state clone size distribution depends on only the value of the
effective growth rate at steady-state and not on the specific form of the regulation. In other words, the relative sizes
of neutral clones are independent of the growth law common to all clones. Therefore, we first consider the
corresponding birth-death process of a single isolated clone in the presence of constant immigration occurring at
rate a. The master equation for the probability pj () of a single clone containing k progenitor cells is

dpk (t)
dt

=alpr—1 —pr] +7[(k = Dpr—1 — kp] + p[(k + D)prr1 — kpk], (A36)

where in our application, jt = i, + nw. If the growth rate r is assumed constant and independent of k, an analytic
expression expressed in terms of the corresponding generating function ¢(z,t) = > 72, prz” [45, 56]:

a—n ¢
,t) = — A37
#(=t) [(1 Tiz) — (1 — z)e-n(-nt (AST)
We now identify ¢y (t) with C times the probability that any independent clone is of size k. Thus,
S erz" = Co(z,t) (A38)
k=0

and the variability in clone sizes arises from the variability of the times of differentiation of HSC cells to create
progenitor cells of different lineages. In the ¢ — oo steady-state limit, we find

_(A=TN\ a=Tk+a) _
d)(z,t%oo)_( 7) =(1-7 ém(m, (A39)

in which 7 = r/pu. Thus, the single stochastic clone construction of the expected clone size distribution yields

WDk + a)7* 7k

o = CA =" =

~C(1 -7

R (A40)

which matches the result in Eq. A27. This derivation explicitly shows that the exponentially distributed initial
differentiation times sets the progenitor cell clone size distribution c¢j. This distribution is preserved even in the
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mean-field setting of the hodograph-transformed model described by Eq. 1 and is independent of the specific form
chosen for the growth law 7.

HSC self-renewal:

Rather than assuming that HSCs differentiate only asymmetrically, leaving each unique HSC clone unchanged, we
now consider the effects of symmetric HSC replication on the measured clone size distribution. We also assume a
separate HSC niche with a corresponding carrying capacity K. If we denote xj. as the number of clones in the stem
cell niche that is represented by exactly k stem cells,

d$1
o s —(rs + ps)T1 + 2psw2
(A41)
d:Ek
o = ek = Dae—y = kap] + pa [(k + Dangr = kaxl,

where the effective growth rate rg is defined by the carrying capacity K, and the total number of stem cells Ng,
labeled and unlabeled, in the stem cell compartment:

rs(Ns) = ps (1 - %:) . (A42)

Here, we have used logistic growth for mathematical convenience and to simply illustrate the insensitivity of the
final clone size distribution to the model of HSC differentiation. The total stem cell population is defined as
Ni(t) = Us(t) + >_p= kxzk(t). Upon summing Eqgs. A41 and the equation for unlabeled cells,

Us = rsUs — psUsg, we find that the total population decouples and obeys

dNg
dt

:TS(NS)NS_HSNS; (A43)

which can be solved exactly, allowing one to find 7 explicitly as a function of time. Eqs. A41 can then be solved
numerically to find the stem cell clone frequencies in the stem cell compartment. To simplify the calculations and
find a tractable solution, we will set j1s = 0 and define a new time variable d7 = r(t)dt. Equations A41 for x (7)
now have constant coefficients and can be solved by using the initial conditions 1 (7 = 0) = Cs, zx>1(0) = 0,
and the Laplace transforms,

Sil - CS = 721, Sik - (k - 1):ik,1 - kik. (A44)

The solution

C. k—1)C
i(s) = —=—, in(s)= 7(,6 ) =, (A45)
s+ 1 ]‘:1(5 +7)
can be inverted to yield
z1(1) = Cee™ ", mp(r) = Cue” — 1)1 T, (A46)
To transform back to xj (t), we need to invert
t
T(t) = / ro(t)dt’ = pst — In(1 + Cs(e’s" — 1)/K,). (A47)
0
In the steady-state limit, t — oo corresponds to 7 — In(Ks/Cs) + O(e”Ps?). In this limit, Eq. A46 yields
_ . k1 . _ G
o (t — 00) = Csfs(1 — f5) v Js = (A48)

