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Abstract

We provide an analysis of the squared Wasserstein-2 (W5) distance between two prob-
ability distributions associated with two stochastic differential equations (SDEs). Based
on this analysis, we propose using squared W5 distance-based loss functions to train pa-
rametrized neural networks in order to reconstruct SDEs from noisy data. Specifically, we
propose minimizing a time-decoupled squared W5 distance loss function. To demonstrate
the practicality of our Wasserstein distance-based loss functions, we performed numerical
experiments that demonstrate the efficiency of our method in learning SDEs that arise
across a number of applications.
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1 Introduction

Stochastic processes are mathematical models of random phenomena that evolve over time
or space (Cinlar, 2011). Among stochastic processes, d-dimensional stochastic differential
equations (SDE) of the form

dX (t) = f(X(t),t)dt + o (X (t),t)dB(t), X(t) €R?, t€[0,T] (1)

are widely used across different fields to model complex systems with continuous variables and
noise. Here, f = (f1,..., f4) : R¥1 — R% and o = (0i,5)i=1,....dj=1,....s RA+L s Rixs
denote deterministic and stochastic components of the SDE, while B(t) represents a
s-dimensional standard Brownian motion. In applications such as computational fluid
dynamics, cell biology, and genetics, the underlying dynamics are often unknown, partially
observed, and subjected to noise. Consequently, it is vital to develop methods capable of
learning the governing SDEs from limited data (Sullivan, 2015; Soize, 2017; Mathelin et
al., 2005; Bressloff, 2014; Lin & Buchler, 2018). Traditional methods, such as the Kalman
filtering (Welch et al., 1995; Welch, 2020) and Gaussian process regression (Liu et al., 2020;
MacKay et al., 1998) often assume specific forms of noise. For example, (De Vecchi et al.,
2016) uses polynomials to model f, o, while (Pereira et al., 2010) assumes linear f and o. If
the forms of f and o are known, then Bayesian methods are used to estimate the parameters
therein (Gzyl et al., 2008). Such traditional methods may work well when prior information
on the underlying SDE model is given. However, those methods may not be suitable for
complex or nonlinear systems where noise affects the dynamics in a more complex manner
and no prior information on f and o in Eq. (1) is available.

Recent advancements leverage machine learning, specifically neural ordinary differential
equations (NODEs) (Chen et al., 2018), to offer a more flexible approach to reconstructing
SDEs in the form of neural SDEs (nSDEs) (Tzen and Raginsky, 2019; Tong et al., 2022;
Jia & Benson, 2019). Previous attempts at using neural SDEs (nSDEs) have explored dif-
ferent loss functions for learning SDEs from data. For example, Tzen and Raginsky (2019)
model the SDE as a continuum limit of latent deep Gaussian models and use a variational
likelihood bound for training. Kidger et al. (2021) adopt Wasserstein generative adversarial
networks (WGANS) that were proposed in Arjovsky et al. (2017) for reconstructing SDEs.
Briol et al. (2019) uses a maximum mean discrepancy (MMD) loss and a generative model
for training SDEs. Song et al. (2020) assumes that ¢ in Eq. (1) depends only on time and
uses a score-based generative model for SDE reconstruction.

Despite promising recent advances, challenges remain, particularly in selecting optimal
loss functions (Jia & Benson, 2019). The Wasserstein distance, a family of metrics that
measures discrepancies between probability measures over a metric space, has emerged as a
potential solution due to its robust properties (Villani et al., 2009; Oh et al., 2019; Zheng et
al., 2020). Consequently, the Wasserstein distance, denoted as W, has gained wide use in sta-
tistics and machine learning. Key papers have delved into its analysis (Riischendorf, 1985)
and its utilization in reconstructing discrete-time stochastic processes (Bartl et al., 2021). In
the context of SDEs, Bion-Nadal and Talay (2019) introduced a restricted Wasserstein-type
distance, while Wang (2016) and Sanz-Serna and Zygalakis (2021) examined its application
in ergodic SDEs, Levy processes, and Langevin equations, respectively. Calculating the W
distance for multidimensional random variables is challenging; hence, approximations such

@ Springer



Machine Learning (2025) 114:255 Page 3 of 37 255

as the sliced W distance and regularized W distance have emerged (Cuturi et al., 2019;
Kolouri et al., 2018, 2019; Rowland et al., 2019; Frogner et al., 2015).

The aforementioned WGAN approach in Kidger et al. (2021) uses the first-order Was-
serstein distance to indirectly learn SDEs via the Kantorovich-Rubinstein duality (Arjovsky
et al., 2017). To the best of our knowledge, there has been no published work that directly
analyzes the W distance and applies it to the learning of SDEs. In this paper, we introduce
bounds on the second-order Wasserstein W distance between two probability distributions
over the continuous function space generated by solutions to two SDEs. Our results moti-
vate the W distance as the loss function to be used with parametrized neural networks for
learning SDEs from time-series data containing intrinsic noise that results from Wiener
processes. We test our approach on different examples to showcase its effectiveness.

2 Definitions and outline

We propose a squared Ws-distance-based loss function for training a neural-network-
parametrized SDE model (Li et al., 2020) in order to reconstruct an SDE under the follow-
ing setting. Let p denote the probability distribution over the continuous function space
C([0, T); R%) generated by the solution X (¢) to Eq. (1). In the following approximation to

Eq. (1),

dX (t) = f(X(t),t)dt + (X (t),t)dB(t), t € [0,T], 2)

B(t) is another s-dimensional standard Brownian motion independent of B(t) in Eq. (1),
f=(f1, fa) : R = RY and 6 = (645)i=1,. dj=1,. s : RTTL — R¥**. The prob-
ability distribution over the continuous function space C([0, T]; R%) generated by the solu-
tion X (t) to Eq. (2) will be denoted /i.

We shall follow the definition of the squared Ws-distance in Clement and Desch (2008)
for two probability measures p, fi associated with two continuous stochastic processes

{X(t)}te[o,T]v {X(t)}te[o,T]~

Definition 1 For two d-dimensional continuous stochastic processes in the separable space

(C([0, TR, || -11)

X(t) = (X'(t),.. X)), X(t)= (X (t),...Xt)), te0,T], (3)

with two associated probability distributions , i, the squared Wa(p, 1) distance between
1, fi is defined as

2 ~ : v |12
W3 (u, 1) = Wzgﬁl)E(x,x>w<u,ﬂ)[|lX - X|?]. )

Throughout this paper, E refers to taking the expectation of a random vari-
able, and IE(XX)NW(MD[HX—XHQ} refers to the expectation of the quantity

[1x - X 2] when (X , X) obey the joint probability measure (g, i). The distance
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1
IX] = (fOT |X;(t)|2dt) *, where | - | is the > norm of a vector. 7(u, 1) iterates over all

coupled distributions of X (t), X (¢), defined by the condition

. SRAY) —
{ o o a) —polay vaes(com=). o

where B (C’ ([0, T7]; Rd)) denotes the Borel o-algebra associated with the space of d-dimen-

sional continuous functions C([0, T]; R?). Here, we assume that taking the expectation of
the squares of the stochastic processes at a fixed time point is interchangeable with integra-
tion over time, i.e., for a stochastic process { X ()},

E[/OT|X(t)2dt} —]E[/OT|X(t)|2dt} —/OTIE[X(t)|2]dt. ©)

Eq. (6) holds true for solutions to the SDE (1) under specific conditions, such as uniform
bounds and Lipschitiz continuity on the coefficients f and o which ensures a strong solution
of the SDE. Detailed analysis on the interchangeability of taking the expectation and taking
the integration w.r.t. time for stochastic processes are described by the stochastic Fubini
theorem Jacod (2006); Choulli and Schweizer (2024).

The main contributions of our work are

1. Using Definition 1, we first derive in Sect. 3 an upper bound for the squared Wasserstein
distance W2 (u, f1) between the probability measures associated with solutions to two
1D SDEs in terms of the errors in the reconstructed drift and diffusion functions, f — f
and o — 6 in Egs. (1) and (2). To be specific, we establish a W5 distance upper bound
which depends explicitly on the difference in the drift and diffusion functions f — f and
o — & associated with using Eq. (2) to approximate Eq. (1).

2. In Sect. 4, we shall prove that the squared W> distance between the two SDEs,
W2(p, 1), can be accurately approximated by estimating the W, distance between
their finite-dimensional projections. We also develop a time-decoupled squared Was-
serstein-2 distance defined by

W2 (. f) = / W2 (u(s), is))ds, ™

which allows us to define a time-decoupled squared Ws-distance-based loss function
for learning SDEs. Here, p(s), /i(s) are the distributions on R? generated by projec-
tion of the stochastic processes X, X at time s, respectively. We prove that the time-
decoupled squared W, distance in Eq. (7) is well defined in Theorem 3, and that it
inherits the upper bound of the squared Wasserstein distance W.2(u, fi) and could be
evaluated using finite-time-point distributions of solutions to two SDEs. Specifically,
if X (t;) follows the one-dimensional (d = 1) SDE Eq. (1), then for uniformly spaced
time points ¢; = %, 1 =0,..., N, our proposed time-decoupled squared W5 loss func-
tion is simply

@ Springer



Machine Learning (2025) 114:255 Page 5 of 37 255

N—-1 .1 R )
At;/o (F7'(s) — B M (s)) "ds, (8)

where At is the timestep and F; and Fi are the empirical cumulative distribution func-
tions for X (t;) and X (;), respectively. This time-decoupled squared Wo-distance loss
function will be explicitly expressed in Eq. (29).

3. Finally, we carry out numerical experiments to show that our squared Ws-distance-
based SDE learning method performs better than recently developed machine-learn-
ing-based methods across many SDE reconstruction problems. Additional numerical
experiments and sensitivity analysis are detailed in the Appendix.

3 Squared W, distance for learning SDEs

In this section, we prove the bounds for the squared W5 distance of two probability mea-
sures associated with two SDEs. Specifically, we demonstrate that minimizing the squared
W, distance is necessary for the reconstruction of f, o in Eq. (1).

We shall first prove an upper bound for the W5 distance between the probability mea-
sures 1 and /i associated with X (¢), X (t), solutions to Eqs. (1) and (2), respectively.

