
Received: 3 July 2025 / Revised: 3 July 2025 / Accepted: 24 September 2025 / 
Published online: 19 October 2025
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2025

Mingtao Xia and Xiangting Li have contributed equally to this work.

Editor: Xiaolin Huang.

	
 Mingtao Xia
mxia4@uh.edu

	
 Xiangting Li
xiangting.li@ucla.edu

Qijing Shen
qijing.shen@ndm.oxford.edu

Tom Chou
tomchou@ucla.edu

1	 Department of Mathematics, University of Houston, Houston, TX 77204, USA
2	 Department of Computational Medicine, University of California Los Angeles, 621 Charles E. 

Young Dr. S., Los Angeles, CA 90095, USA
3	 Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital,  

Oxford OX3 9DU, UK
4	 Department of Mathematics, University of California Los Angeles, 520 Portola Plaza, Los 

Angeles, CA 90095, USA

Squared Wasserstein-2 loss functions for efficient learning of 
stochastic differential equations

Mingtao Xia1 · Xiangting Li2 · Qijing Shen3 · Tom Chou4

Machine Learning (2025) 114:255
https://doi.org/10.1007/s10994-025-06908-9

Abstract
We provide an analysis of the squared Wasserstein-2 (W2) distance between two prob-
ability distributions associated with two stochastic differential equations (SDEs). Based 
on this analysis, we propose using squared W2 distance-based loss functions to train pa-
rametrized neural networks in order to reconstruct SDEs from noisy data. Specifically, we 
propose minimizing a time-decoupled squared W2 distance loss function. To demonstrate 
the practicality of our Wasserstein distance-based loss functions, we performed numerical 
experiments that demonstrate the efficiency of our method in learning SDEs that arise 
across a number of applications.

Keywords  Wasserstein distance · Stochastic differential equation · Inverse problem · 
Uncertainty quantification · Optimal transport
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1  Introduction

Stochastic processes are mathematical models of random phenomena that evolve over time 
or space (Cinlar, 2011). Among stochastic processes, d-dimensional stochastic differential 
equations (SDE) of the form

	 dX(t) = f(X(t), t)dt + σ(X(t), t)dB(t), X(t) ∈ Rd, t ∈ [0, T ]� (1)

are widely used across different fields to model complex systems with continuous variables and 
noise. Here, f = (f1, ..., fd) : Rd+1 → Rd and σ = (σi,j)i=1,...,d,j=1,...,s : Rd+1 → Rd×s 
denote deterministic and stochastic components of the SDE, while B(t) represents a 
s-dimensional standard Brownian motion. In applications such as computational fluid 
dynamics, cell biology, and genetics, the underlying dynamics are often unknown, partially 
observed, and subjected to noise. Consequently, it is vital to develop methods capable of 
learning the governing SDEs from limited data (Sullivan, 2015; Soize, 2017; Mathelin et 
al., 2005; Bressloff, 2014; Lin & Buchler, 2018). Traditional methods, such as the Kalman 
filtering (Welch et al., 1995; Welch, 2020) and Gaussian process regression (Liu et al., 2020; 
MacKay et al., 1998) often assume specific forms of noise. For example, (De Vecchi et al., 
2016) uses polynomials to model f, σ, while (Pereira et al., 2010) assumes linear f  and σ. If 
the forms of f  and σ are known, then Bayesian methods are used to estimate the parameters 
therein (Gzyl et al., 2008). Such traditional methods may work well when prior information 
on the underlying SDE model is given. However, those methods may not be suitable for 
complex or nonlinear systems where noise affects the dynamics in a more complex manner 
and no prior information on f  and σ in Eq. (1) is available.    

Recent advancements leverage machine learning, specifically neural ordinary differential 
equations (NODEs) (Chen et al., 2018), to offer a more flexible approach to reconstructing 
SDEs in the form of neural SDEs (nSDEs) (Tzen and Raginsky, 2019; Tong et al., 2022; 
Jia & Benson, 2019). Previous attempts at using neural SDEs (nSDEs) have explored dif-
ferent loss functions for learning SDEs from data. For example, Tzen and Raginsky (2019) 
model the SDE as a continuum limit of latent deep Gaussian models and use a variational 
likelihood bound for training. Kidger et al. (2021) adopt Wasserstein generative adversarial 
networks (WGANs) that were proposed in Arjovsky et al. (2017) for reconstructing SDEs. 
Briol et al. (2019) uses a maximum mean discrepancy (MMD) loss and a generative model 
for training SDEs. Song et al. (2020) assumes that σ in Eq. (1) depends only on time and 
uses a score-based generative model for SDE reconstruction.

Despite promising recent advances, challenges remain, particularly in selecting optimal 
loss functions (Jia & Benson, 2019). The Wasserstein distance, a family of metrics that 
measures discrepancies between probability measures over a metric space, has emerged as a 
potential solution due to its robust properties (Villani et al., 2009; Oh et al., 2019; Zheng et 
al., 2020). Consequently, the Wasserstein distance, denoted as W, has gained wide use in sta-
tistics and machine learning. Key papers have delved into its analysis (Rüschendorf, 1985) 
and its utilization in reconstructing discrete-time stochastic processes (Bartl et al., 2021). In 
the context of SDEs, Bion-Nadal and Talay (2019) introduced a restricted Wasserstein-type 
distance, while Wang (2016) and Sanz-Serna and Zygalakis (2021) examined its application 
in ergodic SDEs, Levy processes, and Langevin equations, respectively. Calculating the W 
distance for multidimensional random variables is challenging; hence, approximations such 
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as the sliced W  distance and regularized W  distance have emerged (Cuturi et al., 2019; 
Kolouri et al., 2018, 2019; Rowland et al., 2019; Frogner et al., 2015).

The aforementioned WGAN approach in Kidger et al. (2021) uses the first-order Was-
serstein distance to indirectly learn SDEs via the Kantorovich-Rubinstein duality (Arjovsky 
et al., 2017). To the best of our knowledge, there has been no published work that directly 
analyzes the W distance and applies it to the learning of SDEs. In this paper, we introduce 
bounds on the second-order Wasserstein W2 distance between two probability distributions 
over the continuous function space generated by solutions to two SDEs. Our results moti-
vate the W2 distance as the loss function to be used with parametrized neural networks for 
learning SDEs from time-series data containing intrinsic noise that results from Wiener 
processes. We test our approach on different examples to showcase its effectiveness.

2  Definitions and outline

We propose a squared W2-distance-based loss function for training a neural-network-
parametrized SDE model (Li et al., 2020) in order to reconstruct an SDE under the follow-
ing setting. Let µ denote the probability distribution over the continuous function space 
C([0, T ];Rd) generated by the solution X(t) to Eq. (1). In the following approximation to 
Eq. (1),

	 dX̂(t) = f̂(X(t), t)dt + σ̂(X̂(t), t)dB̂(t), t ∈ [0, T ],� (2)

B̂(t) is another s-dimensional standard Brownian motion independent of B(t) in Eq. (1), 
f̂ = (f̂1, ..., f̂d) : Rd+1 → Rd, and σ̂ = (σ̂i,j)i=1,...,d,j=1,...,s : Rd+1 → Rd×s. The prob-
ability distribution over the continuous function space C([0, T ];Rd) generated by the solu-
tion X̂(t) to Eq. (2) will be denoted µ̂.

We shall follow the definition of the squared W2-distance in Clement and Desch (2008) 
for two probability measures µ, µ̂ associated with two continuous stochastic processes 
{X(t)}t∈[0,T ], {X̂(t)}t∈[0,T ].

Definition 1  For two d-dimensional continuous stochastic processes in the separable space (
C([0, T ];Rd), ∥ · ∥

)

	 X(t) =
(
X1(t), ..., Xd(t)

)
, X̂(t) =

(
X̂1(t), ..., X̂d(t)

)
, t ∈ [0, T ],� (3)

with two associated probability distributions µ, µ̂, the squared W2(µ, µ̂) distance between 
µ, µ̂ is defined as

	
W 2

2 (µ, µ̂) = inf
π(µ,µ̂)

E(X,X̂)∼π(µ,µ̂)
[
∥X − X̂∥2]

.� (4)

Throughout this paper, E refers to taking the expectation of a random vari-
able, and E(X,X̂)∼π(µ,µ̂)

[
∥X − X̂∥2]

 refers to the expectation of the quantity [
∥X − X̂∥2]

 when (X, X̂) obey the joint probability measure π(µ, µ̂). The distance 
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∥X∥ :=
( ´ T

0 |Xi(t)|2dt
) 1

2 , where | · | is the l2 norm of a vector. π(µ, µ̂) iterates over all 
coupled distributions of X(t), X̂(t), defined by the condition

	

{
P π(µ,µ̂)

(
A × C([0, T ];Rd)

)
= P µ(A),

P π(µ,µ̂)
(
C([0, T ];Rd) × A

)
= P µ̂(A), ∀A ∈ B

(
C([0, T ];Rd)

)
,� (5)

where B
(

C([0, T ];Rd)
)
 denotes the Borel σ-algebra associated with the space of d-dimen-

sional continuous functions C([0, T ];Rd). Here, we assume that taking the expectation of 
the squares of the stochastic processes at a fixed time point is interchangeable with integra-
tion over time, i.e., for a stochastic process {X(t)}T

t=0,

	
E

[ ˆ T

0
|X(t)|2dt

]
= E

[ ˆ T

0
|X(t)|2dt

]
=
ˆ T

0
E

[
|X(t)|2

]
dt.� (6)

Eq. (6) holds true for solutions to the SDE (1) under specific conditions, such as uniform 
bounds and Lipschitiz continuity on the coefficients f  and σ which ensures a strong solution 
of the SDE. Detailed analysis on the interchangeability of taking the expectation and taking 
the integration w.r.t. time for stochastic processes are described by the stochastic Fubini 
theorem Jacod (2006); Choulli and Schweizer (2024).        
The main contributions of our work are 

1.	 Using Definition 1, we first derive in Sect. 3 an upper bound for the squared Wasserstein 
distance W 2

2 (µ, µ̂) between the probability measures associated with solutions to two 
1D SDEs in terms of the errors in the reconstructed drift and diffusion functions, f − f̂  
and σ − σ̂ in Eqs. (1) and (2). To be specific, we establish a W2 distance upper bound 
which depends explicitly on the difference in the drift and diffusion functions f − f̂  and 
σ − σ̂ associated with using Eq. (2) to approximate Eq. (1).

2.	 In Sect.  4, we shall prove that the squared W2 distance between the two SDEs, 
W 2

2 (µ, µ̂), can be accurately approximated by estimating the W2 distance between 
their finite-dimensional projections. We also develop a time-decoupled squared Was-
serstein-2 distance defined by 

	
W̃ 2

2 (µ, µ̂) :=
ˆ T

0
W 2

2 (µ(s), µ̂(s))ds,� (7)

	  which allows us to define a time-decoupled squared W2-distance-based loss function 
for learning SDEs. Here, µ(s), µ̂(s) are the distributions on Rd generated by projec-
tion of the stochastic processes X, X̂  at time s, respectively. We prove that the time-
decoupled squared W2 distance in Eq.  (7) is well defined in Theorem 3, and that it 
inherits the upper bound of the squared Wasserstein distance W 2

2 (µ, µ̂) and could be 
evaluated using finite-time-point distributions of solutions to two SDEs. Specifically, 
if X(ti) follows the one-dimensional (d = 1) SDE Eq. (1), then for uniformly spaced 
time points ti = iT

N , i = 0, ..., N , our proposed time-decoupled squared W2 loss func-
tion is simply 
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∆t

N−1∑
i=1

ˆ 1

0

(
F −1

i (s) − F̂ −1
i (s)

)2
ds,� (8)

	  where ∆t is the timestep and Fi and F̂i are the empirical cumulative distribution func-
tions for X(ti) and X̂(ti), respectively. This time-decoupled squared W2-distance loss 
function will be explicitly expressed in Eq. (29).

3.	 Finally, we carry out numerical experiments to show that our squared W2-distance-
based SDE learning method performs better than recently developed machine-learn-
ing-based methods across many SDE reconstruction problems. Additional numerical 
experiments and sensitivity analysis are detailed in the Appendix.