&
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The clone numbers in the progenitor cell population are modeled using

@)
e’ % (e — Y (r + pp)el® + 2 el
di = JC,,5 0 Hp)Cq HpCq
de@ P . . . . _ (A49)
dl; = ajé(cijll _CECJ)) +r((k— 1)02]7)1 —kcg))-i—u((k-i-l)cgil _kcgj))’
HSC asym. diffcrcntiati’on progenitor birth progenitor death
where ¢co(t) = Cs — 3275, Cl (t) is the total number of clones that do not appear in the progenitor cell pool at
time ¢. Upon summing all the above equations to find the zeroth and first moments of c](c]), we find
d (5= &)
" ST (1) | = Ajeolt) — ppet”, (A50)
k=1
and
d () G) 4 S el
J _ J J
o () = Sl 4 o0 =) 30 (as1)

where A;(t) = ajz;(t)/Cs. By further adding U, = aU, + (rp — pp)Up to Eq. A51, we find

dN,
dt

= U+ == > das (e (6) + (rp(Np) = i) No(2). (A52)

S jk=1
If we assume steady-state in both the stem cell and progenitor cell populations,
Aj = jaw;(00)/Cs = jofs(1 — fs)?~" and Eq. A50 yields
. A e .
e =g =i f(1 - f) o, (A53)
Hp Hp

which, when used in the steady-state limit of Eq. A51 yields

e = H laj + (£ — 1), (A54)
where
jrj o . e
a; =5t =if (= T (A55)
s T T
The coefficient co can now be self-consistently calculated by noting that co + E] k1 c,C = Cs. Upon

double-summing Eq. A54, we find co = Cgs/Z, where

zZ= i[l—f*“:—l] (A56)

and

kK
G _ OsT
o’ = S Hles + e, (a57)
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The clone numbers in the progenitor pool are thus c;, = Z]“’ 1 c,ij). Note that when the initial transplantation fills

the entire stem cell niche, fg — 17, Z — (1 — 7)~ %, and the only term in Eq. A54 that survives is j = 1, leading
to our previous result as expected. For the general product in Eq. A54, we can approximate

ki
T(a;)’

k
I1la; + -1~ (k—1) (A58)
=1

when a; < Ink. From Eq. A55, we know that a; is strictly bounded above by a/r and is typically < 0.5c/r for
fs < 0.5. Since we expect a/r < 1, the approximation in Eq. A58 is valid for essentially all values of k 2> 2. In
order to compute ¢, we perform the sum

Csfk © %
cp R . (A59)
Zk ]:Zl F(aj)
By Taylor-expanding in small a; first, we can further approximate the sum as
> k% a a? (2 - fs(2—
S ~ o+ —M(wlnkwo(a?’) (A60)

Lla;j) fs  fs  (2-/)3

Jj=1

where a = «/r and v &~ 0.5772 is Euler’s constant. In order to find an explicit expression for Z, note that
0 = 1 — 7 is typically very small, on the order of 1/K,,. Therefore Z =1+ Z;’;l[ti*aj — 1] can be approximated

using § “J = exp[—a; In§] > 1 and Laplace’s method on the sum. The dominant term in the sum arises for
7"~ —1/In(1 — fs). Approximating the sum by an integral over a Gaussian centered about j*, we find

P 2mer(l — f) exp [(%) (17}2511;:1)45)]
- Vofsn(d— ) — f2) '

(A61)

By using this approximation for Z and Eq. A60 in Eq. A59, we can find the leading behavior of ¢, in the small fg
and alnk < 1 limits,

cp ~aKg(1— F)a/e ile In (

—k
T
p— A62
=k (a2)
This approximation is not good for small a since it suppresses the largeness of the asymptotic parameter
—1In(1 — 7). Instead, for small |aIn(1 — 7) < 1, we Taylor expand exp[—a; Ind] ~ 1 — a; Ind to find

Zal- fl In(1 —7), Y
and
~ a(2— fs(2 = f))(y +1Ink) aKs ~
e ™ {“r (2 - f:)? ] L—aln(l—7)/fs (’“> o

Thus, in the limit where the transplanted number of clones Cs < Ky is much less than the HSC carrying capacity,
the marked HSCs greatly expand before reaching K; however, the resulting clone size distribution cj, remains
qualitatively unchanged.