Theorem 1 (The upper bound of the squared W5 distance between distributions of solutions
to two SDEs) We assume that { X (t) }+<0, 17, {)A((t)}te[oj] are solutions to Egs. (1) and (2)

(for d = 1), respectively, and have the same distribution of initial conditions. Further requir-
ing f, f, 0,6 to be continuously differentiable, 0,,0 and 0,6 are uniformly bounded and

W2 (. 1) §3/TIE[ LHZ(S,t)ds]dt XE[/T(fff)z(X(t),t)dt)]

0 0 0

+3/ /H2 s,t)d }dt ><IE[/O.T(Bza(ng(X(t),f((t)),t)2(a7&)2(X(t),t)dt} )
/ /H4 s.0)ds| dtxE[/T(a_a)‘*(X(t),t)dt)} v
0

where X (t) satisfies
X(t) = f(X(t),t)dt + 6(X(t),t)dB(t), X(0) = X(0). (10)
In Eq. (9), 71,72 : R? — R are two auxiliary functions such that

f(X1,t) = f(Xa,t) = 0n f (m (X1, X2), )(X1 X3)

t
o(X1,8) = 0(Xa,1) = B0 (X1, X2)t) (X1 — X»). (1

H(s,t) :=exp [/ h(X(r),f((r),r)dr—l—/ 810(7]2(X(7“),X(r),r)dB(r) , (12)

with & defined as
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X (r), X(r),r) = Gmf(m(X(r),f((r)),r) — (BIO'(T]Q(X(T‘),X(T')),7"))2. (13)

The proof to Theorem 1 and its generalizations to higher dimensional stochastic dynam-
ics under some specific assumptions are given in Appendix A. Theorem 1 indicates that
as long as IE[ fot H4(s, t)ds] is uniformly bounded for all ¢ € [0, T'], the upper bound for
Wa(p, i) — 0 when f — f — 0 and & — o — 0 uniformly in R x [0, T]. Specifically, if
f = f,o = 6, then the RHS Eq. (9) is 0. This means that minimizing W2 (s, /i) is neces-
sary for generating small errors f — f,6 — o and for accurately approximating both f'and
o. Thus, one can consider using the squared W5 distance as an effective loss function to
minimize when learning SDEs from data. MSE-based loss functions (defined in Appendix
E) suppress noise while the Kullback-Liebler (KL) divergence may not be finite, preclud-
ing resolution of X (¢) and X (t) even if f approximates f and & approximates o. Detailed
discussions on the limitations of MSE and KL divergence in SDE reconstruction can be
found in Appendix B.

Remark. A generalized version of Theorem 1 with relaxed conditions for the upper
bound of the squared W5 distance between two multidimensional pure-diffusion and jump-
diffusion processes is given in subsequent work Xia et al. (2024). Consider X (t) and X ()
describing general d-dimensional SDEs Eqgs. (1) and (2). It is nontrivial to show whether or
not the squared W5 distance between two multidimensional pure-diffusion processes or two
jump-diffusion processes is an upper bound for the errors f—f.6—o. Ifitis, minimizing
W2 (u, p) is sufficient for reconstructing of f, o using f, 4. However, in Xia et al. (2024),
some preliminary results on how the squared W5 distance might serve as an upper bound
for the errors f — f,6 — o in 1D jump-diffusion processes are given. Theorem 2.1 in Xia et
al. (2024) indicates that as long as f, o, f,6 are continuously differentiable and uniformly
Lipschitz continuous, then

Wa(p, 1) < /TE[H(T)|X(0)] x exp (CT), (14)
where C is a constant depending on f, f ,0,0, 1, i are the probability distribution over the

continuous function space C(]0, T]; R%) generated by the solutions X (¢) and X (t), respec-
tively. Furthermore, in Eq. (14),

H(t):=E [i: /Ot (Fix ()5 - ﬁ-(}((s),s))2 ds]
=1

d . s
t+E lz_;/o Zl (Uiaj(X(S)aS) 6i,j(X(5)78))2dS] .

(15)
4 Finite-dimensional and time-decoupled squared W loss functions

From Theorem 1 in Sect. 3, in order to have small errors in the drift and diffusion terms
f— fand o0 — &, a small Wy(u, i) is necessary. However, Wa(u, fi) cannot be directly

used as a loss function to minimize since we cannot directly evaluate the integration in
time in Eq. (4). In this section, we shall provide a way to estimate the Wa(y, /i) distance by
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using finite-dimensional projections, leading to squared Ws-distance-based loss functions
for minimization.

Consider the two general d-dimensional SDEs defined in Eqgs. (1) and (2). Usually, we
only have observations of trajectories of { X ()};c[o,7] and (X (t)}teqo,r) over discrete
time points. We assume that X (¢), X (t) solve the two SDEs described by Egs. (1) and
(2) and provide an estimate of the W5 between of the probability measures i, i associated

with {X (t)}¢ejo,7] and {X (t)}e[o,r) using their finite-dimensional projections. We let
0=ty <t <..<ty=T,t; =iAt, At := % be a uniform mesh in time and define the
following projection operator I nr

X(ti),t c [ti,ti+1),i < N — 17

1
X(ti),t € [ts, tiga],i =N — 1. (16)

XN(t) = INX(t) = {

As in the previous case, we require X (t) and X (¢) to be continuous. Note that the projected
process is no longer continuous. Thus, we define a new space {2 containing all continuous
and piecewise constant functions; naturally, u, {i are allowed to be defined on . Distri-

butions over {2 generated by {XN(t)}tE[O,T],{)A(N(t)}te[om in Eq. (16) is denoted by
wn and Qi y, respectively. We will prove the following theorem for estimating Wa(u, i) by
Wa (uns in).

Theorem 2 [Finite-time-point approximation of the squared W, distance] Suppose
{X(t) }+efo,r) and {X (t)}tejo,r) are both continuous-time continuous-space stochastic

processes in R? and p, i are their associated probability measures, then Wy (p, /1) can be
bounded by their finite-dimensional projections

Wa(un, iin) = Wa(, pv) — Walft, fin) < Wa(, 1) < Wa(un, fin) + W, pun) + Wa (i, in) (17)

where v, fiy are the probability distributions associated with the two stochastic processes
{X n(t)}eejo,r) and {XN(t)}te[O,T] defined in Eq. (16). Specifically, if X (¢) and X (t)
solve Egs. (1) and (2), and if

_ T a
F:=Ex~, /0 fo(X(t),t)dt} < 00,
=1

- T 4
Fi=Eg_, /0 fo(f((t),t)dt} < o0,
=1

o (18)
z::EXW/ Zzaij(xa),t)dt} < o0,

0 o =1

. d s
g;:]EXNﬂ/O ZZ&ij(X(t),t)dt] < o0,

) =1 j=1

then we obtain the following bound
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Wa (i )—/(s + 1)At (\/FAt TS+ VEAL+ E) < Wa(u, )

_ _ (19)
< Walpun, fin) + /(s + 1) At (\/FAt +X+ VFEAt+ Z) .

The proof to Theorem 2 relies on the triangular inequality of the Wasserstein distance
and the It6 isometry; it is provided in Appendix C. Theorem 2 gives bounds for approx-
imating the W, distance between the distributions of {X(t)}icjo, 1, (X () Yeefo,m
by the W, distance between the distributions of their finite-time-point projections
{X n(t)}eefo,r1s {X N (1) }ecjo,r) Specifically, if X (t), X (t) are solutions to Egs. (1) and
(2), then as the timestep At — 0, Wa(un, fin) — Wa(u, fi). Theorem 2 indicates that we
can use W2(uy, fin), which approximates W2(u, i) when At — 0, as a loss function.
Furthermore,

N-1

. ) . 2
W22(‘MN’ fin) = 07 un ) Z E(XN,XN)N‘”(HN#N) [|X(t1) n X(tl)|2} At 20
i=1

here, 7(pun, fin) iterates over coupled distributions of {X n(t)}ecjo, ), {)A(N(t)}te[o,ﬂ,
whose marginal distributions coincide with i and fiy. | - |2 denotes the £2 norm of a vec-
tor. Note that jy is fully characterized by values of { X () };c[0,7 at the discrete time points
t;.

Remark. The d-dimensional SDEs in Egs. (1) and (2) can be solved numerically. Solu-
tions to the two SDEs can be approximated by strong, order ~y It6-Taylor solutions; we will
denote these by { X 5() }+e[o,7) and {Xs (t) }tejo, 77, along with their associated probability
distributions denoted by u5 and jis5. Here, 0 denotes a uniform time step used in the numeri-
cal scheme, which can be different from At in Eq. (20). For simplicity, we can assume that
At is an integer multiple of § and that all coefficients involved in the order v It6-Taylor
scheme satisfy the conditions prescribed in (Kloeden and Platen (1992), Theorem 10.6.3).
Then, using Theorem 10.6.3 in Kloeden and Platen (1992), we have the following result
which takes into account the time discretization error of the numerical SDE scheme.

Corollary 1 Suppose X 5(t) and X 5(t) (6 denotes a uniform time step) are numerical solu-
tions of order +y strong Ito-Taylor approximates to Egs. (1) and (2) with all involved coef-
ficients satisfying the conditions specified in (Kloeden and Platen (1992), Theorem 10.6.3).
We denote (15, v, fi5, v to be the distributions of I x X 5(t) and I x X5 (t), respectively. Sup-
pose X 5(0) = X 5(0) = X (0), then the following inequality holds:

Wa (s v i) — Walp, piv) — Walit, fin) — K(1+|X(0)|3)26VT < Wa(p, 1)

. o o1 (21)
< Walus,ns fis,n) + Walp, pn) + Walfi, in) + K (14X (0)[*)28"VT,

where K is a constant that does not depend on .