3  Squared W2 distance for learning SDEs

In this section, we prove the bounds for the squared W2 distance of two probability mea-
sures associated with two SDEs. Specifically, we demonstrate that minimizing the squared 
W2 distance is necessary for the reconstruction of f, σ in Eq. (1).

We shall first prove an upper bound for the W2 distance between the probability mea-
sures µ and µ̂ associated with X(t), X̂(t), solutions to Eqs. (1) and (2), respectively.

Theorem 1  (The upper bound of the squared W2 distance between distributions of solutions 
to two SDEs) We assume that {X(t)}t∈[0,T ], {X̂(t)}t∈[0,T ] are solutions to Eqs. (1) and (2) 
(for d = 1), respectively, and have the same distribution of initial conditions. Further requir-
ing f, f̂ , σ, σ̂ to be continuously differentiable, ∂xσ and ∂xσ̂ are uniformly bounded and

	

W 2
2 (µ, µ̂) ≤3

ˆ T

0
E

[ˆ t

0
H2(s, t)ds

]
dt × E

[ˆ T

0
(f − f̂)2(X̃(t), t)dt)

]

+ 3
ˆ T

0
E

[ˆ t

0
H2(s, t)ds

]
dt × E

[ˆ T

0

(
∂xσ(η2(X(t), X̃(t)), t

)2(σ − σ̂)2(X̃(t), t)dt
]

+ 3
ˆ T

0
E

[ˆ t

0
H4(s, t)ds

]1/2
dt × E

[ˆ T

0
(σ − σ̂)4(X̃(t), t)dt)

]1/2
,

� (9)

where X̃(t) satisfies

	 dX̃(t) = f̂(X̃(t), t)dt + σ̂(X̃(t), t)dB(t), X̃(0) = X(0).� (10)

In Eq. (9), η1, η2 : R2 → R are two auxiliary functions such that

	

f(X1, t) − f(X2, t) = ∂xf(η1(X1, X2), t)(X1 − X2)
σ(X1, t) − σ(X2, t) = ∂xσ(η2(X1, X2)t)(X1 − X2). � (11)

	
H(s, t) := exp

[ˆ t

s

h(X(r), X̃(r), r)dr +
ˆ t

s

∂xσ
(
η2(X(r), X̃(r), r

)
dB(r)

]
,� (12)

with h defined as
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h(X(r), X̂(r), r) := ∂xf

(
η1(X(r), X̃(r)), r

)
−

(
∂xσ

(
η2(X(r), X̃(r)), r

))2
.� (13)

The proof to Theorem 1 and its generalizations to higher dimensional stochastic dynam-
ics under some specific assumptions are given in Appendix A. Theorem 1 indicates that 
as long as E

[ ´ t

0 H4(s, t)ds
]
 is uniformly bounded for all t ∈ [0, T ], the upper bound for 

W2(µ, µ̂) → 0 when f̂ − f → 0 and σ̂ − σ → 0 uniformly in R × [0, T ]. Specifically, if 
f = f̂ , σ = σ̂, then the RHS Eq. (9) is 0. This means that minimizing W 2

2 (µ, µ̂) is neces-
sary for generating small errors f̂ − f, σ̂ − σ and for accurately approximating both f and 
σ. Thus, one can consider using the squared W2 distance as an effective loss function to 
minimize when learning SDEs from data. MSE-based loss functions (defined in Appendix 
E) suppress noise while the Kullback-Liebler (KL) divergence may not be finite, preclud-
ing resolution of X(t) and X̂(t) even if f̂  approximates f  and σ̂ approximates σ. Detailed 
discussions on the limitations of MSE and KL divergence in SDE reconstruction can be 
found in Appendix B.

Remark. A generalized version of Theorem  1 with relaxed conditions for the upper 
bound of the squared W2 distance between two multidimensional pure-diffusion and jump-
diffusion processes is given in subsequent work Xia et al. (2024). Consider X(t) and X̂(t) 
describing general d-dimensional SDEs Eqs. (1) and (2). It is nontrivial to show whether or 
not the squared W2 distance between two multidimensional pure-diffusion processes or two 
jump-diffusion processes is an upper bound for the errors f̂ − f, σ̂ − σ. If it is, minimizing 
W 2

2 (µ, µ̂) is sufficient for reconstructing of f, σ using f̂ , σ̂. However, in Xia et al. (2024), 
some preliminary results on how the squared W2 distance might serve as an upper bound 
for the errors f̂ − f, σ̂ − σ in 1D jump-diffusion processes are given. Theorem 2.1 in Xia et 
al. (2024) indicates that as long as f, σ, f̂ , σ̂ are continuously differentiable and uniformly 
Lipschitz continuous, then

	 W2(µ, µ̂) ≤
√

T E[H(T )|X(0)] × exp (CT ) ,� (14)

where C is a constant depending on f, f̂ , σ, σ̂, µ, µ̂ are the probability distribution over the 
continuous function space C([0, T ];Rd) generated by the solutions X(t) and X̂(t), respec-
tively. Furthermore, in Eq. (14),

	

H(t) := E

[
d∑

i=1

ˆ t

0

(
fi(X(s), s) − f̂i(X(s), s)

)2
ds

]

+ E

[
d∑

i=1

ˆ t

0

s∑
j=1

(
σi,j(X(s), s) − σ̂i,j(X(s), s)

)2
ds

]
.

� (15)

4  Finite-dimensional and time-decoupled squared W2 loss functions

From Theorem 1 in Sect. 3, in order to have small errors in the drift and diffusion terms 
f − f̂  and σ − σ̂, a small W2(µ, µ̂) is necessary. However, W2(µ, µ̂) cannot be directly 
used as a loss function to minimize since we cannot directly evaluate the integration in 
time in Eq. (4). In this section, we shall provide a way to estimate the W2(µ, µ̂) distance by 
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using finite-dimensional projections, leading to squared W2-distance-based loss functions 
for minimization.

Consider the two general d-dimensional SDEs defined in Eqs. (1) and (2). Usually, we 
only have observations of trajectories of {X(t)}t∈[0,T ] and {X̂(t)}t∈[0,T ] over discrete 
time points. We assume that X(t), X̂(t) solve the two SDEs described by Eqs.  (1) and 
(2) and provide an estimate of the W2 between of the probability measures µ, µ̂ associated 
with {X(t)}t∈[0,T ] and {X̂(t)}t∈[0,T ] using their finite-dimensional projections. We let 
0 = t0 < t1 < ... < tN = T, ti = i∆t, ∆t := T

N  be a uniform mesh in time and define the 
following projection operator IN

	
XN (t) := IN X(t) =

{
X(ti), t ∈ [ti, ti+1), i < N − 1,

X(ti), t ∈ [ti, ti+1], i = N − 1.
� (16)

As in the previous case, we require X(t) and X̂(t) to be continuous. Note that the projected 
process is no longer continuous. Thus, we define a new space Ω̃N  containing all continuous 
and piecewise constant functions; naturally, µ, µ̂ are allowed to be defined on Ω̃N . Distri-
butions over Ω̃N  generated by {XN (t)}t∈[0,T ],{X̂N (t)}t∈[0,T ] in Eq. (16) is denoted by 
µN  and µ̂N , respectively. We will prove the following theorem for estimating W2(µ, µ̂) by 
W2 (µN , µ̂N ).

Theorem 2  [Finite-time-point approximation of the squared W2 distance] Suppose 
{X(t)}t∈[0,T ] and {X̂(t)}t∈[0,T ] are both continuous-time continuous-space stochastic 
processes in Rd and µ, µ̂ are their associated probability measures, then W2(µ, µ̂) can be 
bounded by their finite-dimensional projections

	 W2(µN , µ̂N ) − W2(µ, µN ) − W2(µ̂, µ̂N ) ≤ W2(µ, µ̂) ≤ W2(µN , µ̂N ) + W2(µ, µN ) + W2(µ̂, µ̂N )� (17)

where µN , µ̂N  are the probability distributions associated with the two stochastic processes 
{XN (t)}t∈[0,T ] and {X̂N (t)}t∈[0,T ] defined in Eq. (16). Specifically, if X(t) and X̂(t) 
solve Eqs. (1) and (2), and if

	

F :=EX∼µ

[ˆ T

0

d∑
i=1

f2
i (X(t), t)dt

]
< ∞,

F̂ :=EX̂∼µ̂

[ˆ T

0

d∑
i=1

f̂2
i (X̂(t), t)dt

]
< ∞,

Σ :=EX∼µ

[ˆ T

0

d∑
ℓ=1

s∑
j=1

σ2
i,j(X(t), t)dt

]
< ∞,

Σ̂ :=EX̂∼µ̂

[ˆ T

0

d∑
ℓ=1

s∑
j=1

σ̂2
i,j(X̂(t), t)dt

]
< ∞,

� (18)

then we obtain the following bound
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W2(µN , µ̂N )−
√

(s + 1)∆t
(√

F∆t + Σ +
√

F̂∆t + Σ̂
)

≤ W2(µ, µ̂)

≤ W2(µN , µ̂N ) +
√

(s + 1)∆t
(√

F∆t + Σ +
√

F̂∆t + Σ̂
)

.
� (19)

The proof to Theorem  2 relies on the triangular inequality of the Wasserstein distance 
and the Itô isometry; it is provided in Appendix C. Theorem 2 gives bounds for approx-
imating the W2 distance between the distributions of {X(t)}t∈[0,T ], {X̂(t)}t∈[0,T ] 
by the W2 distance between the distributions of their finite-time-point projections 
{XN (t)}t∈[0,T ], {X̂N (t)}t∈[0,T ]. Specifically, if X(t), X̂(t) are solutions to Eqs. (1) and 
(2), then as the timestep ∆t → 0, W2(µN , µ̂N ) → W2(µ, µ̂). Theorem 2 indicates that we 
can use W 2

2 (µN , µ̂N ), which approximates W 2
2 (µ, µ̂) when ∆t → 0, as a loss function. 

Furthermore,

	
W 2

2 (µN , µ̂N ) = infπ(µN ,µ̂N )

N−1∑
i=1

E(XN ,X̂N )∼π(µN ,µ̂N )

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t.� (20)

here, π(µN , µ̂N ) iterates over coupled distributions of {XN (t)}t∈[0,T ], {X̂N (t)}t∈[0,T ], 
whose marginal distributions coincide with µN  and µ̂N . | · |2 denotes the ℓ2 norm of a vec-
tor. Note that µN  is fully characterized by values of {X(t)}t∈[0,T ] at the discrete time points 
ti.

Remark. The d-dimensional SDEs in Eqs. (1) and (2) can be solved numerically. Solu-
tions to the two SDEs can be approximated by strong, order γ Itô-Taylor solutions; we will 
denote these by {Xδ(t)}t∈[0,T ] and {X̂δ(t)}t∈[0,T ], along with their associated probability 
distributions denoted by µδ  and µ̂δ . Here, δ denotes a uniform time step used in the numeri-
cal scheme, which can be different from ∆t in Eq. (20). For simplicity, we can assume that 
∆t is an integer multiple of δ and that all coefficients involved in the order γ Itô-Taylor 
scheme satisfy the conditions prescribed in (Kloeden and Platen (1992), Theorem 10.6.3). 
Then, using Theorem 10.6.3 in Kloeden and Platen (1992), we have the following result 
which takes into account the time discretization error of the numerical SDE scheme.

Corollary 1  Suppose Xδ(t) and X̂δ(t) (δ denotes a uniform time step) are numerical solu-
tions of order γ strong Ito-Taylor approximates to Eqs. (1) and (2) with all involved coef-
ficients satisfying the conditions specified in (Kloeden and Platen (1992), Theorem 10.6.3). 
We denote µδ,N , µ̂δ,N  to be the distributions of IN Xδ(t) and IN X̂δ(t), respectively. Sup-
pose Xδ(0) = X̂δ(0) = X(0), then the following inequality holds:

	

W2(µδ,N , µ̂δ,N ) − W2(µ, µN ) − W2(µ̂, µ̂N ) − K(1 + |X(0)|2) 1
2 δγ

√
T ≤ W2(µ, µ̂)

≤ W2(µδ,N , µ̂δ,N ) + W2(µ, µN ) + W2(µ̂, µ̂N ) + K(1 + |X(0)|2) 1
2 δγ

√
T ,

� (21)

where K is a constant that does not depend on δ.