Maximum Likelihood Estimation:

We start with the counts of unique sequencing reads on the macaque genome. i.e. number of times the read was
sequenced. We refer to each unique read as a “clone.” Since sequencing of each end of a unique viral sequence is
performed independently, we treat the two data sets as independent measurements at each time. The reads are then
pooled according to which end of a read was sequenced. For more details of the sequencing and filtering of the
reads, see Kim et al. [14].
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Assume a sequencing run from a particular animal, at a particular time and at one of the sequencing ends, yields n
unique clones with {q1,...,q:,...,qn} read counts. We calculate the likelihood of observing this data within our
model given a particular set of parameter values. Our mathematical model contains three independent parameter
combinations:

T S w
a=—, T=—, and ew = — X —.
Iz Na  pa

(A65)

sle

Since the distinguishable clones are otherwise physiologically identical, we associate the distribution of sizes of any
particular clone with the expected value of clone size distribution:

P(gila, 7, ew) = (mgq, (a,7,ew)) = F(q|a, 7, ew) — F(q — 1|a, 7, ew). The likelihood of the parameters given
the detected clone sizes {q1,...,qn} is then given by:

L(a, 7 ewl{ar, . an}) = [[ Plaila, 7, cw). (A66)
=1

The most likely parameters are then estimated by numerically maximizing the likelihood over the parameters.
However, as shown previously, the distribution of clone sizes depends most strongly on only a and R given by

Egs. 10.

The figures below show normalised and rescaled clone size distributions extracted from granulocyte or peripheral
blood mononuclear cell (PBMC) subpopulations of blood from all animals in the original study. The MLE values of
a* and R* all fall within regimes such that U + C' ~ 10% — 10*. The fluctuations in U + C are predominantly due
to changes in the fraction f at different time points. Such fluctuations are the result of internal dynamics not
considered in our model and do not exhibit any discernible trend.
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Fig. Al: (A) Rescaled clone size distributions from granulocytes in animal RQ5427. The stationarity in this
subpopulation is evident. (B) The MLE fits for U + C (blue circles) and a™ (red squares).

a™)

—~10° 0=

1 A & 10 B 10 >

=

5 o

—~0.38 ~ c
Z Q s
(€] ok - - -2 months % 104 10! =
Bos A ---8 months ° =
S " 0 ---13 months > 5
© Y ---19 months 5 <
5 04 25 months (LI ,E
c 32 months %5 10 10° 5
] 43 months . S
g 0.2 50 months g e
= 56 months I 5
. 67 months g 102 10,3 £

10" 10° 0 10 20 30 40 50 60 70 o

c

rescaled clone size v time (months)
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For completeness, we also calculate a rough goodness-of-fit metric. We do this by calculating the “diagonal”
curvatures of the likelihood function 92 L£/9R? and 9?L£/a? evaluated at the maximum (R*, a*). Upon defining
—1/2

o°L o°L
OR = (@) , O = (ﬁ) , (A67)
R* a* R* a*

a goodness-of-fit can be measured through the distribution of the values of the Fano factors o, /a™ and or/R*
obtained by fitting each clone size distribution at each time point. The distributions of the logarithm of o, /a™* and
or/R" (sampled from fitting at all times points for all animals) are plotted below. We see that the fitting for R at
most time points is reasonably good, but that some of the fits, particularly for the small values of a™*, are not
particularly well-conditioned.

—1/2
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