Proof The proof of Corollary 1 is a straightforward application of Theorem 2 and (Kloeden
and Platen (1992), Theorem 10.6.3). Notice that

Wa(un, fin) > Walps,n, fis,n) — Walps, Ny in) — Walfis n s N, (22)
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and

Wolpn, iin) < Walps,n, fis,n) + Walps, v, in) + Waljis,n, fin)- (23)

Furthermore,

N-1
. & 2
WQQ(M(S’N”M‘S) = lnf”(“N’ﬂN) Z E(XN1X6,N)N7T(#N-,/—L6,N) |:|X(t2) o Xé(ti)b} At. 24)

i=1

here, (v, pts,n) iterates over coupled distributions of X n(t), X 5 v (t), whose marginal
distributions coincide with px and pis, n. We take a special coupling such that

/f ds+/t (X(s), s)dB, + X(0), t € [0, T],
0
X5((i+1)8) = Z fa (8, X (i6)) I,

a€A,

(25)

where « and f, are the indices and coefficients in (Kloeden and Platen (1992), Theorem
10.6.3) and I, is the multiple It6 integral for the index « associated with B;. Using (Kloe-
den and Platen (1992), Theorem 10.6.3), there exists a d-independent constant K’ such that

E( sup 1X() - X5(t)) < K'(1+ |X(0))0%. (26)

0<t<T

Then, from Eq. (24), we conclude that

W3 (ps, . s) < NALK'(1+ X (0)*)0% = TK'(1+ X (0)[*)8*. @7
Similarly,

W3 (s, fis) < NALK'(1+ X (0)*)0% = TK'(1+ X (0)[*)8*". (28)
Defining K := 2v/K’, the inequality (21) is proved. ]

For a d-dimensional SDE, the trajectories at discrete time points {X(¢;) f\i _11

is d x (N —1) dimensional. In Fournier and Guillin (2015), the error bound for
(W2(un, in) — W2 (uN, A3)]s Where Ky, [i% are the finite-sample empirical distribu-
tions of {X (t;)}N 7" and {X (t;)}', will increase as the dimensionality d x (N — 1)
becomes large. Alternatively, we can disregard the temporal correlations of values at differ-
ent times and relax the constraint on the coupling 7 (u, ,u N) in to minimize the Wasserstein
distance between the marginal distribution of { X (¢;)} ;" and the marginal distribution of
{X(t YY1, as was done in Chewi et al. (2021). To be more specific, we minimize indi-
vidual terms in the sum with respect to the coupling 7; of the distributions of X (¢ (t;) and
X (t;) and define a heuristic loss function
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N—-1 N—1
Y nfEL[|X(5) — X = W un(t:), fun (t:)) At (29)
=1 ‘ =1

where 1y (t) and fiy (t) are the probability distributions of X (¢) and X (t) at time ¢, respec-
tively. Note that

N—-1
> infEq [| X (5) — X(t:)

i=1

2 N
S At < W3 (un, fin) (30)

because the marginal distributions of 7(u v, fin) coincide with i and gy Since the mar-
ginal distributions of p and jiy att; are uy (t;) and iy (¢;), respectively, we have

N—-1
ST ifEL[|X () - X(1)])]) At
i=1 K
N-1 @D

. & 2
< lnfﬂ'(‘“\f’[“\’) Z E(XN»XN)Nﬂ(HNyﬂN)HX(ti) - X(tl)i2i At.

i=1

The dimensionality of X (t;) and X (;) is d, which is much smaller than (N — 1)d for large
N. We denote 45 (t;) and /iy (¢;) to be the finite-sample empirical distributions of X (¢;) and

X (t;), respectively. Since the error of estimating the W5 distance using empirical distribu-
tions of a random variable increases with the random variable’s dimensionality Fournier and

Guillin (2015), the error | ZL L " W2 (v (t) ZZ 1 Y W2 (), fi (t:))] can
be smaller than the error ’WQ UN, AN) — W2 (uN, ,uN)‘. Compared to Eq. (20), the time-

decoupled squared W5 distance Eq. (29) can be better approximated using finite-sample
empirical distributions.

Note that

N-1
D W (un (), fin () At < W3 (v, finy)- (32)
i=1

Thus, from Theorems 1 and 2, minimizing Eq. (29) when N — oo is also necessary to
achieve small f — f and 0 — 6 when the SDE is univariate. Let p;, ft; be the two probabil-
ity distributions on the space of continuous functions associated with X (¢),¢ € [t;, t;11)
and X (t),t € [t;,t;41), respectively. We can then show that Eq. (29) is an approximation

to the partially time-decoupled summation of squared W, distances Zf\:ll W2 (s, fr;) as

N — oo. Additionally, we can prove the following theorem that indicates Eq. (29) approxi-
mates a time-decoupled squared Wasserstein distance Eq. (7) in the N — oo limit.

Theorem 3 [Well-posedness of our proposed time-decoupled squared W5 distance Eq. (7)]
We assume the conditions in Theorem 2 hold and forany 0 < ¢t < ' < T,ast' —t — 0, the
following conditions are satisfied
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¢ d
EM fo(X(t) /Zf t)dt}%o
(33)
/ Y o (x / Y (X (1), )] 0.
i=1 j=1 =1 j=1
Then,
N-1 R ) N-1
ngnw(;g{m (X (1) — X (t2)[5]) At > W3 (s ) = 0. (34)
Furthermore, the limit
N-—-1
Nli_IgO;i%fEmHX(tz)—X( Blx At—ngréOZWQ ) fi(t:)) At (35)

exists.
The proof of Theorem 3 will use the result of Theorem 2 and is given in Appendix D. Spe-
cifically, for each N,

N—-1
A 2 R
%fEmHX( ) — X (t:)|,] At < W3 (un, fin), (36)
=1
so we conclude that
N—-1 )
Nli_r)r(l)OZigfIEm[X(ti)—X(ti) AL < lim Wiy, i) = W3 (p ). (37)
We denote
T N—-1
W3 (. 1) = / W3 (u(t), 1) )dt = lim W (u(th), ) (¢ —tiy)  (38)
0 o

as the time-decoupled squared Wasserstein distance. From Eq. (37), we can deduce that

W3 (i ) < W3 (s, ). (39)
Therefore, the upper bound of W (u, /i) in Theorem 1 is also an upper bound of W (u, i),
i.e., to reconstruct a 1D SDE by minimizing W2 (1, 1), it is necessary that f — fando — &

are small. From Theorem 3, minimizing the finite-time-point time-decoupled loss function
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defined in Eq. (29), which approximates W3 (1, /1) when At is small, is needed for minimiz-
ingf—fanda—fr.

Remark. If we replace X (¢;) and X (t;) in Eq. (35) with X 5(¢;) and X 5(¢;), the order
~ strong numerical solutions to Egs. (1) and (2), and assuming the conditions in Corollary 1
hold,

N—-1 -1
lim (S WE (s (k). o) At = S Wi s, 1)) =0, (40)

N—o0
1

=z

=1 7

where 15(t), i5(t) are the probability distributions of X s(¢) and X s(t) at time ¢, respec-
tively. This arises because

X(t) - X(t:) 2]1/2 _

Wa (M&(ti)aﬂé(ti))’

< Walu(ti), s (t:)) + Waalts), fis(t:) < K(1+]X(0)[*)"/267.

(41)

Thus, since we assumed that At is an integer multiple of ¢ and thus At > §, we have

N-1 N-1

Jim_ ( >l B, [|X(6) - X(t) a3 W (us(t), ﬁg(t,))At) @

< Jim dmaxinf Ex,[| X (6) = X(t)[3] 2 KOT( + [ X(0))/2 + 4K262T(1+ X (0)) = 0.
—00 (2 T

N

Specifically, if X (¢), X (¢) are solutions to the univariate SDEs Eq. (1) and Eq. (2), then
Eq. (29) reduces to Eq. (8), which can be directly calculated. In Example 3, Example 4, and
Appendix I, we shall compare use of the two different squared W5 distance loss functions
Eqgs. (20) and (29). From our preliminary numerical results, using Eq. (29) is more efficient
than using Eq. (20) and yields reconstructed SDEs that are more accurate.

5 Numerical experiments

We carry out experiments to investigate the efficiency of our proposed squared Wa loss
function (Eq. (29)) by comparing it to other methods and loss functions. Our approach is
tested on the reconstruction of several representative SDEs in Examples 1— 4.

In all experiments, we use two neural networks to parameterize
fi= f(X,t; 01),6 := 6(X,t;02) in Eq. (2) for the purpose of learning f,o in Eq. (1)
by the estimates f~f6~0. 01,0, are the parameter sets in the two neural networks
for parameterizing f= f(_)l,fr = 0o,. We use the sdeint function in the torchsde
Python package in Li et al. (2020) to numerically integrate SDEs. Details of the training
hyperparameter setting for all examples are given in Table 1. A pseudocode for using the
time-decoupled squared W loss function Eq. (29) to train the neural networks f (X,t;01)
and 6(X,t;©2) is given in Algorithm 1. All experiments were carried out using Python
3.11 on a desktop with a 24-core Intel® 19-13900KF CPU. Default hyperparameters and
training settings for each example are listed in Table 1, and the default Euler-Maruyama
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Table 1 Training settings for Loss Example Example Example Example Exam-
each example 1 2 3 ple 5

Gradient de- AdamW AdamW AdamW AdamW AdamW
scent method

Learning rate ~ 0.001 0.002 0.002 0.0005  0.002
Weight decay ~ 0.005 0.005 0.005 0.005 0.005
Number of 1000 2000 2000 2000 500

epochs

Number of 100 200 256 200 100

samples

Hidden layers 2 1 1 1 1

in ©1

Neurons in 32 32 32 32 150

each layer in

01

Hidden layers 2 1 1 1 1

in ©9

Activation tanh ReLu ReLu ReLu ReLu

function

Neurons in 32 32 32 32 150

each layer in

©2

At 0.1 0.05 1 0.02 0.5
scheme (corresponding to the order v = % strong Ito Taylor expansion in Corollary 1) in

the torchsde package is used for numerically solving SDEs in all numerical examples.