Proof  The proof of Corollary 1 is a straightforward application of Theorem 2 and (Kloeden 
and Platen (1992), Theorem 10.6.3). Notice that

	 W2(µN , µ̂N ) ≥ W2(µδ,N , µ̂δ,N ) − W2(µδ,N , µN ) − W2(µ̂δ,N , µ̂N ),� (22)
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and

	 W2(µN , µ̂N ) ≤ W2(µδ,N , µ̂δ,N ) + W2(µδ,N , µN ) + W2(µ̂δ,N , µ̂N ).� (23)

Furthermore,

	
W 2

2 (µδ,N , µδ) = infπ(µN ,µ̂N )

N−1∑
i=1

E(XN ,X̂δ,N )∼π(µN ,µδ,N )

[∣∣X(ti) − X̂δ(ti)
∣∣2
2

]
∆t.� (24)

here, π(µN , µδ,N ) iterates over coupled distributions of XN (t), Xδ,N (t), whose marginal 
distributions coincide with µN  and µδ,N . We take a special coupling such that

	

X(t) =
ˆ t

0
f(X(s), s)ds +

ˆ t

0
σ(X(s), s)dBs + X(0), t ∈ [0, T ],

Xδ

(
(i + 1)δ

)
=

∑
α∈Aγ

fα

(
iδ, X(iδ)

)
Iα,

� (25)

where α and fα are the indices and coefficients in (Kloeden and Platen (1992), Theorem 
10.6.3) and Iα is the multiple Itô integral for the index α associated with Bt. Using (Kloe-
den and Platen (1992), Theorem 10.6.3), there exists a δ-independent constant K ′ such that

	
E

(
sup

0≤t≤T
|X(t) − Xδ(t)|2

)
≤ K ′(1 + |X(0)|2)δ2γ .� (26)

Then, from Eq. (24), we conclude that

	 W 2
2 (µδ,N , µδ) ≤ N∆tK ′(1 + |X(0)|2)δ2γ = TK ′(1 + |X(0)|2)δ2γ .� (27)

Similarly,

	 W 2
2 (µ̂δ,N , µ̂δ) ≤ N∆tK ′(1 + |X(0)|2)δ2γ = TK ′(1 + |X(0)|2)δ2γ .� (28)

Defining K := 2
√

K ′, the inequality (21) is proved. � □
For a d-dimensional SDE, the trajectories at discrete time points {X(ti)}N−1

i=1  
is d × (N − 1) dimensional. In Fournier and Guillin (2015), the error bound for 
|W 2

2 (µN , µ̂N ) − W 2
2 (µe

N , µ̂e
N )|, where µe

N , µ̂e
N  are the finite-sample empirical distribu-

tions of {X(ti)}N−1
i=1  and {X̂(ti)}N−1

i=1 , will increase as the dimensionality d × (N − 1) 
becomes large. Alternatively, we can disregard the temporal correlations of values at differ-
ent times and relax the constraint on the coupling π(µN , µ̂N ) in to minimize the Wasserstein 
distance between the marginal distribution of {X(ti)}N−1

i=1  and the marginal distribution of 
{X̂(ti)}N−1

i=1 , as was done in Chewi et al. (2021). To be more specific, we minimize indi-
vidual terms in the sum with respect to the coupling πi of the distributions of X(ti) and 
X̂(ti) and define a heuristic loss function
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N−1∑
i=1

inf
πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t =

N−1∑
i=1

W 2
2 (µN (ti), µ̂N (ti))∆t� (29)

where µN (t) and µ̂N (t) are the probability distributions of X(t) and X(t) at time t, respec-
tively. Note that

	

N−1∑
i=1

inf
πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t ≤ W 2

2 (µN , µ̂N )� (30)

because the marginal distributions of π(µN , µ̂N ) coincide with µN  and µ̂N . Since the mar-
ginal distributions of µN  and µ̂N  at ti are µN (ti) and µ̂N (ti), respectively, we have

	

N−1∑
i=1

inf
πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t

≤ infπ(µN ,µ̂N )

N−1∑
i=1

E(XN ,X̂N )∼π(µN ,µ̂N )
[∣∣X(ti) − X̂(ti)

∣∣2
2

]
∆t.

� (31)

The dimensionality of X(ti) and X̂(ti) is d, which is much smaller than (N − 1)d for large 
N. We denote µe

N (ti) and µ̂e
N (ti) to be the finite-sample empirical distributions of X(ti) and 

X̂(ti), respectively. Since the error of estimating the W2 distance using empirical distribu-
tions of a random variable increases with the random variable’s dimensionality Fournier and 
Guillin (2015), the error 

∣∣ ∑N−1
i=1 W 2

2 (µN (ti), µ̂N (ti)) −
∑N−1

i=1 W 2
2 (µe

N (ti), µ̂e
N (ti))

∣∣ can 
be smaller than the error 

∣∣W 2
2 (µN , µ̂N ) − W 2

2 (µe
N , µ̂e

N )
∣∣. Compared to Eq. (20), the time-

decoupled squared W2 distance Eq.  (29) can be better approximated using finite-sample 
empirical distributions.

Note that

	

N−1∑
i=1

W 2
2 (µN (ti), µ̂N (ti))∆t ≤ W 2

2 (µN , µ̂N ).� (32)

Thus, from Theorems  1 and 2, minimizing Eq.  (29) when N → ∞ is also necessary to 
achieve small f − f̂  and σ − σ̂ when the SDE is univariate. Let µi, µ̂i be the two probabil-
ity distributions on the space of continuous functions associated with X(t), t ∈ [ti, ti+1) 
and X̂(t), t ∈ [ti, ti+1), respectively. We can then show that Eq. (29) is an approximation 
to the partially time-decoupled summation of squared W2 distances 

∑N−1
i=1 W 2

2 (µi, µ̂i) as 

N → ∞. Additionally, we can prove the following theorem that indicates Eq. (29) approxi-
mates a time-decoupled squared Wasserstein distance Eq. (7) in the N → ∞ limit.

Theorem 3  [Well-posedness of our proposed time-decoupled squared W2 distance Eq. (7)] 
We assume the conditions in Theorem 2 hold and for any 0 < t < t′ < T , as t′ − t → 0, the 
following conditions are satisfied
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E
[ˆ t′

t

d∑
i=1

f2
i (X(t), t)dt

]
, E

[ˆ t′

t

d∑
i=1

f̂2
i (X̂(t), t)dt

]
→ 0,

E
[ˆ t′

t

d∑
i=1

s∑
j=1

σ2
i,j(X(t), t)dt

]
, E

[ˆ t′

t

d∑
i=1

s∑
j=1

σ̂2
i,j(X̂(t), t)dt

]
→ 0.

� (33)

Then,

	
lim

N→∞

( N−1∑
i=1

inf
πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t −

N−1∑
i=1

W 2
2 (µi, µ̂i)

)
= 0.� (34)

Furthermore, the limit

	
lim

N→∞

N−1∑
i=1

inf
πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t = lim

N→∞

N−1∑
i=1

W 2
2

(
µ(ti), µ̂(ti)

)
∆t� (35)

exists.
The proof of Theorem 3 will use the result of Theorem 2 and is given in Appendix D. Spe-
cifically, for each N,

	

N−1∑
i=1

inf
πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t ≤ W 2

2 (µN , µ̂N ),� (36)

so we conclude that

	
lim

N→∞

N−1∑
i=1

inf
πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t ≤ lim

N→∞
W 2

2 (µN , µ̂N ) = W 2
2 (µ, µ̂).� (37)

We denote

	
W̃ 2

2 (µ, µ̂) :=
ˆ T

0
W 2

2
(
µ(t), µ̂(t)

)
dt = lim

N→∞

N−1∑
i=1

W 2
2

(
µ(t1

i ), µ̂(t1
i )

)
(t1

i − t1
i−1)� (38)

as the time-decoupled squared Wasserstein distance. From Eq. (37), we can deduce that

	 W̃ 2
2 (µ, µ̂) ≤ W 2

2 (µ, µ̂).� (39)

Therefore, the upper bound of W 2
2 (µ, µ̂) in Theorem 1 is also an upper bound of W̃ 2

2 (µ, µ̂), 
i.e., to reconstruct a 1D SDE by minimizing W̃ 2

2 (µ, µ̂), it is necessary that f − f̂  and σ − σ̂ 
are small. From Theorem 3, minimizing the finite-time-point time-decoupled loss function 
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defined in Eq. (29), which approximates W̃ 2
2 (µ, µ̂) when ∆t is small, is needed for minimiz-

ing f − f̂  and σ − σ̂.
Remark. If we replace X(ti) and X̂(ti) in Eq. (35) with Xδ(ti) and X̂δ(ti), the order 

γ strong numerical solutions to Eqs. (1) and (2), and assuming the conditions in Corollary 1 
hold,

	
lim

N→∞

( N−1∑
i=1

W 2
2

(
µδ(ti), µ̂δ(ti)

)
∆t −

N−1∑
i=1

W 2
2 (µi, µ̂i)

)
= 0,� (40)

where µδ(t), µ̂δ(t) are the probability distributions of Xδ(t) and X̂δ(t) at time t, respec-
tively. This arises because

	

∣∣∣ inf
πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]1/2 − W2
(
µδ(ti), µ̂δ(ti)

)∣∣∣
≤ W2(µ(ti), µδ(ti)) + W2(µ̂(ti), µ̂δ(ti)) ≤ K(1 + |X(0)|2)1/2δγ .

� (41)

Thus, since we assumed that ∆t is an integer multiple of δ and thus ∆t ≥ δ, we have

	

lim
N→∞

( N−1∑
i=1

inf
πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t −

N−1∑
i=1

W 2
2

(
µδ(ti), µ̂δ(ti)

)
∆t

)

≤ lim
N→∞

4 max
i

inf
πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]1/2
KδγT (1 + |X(0)|2)1/2 + 4K2δ2γT (1 + |X(0)|2) = 0.

� (42)

Specifically, if X(t), X̂(t) are solutions to the univariate SDEs Eq. (1) and Eq. (2), then 
Eq. (29) reduces to Eq. (8), which can be directly calculated. In Example 3, Example 4, and 
Appendix I, we shall compare use of the two different squared W2 distance loss functions 
Eqs. (20) and  (29). From our preliminary numerical results, using Eq. (29) is more efficient 
than using Eq. (20) and yields reconstructed SDEs that are more accurate.

5  Numerical experiments

We carry out experiments to investigate the efficiency of our proposed squared W2 loss 
function (Eq. (29)) by comparing it to other methods and loss functions. Our approach is 
tested on the reconstruction of several representative SDEs in Examples 1– 4.

In all experiments, we use two neural networks to parameterize 
f̂ := f̂(X, t; Θ1), σ̂ := σ̂(X, t; Θ2) in Eq.  (2) for the purpose of learning f, σ in Eq.  (1) 
by the estimates f̂ ≈ f, σ̂ ≈ σ. Θ1, Θ2 are the parameter sets in the two neural networks 
for parameterizing f̂ = f̂Θ1 , σ̂ = σ̂Θ2 . We use the sdeint function in the torchsde 
Python package in Li et al. (2020) to numerically integrate SDEs. Details of the training 
hyperparameter setting for all examples are given in Table 1. A pseudocode for using the 
time-decoupled squared W2 loss function Eq. (29) to train the neural networks f̂(X, t; Θ1) 
and σ̂(X, t; Θ2) is given in Algorithm 1. All experiments were carried out using Python 
3.11 on a desktop with a 24-core Intel® i9-13900KF CPU. Default hyperparameters and 
training settings for each example are listed in Table 1, and the default Euler-Maruyama 
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scheme (corresponding to the order γ = 1
2  strong Ito Taylor expansion in Corollary 1) in 

the torchsde package is used for numerically solving SDEs in all numerical examples.