Given M observed trajectories {X;(t;),t; = jAt,j = 1,..,N}M,, and the
maximal iteration @max
Initialize the two neural networks: f(X,t;01) and (X, ¢;05) in Eq. (2)
Generate M trajectories from the approximate SDE Eq. (2) using the torchsde
package
while YN W2 (un (t), fin (£)) At > € && i < imax dO
Perform gradient descent to minimize the loss function W2 (ux, fix) and update
the parameters in 01, ©3 in f(X, t;01) and 6(X,t;02)
Generate M trajectories from the approximate SDE Eq. (2) with the updated
f(X7 t;01) and 6(X, t;©2) using the torchsde package
end while
return The trained approximate drift function f (X,t;01) and diffusion function
(3'()(7 t; @2)

Algorithm 1 The pseudocode of minimizing the squared W> loss function to train a neural
SDE. (The time-decoupled squared W> loss in the while loop can be replaced with other
loss functions)

First, we compare our proposed squared W-distance-based loss (Eq. (29)) with several
traditional statistical methods for SDE learning or reconstruction.

Example 1 We reconstruct a nonlinear SDE of the form

dX(t) = (3 — cos X (t))dt + odB(t), t € [0,20], (43)
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which defines a Brownian process in a potential of the form U(z) = § — sinx. In the
absence of noise, there are infinitely many stable equilibrium points z;, = %” + 27k, k € Z.
When noise odB(t) is added, trajectories tend to saturate around those equilibrium points
but jumping from one equilibrium point to another is possible. We set ¢ = 1. We use the
MSE, the mean?-+variance, the maximum-log-likelihood, and the proposed finite-time-point
time-decoupled squared W, distance Eq. (29) as loss functions to reconstruct Eq. (43). For
all loss functions, we use the same neural network hyperparameters. Definitions of all loss
functions and training details are provided in Appendix E. As detailed in Table 1, neural
networks with the same number of hidden layers and neurons in each layer are used for each
loss function. Using the initial condition X (0) = 0, the sampled ground-truth and recon-
structed trajectories are shown in Fig. 1.

Figure la shows the distributions of 100 trajectories with most of them concentrated
around two attractors (local minima z = — 7%, %’“ of the potential U(x)). Figure 1b shows
that using MSE gives almost deterministic trajectories and fails to reconstruct the noise.
From lc, we see that the mean?+variance loss fails to reconstruct the two local equilib-
ria because cannot sufficiently resolve the shape of the trajectory distribution at any fixed
timepoint. Figure 1d shows that when using our proposed finite-time-point time-decoupled
squared W5 loss Eq. (29), the trajectories of the reconstructed SDE can successfully learn
the two-attractor feature and potentially the distribution of trajectories. The reason why the
reconstructed trajectories of the W5 distance cannot recover the third stable equilibrium at
T = HT” is because the data is sparse near it. From le, we see that the max-log-likelihood
loss performs the worst as it yields almost the same curves for all realizations.

In the next example, we show how using our finite-time-point time-decoupled squared
W, distance loss function Eq. (29) can lead to efficient reconstruction of fand o. We shall
use the mean relative L? error

5 (a) grour‘ld truth dynamics ‘ (b) MSE loss (¢) mean?+variance

,5 (X
10 f
= — = ———
S (d) Wo loss (e) log-likelihood
J
110
ls &
0
10

20 0 5 10 15 200 5 10 15 20

Fig. 1 a Ground-truth trajectories. b Reconstructed trajectories from nSDE using MSE loss. ¢ Recon-
structed trajectories from nSDE using mean®+variance loss. d Reconstructed trajectories from nSDE
using the finite-time-point time-decoupled W2 loss. e Reconstructed trajectories from nSDE using a
max-log-likelihood loss yields the worst approximation
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T N 7 T N N

S (k) 1) — Flaj (), t)]12\ Yoimy Mo (k). )] = |6y (k) )12\ 3
> O 44
(izn (T+1) X0 k), )12 ) (izo (T+ 1) 0L, llo(a; (k) )2 ) “9

between the reconstructed f, & in Eq. (2) and the ground-truth f, o in Eq. (1), respectively.
Here, 7 (t;) is the value of the 5 ground-truth trajectory at ¢;.

Example 2 Next, we reconstruct a Cox-Ingersoll-Ross (CIR) model, which is a popular
finance model that describes the evolution of interest rates:

dX(t) = (5— X(t))dt + 0o/ X (t)dB(t), t €[0,2]. (45)

Specifically, we are interested in how our learned f,& can approximate the ground-truth
f(X)=5—X and o(X) = 5oV X (with oy a constant parameter). Here, we take the
timestep At = 0.05 in Eq. (29) and the initial condition is X (0) = 2. For reconstructing 1’
and o, we compare using our proposed finite-time-point time-decoupled squared W5 dis-
tance Eq. (29) with minimizing a Maximum Mean Discrepancy (MMD) (Briol et al., 2019)
and other loss functions given in Appendix E. Our results are shown in Fig. 2. Hyperparam-
eters in the neural networks used for training are the same across all loss functions.

Figure 2a shows the predicted trajectories using our proposed squared W5 loss function
match well with the ground-truth trajectories. Figure 2b, ¢ indicate that, if = 100 ground-
truth trajectories are used, our proposed squared W5 distance loss yields smaller errors in
f, o as defined in Eq. (44). More specifically, we plot the reconstructed fo,00 by using
our squared W5 loss in Fig. 2d; these reconstructions also match well with the ground-truth
values f,o. When we vary o in Eq. (45), our proposed finite-time-point time-decoupled
Wy loss function gives the best performance among all loss functions shown in Fig. 2e,
f. In Appendix F, instead of using the same initial condition for all trajectories, we sam-

0.3
(b) -+ MMD 15(0) - - ]
f —.— W2 + mean“+var —08
=02 —=— approxloglik b
=~ ——MSE ~ 0.6
W‘\ © 0.4
; 0.1 ]b .
=02
0, 0,
50 100 200 400 50 100 200 400
number of training samples number of training samples
6
4 <d) —o— ground truth 0.6 (e) 1 (f) cE-a-E-E- et S -a-
2 _ _
2 ""‘"-—-.._____“"‘“‘ = s 0.8
9 —=— prediction =04 =06
= © 3
12 ! r04l N
o 1 =02 o \
0.8 — 02 l 1 T i-7
0.6 0 NESRERESSSS
2 3 4 5 6 0 02 04 06 08 1 0 02 04 06 08 1
T 0o 00

Fig.2 a Ground-truth trajectories and reconstructed trajectories by nSDE using the finite-time-point time-
decoupled squared W2 loss with g = 0.5. b, ¢ Errors with respect to the numbers of ground-truth trajec-
tories for 0o = 0.5. d Comparison of the reconstructed fg,(X), G, (X) to the ground-truth functions
f(X),0(X) for oo = 0.5. e, f Errors with respect to noise level o9 with 200 training samples. Legends
for (¢, e, ) are the same as the one in (b)
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ple the initial condition from different distributions and find that the reconstruction errors
f— f and o — & is not sensitive to different initial conditions, implying the robustness
of using our proposed finite-time-point time-decoupled W5 loss function with respect to
different initial conditions. Also, in Appendix G, we change the number of layers and the
number of neurons in each layers for the two neural networks we utilize to parameterize
f=f(X;01),6 :=6(X;0,). We find that wider neural networks can lead to smaller
errors f — fand o — 6.

Next, we reconstruct the Ornstein-Uhlenbeck (OU) process given in Kidger et al. (2021)
and in doing so, compare our loss function with the WGAN-SDE method therein and with
another recent MMD method.

Example 3 Consider reconstructing the following time-inhomogeneous OU process
dX(t) = (0.02t — 0.1X(t))dt + 0.4dB(t), t € [0,63]. (46)

We compare the numerical performance of minimizing Eq. (20) or minimizing Eq. (29) with
the WGAN method and using the MMD loss metric. Equation (20) is numerically evalu-
ated using the ot . emd?2 function in the Python Optimal Transport package (Flamary et al.,
2021) We take the timestep At = 1 in Egs. (29) and (20) and the initial condition is taken
as X (0) = 0. Neural networks with the same number of hidden layers and neurons in each
layer are used for all three methods (see Table 1).

In addition to the relative errors in learned f , 0, we also compare the runtime and mem-
ory usage used by the three methods as a function of the number of ground-truth trajectories
used in training.

From Fig. 3a, the distribution of trajectories of the reconstructed SDE found from using
our proposed squared W5 loss Eq. (29) matches well with the distribution of the ground-
truth trajectories. Both minimizing Eq. (20) and minimizing Eq. (29) outperform the other
two methods in the relative L? error of the learned f, o for all numbers of ground-truth
trajectories. Using Eq. (29) as the loss function achieves better accuracy in a shorter com-
putational time than using Eq. (20).

For Ngample training samples and N total number of timesteps, the memory cost
in using Eq. (29) is O(N X Nsample); however, the number of operations needed is

10
— \ I <2 104
= 8 (D)=e-WeaN —aup -, S 1@
=6 Eq.20 —e—Eq.29 Elﬂ“
~
I R =
= o _/‘ =] 10!
=8 T \ £
=6 =
© oy £
- g
=2 T =
64 128 256 512 1024 64 128 256 512 1024
number of training samples number of training samples

Fig. 3 a Ground-truth and reconstructed trajectories using the squared W3 loss Eq. (29). Black and red
curves are ground-truth and reconstructed trajectories, respectively. Black and red arrows indicate f{x, )
and the reconstructed f (z,t) at fixed (x, ), respectively. b Relative errors in learned fandé, repeated
10 times. Error bars show the standard deviation. ¢ Resource consumption with respect to the number of
training samples Ngamples- Memory usage is measured by torch profiler and represents peak memory
usage during training. The legend in the (¢) is the same as the one in (b)
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O(N % Ngample log Ngample) because we need to reorder the ground-truth X (¢;) and pre-
dicted X (t;) data to obtain the empirical cumulative distributions at every t,. The mem-
ory cost and operations needed in using Eq. (20) are both O((N X Ngample)?) because a
(N % Ngample) X (N X Ngample) cost matrix must be evaluated. On the other hand, the
MMD method needs to create an Ngample X Nsample matrix for each timestep and thus
the corresponding memory cost and operations needed are at best O(N x Nfample). The
WGAN-SDE method needs to create a generator and a discriminator and its training is
complex, leading to both a higher memory cost and a larger runtime than our method. When
learning SDEs from data, a larger number of ground-truth trajectories leads to higher accu-
racy (see Appendix H). Overall, our time-decoupled squared W5 loss, Eq. (29), performs the
best in terms of accuracy and efficiency when reconstructing the 1D SDE Eq. (46).

If we consider using stochastic gradient descent (SDG) to minibatch for training, we
find that the batch size cannot be set too small, especially when we are using the MMD or
Eq. (20) as loss functions, due to the intrinsic noisy nature of trajectories of SDEs. Thus,
using our squared Wy distance loss function given in Eq. (29) can be more efficient overall
than using the MMD or Eq. (20) as the loss function. Additional results using the SGD with
minibatch for training are given in Appendix H.

Next, we carry out an experiment on reconstructing a 2D correlated geometric Brownian
motion. In this 2D reconstruction problem, we will compare the loss functions, Egs. (20)
and (29), the MMD method, and a sliced squared Wasserstein distance method (Kolouri et
al., 2018).

Example 4 Consider reconstructing the following 2D correlated geometric Brownian motion
that can represent, e.g., values of two correlated stocks (Musiela & Rutkowski, 2006)

2
dX, (t) =1 X1 (t)dt + Z JLZ'XZ'(t)dBi (t),
7 (47)
dXo(t) =pXo(t)dt + 02, X;(t)dBi(t)

i=1

here, t € [0,2], B1(t) and Ba(t) are independent Brownian processes, f := (1 X1, p2X2)
isa2D vector, and o := [Ul,le, O'LQXQ; 0'2’1)(17 0'272X2] is a 2 X 2 matrix.

We use (p1, u2) = (0.1,0.2), o = [0.2X7, —0.1X5; —0.1X4,0.1X5], and set the initial
condition (X(0), X2(0)) = (1,0.5). In addition to directly minimizing a 2D decorrelated
version of the squared W5 distance Eq. (29) (denoted as W5 in Fig. 4c), we consider mini-
mizing a sliced squared W5, distance as proposed by Kolouri et al. (2018, 2019). Finally, we
numerically estimate the W5 distance Eq. (20) as well as the time-decoupled approximation
Eq. (29) using the ot .emd2 function in the Python Optimal Transport package. Formulae
of the above loss functions are given in Appendix E. We keep the neural network hyper-
parameters the same while minimizing all loss functions. Note that since the SDE has two
components, the definition of the relative error in o is revised to
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Fig. 4 a Black dots and red squares are the ground-truth (X7(2), X2(2)) and the reconstructed
(X1(2), X2(2)) found using the rotated squared W2 loss function, respectively. Black and red arrows
indicate, respectively, the vectors f(X1, X2) and f(X1, X2). b Relative errors of the learned f and o.
Error bars indicate the standard deviation across ten reconstructions. ¢ Runtime of different loss functions
with respect to Ngamples- d The decrease of different loss functions with respect to training epochs. The
legend for the (d) is the same as the one in (¢)

1/2

XT: S oo (@ (t), 1) — 667 (z;(t:), 1) |I%

(48)
= @+ 667 (k) ) IR

where || - || r is the Frobenius norm for matrices.

Figure 4a shows the ground truth and reconstructed coordinates (X7, X2) (black dots) and
(X1, X5) (red squares) at time ¢ = 2, along with f(X1, X5) (black) and f(X1, X3) (red).
For learning fand o in problem, numerically evaluating Eq. (29) (blue curve) performs
better than the MMD method, the loss in Eq. (20), the sliced W5 distance loss, and the 2D
decorrelated squared W loss, as shown in Fig. 4b. Using the sliced W5 distance yields the
poorest performance and least accurate f and 6. Using the 2D decorrelated squared W,
loss function also gives inaccurate &. Thus, the sliced W5 distance and the 2D decorrelated
squared W5 loss are not good candidates for learning multivariate SDEs. Numerically esti-
mating Eq. (20) yields poorer performance than numerically estimating Eq. (29) because
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numerically evaluating the W5 distance for higher-dimensional empirical distributions is
generally less accurate.

From Fig. 4c, we see that the runtime and memory needed to numerically evaluate
the time-decoupled Eq. (29) using ot .emd?2 is smaller than those needed for the MMD
method, but larger than those needed to numerically estimate Eq. (20). Yet, as shown in
Fig. 4d, minimizing Eq. (29) leads to the fastest convergence, potentially requiring fewer
epochs when using Eq. (29) as the loss function. An additional comparison of using the two
loss functions, the finite-time-point squared W5 distance Eq. (20) and the finite-time-point
time-decoupled squared W, distance Eq. (29) is given in Appendix I. Further analysis on
how the number of samples and the dimensionality of an SDE dimensionality affects W
-based distances in learning multivariate SDEs will be informative.

Finally, to illustrate a biological application of our method, we reconstruct an SDE model
developed to describe circadian clocks. Circadian cycles can influence cell gene regulatory
dynamics and regulate cell and tissue state dynamics (Gonze, 2011). Intrinsic noise has been
hypothesized to play an important role in governing the circadian clock dynamics (Wester-
mark et al., 2009).

Example 5 We formulate an SDE model of circadian cycles derived from adding Brown-
ian noise to an established deterministic model described by five coupled ODEs Goldbeter
(1995):

dM = (v K M )dt +0.1MdB;}
‘Ki+ Py K+ M ' "
dPy = (ksM —v B D )dt + 0.05Pd B}
0 s 1K1+P0 2K2+P1 . 0 t
Py Py Py ) 3
ap, = - - dt +0.1dB?, (49
= TG E B s TR, ) Y0 @9
P P Py
dp, = - — k1 Py + ko Py — vg———)dt,
2 (v3K3+P1 U4K4+P2 152+ R bw Ude+P2)
Py

APy = (k1Py — ko Py — vy, )dt +0.01dB}, t € [0,50].

K, + Py

In Eq. (49), M describes the concentration of mRNA, F is the concentration of native protein
(per), P1, P represent concentrations of two different forms of phosphorylated protein per
with one or two phosphorylated sites, and Py quantifies the concentration of nuclear per. The
parameters K1 = 2pmol, Ko = 2pmol, K35 = 2umol, K4 = 2umol, K,,, K; = 1pumol,and
K,,, = 0.5umol are the corresponding Michaelis-Menten constants. Reaction rates are repre-
b= 0.76pmol/hr, v1 = 3.2umol/hr, vo = 1.58mol/hrys = 5umol /hr, vy = 2.5umol /hr,
U = 0.65umol/hr, vg = 0.95umol /hr, and ks = 0.38/hr, k; = 1.9/hr, ko = 1.3 /hr. The
dynamics involve four independent Brownian noises described as dB},i = 1,2, 3, 4.

We plot the ground truth trajectories and the trajectories generated by neural SDEs
trained through minimizing the time-decoupled Wa-distance loss function (in Appendix E)
in Fig. 5. The training details are given in Table 1. For simplicity, we plot the mRNA con-
centration M, the naive protein concentration Py, and the nuclear protein concentration
Py, which all display periodic fluctuations over time. The reconstructed trajectories by our
Wasserstein-distance SDE approach can accurately reproduce the intrinsically noisy peri-
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mRNA concentration . native protein concentration s nuclear protein concentration

——ground truth M ——ground truth Py ——ground truth P,

predicted Py

predicted P,

10 20 30 40 50

0 10 20 30 40 50
time time time

Fig. 5 The reconstructed trajectories using our Wasserstein-distance SDE reconstruction approach com-
pared to the ground truth trajectories obtained by simulating Egs. (49). For simplicity, we plot the ground
truth and reconstructed trajectories of the concentrations of mRNA, native protein, and nuclear protein.
The initial condition is set as (M (0), Po(0), P1(0), P2(0), Pn(0)) = (1,0.5,2,0, 1) (units: pmol)
for all trajectories

odic changes in the mRNA and protein concentrations. More analysis of the applicability
of minimizing the time-decoupled Ws-distance loss function to train higher-dimensional
neural SDEs requires further investigation.

6 Summary and conclusions

In this paper, we analyzed the squared W> distance between two probability distributions
associated with two SDEs and proposed a novel method for efficiently learning SDEs from
data by minimizing squared W5 distances as loss functions. Upon performing numerical
experiments, we found that our proposed finite-time-point time-decoupled squared W
distance loss function, Eq. (29), is superior than many other recently developed machine-
learning and statistical approaches to SDE reconstruction.

A number of extensions are apparent. First, one can further investigate applying the
squared W5 loss to the reconstruction of high-dimensional SDEs. Whether the Wasserstein
distance can serve as upper bounds for the errors f — fand o — 6 isalsoan intriguing ques-
tion as its resolution will determine whether minimizing the squared Wasserstein distance
is sufficient for learning SDEs. Another promising area worthy of study is the extension
of the squared W5 distance loss function to the reconstruction of general Lévy processes
that include jumps in the trajectories. Finally, how to take into account extrinsic noise, €.g.,
errors in the measurement of time-series data, could be a prospective research field.

Appendix A: Proof to theorem 1

Here, we shall provide a proof to Theorem 1. First, note that X (t) defined in Eq. (10) has
the same distribution as that of X (¢) defined in Eq. (2). Therefore, by definition, if we let
in Eq. (4) to be the joint distribution of (X, X), then

Wa(p, ) < (lE [/OTIX(t) - X(t)thDUQ. (A1)
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Next, we provide a bound for E [ fOT | X (t) — X(t)|2dt] 1z by the mean value theorem

for f'and g. Note that the standard Brownian motion B(¢) in Eq. (10) is identical to that in
Eq. (1) and

t) — X (t) )dB(t) (A2)

where 1 (21, 22), n2(z1, z2) are deﬁped in Eq. (11) such that their values are in (x1, z2).
Applying 1td’s formula to [X (¢t) — X (¢)]/H(0;t), where H(0, t) is defined in Eq. (12)
we find

X(t) - X(¢t)
d ( H(0:1)

) =575 U = DIE .00+ (X, X).1) - (= )X 1) )] .

' ﬁ (7 =)&), 0aB0)].