Algorithm 1  The pseudocode of minimizing the squared W2 loss function to train a neural 
SDE. (The time-decoupled squared W2 loss in the while loop can be replaced with other 

loss functions)

First, we compare our proposed squared W2-distance-based loss (Eq. (29)) with several 
traditional statistical methods for SDE learning or reconstruction.

Example 1  We reconstruct a nonlinear SDE of the form

	 dX(t) =
( 1

2 − cos X(t)
)
dt + σdB(t), t ∈ [0, 20],� (43)

Loss Example 
1

Example 
2

Example 
3

Example 
4

Exam-
ple 5

Gradient de-
scent method

AdamW AdamW AdamW AdamW AdamW

Learning rate 0.001 0.002 0.002 0.0005 0.002
Weight decay 0.005 0.005 0.005 0.005 0.005
Number of 
epochs

1000 2000 2000 2000 500

Number of 
samples

100 200 256 200 100

Hidden layers 
in Θ1

2 1 1 1 1

Neurons in 
each layer in 
Θ1

32 32 32 32 150

Hidden layers 
in Θ2

2 1 1 1 1

Activation 
function

tanh ReLu ReLu ReLu ReLu

Neurons in 
each layer in 
Θ2

32 32 32 32 150

∆t 0.1 0.05 1 0.02 0.5

Table 1  Training settings for 
each example
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which defines a Brownian process in a potential of the form U(x) = x
2 − sin x. In the 

absence of noise, there are infinitely many stable equilibrium points xk = 5π
3 + 2πk, k ∈ Z. 

When noise σdB(t) is added, trajectories tend to saturate around those equilibrium points 
but jumping from one equilibrium point to another is possible. We set σ ≡ 1. We use the 
MSE, the mean2+variance, the maximum-log-likelihood, and the proposed finite-time-point 
time-decoupled squared W2 distance Eq. (29) as loss functions to reconstruct Eq. (43). For 
all loss functions, we use the same neural network hyperparameters. Definitions of all loss 
functions and training details are provided in Appendix E. As detailed in Table 1, neural 
networks with the same number of hidden layers and neurons in each layer are used for each 
loss function. Using the initial condition X(0) = 0, the sampled ground-truth and recon-
structed trajectories are shown in Fig. 1.

Figure 1a shows the distributions of 100 trajectories with most of them concentrated 
around two attractors (local minima x = − π

3 , 5π
3  of the potential U(x)). Figure 1b shows 

that using MSE gives almost deterministic trajectories and fails to reconstruct the noise. 
From 1c, we see that the mean2+variance loss fails to reconstruct the two local equilib-
ria because cannot sufficiently resolve the shape of the trajectory distribution at any fixed 
timepoint. Figure 1d shows that when using our proposed finite-time-point time-decoupled 
squared W2 loss Eq. (29), the trajectories of the reconstructed SDE can successfully learn 
the two-attractor feature and potentially the distribution of trajectories. The reason why the 
reconstructed trajectories of the W2 distance cannot recover the third stable equilibrium at 
x = 11π

3  is because the data is sparse near it. From 1e, we see that the max-log-likelihood 
loss performs the worst as it yields almost the same curves for all realizations.

In the next example, we show how using our finite-time-point time-decoupled squared 
W2 distance loss function Eq. (29) can lead to efficient reconstruction of f and σ. We shall 
use the mean relative L2 error

Fig. 1  a Ground-truth trajectories. b Reconstructed trajectories from nSDE using MSE loss. c Recon-
structed trajectories from nSDE using mean2+variance loss. d Reconstructed trajectories from nSDE 
using the finite-time-point time-decoupled W2 loss. e Reconstructed trajectories from nSDE using a 
max-log-likelihood loss yields the worst approximation
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( T∑
i=0

∑N
j=1 ∥f(xj(ti), ti) − f̂(xj(ti), ti)∥2

(T + 1)
∑N

j=1 ∥f(xj(ti), ti)∥2

) 1
2
,

( T∑
i=0

∑N
j=1 ∥|σ(xj(ti), ti)| − |σ̂(xj(ti), ti)|∥2

(T + 1)
∑N

j=1 ∥σ(xj(ti), ti)∥2

) 1
2

� (44)

between the reconstructed f̂ , σ̂ in Eq. (2) and the ground-truth f, σ in Eq. (1), respectively. 
Here, xj(ti) is the value of the jth ground-truth trajectory at ti.

Example 2  Next, we reconstruct a Cox-Ingersoll-Ross (CIR) model, which is a popular 
finance model that describes the evolution of interest rates:

	 dX(t) =
(
5 − X(t)

)
dt + σ0

√
X(t)dB(t), t ∈ [0, 2].� (45)

Specifically, we are interested in how our learned f̂ , σ̂ can approximate the ground-truth 
f(X) = 5 − X  and σ(X) = σ0

√
X  (with σ0 a constant parameter). Here, we take the 

timestep ∆t = 0.05 in Eq. (29) and the initial condition is X(0) = 2. For reconstructing f 
and σ, we compare using our proposed finite-time-point time-decoupled squared W2 dis-
tance Eq. (29) with minimizing a Maximum Mean Discrepancy (MMD) (Briol et al., 2019) 
and other loss functions given in Appendix E. Our results are shown in Fig. 2. Hyperparam-
eters in the neural networks used for training are the same across all loss functions.

Figure 2a shows the predicted trajectories using our proposed squared W2 loss function 
match well with the ground-truth trajectories. Figure 2b, c indicate that, if ≳ 100 ground-
truth trajectories are used, our proposed squared W2 distance loss yields smaller errors in 
f, σ as defined in Eq. (44). More specifically, we plot the reconstructed f̂Θ, σ̂Θ by using 
our squared W2 loss in Fig. 2d; these reconstructions also match well with the ground-truth 
values f, σ. When we vary σ0 in Eq. (45), our proposed finite-time-point time-decoupled 
W2 loss function gives the best performance among all loss functions shown in Fig. 2e, 
f. In Appendix F, instead of using the same initial condition for all trajectories, we sam-

Fig. 2  a Ground-truth trajectories and reconstructed trajectories by nSDE using the finite-time-point time-
decoupled squared W2 loss with σ0 = 0.5. b, c Errors with respect to the numbers of ground-truth trajec-
tories for σ0 = 0.5. d Comparison of the reconstructed f̂Θ1(X), σ̂Θ2 (X) to the ground-truth functions 
f(X), σ(X) for σ0 = 0.5. e, f Errors with respect to noise level σ0 with 200 training samples. Legends 
for (c, e, f) are the same as the one in (b)    
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ple the initial condition from different distributions and find that the reconstruction errors 
f − f̂  and σ − σ̂ is not sensitive to different initial conditions, implying the robustness 
of using our proposed finite-time-point time-decoupled W2 loss function with respect to 
different initial conditions. Also, in Appendix G, we change the number of layers and the 
number of neurons in each layers for the two neural networks we utilize to parameterize 
f̂ := f̂(X; Θ1), σ̂ := σ̂(X; Θ2). We find that wider neural networks can lead to smaller 
errors f − f̂  and σ − σ̂.

Next, we reconstruct the Ornstein-Uhlenbeck (OU) process given in Kidger et al. (2021) 
and in doing so, compare our loss function with the WGAN-SDE method therein and with 
another recent MMD method.

Example 3  Consider reconstructing the following time-inhomogeneous OU process

	 dX(t) =
(
0.02t − 0.1X(t)

)
dt + 0.4dB(t), t ∈ [0, 63].� (46)

We compare the numerical performance of minimizing Eq. (20) or minimizing Eq. (29) with 
the WGAN method and using the MMD loss metric. Equation (20) is numerically evalu-
ated using the ot.emd2 function in the Python Optimal Transport package (Flamary et al., 
2021) We take the timestep ∆t = 1 in Eqs. (29) and (20) and the initial condition is taken 
as X(0) = 0. Neural networks with the same number of hidden layers and neurons in each 
layer are used for all three methods (see Table 1).

In addition to the relative errors in learned f̂ , σ̂, we also compare the runtime and mem-
ory usage used by the three methods as a function of the number of ground-truth trajectories 
used in training.

From Fig. 3a, the distribution of trajectories of the reconstructed SDE found from using 
our proposed squared W2 loss Eq. (29) matches well with the distribution of the ground-
truth trajectories. Both minimizing Eq. (20) and minimizing Eq. (29) outperform the other 
two methods in the relative L2 error of the learned f, σ for all numbers of ground-truth 
trajectories. Using Eq. (29) as the loss function achieves better accuracy in a shorter com-
putational time than using Eq. (20).

For Nsample training samples and N total number of timesteps, the memory cost 
in using Eq.  (29) is O(N × Nsample); however, the number of operations needed is 

Fig. 3  a Ground-truth and reconstructed trajectories using the squared W2 loss Eq. (29). Black and red 
curves are ground-truth and reconstructed trajectories, respectively. Black and red arrows indicate f(x, t) 
and the reconstructed f̂(x, t) at fixed (x, t), respectively. b Relative errors in learned f̂  and σ̂, repeated 
10 times. Error bars show the standard deviation. c Resource consumption with respect to the number of 
training samples Nsamples. Memory usage is measured by torch profiler and represents peak memory 
usage during training. The legend in the (c) is the same as the one in (b)
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O(N × Nsample log Nsample) because we need to reorder the ground-truth X(ti) and pre-
dicted X̂(ti) data to obtain the empirical cumulative distributions at every ti. The mem-
ory cost and operations needed in using Eq. (20) are both O((N × Nsample)2) because a 
(N × Nsample) × (N × Nsample) cost matrix must be evaluated. On the other hand, the 
MMD method needs to create an Nsample × Nsample matrix for each timestep and thus 
the corresponding memory cost and operations needed are at best O(N × N2

sample). The 
WGAN-SDE method needs to create a generator and a discriminator and its training is 
complex, leading to both a higher memory cost and a larger runtime than our method. When 
learning SDEs from data, a larger number of ground-truth trajectories leads to higher accu-
racy (see Appendix H). Overall, our time-decoupled squared W2 loss, Eq. (29), performs the 
best in terms of accuracy and efficiency when reconstructing the 1D SDE Eq. (46).

If we consider using stochastic gradient descent (SDG) to minibatch for training, we 
find that the batch size cannot be set too small, especially when we are using the MMD or 
Eq. (20) as loss functions, due to the intrinsic noisy nature of trajectories of SDEs. Thus, 
using our squared W2 distance loss function given in Eq. (29) can be more efficient overall 
than using the MMD or Eq. (20) as the loss function. Additional results using the SGD with 
minibatch for training are given in Appendix H.

Next, we carry out an experiment on reconstructing a 2D correlated geometric Brownian 
motion. In this 2D reconstruction problem, we will compare the loss functions, Eqs. (20) 
and (29), the MMD method, and a sliced squared Wasserstein distance method (Kolouri et 
al., 2018).

Example 4  Consider reconstructing the following 2D correlated geometric Brownian motion 
that can represent, e.g., values of two correlated stocks (Musiela & Rutkowski, 2006)

	

dX1(t) =µ1X1(t)dt +
2∑

i=1

σ1,iXi(t)dBi(t),

dX2(t) =µ2X2(t)dt +
2∑

i=1

σ2,iXi(t)dBi(t)

� (47)

here, t ∈ [0, 2], B1(t) and B2(t) are independent Brownian processes, f := (µ1X1, µ2X2) 
is a 2D vector, and σ := [σ1,1X1, σ1,2X2; σ2,1X1, σ2,2X2] is a 2 × 2 matrix.