Integrating both sides from 0 to z, we obtain

= [ Hs0[( = HEC)5) + 2.0 (X, %)) - (0 = )X (3),9)]as
’ (A4)

+ /Ot H(s;t) - (o — 5)(X(s), )AB(s).
By invoking It6 isometry and observing that (a + b + ¢)? < 3(a® + b% + ¢?), we deduce
E[(x(0) - X(1)"] <3E[( /0 H(s0)- (f - HEE), 9ds) |
+3E [( /0 Hsit)- (0p0 (m2(X, X),5) - (0 — 3)(X (), s)ds)Q}
4 3E [(/OtH(s; 1) (o — 3)(X(s), s)dB(s))2]
<[ [ HA (s t)0s] < B / (- PR ]
+3E [/Otm(s; 1as] x ]E[/Ot (90 (m(X, %),5) - (0~ )(X (), s))st} (AS)
+3E /TH2 (s:t) - (0 — &)2(X (s), s)ds}
<3]E /H2 s t)ds} xE[/ (f — f)?
+3E| /HQStds} xE[/ (0.0 (
+3( /H stds)l/z ( ),s)dst.
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Finally, we conclude that

T
W2, i) < / E[(X(1) - K1)t

<3 /OT]E /tH2(s;t)ds} dt x IE[/T(f - f)Q(X(S)’S)dS)]

+3/ /H2 s: z‘)ds]dz‘ x E[/OT(amg(nz(X,X),s) : (a—a)()’é(s),s))zds)}

/ ( /H4 stds) i (EUOT(U&)4(X(s),s)ds)])l/2,

which proves Theorem 1.

Appendix B: Single-trajectory MSE and KL divergence

We shall first show that using the single-trajectory MSE tends to fit the mean process
E[X (t)] and make noise diminish, which indicates that the MSE is not a good loss function
when one wishes to fit ¢ in Eq. (1).

For two independent d-dimensional stochastic processes {X (£)}7_,, {X (t)}, as
solutions to Egs. (1) and (2) with appropriate f, fando, 6, let E[X] represent the trajectory
of mean values of X (t), i.e., E[X]| = E[X (¢)]. We have

T
E[|X - X|?] =E[ || X - E[X]|*] +E[|X - E[X]|]*] - 2E UU (X - E[X], X - E[X]) dt}, (A7)

where|| X||? = fOT | X|2 dt,| - |adenotesthe/?normofavector,and(-, -)istheinnerproduct
oftwod-dimensional vectors. Inview oftheindependencebetween X — E[X]and X — E[X],
we have E[(X — E[X], X — E[X])] =E[(X —E[X])] -E[(X —E[X])] =0, and

E[|X - X|?] > E[|X —E[X]|*]. (A8)

Therefore, the optimal X that minimizes the MSE is X = E[X], which indicates that
the MSE tends to fit the mean process E[X | and make noise diminish. This is not desirable
when one wishes to fit a nonzero o in Eq. (1).

The KL divergence, in some cases, will diverge and thus is not suitable for being used
as a loss function. Here, we provide a simple intuitive example when the KL divergence
fail. If we consider the degenerate case when dX (t) = dt,dX (t) = (1 — €)dt, ¢ € [0, T,
then Dk (p, fi) = oo no matter how small € # 0 is because p, /i has different and degener-
ate support. However, from Theorem 1, 11_1)1(1) Wa(p, it) = 0. Therefore, the KL divergence

cannot effectively measure the similarity between p, fi. Overall, the squared W5 distance is
a better metric than some of the commonly used loss metrics such as the MSE or the KL
divergence.
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Appendix C: Proof to theorem 2

Here, we shall prove Theorem 2. We denote

Oy = {Y ()Y (£) = Y (1), t € [tistisr), i <N =L Y() = Y(t), t € [tistipa], i= N =1} (A9)

to be the space of piecewise functions. We also define the space
Qn ={Y1(t) + Y2(t),Y1 € C([0,T;R?), Y5 € Qn}. (A10)

Qu is also a separable metric space because both (C([O, T]; R, || - ||) and (QN, Il - ||)
are separable metric spaces. Furthermore, both the embedding mapping from C([0, T]; R%)
to Q. and the embedding mapping from Qy to Q preserves the || - || norm. Then, the two
embedding mappings are measurable, which enables us to define the measures on B (Q N)

induced by the measures p, fi on B(C’([O, TY; ]Rd)) and the measures py, iy on B(Qy).
For notational simplicity, we shall still denote those induced measures by p, &, N, fin-
Therefore, the inequality Eq. (17) is a direct result of the triangular inequality for the
Wasserstein distance (Clement & Desch, 2008) because X, X v, X X N € Qn.
Next, we shall prove Eq. (19) when X (¢), X (¢) are solutions to SDEs Egs. (1) and (2).
Because X () is the projection to X (t), the squared W2 (1, ) can be bounded by

N t: d )
W%(u,uN)sZ[ E[|X(t) - dth/t S E[(Xet) — Xne(t) ] dt

= (All)

For the first inequality above, we choose a specific coupling, i.e. the coupled distribution,
7 of u, pv that is essentially the “original” probability distribution. To be more specific, for
an abstract probability space (€2, A, p) associated with X, p and p v can be characterized by
the pushforward of p via X and X y respectively, i.e., u = X .p, defined by VA € B (Q N) s
elements in the Borel o-algebra of Q N

p(A) = X.p(A) == p(X 1 (4)), (A12)

where X is interpreted as a measurable map from € to 2y, and X ~!(A) is the preimage
of 4 under X. Then, the coupling 7 is defined by

T = (X, XN).p, (A13)

where (X, X ) is interpreted as a measurable map from €2 to Q N X Q ~. One can read-
ily verify that the marginal distributions of 7 are 1 and v respectively. Recall that s repre-
sents the dimension of the standard Brownian motions in the SDEs.

For each ¢ =1, ..., d, we have
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N4
Z/ E[(Xo(t) = Xn (1))t

N

(s+1) ;/j( /f[ dr +IEI /Z% aB;(r ))2])dt]
(Af 2E ) lf[df]—i-AfZE[/q %.dtD

N
= 1

(Al4)

<(s+1)

i=1

The first inequality follows from the observation that (E?:l a; ) <n(> " ,a?) and

i=1"1
application of this observation to the integral representation of X (¢). Summing over ¢, we
have

Z/ ~Xn(b); ]df) P (F(At)g + 2At>1/2 (A15)

Similarly, Wa(fi, i) can be bounded by

Wi, in) < Vs + 14/ F(A)2 + SAL. (Al6)

Substituting Eqs. (A15) and (A16) into Eq. (17), we have proved Eq. (19). This completes
the proof of Theorem 2.
Appendix D: Proof to Theorem 3

We now give a proof to Theorem 3. First, we notice that

E UX(t) . X(t)yﬂ <2AFT+FT+%+%) < o0, Vte[0,T] (A17)

where F, F', 3, S are defined in Eq. (18). We denote

M = ), 0) <2(FT+ FT+ % +%).
Jax Wa (u(t), (1) < 2(FT + FT + 3+ %) (A18)

By applying Theorem 2 with N = 1, the bound

lnf\/IE [|X(t:) (t:)], ]Atf\/(s+1)At<\/FiAt+Ei+\/EAHE)

< Wa(pis ;)

Si?.f\/EmHX(ti)—X(t )51t + /(s +1) At(\/FAt-i—E +M)(A]9)
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holds true forall ¢t = 1,2,..., N — 1. In Eq. (A19),

tigg 4 tig1 4 s
F ::E[/zi ;ff(X(t),t)dt] < o0, 9 ::E[/t ZZUZJ-(X(t),t)dt} < o0,

— =1 j=1
A e & Rt A20
£ :E[/ ZfZ(X(t),t)dt} < o0, S :E[ ZZ&EJ(X(t),t)dt} < 0 (A20)
t =1 i =1 =1
which results from
N—-1 N-1 N—-1 N-—-1
F,=F < o0, By =F < o0, Y =3 < oo, 3 =3 < 00, (A21)
=0 =0 =0 =0

where F, F', 3, S are defined in Eq. (18). Squaring the inequality (A19), we have
2 - s £ 2
W5 (i, ;) < 1£wal[|X(ti) - X(tl)|2] At

+2inf \/Em[|X(ti) — X(t)|2] /(s T DAL <\/FZ-At T3+ EAL+ 2)

+2(s + 1)ALFAL + 25 + FiAL +3;),

W3 (i) 2 inf B [| X () = X (0)] ] At (A22)

— 2Wa (s, ;)\ (s + 1) At (\/FZ-At + %+ FAL+ 2)

—2(s + DAL FAL + 5 + F AL+ 5))

Specifically, from Egs. (A18) and (A19),

Wa (i, fr;) < VAL [M Vst 1(\/FT Y+ VET + 2)} = MVAL, M < oo
(A23)

Summing over ¢ =1,..., N — 1 for both inequalities in Eq. (A22) and noting that

At=Z

> we conclude
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=z

-1

=z

-1

s

1

N—1
+2MALs 1Y <\/F1At + %+ \/ AL+ 2)
=1
+2At(s + 1) (FAt + S+ FAL + 5, (A24)
< me]E X0 - X))

+2(s+ 1)At(FAt+ S+ FAt+3)
+ MA/(s+ )AL ((F + F +20)VAt + S+ % +27)

e 2

(t;) — X(ti)|2} At

-
I
—

i

and

?
b

W3 (piy 1) > Y inf B [| X (8:) — X (8)[3] At

TG

s
Il
-
-
I
—

N—-1
— oM A5 + 1 Z (x/FiAt + 3 +\/ FiAt + 2)
=1

—2(s+1)At (FAt+ X+ FAt+ %), (A25)
N-1
> inf B [|X () - X (t:)[3] At
i=1 :
—2(s+1)At (FAt+ S+ FAt + %)
— M\/(s+ DAt (F + F)At + £+ 3 +27T).

Egs. (A24) and (A25) indicate that as N — oo,

N-1 N-1
> inf B [| X (1) — X (%) a3 W u, ) - 0, (A26)
i=1 B i=1

S u p P o S e

0=1t5 <t} <..<ty, =T;0=13 <t <..<t}, =T tobetwosetsofgridson][0, T].
We define a third set of grids 0 = 3 < ... <}, = T such that {t, ... tNl} U{t3, ... t%,
= {t3, st} }- Let 0t := max{max;(t},, — t}), max;(t],, — t),maxy(t} , —t})}. We
denote u(tl) and i(t}) to be the probability distribution of X (¢) and X (£5), s = 1,2, 3,
respectively. We will prove

Np—1 N3—1

’ Z W;(M(t})’ﬂ(t )) (b1 = t3) Z W2 ))(tfﬂ —t?)

i=0

— 0, (A27)
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as 0t — 0.

First,supposeintheinterval (], ¢;, | ),wehavet] =t} < tg1 <. <tj, =t/ ,s>1,
£+s 1

then for s > 1, since ¢}, | —t! = (tk+1 t3), we have

l+s5—1
’Wi(u(ti),ﬂ(ti))(tiﬂft})f > Wg(u(tz)),ﬂ(tﬁ))(tgH,tg)’
k=t
l+s—1
< X |Waluteh.teh) - W), aed)| (A28)
k=0+1

x (W ((th), ACeD)) + Wa (u(t2), 4e) )t — ).

On the other hand, because we can take a specific coupling 7* to be the joint distribution
of (X (t7), X (})),

tiia d s
<VsT1E [/ SORX@),dt+ > > a7 (X (1), t)dt} 1/2(AZ9)
ti =1 (=1 j=1

Similarly, we have

tit1 d N 2
Wy (a2, it3)) < Vs 1 IE[/ SR, dt—Q—ZZaM (1), t)dt} Y
= =1 j=1 (A30)

From the triangular inequality of the Wasserstein distance, we find

W (81, A21)) = Wa (u(82), D)) | < W (ue1), (1)) + W ((eD), (D).

(A31)
Substituting Eq. (A31) into Eq. (A28), we conclude that
l+s—1
(W3 (1), D) (e —th) = 3 WE (e, AED) (4 — 1))
k=t (A32)

<2M(t}, — <\/F5t+2 +\/F6t+2)

When the conditions in Eq. (33) hold true, we use Eq. (A32) in Eq. (A27) to find
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N;—1 N3—1
|7 WE () AED) (¢ — ) = D7 WE (D), AED) (8 — 8)
=0 =0 (A33)

< 2MT max <\/F1;6t+ Y +\/ Fyot + 2) -0
K3

as 6t — 0. Similarly,

Ny—1 N3—1

|7 WE (R AE) (¢4 — ) = D7 WE (D), AED) (8 — £)
i=0

=0 (A34)
< 2MT max <\/Fi5t + % + 1\ Eyot + z) -0
as 0t — 0. Thus,
N;—1 No—1
|7 WE (), D)ty — D) = D7 WE(u(#). A1) (B — )] =0
i=0 i=0 (A35)

as 6t — 0, which implies the limit

N-1 N—-1
s . & 2] 1 1 s 2 1y Ael 1 1
lim 7 B[ X () = XD]] (¢ —th) = Jim 37 W (e ah) ¢! — el

N—o0

i=1 i=1 (A36)

exists. This completes the proof of Theorem 3.

Appendix E: Definition of different loss metrics used in the examples
Six loss functions for 1D cases were considered:

1. The squared Wasserstein-2 distance (Eq. (20))

W3 (1S, A5,

where pS; and 1%, are the empirical distributions of the vector (X (¢1),...X (tn—1)) and
KN HN

A~ N

(X (t1),..., X (tn=1)), respectively. It is estimated by

1 1
2/, e ~e
%) ~ ot.emd? 71,,,71,,0), A37
W5 (uiy, fify) = ot.em (M syl (A37)

where ot.emd2 is the function for solving the earth movers distance problem in the ot
package of Python, M is the number of ground-truth and predicted trajectories, I, is an
M-dimensional vector whose elements are all 1, and C € RM*M jg a matrix with entries
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(C)ij = (Xi — X%)3. X} is the vector of the values of the i*" ground-truth trajectory at

time points ¢, ...,txy—_1, and X f\, is the vector of the values of the jth predicted trajectory
at time points ¢, ..., tn—1.

2. The squared time-decoupled Wasserstein-2 distance averaged over each time step
(Eq. 29)):

W3 (un. i) = sz sl (ti) At

, where At is the time step and W5 is the Wasserstein-2 distance between two empirical
dlstrlbutlons I N( i), 1% (t:). These distributions are calculated by the samples of the trajec-
tories of X (¢), X (t) at a given time step t = t;, respectively.

3. Mean squared error (MSE) between the trajectories, where M is the total number of the
ground-truth and prediction trajectories. X; ; and )A(l ; are the values of the j*! ground-
truth and prediction trajectories at time ¢;, respectively:

N M
~ 1 ~
MSE(X, X) =) 7 > (Xij - Xij)?At.
i=1 j=1

4. The sum of squared distance between mean trajectories and absolute distance between
trajectories, which is a common practice for estimating the parameters of an SDE. Here

M and X; ; and X’i,j have the same meaning as in the MSE definition. var(X;) and

var(X;) are the variances of the empirical distributions of X (t;), X (;), respectively.
We shall denote this loss function by

N

2 Lo )2 0
(mean? + var)(X, X) Z |KM ZX i ;Xi,j) + |var(XZ-) — var( 1)}

5. Negative approximate log-likelihood of the trajectories:

At.

N-1 M ‘
—log L(X]o) = log ppr [ S+L
i=0 j=1

I

- X5+ f(Xi,jvti)At}
0'2()(2‘73‘7 ti)At

where par is the probability density function of the standard normal distribution and
f(Xij,ti),0(X; ;,t;) are the ground-truth drift and diffusion functions in Eq. (1). M and

X, j and X, ; have the same meaning as in the MSE definition.
6. MMD (maximum mean discrepancy) (Li et al., 2015):
N
MMD(X, X) = 3 (IEP[K(Xi,Xi)] R, [K(X;, Xi)] + B [K (X, Xi)])At,

i=1
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where K is the standard radial basis function (or Gaussian kernel) with multiplier 2 and
number of kernels 5. X; and X; are the values of the ground-truth and prediction trajectories
at time ¢;, respectively.
Five Ws-distance-based loss functions for the 2D SDE reconstruction problem Example 4
are listed as follows

1. 2D squared W loss

N—-1

(Wz i (ts), v (i) + W3 (w2 (t), v (i )))At

i=1
where i1 (t;) and fin 1 (t;) are the empirical distributions of X, X, at time ¢;, respec-
tively. Also, pun,2(t;) and fin 2(t;) are the empirical distributions of Xz, X5 at time ¢;,

respectively.

2. Weighted sliced squared W loss

N-1 m N,
k 2 s AS
m W. 1% ti), i t; )At
> (;ZHM 3 (s 02). A (1)

where iy, (t;) is the empirical distribution for \/ X1 ()% + X2(t;)? such that the angle
between the two vectors (Xl( i)y Xao(t 1)) and (1, 0) is in [2(1C L 2km . A i (ti) is the

' m

empirical distribution for \/ X1 (t;)2 + X (t;)? such that the angle between the two vectors

(Xl( 3, Xo(t i) and (1, 0) is in [M, 2h7): Ny, is the number of predictions such that
2(k—1)m QIQJ)

m ' m

the angle between the two vectors (X1 (¢;), X2(¢;)) and (1, 0) is in [

3. The loss function Eq. (20)

W3 (1S A5,

where 45, and fi$, are the empirical distributions of the vector (X (¢1),...X (tn—1)) and
(X (t1),..., X (tn—1)), respectively. It is estimated by

1
71'1%70)7 (A38)

1
W2(pS, i%) = ot. d2(—I I,
5 (1Y, fiy) ~ ot.em MM

where ot.emd2 is the function for solving the earth movers distance problem in the ot
package of Python, M is the number of ground-truth and predicted trajectories, I, is an
M-dimensional vector whose elements are all 1, and C € RM*M jg a matrix with entries

(C)ij =Xy — X VI2. X is the vector of the values of the i ground-truth trajectory at

time points ¢y, ...,ty—1, and X ?v is the vector of the values of the jth predicted trajectory
at time points ¢, ..., tn—1.
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4. The time-decoupled squared W5 loss function, which is the right-hand side of Eq. (29),
estimated by

>

1 N-1
1111”IE7r [|X( i) — Z VV2 ))At At Z ot.emd?(%lz\h %IM, Ci),
1 = (A39)

i

where 5 (t;), 1% (t;) are the empirical distribution of X (¢;), X (t;), respectively, and
ot.emd2 is the function for solving the earth movers distance problem in the ot package
of Python. M is the number of ground-truth and predicted trajectories, and I,; is an ¢
-dimensional vector whose elements are all 1. Here, the matrix C; € RM*M hag entries

(Ch)sj = |X5(t;) — Xj(tz)\% fori=1,...N — 1. X*(¢;) is the vector of the values of

the s*® ground-truth trajectory at the time point ¢;, and X’ (t;) is the vector of the values of
the j** predicted trajectory at the time point #;.

5. MMD (maximum mean discrepancy) (Li et al., 2015):

N
MMD(X, X) Z( K(X:, X,)] = 2B, [K(X,, X)) +Eq[K(Xi,XZ-)])At,
i=1

where K is the standard radial basis function (or Gaussian kernel) with multiplier 2 and
number of kernels 5. X; and X; are the values of the ground-truth and prediction trajecto-
ries at time ¢;, respectively.

Appendix F: Uncertainty in the initial condition

For reconstructing the CIR model Eq. (45) in Example 2, instead of using the same initial
condition for all trajectories, we shall investigate the numerical performance of our pro-
posed squared W5 distance loss when the initial condition is not fixed, but rather sampled
from a distribution.