We use (µ1, µ2) = (0.1, 0.2), σ = [0.2X1, −0.1X2; −0.1X1, 0.1X2], and set the initial 
condition (X1(0), X2(0)) = (1, 0.5). In addition to directly minimizing a 2D decorrelated 
version of the squared W2 distance Eq. (29) (denoted as W2 in Fig. 4c), we consider mini-
mizing a sliced squared W2 distance as proposed by Kolouri et al. (2018, 2019). Finally, we 
numerically estimate the W2 distance Eq. (20) as well as the time-decoupled approximation 
Eq. (29) using the ot.emd2 function in the Python Optimal Transport package. Formulae 
of the above loss functions are given in Appendix E. We keep the neural network hyper-
parameters the same while minimizing all loss functions. Note that since the SDE has two 
components, the definition of the relative error in σ is revised to

1 3

Page 17 of 37  255



Machine Learning (2025) 114:255

	

[
T∑

i=0

∑N
j=1 ∥σσT (xj(ti), ti) − σ̂σ̂T (xj(ti), ti)∥2

F

(T + 1)
∑N

j=1 ∥σ̂σ̂T (xj(ti), ti)∥2
F

]1/2

,� (48)

where ∥ · ∥F  is the Frobenius norm for matrices.
Figure 4a shows the ground truth and reconstructed coordinates (X1, X2) (black dots) and 

(X̂1, X̂2) (red squares) at time t = 2, along with f(X1, X2) (black) and f̂(X1, X2) (red). 
For learning fand σ in problem, numerically evaluating Eq.  (29) (blue curve) performs 
better than the MMD method, the loss in Eq. (20), the sliced W2 distance loss, and the 2D 
decorrelated squared W2 loss, as shown in Fig. 4b. Using the sliced W2 distance yields the 
poorest performance and least accurate f̂  and σ̂. Using the 2D decorrelated squared W2 
loss function also gives inaccurate σ̂. Thus, the sliced W2 distance and the 2D decorrelated 
squared W2 loss are not good candidates for learning multivariate SDEs. Numerically esti-
mating Eq. (20) yields poorer performance than numerically estimating Eq. (29) because 

Fig. 4  a Black dots and red squares are the ground-truth (X1(2), X2(2)) and the reconstructed 
(X̂1(2), X̂2(2)) found using the rotated squared W2 loss function, respectively. Black and red arrows 
indicate, respectively, the vectors f(X1, X2) and f̂(X1, X2). b Relative errors of the learned f  and σ. 
Error bars indicate the standard deviation across ten reconstructions. c Runtime of different loss functions 
with respect to Nsamples. d The decrease of different loss functions with respect to training epochs. The 
legend for the (d) is the same as the one in (c)    
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numerically evaluating the W2 distance for higher-dimensional empirical distributions is 
generally less accurate.      

From Fig.  4c, we see that the runtime and memory needed to numerically evaluate 
the time-decoupled Eq. (29) using ot.emd2 is smaller than those needed for the MMD 
method, but larger than those needed to numerically estimate Eq.  (20). Yet, as shown in 
Fig. 4d, minimizing Eq. (29) leads to the fastest convergence, potentially requiring fewer 
epochs when using Eq. (29) as the loss function. An additional comparison of using the two 
loss functions, the finite-time-point squared W2 distance Eq. (20) and the finite-time-point 
time-decoupled squared W2 distance Eq. (29) is given in Appendix I. Further analysis on 
how the number of samples and the dimensionality of an SDE dimensionality affects W2
-based distances in learning multivariate SDEs will be informative.

Finally, to illustrate a biological application of our method, we reconstruct an SDE model 
developed to describe circadian clocks. Circadian cycles can influence cell gene regulatory 
dynamics and regulate cell and tissue state dynamics (Gonze, 2011). Intrinsic noise has been 
hypothesized to play an important role in governing the circadian clock dynamics (Wester-
mark et al., 2009).

Example 5  We formulate an SDE model of circadian cycles derived from adding Brown-
ian noise to an established deterministic model described by five coupled ODEs Goldbeter 
(1995):

	

dM =
(
vs

K4
I

K4
I + P 4

N

− vm
M

Km + M

)
dt + 0.1MdB1

t ,

dP0 =
(
ksM − v1

P0

K1 + P0
+ v2

P1

K2 + P1

)
dt + 0.05P0dB2

t ,

dP1 =
(
v1

P0

K1 + P0
− v2

P1

K2 + P1
− v3

P1

K3 + P1
+ v4

P2

K4 + P2

)
dt + 0.1dB3

t ,

dP2 =
(
v3

P1

K3 + P1
− v4

P2

K4 + P2
− k1P2 + k2PN − vd

P2

Kd + P2

)
dt,

dPN =
(
k1P2 − k2PN − vn

PN

Kn + PN

)
dt + 0.01dB4

t , t ∈ [0, 50].

� (49)

In Eq. (49), M describes the concentration of mRNA, P0 is the concentration of native protein 
(per), P1, P2 represent concentrations of two different forms of phosphorylated protein per 
with one or two phosphorylated sites, and PN  quantifies the concentration of nuclear per. The 
parameters K1 = 2µmol, K2 = 2µmol, K3 = 2µmol, K4 = 2µmol, Kn, KI = 1µmol, and 
Km = 0.5µmol are the corresponding Michaelis-Menten constants. Reaction rates are repre-
sented by vs = 0.76µmol/hr, v1 = 3.2µmol/hr, v2 = 1.58µmol/hr,v3 = 5µmol/hr, v4 = 2.5µmol/hr,
vm = 0.65µmol/hr, vd = 0.95µmol/hr, and ks = 0.38/hr, k1 = 1.9/hr, k2 = 1.3/hr. The 
dynamics involve four independent Brownian noises described as dBi

t , i = 1, 2, 3, 4.
We plot the ground truth trajectories and the trajectories generated by neural SDEs 

trained through minimizing the time-decoupled W2-distance loss function (in Appendix E) 
in Fig. 5. The training details are given in Table 1. For simplicity, we plot the mRNA con-
centration M, the naive protein concentration P0, and the nuclear protein concentration 
PN , which all display periodic fluctuations over time. The reconstructed trajectories by our 
Wasserstein-distance SDE approach can accurately reproduce the intrinsically noisy peri-
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odic changes in the mRNA and protein concentrations. More analysis of the applicability 
of minimizing the time-decoupled W2-distance loss function to train higher-dimensional 
neural SDEs requires further investigation.

6  Summary and conclusions

In this paper, we analyzed the squared W2 distance between two probability distributions 
associated with two SDEs and proposed a novel method for efficiently learning SDEs from 
data by minimizing squared W2 distances as loss functions. Upon performing numerical 
experiments, we found that our proposed finite-time-point time-decoupled squared W2 
distance loss function, Eq. (29), is superior than many other recently developed machine-
learning and statistical approaches to SDE reconstruction.

A number of extensions are apparent. First, one can further investigate applying the 
squared W2 loss to the reconstruction of high-dimensional SDEs. Whether the Wasserstein 
distance can serve as upper bounds for the errors f − f̂  and σ − σ̂ is also an intriguing ques-
tion as its resolution will determine whether minimizing the squared Wasserstein distance 
is sufficient for learning SDEs. Another promising area worthy of study is the extension 
of the squared W2 distance loss function to the reconstruction of general Lévy processes 
that include jumps in the trajectories. Finally, how to take into account extrinsic noise, e.g., 
errors in the measurement of time-series data, could be a prospective research field.

Appendix A: Proof to theorem 1

Here, we shall provide a proof to Theorem 1. First, note that X̃(t) defined in Eq. (10) has 
the same distribution as that of X̂(t) defined in Eq. (2). Therefore, by definition, if we let π 
in Eq. (4) to be the joint distribution of (X, X̃), then

	
W2(µ, µ̂) ≤

(
E

[ˆ T

0
|X̃(t) − X(t)|2dt

])1/2

.� (A1)
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Fig. 5  The reconstructed trajectories using our Wasserstein-distance SDE reconstruction approach com-
pared to the ground truth trajectories obtained by simulating Eqs. (49). For simplicity, we plot the ground 
truth and reconstructed trajectories of the concentrations of mRNA, native protein, and nuclear protein. 
The initial condition is set as (M(0), P0(0), P1(0), P2(0), PN (0)) = (1, 0.5, 2, 0, 1) (units: µmol) 
for all trajectories
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Next, we provide a bound for E
[ ´ T

0 |X̃(t) − X(t)|2dt
]1/2 by the mean value theorem 

for f and g. Note that the standard Brownian motion B(t) in Eq. (10) is identical to that in 
Eq. (1) and

	

d
(
X(t) − X̃(t)

)
= ∂xf

(
η1(X(t), X̃(t), t), t

)
· (X(t) − X̃(t))dt

+ ∂xσ
(
η2(X(t), X̃(t)), t

)
· (X(t) − X̃(t))dB(t)

+ (f − f̂)(X̃(t), t)dt + (σ − σ̂)(X̃(t), t))dB(t).

� (A2)

where η1(x1, x2), η2(x1, x2) are defined in Eq. (11) such that their values are in (x1, x2).
Applying Itô’s formula to [X(t) − X̃(t)]/H(0; t), where H(0, t) is defined in Eq. (12) 

we find

	

d
(

X(t) − X̃(t)
H(0; t)

)
= 1

H(0; t)

[
(f − f̂)(X̃(t), t)dt + ∂xσ

(
η2(X, X̃), t

)
· (σ − σ̂)(X̃(t), t)dt

]

+ 1
H(0; t)

[
(σ − σ̂)(X̃(t), t)dB(t)

]
.

� (A3)

Integrating both sides from 0 to t, we obtain

	

X(t) − X̃(t) =
ˆ t

0
H(s; t)

[
(f − f̂)(X̃(s), s) + ∂xσ

(
η2(X, X̃), s

)
· (σ − σ̂)(X̃(s), s)

]
ds

+
ˆ t

0
H(s; t) · (σ − σ̂)(X̃(s), s)dB(s).

� (A4)

By invoking Itô isometry and observing that (a + b + c)2 ≤ 3(a2 + b2 + c2), we deduce

	

E
[(

X(t) − X̃(t)
)2]

≤ 3E
[(ˆ t

0
H(s; t) · (f − f̂)(X̃(s), s)ds

)2]

+ 3E
[(ˆ t

0
H(s; t) · (∂xσ

(
η2(X, X̃), s

)
· (σ − σ̂)(X̃(s), s)ds

)2]

+ 3E
[(ˆ t

0
H(s; t) · (σ − σ̂)(X̃(s), s)dB(s)

)2]

≤ 3E
[ˆ t

0
H2(s; t)ds

]
× E

[ˆ T

0
(f − f̂)2(X̃(s), s)ds

]

+ 3E
[ˆ t

0
H2(s; t)ds

]
× E

[ˆ t

0

(
∂xσ

(
η2(X, X̃), s

)
· (σ − σ̂)(X̃(s), s)

)2
ds

]

+ 3E
[ˆ T

0
H2(s; t) · (σ − σ̃)2(X̃(s), s)ds

]

≤ 3E
[ˆ t

0
H2(s; t)ds

]
× E

[ˆ t

0
(f − f̂)2(X̃(s), s)ds

]

+ 3E
[ˆ t

0
H2(s; t)ds

]
× E

[ˆ t

0

(
∂xσ

(
η2(X, X̃), s

)
· (σ − σ̂)(X̃(s), s)

)2
ds

]

+ 3
(
E

[ˆ t

0
H4(s; t)ds

])1/2

×
(
E

[ˆ t

0
(σ − σ̂)4(X̃(s), s)ds

])1/2

.

� (A5)
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Finally, we conclude that

	

W 2
2 (µ, µ̃) ≤

ˆ T

0
E

[(
X(t) − X̃(t)

)2]
dt

≤3
ˆ T

0
E

[ˆ t

0
H2(s; t)ds

]
dt × E

[ˆ T

0
(f − f̂)2(X̃(s), s)ds)

]

+ 3
ˆ T

0
E

[ˆ t

0
H2(s; t)ds

]
dt × E

[ˆ T

0
(∂xσ(η2(X, X̃), s) · (σ − σ̂)(X̃(s), s))2ds)

]

+ 3
ˆ T

0

(
E

[ˆ t

0
H4(s; t)ds

])1/2

dt ×
(
E

[ˆ T

0
(σ − σ̂)4(X̃(s), s)ds)

])1/2

,

� (A6)

which proves Theorem 1.

Appendix B: Single-trajectory MSE and KL divergence

We shall first show that using the single-trajectory MSE tends to fit the mean process 
E[X(t)] and make noise diminish, which indicates that the MSE is not a good loss function 
when one wishes to fit σ in Eq. (1).