First, we construct an additional dataset of the CIR model to allow the initial value
ug ~ N(2,62%), with 62 ranging from 0 to 1, and AV stands for the 1D normal distribution.
We then train the model by minimizing Eq. (29) to reconstruct Eq. (45) with the same hyper-
parameters as in Example 2. The results are shown in Table 2, which indicate our proposed
squared W5 loss function is rather insensitive to the “noise", i.e., the variance in the distribu-
tion of the initial condition.
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Table2 Reconstructing the Loss 1) Relative Errors in f Relative Errors in o Nyepeats
S(I)meﬁ}i(f’;%%)(ﬁzﬂgrent Wa 0.0 0.072 (% 0.008) 0.071 (= 0.023) 10
variance §2 Wa 0.1 0.053 (+0.008) 0.043 (= 0.016) 10
Wa 0.2 0.099 (+0.007) 0.056 (£ 0.019) 10
Wa 0.3 0.070 (£ 0.014) 0.083 (£ 0.026) 10
Wa 0.4 0.070 (£0.014) 0.078 (£ 0.040) 10
Wa 0.5 0.075(x£0.013) 0.138 (£ 0.021) 10
Wa 0.6 0.037 (£0.018) 0.069 (£ 0.017) 10
The results indicate that the Wa 0.7 0.075(x0.016) 0.043 (£ 0.014) 10
reconstruction results are not Wa 0.8 0.041 (+0.012) 0.079 (+ 0.023) 10
se'nsi.tive.to the var.ia.n?e in the Wo 0.9 0.082 (+0.015) 0.108 ( 0.033) 10
distribution of the initial value
u0 Wa 1.0 0.058 (£ 0.024) 0.049 (+0.025) 10
Table 3 Reconstruct_ing the Loss Width Layer Relative errors  Relative errors  Nyepeats
CIR model when using neuron inf ino
o P R R Ve N R
parameterize f, & in Eq. (2) Wy 32 1 0.041(£0.008) 0.109(+0.026) 10
W 64 1 0.040(£0.008) 0.104(+£0.019) 10
Wy 128 1 0.040(£0.008) 0.118(+£0.019) 10
Wy 32 2 0.049(£0.015)  0.123(£0.020) 10
Wa 32 3 0.094(+0.013) 0.166(+0.041) 10
Wy 32 4 0.124(+0.020) 0.185(+0.035) 10
Wa 32 5 0.041(£0.008) 0.122(40.024) 10
Wa 32 6 0.043(£0.013) 0.117(+£0.024) 10
Wy 32 7 0.044(4+0.012) 0.109(+£0.017) 10

Appendix G: Neural network structure

We examine how the neural network structure affects the reconstruction of the CIR model
Eq. (45) in Example 2. We vary the number of layers and the number of neurons in each
layer (the number of neurons are set to be the same in each hidden layer), and the results are
shown in Table 3.

The results in Table 3 show that increasing the number of neurons in each layer improves
the reconstruction accuracy in o. For reconstructing the CIR model in Example 2, using 32
neurons in each layer seems to be sufficient. On the other hand, when each layer contains
32 neurons, the number of hidden layers in the neural network seems does not affect the
reconstruction accuracy of f, o, and this indicates even 1 or 2 hidden layers are sufficient
for the learning of f, o. Thus, reconstructing the CIR model in Example 2 using our pro-
posed squared W5 based loss function does not require using complex deep or wide neural
networks.

We also consider using the ResNet neural network structure (He et al., 2016). However,
the application of the ResNet technique does not improve the reconstruction accuracy of the
CIR model in Example 2. This is because simple feedforward multilayer neural network
structure can work well for learning Eq. (45) when learning both f'and ¢ so we do not need
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deep neural networks. Thus. the ResNet technique is not required. The results are shown in
Table 4.

Appendix H: Using the stochastic gradient descent method for
optimization

Here, we shall reconstruct the OU process Eq. (46) in Example 3 with the initial condition
X (0) = 0 using the MMD and our squared W5 distance loss functions Egs. (20) and (29)
with different numbers of ground-truth trajectories and different batch sizes for applying the
stochastic gradient descent technique for optimizing the parameters in the neural networks
for reconstructing the SDE.

We train 2000 epochs with a learning rate 0.001 for all numerical experiments. In all
cases, the loss functions converge before 2000 epochs. From Table 5, for all three loss func-
tion, i.e., the MMD loss, Egs. (20) and (29), a larger number of training samples leads to
more accurate reconstruction of ¢ (the noise term). Furthermore, it can be seen from Table 5
that using a smaller batch size (16) for training tends to lead to less accurate reconstruction
of o for the MMD and Eq. (20) loss functions even if the number of trajectories in the train-
ing set is large. This feature might arise because the trajectories are intrinsically noisy and
evaluating MMD and Eq. (20) will be inaccurate if the batch size is small. Therefore, using
a smaller batch size does not remedy the high cost of MMD as the reconstruction error is
large and leads to inaccurate reconstruction of the ground-truth SDE for smaller Ngample.-
On the other hand, our proposed time-decoupled squared W5 distance loss function Eq. (29)
gives similar performance in learning f, o for both a batch size of 16 and a batch size of 256.
In other words, using Eq. (29) is more robust to a smaller batch size. From Table 5, using a
smaller batch size (16) leads to faster training. Thus, we can consider using Eq. (29) as the
loss function together with a smaller batch size to boost training efficiency.

From the results in both Example 3 and Table 5, our proposed time-decoupled squared
W, distance Eq. (29) is faster and more efficient than the MMD method and Eq. (20), mak-
ing it potentially most suitable among all three loss functions for reconstructing SDEs.

Appendix I: Additional discussion on the loss functions Eqs. (20)
and (29)

Here, we make an additional comparison between using Egs. (20) and (29) as loss functions
in Example 4. We set the number of training samples to be 128 and other hyperparameters
for training to be the same as those in Example 4, as detailed in Table 1.

Table 4 Reconstructing the CIR Loss

Layer Relative errorsin f Relative errors in o Nyepeats
model Eq. (45) when neuron net-

works have different numbers of /2 ! 0.045(+0.012) 0.116(+0.025) 10
hidden layers and are equipped Wy 2 0.053(+0.011) 0.108(£0.024 10
with the ResNet technique Wy 3 0.071(0.017) 0.117(0.040) 10

Wy 4 0.096(+0.035) 0.149(+0.064) 10

Each hidden layer contains 32 neurons
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Table 5 Errors and runtime for different loss functions and different numbers of ground-truth trajectories
when the training batch size is fixed to 16 and 256. The unit of runtime is hours

Loss Nsample Batchsize  Relative errorin/”  Relative errorin o Runtime Nrepeats
MMD 64 16 0.30+£0.12 0.49+0.17 1.19+£0.59 10
MMD 128 16 0.30+0.09 0.50+0.20 1.27 £0.58 10
MMD 256 16 0.31+0.09 0.44£0.21 1.31+£0.59 10
MMD 512 16 0.22+0.12 0.43+0.18 1.22+0.37 10
MMD 1024 16 0.23+0.11 0.37+0.24 1.70 £ 0.47 10
Eq.(20) 64 16 0.28 £ 0.06 0.66 +0.11 0.83+0.26 10
Eq. (20) 128 16 0.24+0.07 0.68 £0.11 0.73+£0.18 10
Eq. (20) 256 16 0.25+0.07 0.66 +0.09 0.67+0.14 10
Eq.(20) 512 16 0.23 +£0.06 0.68 +£0.09 0.75+0.16 10
Eq. (20) 1024 16 0.25+0.07 0.66 £ 0.09 1.02 +0.47 10
Eq.(29) 64 16 0.20 +0.06 0.42 £0.08 0.61+0.14 10
Eq.(29) 128 16 0.22 +£0.06 037+0.14 0.78 £ 0.35 10
Eq.(29) 256 16 0.21+£0.07 0.39+0.16 0.88 +0.46 10
Eq.(29) 512 16 0.23 £ 0.06 0.43+£0.15 0.72+0.11 10
Eq. (29) 1024 16 0.21 £0.03 0.36+0.12 1.08 £0.52 10
MMD 64 256 0.26 £0.12 0.41+£0.20 1.54 +£0.66 10
MMD 128 256 0.25+0.14 0.40+0.23 1.82+0.78 10
MMD 256 256 0.25+0.12 0.35+0.21 3.68£1.31 10
MMD 512 256 0.23+0.14 0.37+0.23 3.45+1.50 10
MMD 1024 256 0.23+0.13 0.35+0.21 3.09 +1.35 10
Eq.(20) 64 256 0.28 £0.08 0.61 £0.04 1.19+0.45 10
Eq. (20) 128 256 0.31+0.07 0.61=0.07 1.04 £ 0.48 10
Eq. (20) 256 256 0.26 £0.07 0.53+0.03 0.96 +0.43 10
Eq.(20) 512 256 0.26 £ 0.08 0.56 +£0.05 0.98 +0.40 10
Eq.(20) 1024 256 0.27 £0.08 0.56 £ 0.05 0.89+036 10
Eq.(29) 64 256 0.24 +0.08 0.41+0.13 1.39+0.53 10
Eq.(29) 128 256 0.26 £0.11 037+0.17 1.36+£0.61 10
Eq.(29) 256 256 0.20 £ 0.08 0.31£0.16 1.72+0.73 10
Eq.(29) 512 256 0.25+0.11 0.38 £0.20 1.67 £0.73 10
Eq.(29) 1024 256 0.26+0.10 0.39+£0.20 1.64 £0.79 10

The MMD and our proposed squared Wa distance Eq. (20) and well as our proposed time-decoupled
squared Wy distance Eq. (29) are used as the loss function

First, we minimize Eq. (20) and record Egs. (20) and (29) over training epochs. Next,
we minimize Eq. (29) and record Eq. (20) and Eq. (29) over training epochs. The results are
shown in Fig. 6.

From Fig. 6a, we can see that when minimizing Eq. (20, Eq. 20) is almost 10°-® times
larger than Eq. (29). However, when minimizing Eq. (29), the values of Egs. (20) and (29)
are close to each other (Fig. 6b). In both cases, Eq. (29) converges to approximately 1071,
Interestingly, minimizing Eq. (29) leads to a smaller value of Eq. (20). This again implies
that minimizing Eq. (29) can be more effective than minimizing Eq. (20) in Example 4.
More analysis on Eq. (29) is needed to understand its theoretical properties and to com-
pare the performances of minimizing Eq. (29) versus minimizing Eq. (20) from numerical
aspects.
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Fig.6 a The change in Egs. (20) and (29) when minimizing Eq. (20) over training epochs. b The change
in Egs. (20) and (29) when minimizing Eq. (29) over training epochs
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