For two independent d-dimensional stochastic processes {X(t)}T
t=0, {X̂(t)}T

t=0 as 
solutions to Eqs. (1) and (2) with appropriate f, f̂  and σ, σ̂, let E[X] represent the trajectory 
of mean values of X(t), i.e., E[X] = E[X(t)]. We have

	
E

[
∥X − X̂∥2]

=E
[

∥X − E[X]∥2 ]
+ E

[
∥X̂ − E[X]∥2]

− 2E
[ˆ T

0

(
X − E[X], X̂ − E[X]

)
dt

]
, � (A7)

where ∥X∥2 :=
´ T

0 |X|22 dt, | · |2 denotes the ℓ2 norm of a vector, and (·, ·) is the inner product 
of two d-dimensional vectors. In view of the independence between X − E[X] and X̂ − E[X], 
we have E

[(
X − E[X], X̂ − E[X]

)]
= E

[
(X − E[X])

]
· E

[
(X̂ − E[X])

]
= 0, and

	 E
[
∥X − X̂∥2]

≥ E
[

∥X − E[X]∥2 ]
.� (A8)

Therefore, the optimal X̂  that minimizes the MSE is X̂ = E[X], which indicates that 
the MSE tends to fit the mean process E[X] and make noise diminish. This is not desirable 
when one wishes to fit a nonzero σ in Eq. (1).

The KL divergence, in some cases, will diverge and thus is not suitable for being used 
as a loss function. Here, we provide a simple intuitive example when the KL divergence 
fail. If we consider the degenerate case when dX(t) = dt, dX̂(t) = (1 − ϵ)dt, t ∈ [0, T ], 
then DKL(µ, µ̂) = ∞ no matter how small ϵ ̸= 0 is because µ, µ̂ has different and degener-
ate support. However, from Theorem 1, lim

ϵ→0
W2(µ, µ̂) = 0. Therefore, the KL divergence 

cannot effectively measure the similarity between µ, µ̂. Overall, the squared W2 distance is 
a better metric than some of the commonly used loss metrics such as the MSE or the KL 
divergence.
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Appendix C: Proof to theorem 2

Here, we shall prove Theorem 2. We denote

	 ΩN := {Y (t)|Y (t) = Y (ti), t ∈ [ti, ti+1), i < N − 1; Y (t) = Y (ti), t ∈ [ti, ti+1], i = N − 1} � (A9)

to be the space of piecewise functions. We also define the space

	 Ω̃N := {Y 1(t) + Y 2(t), Y 1 ∈ C([0, T ];Rd), Y 2 ∈ ΩN }.� (A10)

Ω̃N  is also a separable metric space because both 
(
C([0, T ];Rd), ∥ · ∥

)
 and 

(
ΩN , ∥ · ∥

)
 

are separable metric spaces. Furthermore, both the embedding mapping from C([0, T ];Rd) 
to Ω̃N  and the embedding mapping from ΩN  to Ω̃N  preserves the ∥ · ∥ norm. Then, the two 
embedding mappings are measurable, which enables us to define the measures on B(Ω̃N ) 
induced by the measures µ, µ̂ on B

(
C([0, T ];Rd)

)
 and the measures µN , µ̂N  on B(ΩN ). 

For notational simplicity, we shall still denote those induced measures by µ, µ̂, µN , µ̂N .
Therefore, the inequality Eq. (17) is a direct result of the triangular inequality for the 

Wasserstein distance (Clement & Desch, 2008) because X, XN , X̂, X̂N ∈ Ω̃N .
Next, we shall prove Eq. (19) when X(t), X̂(t) are solutions to SDEs Eqs. (1) and (2). 

Because XN (t) is the projection to X(t), the squared W 2
2 (µ, µN ) can be bounded by

	
W 2

2 (µ, µN ) ≤
N∑

i=1

ˆ ti

ti−1

E
[∣∣X(t) − XN (t)

∣∣2
2

]
dt =

N∑
i=1

ˆ ti

ti−1

d∑
ℓ=1

E
[(

Xℓ(t) − XN,ℓ(t)
)2]

dt

� (A11)

For the first inequality above, we choose a specific coupling, i.e. the coupled distribution, 
π of µ, µN  that is essentially the “original” probability distribution. To be more specific, for 
an abstract probability space (Ω, A, p) associated with X , µ and µN  can be characterized by 
the pushforward of p via X  and XN  respectively, i.e., µ = X∗p, defined by ∀A ∈ B

(
Ω̃N

)
, 

elements in the Borel σ-algebra of Ω̃N ,

	 µ(A) = X∗p(A) := p
(
X−1(A)

)
,� (A12)

where X  is interpreted as a measurable map from Ω to Ω̃N , and X−1(A) is the preimage 
of A under X . Then, the coupling π is defined by

	 π = (X, XN )∗p,� (A13)

where (X, XN ) is interpreted as a measurable map from Ω to Ω̃N × Ω̃N . One can read-
ily verify that the marginal distributions of π are µ and µN  respectively. Recall that s repre-
sents the dimension of the standard Brownian motions in the SDEs.

For each ℓ = 1, ..., d, we have
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N∑
i=1

ˆ ti

ti−1

E
[(

Xℓ(t) − XN,ℓ(t)
)2]

dt

≤ (s + 1)

[
N∑

i=1

ˆ ti

ti−1

(
E

[(ˆ t

ti

fℓ(X(r), r)dr
)2]

+ E
[(ˆ t

ti

s∑
j=1

σℓ,j(X(r), r)dBj(r)
)2])

dt

]

≤ (s + 1)
N∑

i=1

(
(∆t)2E

[ˆ ti

ti−1

f2
ℓ dt

]
+ ∆t

∑
j

E
[ˆ ti

ti−1

σ2
ℓ,jdt

])� (A14)

The first inequality follows from the observation that 
( ∑n

i=1 ai

)2 ≤ n(
∑n

i=1 a2
i ) and 

application of this observation to the integral representation of X(t). Summing over ℓ, we 
have

	

( N∑
i=1

ˆ ti

ti−1

E
[∣∣X(t) − XN (t)

∣∣2
2

]
dt

)1/2
≤

√
s + 1

(
F (∆t)2 + Σ∆t

)1/2
� (A15)

Similarly, W2(µ̂, µ̂N ) can be bounded by

	 W2(µ̂, µ̂N ) ≤
√

s + 1
√

F̂ (∆t)2 + Σ̂∆t.� (A16)

Substituting Eqs. (A15) and (A16) into Eq. (17), we have proved Eq. (19). This completes 
the proof of Theorem 2.

Appendix D: Proof to Theorem 3

We now give a proof to Theorem 3. First, we notice that

	
E

[∣∣X(t) − X̂(t)
∣∣2
2

]
≤ 2

(
FT + F̂ T + Σ + Σ̂

)
< ∞, ∀t ∈ [0, T ]� (A17)

where F, F̂ , Σ, Σ̂ are defined in Eq. (18). We denote

	
M := max

t∈[0,T ]
W2

(
µ(t), µ̂(t)

)
≤ 2

(
FT + F̂ T + Σ + Σ̂

)
.� (A18)

By applying Theorem 2 with N = 1, the bound

	

inf
πi

√
Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t −

√
(s + 1)∆t

(√
Fi∆t + Σi +

√
F̂i∆t + Σ̂i

)

≤ W2(µi, µ̂i)

≤ inf
πi

√
Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t +

√
(s + 1)∆t

(√
Fi∆t + Σi +

√
F̂i∆t + Σ̂i

)
.

� (A19)
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holds true for all i = 1, 2, ..., N − 1. In Eq. (A19),

	

Fi := E
[ˆ ti+1

ti

d∑
ℓ=1

f2
ℓ (X(t), t)dt

]
< ∞, Σi := E

[ˆ ti+1

ti

d∑
ℓ=1

s∑
j=1

σ2
ℓ,j(X(t), t)dt

]
< ∞,

F̂i := E
[ˆ ti+1

ti

d∑
ℓ=1

f̂2
ℓ (X̂(t), t)dt

]
< ∞, Σ̂i := E

[ˆ ti+1

ti

d∑
ℓ=1

s∑
j=1

σ̂2
ℓ,j(X̂(t), t)dt

]
< ∞,� (A20)

which results from

	

N−1∑
i=0

Fi = F < ∞,

N−1∑
i=0

F̂i = F̂ < ∞,

N−1∑
i=0

Σi = Σ < ∞,

N−1∑
i=0

Σ̂i = Σ̂ < ∞,� (A21)

where F, F̂ , Σ, Σ̂ are defined in Eq. (18). Squaring the inequality (A19), we have

	

W 2
2 (µi, µ̂i) ≤ inf

πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t

+ 2 inf
πi

√
Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]√
(s + 1)∆t

(√
Fi∆t + Σi +

√
F̂∆t + Σ̂i

)

+ 2(s + 1)∆t
(
Fi∆t + Σi + F̂i∆t + Σ̂i

)
,

W 2
2 (µi, µ̂i) ≥ inf

πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t

− 2W2(µi, µ̂i)
√

(s + 1)∆t

(√
Fi∆t + Σi +

√
F̂∆t + Σ̂i

)

− 2(s + 1)∆t
(
Fi∆t + Σi + F̂i∆t + Σ̂i

)

� (A22)

Specifically, from Eqs. (A18) and (A19),

	
W2(µi, µ̂i) ≤

√
∆t

[
M +

√
s + 1

(√
FT + Σ +

√
F̂ T + Σ̂

)]
:= M̃

√
∆t, M̃ < ∞

� (A23)

Summing over i = 1, ..., N − 1 for both inequalities in Eq.  (A22) and noting that 
∆t = T

N , we conclude
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N−1∑
i=1

W 2
2 (µi, µ̂i) ≤

N−1∑
i=1

inf
πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t

+ 2M∆t
√

s + 1
N−1∑
i=1

(√
Fi∆t + Σi +

√
F̂i∆t + Σ̂i

)

+ 2∆t(s + 1)
(
F∆t + Σ + F̂∆t + Σ̂

)
,

≤
N−1∑
i=1

inf
πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t

+ 2(s + 1)∆t
(
F∆t + Σ + F̂∆t + Σ̂

)

+ M
√

(s + 1)∆t
(
(F + F̂ + 2T )

√
∆t + Σ + Σ̂ + 2T

)

� (A24)

and

	

N−1∑
i=1

W 2
2 (µi, µ̂i) ≥

N−1∑
i=1

inf
πi

Eπi

[
|X(ti) − X̂(ti)|22

]
∆t

− 2M̃∆t
√

s + 1
N−1∑
i=1

(√
Fi∆t + Σi +

√
F̂i∆t + Σ̂i

)

− 2(s + 1)∆t
(
F∆t + Σ + F̂∆t + Σ̂

)
,

≥
N−1∑
i=1

inf
πi

Eπi

[
|X(ti) − X̂(ti)|22

]
∆t

− 2(s + 1)∆t
(
F∆t + Σ + F̂∆t + Σ̂

)

− M̃
√

(s + 1)∆t
(
(F + F̂ )∆t + Σ + Σ̂ + 2T

)
.

� (A25)

Eqs. (A24) and (A25) indicate that as N → ∞,

	

N−1∑
i=1

inf
πi

Eπi

[∣∣X(ti) − X̂(ti)
∣∣2
2

]
∆t −

N−1∑
i=1

W 2
2 (µi, µ̂i) → 0,� (A26)

S u p p o s e 
0 = t1

0 < t1
1 < ... < t1

N1
= T ; 0 = t2

0 < t2
1 < ... < t2

N2
= T  to be two sets of grids on [0, T]. 

We define a third set of grids 0 = t3
0 < ... < t3

N3
= T  such that {t1

0, ..., t1
N1

} ∪ {t2
0, ..., t2

N2
}

= {t3
0, ..., t3

N3
}. Let δt := max{maxi(t1

i+1 − t1
i ), maxj(t2

j+1 − t2
j ),maxk(t3

k+1 − t3
k)}. We 

denote µ(t1
i ) and µ̂(t1

i ) to be the probability distribution of X(ts
i ) and X̂(ts

i ), s = 1, 2, 3, 
respectively. We will prove

	

∣∣∣
N1−1∑
i=0

W 2
2

(
µ(t1

i ), µ̂(t1
i )

)
(t1

i+1 − t1
i ) −

N3−1∑
i=0

W 2
2

(
µ(t3

i ), µ̂(t3
i )

)
(t3

i+1 − t3
i )

∣∣∣ → 0,� (A27)
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as δt → 0.
First, suppose in the interval (t1

i , t1
i+1), we have t1

i = t3
ℓ < tℓ+1 < ... < t3

ℓ+s = t1
i+1, s ≥ 1, 

then for s > 1, since t1
i+1 − t1

i =
∑ℓ+s−1

k=ℓ (t3
k+1 − t3

k), we have

	

∣∣∣W 2
2

(
µ(t1

i ), µ̂(t1
i )

)
(t1

i+1 − t1
i ) −

ℓ+s−1∑
k=ℓ

W 2
2

(
µ(t3

k)), µ̂(t3
i )

)
(t3

k+1 − t3
k)

∣∣∣

≤
ℓ+s−1∑
k=ℓ+1

∣∣∣W2
(
µ(t1

i ), µ̂(t1
i )

)
− W2

(
µ̂(t3

i ), µ̂(t3
k)

)∣∣∣

×
(

W2
(
µ(t1

i ), µ̂(t1
i )

)
+ W2

(
µ(t3

k), µ̂(t3
k)

))
(t3

k+1 − t3
k).

� (A28)

On the other hand, because we can take a specific coupling π∗ to be the joint distribution 
of (X(t1

i ), X(t3
k)),

	

W2(µ(t1
i ), µ(t3

k)) ≤
(
E

[
|X(t3

k) − X(t1
i )|22

])1/2

≤
√

s + 1 E
[ ˆ ti+1

ti

d∑
ℓ=1

f2
ℓ (X(t), t)dt +

d∑
ℓ=1

s∑
j=1

σ2
ℓ,j(X(t), t)dt

]1/2
.� (A29)

Similarly, we have

	
W2

(
µ̂(t1

i ), µ̂(t3
k)

)
≤

√
s + 1 E

[ ˆ ti+1

ti

d∑
ℓ=1

f̂2
ℓ (X(t), t)dt +

d∑
ℓ=1

s∑
j=1

σ̂2
ℓ,j(X(t), t)dt

]1/2

� (A30)

From the triangular inequality of the Wasserstein distance, we find

	

∣∣∣W2
(
µ(t1

i ), µ̂(t1
i )

)
− W2

(
µ(t3

k), µ̂(t3
k)

)∣∣∣ ≤ W2
(
µ(t1

i ), µ(t3
k)

)
+ W2

(
µ̂(t1

i ), µ̂(t3
k)

)
.

� (A31)

Substituting Eq. (A31) into Eq. (A28), we conclude that

	

∣∣∣W 2
2

(
µ(t1

i ), µ̂(t1
i )

)
(t1

i+1 − t1
i ) −

ℓ+s−1∑
k=ℓ

W 2
2

(
(µ(t3

k), µ̂(t3
k)

)
(t3

k+1 − t3
k)

∣∣∣

≤ 2M(t1
i+1 − t1

i )
(√

Fiδt + Σi +
√

F̂iδt + Σ̂i

)
.

� (A32)

When the conditions in Eq. (33) hold true, we use Eq. (A32) in Eq. (A27) to find
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∣∣∣
N1−1∑
i=0

W 2
2

(
µ(t1

i ), µ̂(t1
i )

)
(t1

i+1 − t1
i ) −

N3−1∑
i=0

W 2
2

(
µ(t3

i ), µ̂(t3
i )

)
(t3

i+1 − t3
i )

∣∣∣

≤ 2MT max
i

(√
Fiδt + Σi +

√
F̂iδt + Σ̂i

)
→ 0

� (A33)

as δt → 0. Similarly,

	

∣∣∣
N2−1∑
i=0

W 2
2

(
µ(t2

i ), µ̂(t2
i )

)
(t2

i+1 − t2
i ) −

N3−1∑
i=0

W 2
2

(
µ(t3

i ), µ̂(t3
i )

)
(t3

i+1 − t3
i )

∣∣∣

≤ 2MT max
i

(√
Fiδt + Σi +

√
F̂iδt + Σ̂i

)
→ 0

� (A34)

as δt → 0. Thus,

	

∣∣∣
N1−1∑
i=0

W 2
2

(
µ(t1

i ), µ̂(t1
i )

)
(t1

i+1 − t1
i ) −

N2−1∑
i=0

W 2
2

(
µ(t2

i ), µ̂(t2
i )

)
(t2

i+1 − t2
i )

∣∣∣ → 0
� (A35)

as δt → 0, which implies the limit

	
lim

N→∞

N−1∑
i=1

inf
πi

Eπi

[∣∣X(t1
i ) − X̂(t1

i )
∣∣2
2

]
(t1

i − t1
i−1) = lim

N→∞

N−1∑
i=1

W 2
2

(
µ(t1

i ), µ̂(t1
i )

)
(t1

i − t1
i−1)

� (A36)

exists. This completes the proof of Theorem 3.

Appendix E: Definition of different loss metrics used in the examples

Six loss functions for 1D cases were considered: 

1.	 The squared Wasserstein-2 distance (Eq. (20)) 

	 W 2
2 (µe

N , µ̂e
N ),

 where µe
N  and µ̂e

N  are the empirical distributions of the vector (X(t1), ...X(tN−1)) and 
(X̂(t1), ..., X̂(tN−1)), respectively. It is estimated by 

	
W 2

2 (µe
N , µ̂e

N ) ≈ ot.emd2
( 1

M
IM ,

1
M

IM , C
)

,� (A37)

 where ot.emd2 is the function for solving the earth movers distance problem in the ot 
package of Python, M is the number of ground-truth and predicted trajectories, Iℓ is an 
M-dimensional vector whose elements are all 1, and C ∈ RM×M  is a matrix with entries 
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(C)ij = (Xi
N − X̂j

N )2
2. Xi

N  is the vector of the values of the ith ground-truth trajectory at 
time points t1, ..., tN−1, and X̂j

N  is the vector of the values of the jth predicted trajectory 
at time points t1, ..., tN−1.

2.	 The squared time-decoupled Wasserstein-2 distance averaged over each time step 
(Eq. (29)): 

	
W̃ 2

2 (µN , µ̂N ) =
N−1∑
i=1

W 2
2 (µe

N (ti), µ̂e
N (ti))∆t

 , where ∆t is the time step and W2 is the Wasserstein-2 distance between two empirical 
distributions µe

N (ti), µ̂e
N (ti). These distributions are calculated by the samples of the trajec-

tories of X(t), X̂(t) at a given time step t = ti, respectively.
3.	 Mean squared error (MSE) between the trajectories, where M is the total number of the 

ground-truth and prediction trajectories. Xi,j  and X̂i,j  are the values of the jth ground-
truth and prediction trajectories at time ti, respectively: 

	
MSE(X, X̂) =

N∑
i=1

1
M

M∑
j=1

(Xi,j − X̂i,j)2∆t.

4.	 The sum of squared distance between mean trajectories and absolute distance between 
trajectories, which is a common practice for estimating the parameters of an SDE. Here 
M and Xi,j  and X̂i,j  have the same meaning as in the MSE definition. var(Xi) and 
var(X̂i) are the variances of the empirical distributions of X(ti), X̂(ti), respectively. 
We shall denote this loss function by 

	
(mean2 + var)(X, X̂) =

N∑
i=1

[( 1
M

M∑
j=1

Xi,j − 1
M

N∑
j=1

X̂i,j

)2
+

∣∣var(Xi) − var(X̂i)
∣∣
]

∆t.

5.	 Negative approximate log-likelihood of the trajectories: 

	
− log L(X|σ) = −

N−1∑
i=0

M∑
j=1

log ρN

[Xi+1,j − Xt,j + f(Xi,j , ti)∆t

σ2(Xi,j , ti)∆t

]
,

 where ρN  is the probability density function of the standard normal distribution and 
f(Xi,j , ti), σ(Xi,j , ti) are the ground-truth drift and diffusion functions in Eq. (1). M and 
Xi,j  and X̂i,j  have the same meaning as in the MSE definition.

6.	 MMD (maximum mean discrepancy) (Li et al., 2015): 

	
MMD(X, X̂) =

N∑
i=1

(
Ep[K(Xi, Xi)] − 2Ep,q[K(Xi, X̂i)] + Eq[K(X̂i, X̂i)]

)
∆t,
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 where K is the standard radial basis function (or Gaussian kernel) with multiplier 2 and 
number of kernels 5. Xi and X̂i are the values of the ground-truth and prediction trajectories 
at time ti, respectively.
Five W2-distance-based loss functions for the 2D SDE reconstruction problem Example 4 
are listed as follows 

1.	 2D squared W2 loss 

	

N−1∑
i=1

(
W 2

2
(
µN,1(ti), µ̂N,1(ti)

)
+ W 2

2
(
µN,2(ti), µ̂N,2(ti)

))
∆t

 where µN,1(ti) and µ̂N,1(ti) are the empirical distributions of X1, X̂1 at time ti, respec-
tively. Also, µN,2(ti) and µ̂N,2(ti) are the empirical distributions of X2, X̂2 at time ti, 
respectively.

2.	 Weighted sliced squared W2 loss 

	

N−1∑
i=1

( m∑
k=1

Nk∑m
ℓ=1 Nℓ

W 2
2

(
µs

N,k(ti), µ̂s
N,k(ti)

))
∆t

 where µs
N,k(ti) is the empirical distribution for 

√
X1(ti)2 + X2(ti)2 such that the angle 

between the two vectors 
(
X1(ti), X2(ti)

)
 and (1, 0) is in [ 2(k−1)π

m , 2kπ
m ); µ̂s

N,k(ti) is the 

empirical distribution for 
√

X̂1(ti)2 + X̂2(ti)2 such that the angle between the two vectors 
(
X̂1(ti), X̂2(ti)

)
 and (1, 0) is in [ 2(k−1)π

m , 2kπ
m ); Nk is the number of predictions such that 

the angle between the two vectors (X̂1(ti), X̂2(ti)) and (1, 0) is in 
[ 2(k−1)π

m , 2kπ
m

)
.

3.	 The loss function Eq. (20) 

	 W 2
2 (µe

N , µ̂e
N ),

 where µe
N  and µ̂e

N  are the empirical distributions of the vector (X(t1), ...X(tN−1)) and 
(X̂(t1), ..., X̂(tN−1)), respectively. It is estimated by 

	
W 2

2 (µe
N , µ̂e

N ) ≈ ot.emd2
( 1

M
IM ,

1
M

IM , C
)

,� (A38)

 where ot.emd2 is the function for solving the earth movers distance problem in the ot 
package of Python, M is the number of ground-truth and predicted trajectories, Iℓ is an 
M-dimensional vector whose elements are all 1, and C ∈ RM×M  is a matrix with entries 
(C)ij = |Xi

N − X̂
j

N |22. Xi
N  is the vector of the values of the ith ground-truth trajectory at 

time points t1, ..., tN−1, and X̂
j

N  is the vector of the values of the jth predicted trajectory 
at time points t1, ..., tN−1.
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4.	 The time-decoupled squared W2 loss function, which is the right-hand side of Eq. (29), 
estimated by 

	

N−1∑
i=1

inf
πi

Eπi

[
|X(ti) − X̂(ti)|22

]
∆t ≈

N−1∑
i=1

W 2
2

(
µe

N (ti), µ̂e
N (ti)

)
∆t ≈ ∆t

N−1∑
i=1

ot.emd2
( 1

M
IM ,

1
M

IM , Ci

)
,

� (A39)

 where µe
N (ti), µ̂e

N (ti) are the empirical distribution of X(ti), X̂(ti), respectively, and 
ot.emd2 is the function for solving the earth movers distance problem in the ot package 
of Python. M is the number of ground-truth and predicted trajectories, and IM  is an ℓ
-dimensional vector whose elements are all 1. Here, the matrix Ci ∈ RM×M  has entries 
(Ci)sj = |Xs(ti) − X̂

j
(ti)|22 for i = 1, ..., N − 1. Xs(ti) is the vector of the values of 

the sth ground-truth trajectory at the time point ti, and X̂
j
(ti) is the vector of the values of 

the jth predicted trajectory at the time point ti.

5.	 MMD (maximum mean discrepancy) (Li et al., 2015): 

	
MMD(X, X̂) =

N∑
i=1

(
Ep[K(Xi, Xi)] − 2Ep,q[K(Xi, X̂i)] + Eq[K(X̂i, X̂i)]

)
∆t,

 where K is the standard radial basis function (or Gaussian kernel) with multiplier 2 and 
number of kernels 5. Xi and X̂i are the values of the ground-truth and prediction trajecto-
ries at time tj , respectively.

Appendix F: Uncertainty in the initial condition

For reconstructing the CIR model Eq. (45) in Example 2, instead of using the same initial 
condition for all trajectories, we shall investigate the numerical performance of our pro-
posed squared W2 distance loss when the initial condition is not fixed, but rather sampled 
from a distribution.

First, we construct an additional dataset of the CIR model to allow the initial value 
u0 ∼ N (2, δ2), with δ2 ranging from 0 to 1, and N  stands for the 1D normal distribution. 
We then train the model by minimizing Eq. (29) to reconstruct Eq. (45) with the same hyper-
parameters as in Example 2. The results are shown in Table 2, which indicate our proposed 
squared W2 loss function is rather insensitive to the “noise", i.e., the variance in the distribu-
tion of the initial condition.
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Appendix G: Neural network structure

We examine how the neural network structure affects the reconstruction of the CIR model 
Eq. (45) in Example 2. We vary the number of layers and the number of neurons in each 
layer (the number of neurons are set to be the same in each hidden layer), and the results are 
shown in Table 3.

The results in Table 3 show that increasing the number of neurons in each layer improves 
the reconstruction accuracy in σ. For reconstructing the CIR model in Example 2, using 32 
neurons in each layer seems to be sufficient. On the other hand, when each layer contains 
32 neurons, the number of hidden layers in the neural network seems does not affect the 
reconstruction accuracy of f, σ, and this indicates even 1 or 2 hidden layers are sufficient 
for the learning of f, σ. Thus, reconstructing the CIR model in Example 2 using our pro-
posed squared W2 based loss function does not require using complex deep or wide neural 
networks.

We also consider using the ResNet neural network structure (He et al., 2016). However, 
the application of the ResNet technique does not improve the reconstruction accuracy of the 
CIR model in Example 2. This is because simple feedforward multilayer neural network 
structure can work well for learning Eq. (45) when learning both f and σ so we do not need 

Loss Width Layer Relative errors 
in f

Relative errors 
in σ

Nrepeats

W2 16 1 0.131(±0.135) 0.170(±0.102) 10
W2 32 1 0.041(±0.008) 0.109(±0.026) 10
W2 64 1 0.040(±0.008) 0.104(±0.019) 10
W2 128 1 0.040(±0.008) 0.118(±0.019) 10
W2 32 2 0.049(±0.015) 0.123(±0.020) 10
W2 32 3 0.094(±0.013) 0.166(±0.041) 10
W2 32 4 0.124(±0.020) 0.185(±0.035) 10
W2 32 5 0.041(±0.008) 0.122(±0.024) 10
W2 32 6 0.043(±0.013) 0.117(±0.024) 10
W2 32 7 0.044(±0.012) 0.109(±0.017) 10

Table 3  Reconstructing the 
CIR model when using neuron 
networks of different widths and 
numbers in each hidden layer to 
parameterize f̂ , σ̂ in Eq. (2)

 

Loss δ Relative Errors in f Relative Errors in σ Nrepeats

W2 0.0 0.072 (± 0.008) 0.071 (± 0.023) 10
W2 0.1 0.053 (± 0.008) 0.043 (± 0.016) 10
W2 0.2 0.099 (± 0.007) 0.056 (± 0.019) 10
W2 0.3 0.070 (± 0.014) 0.083 (± 0.026) 10
W2 0.4 0.070 (± 0.014) 0.078 (± 0.040) 10
W2 0.5 0.075 (± 0.013) 0.138 (± 0.021) 10
W2 0.6 0.037 (± 0.018) 0.069 (± 0.017) 10
W2 0.7 0.075 (± 0.016) 0.043 (± 0.014) 10
W2 0.8 0.041 (± 0.012) 0.079 (± 0.023) 10
W2 0.9 0.082 (± 0.015) 0.108 (± 0.033) 10
W2 1.0 0.058 (± 0.024) 0.049 (± 0.025) 10

Table 2  Reconstructing the 
CIR model Eq. (45) when 
u0 ∼ N (2, δ2) with different 
variance δ2

The results indicate that the 
reconstruction results are not 
sensitive to the variance in the 
distribution of the initial value 
u0
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deep neural networks. Thus. the ResNet technique is not required. The results are shown in 
Table 4.

Appendix H: Using the stochastic gradient descent method for 
optimization

Here, we shall reconstruct the OU process Eq. (46) in Example 3 with the initial condition 
X(0) = 0 using the MMD and our squared W2 distance loss functions Eqs. (20) and (29) 
with different numbers of ground-truth trajectories and different batch sizes for applying the 
stochastic gradient descent technique for optimizing the parameters in the neural networks 
for reconstructing the SDE.

We train 2000 epochs with a learning rate 0.001 for all numerical experiments. In all 
cases, the loss functions converge before 2000 epochs. From Table 5, for all three loss func-
tion, i.e., the MMD loss, Eqs. (20) and (29), a larger number of training samples leads to 
more accurate reconstruction of σ (the noise term). Furthermore, it can be seen from Table 5 
that using a smaller batch size (16) for training tends to lead to less accurate reconstruction 
of σ for the MMD and Eq. (20) loss functions even if the number of trajectories in the train-
ing set is large. This feature might arise because the trajectories are intrinsically noisy and 
evaluating MMD and Eq. (20) will be inaccurate if the batch size is small. Therefore, using 
a smaller batch size does not remedy the high cost of MMD as the reconstruction error is 
large and leads to inaccurate reconstruction of the ground-truth SDE for smaller Nsample. 
On the other hand, our proposed time-decoupled squared W2 distance loss function Eq. (29) 
gives similar performance in learning f, σ for both a batch size of 16 and a batch size of 256. 
In other words, using Eq. (29) is more robust to a smaller batch size. From Table 5, using a 
smaller batch size (16) leads to faster training. Thus, we can consider using Eq. (29) as the 
loss function together with a smaller batch size to boost training efficiency.

From the results in both Example 3 and Table 5, our proposed time-decoupled squared 
W2 distance Eq. (29) is faster and more efficient than the MMD method and Eq. (20), mak-
ing it potentially most suitable among all three loss functions for reconstructing SDEs.

Appendix I: Additional discussion on the loss functions Eqs. (20) 
and (29)

Here, we make an additional comparison between using Eqs. (20) and (29) as loss functions 
in Example 4. We set the number of training samples to be 128 and other hyperparameters 
for training to be the same as those in Example 4, as detailed in Table 1.

Loss Layer Relative errors in f Relative errors in σ Nrepeats

W2 1 0.045(±0.012) 0.116(±0.025) 10
W2 2 0.053(±0.011) 0.108(±0.024 10
W2 3 0.071(±0.017) 0.117(±0.040) 10
W2 4 0.096(±0.035) 0.149(±0.064) 10
Each hidden layer contains 32 neurons

Table 4  Reconstructing the CIR 
model Eq. (45) when neuron net-
works have different numbers of 
hidden layers and are equipped 
with the ResNet technique
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First, we minimize Eq. (20) and record Eqs. (20) and (29) over training epochs. Next, 
we minimize Eq. (29) and record Eq. (20) and Eq. (29) over training epochs. The results are 
shown in Fig. 6.

From Fig. 6a, we can see that when minimizing Eq. (20, Eq. 20) is almost 100.5 times 
larger than Eq. (29). However, when minimizing Eq. (29), the values of Eqs. (20) and (29) 
are close to each other (Fig. 6b). In both cases, Eq. (29) converges to approximately 10−1. 
Interestingly, minimizing Eq. (29) leads to a smaller value of Eq. (20). This again implies 
that minimizing Eq.  (29) can be more effective than minimizing Eq.  (20) in Example 4. 
More analysis on Eq.  (29) is needed to understand its theoretical properties and to com-
pare the performances of minimizing Eq. (29) versus minimizing Eq. (20) from numerical 
aspects.

Table 5  Errors and runtime for different loss functions and different numbers of ground-truth trajectories 
when the training batch size is fixed to 16 and 256. The unit of runtime is hours
Loss Nsample Batch size Relative error in f Relative error in σ Runtime Nrepeats

MMD 64 16 0.30 ± 0.12 0.49 ± 0.17 1.19 ± 0.59 10
MMD 128 16 0.30 ± 0.09 0.50 ± 0.20 1.27 ± 0.58 10
MMD 256 16 0.31 ± 0.09 0.44 ± 0.21 1.31 ± 0.59 10
MMD 512 16 0.22 ± 0.12 0.43 ± 0.18 1.22 ± 0.37 10
MMD 1024 16 0.23 ± 0.11 0.37 ± 0.24 1.70 ± 0.47 10
Eq. (20) 64 16 0.28 ± 0.06 0.66 ± 0.11 0.83 ± 0.26 10
Eq. (20) 128 16 0.24 ± 0.07 0.68 ±0.11 0.73 ± 0.18 10
Eq. (20) 256 16 0.25 ± 0.07 0.66 ± 0.09 0.67 ± 0.14 10
Eq. (20) 512 16 0.23 ± 0.06 0.68 ± 0.09 0.75 ± 0.16 10
Eq. (20) 1024 16 0.25 ± 0.07 0.66 ± 0.09 1.02 ± 0.47 10
Eq. (29) 64 16 0.20 ± 0.06 0.42 ± 0.08 0.61 ± 0.14 10
Eq. (29) 128 16 0.22 ± 0.06 0.37 ± 0.14 0.78 ± 0.35 10
Eq. (29) 256 16 0.21 ± 0.07 0.39 ± 0.16 0.88 ± 0.46 10
Eq. (29) 512 16 0.23 ± 0.06 0.43 ± 0.15 0.72 ± 0.11 10
Eq. (29) 1024 16 0.21 ± 0.03 0.36 ± 0.12 1.08 ± 0.52 10
MMD 64 256 0.26 ± 0.12 0.41 ± 0.20 1.54 ± 0.66 10
MMD 128 256 0.25 ± 0.14 0.40 ± 0.23 1.82 ± 0.78 10
MMD 256 256 0.25 ± 0.12 0.35 ± 0.21 3.68 ± 1.31 10
MMD 512 256 0.23 ± 0.14 0.37 ± 0.23 3.45 ± 1.50 10
MMD 1024 256 0.23 ± 0.13 0.35 ± 0.21 3.09 ± 1.35 10
Eq. (20) 64 256 0.28 ± 0.08 0.61 ± 0.04 1.19 ± 0.45 10
Eq. (20) 128 256 0.31 ± 0.07 0.61 ± 0.07 1.04 ± 0.48 10
Eq. (20) 256 256 0.26 ± 0.07 0.53 ± 0.03 0.96 ± 0.43 10
Eq. (20) 512 256 0.26 ± 0.08 0.56 ± 0.05 0.98 ± 0.40 10
Eq. (20) 1024 256 0.27 ± 0.08 0.56 ± 0.05 0.89 ± 0.36 10
Eq. (29) 64 256 0.24 ± 0.08 0.41 ± 0.13 1.39 ± 0.53 10
Eq. (29) 128 256 0.26 ± 0.11 0.37 ± 0.17 1.36 ± 0.61 10
Eq. (29) 256 256 0.20 ± 0.08 0.31 ± 0.16 1.72 ± 0.73 10
Eq. (29) 512 256 0.25 ± 0.11 0.38 ± 0.20 1.67 ± 0.73 10
Eq. (29) 1024 256 0.26 ± 0.10 0.39 ± 0.20 1.64 ± 0.79 10
The MMD and our proposed squared W2 distance Eq.  (20) and well as our proposed time-decoupled 
squared W2 distance Eq. (29) are used as the loss function
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