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We formulate a general, high-dimensional kinetic theory describing the internal state (such as
gene expression or protein levels) of cells in a stochastically evolving population. The resolution of
our kinetic theory also allows one to track subpopulations associated with each generation. Both
intrinsic noise of the cell’s internal attribute and randomness in a cell’s division times (demographic
stochasticity) are fundamental to the development of our model. Based on this general framework,
we are able to marginalize the high-dimensional kinetic PDEs in a number of different ways to
derive equations that describe the dynamics of marginalized or “macroscopic” quantities such as
structured population densities, moments of generation-dependent cellular states, and moments
of the total population. We also show how nonlinear “interaction” terms in lower-dimensional
integrodifferential equations can arise from high-dimensional linear kinetic models that contain rate
parameters of a cell (birth and death rates) that depend on variables associated with other cells,
generating couplings in the dynamics. Our analysis provides a general, more complete mathematical
framework that resolves the coevolution of cell populations and cell states. The approach may be
tailored for studying, e.g., gene expression in developing tissues, or other more general particle
systems which exhibit Brownian noise in individual attributes and population-level demographic
noise.

I. INTRODUCTION

Mathematical models have been formulated to describe the evolution of populations according to a number of
individual attributes such as age, size, and/or added size since birth. Such structured population models have various
applications across diverse fields. For example, deterministic age-structured models that incorporate age-dependent
birth and death were developed by McKendrick and have been applied to human populations [1, 2]. Structured
population models have also been applied to model cell size control [3, 4], cellular division mechanisms [5], and
structured cell population models [6, 7].

In a proliferating cell population, individual cell growth is interrupted by cell division events that generate daughter
cells. Kinetic theory is a natural framework to capture the link between individual cellular growth and division, within
a proliferating population of cells. Kinetic theories of simple birth-death processes that track the chronological age
of each cell have been developed [8–11] that establish a rigorous mathematical framework to describe how individual
cell aging, growth, and division affect population-level quantities such as population-averaged cell size. The kinetic
theory PDE can be marginalized in different ways and reduce, in different limits, to master-like equations or struc-
tured population-like PDEs, thus unifying deterministic “moment” equations (the structured population PDEs) with
Markovian birth-death-like models. Stochastic fluctuations in parameters such as the cellular growth rate have also
been included [12], but integrating fluctuations of internal variables with random birth-death events (demographic
stochasticity) is challenging due to the combinatorial complexity and unwieldiness of the relevant equations.

Besides simple individual-cell dynamical variables such as cell age or cell size, gene (mRNA) or protein expression
levels are also measured cellular attributes that are important in cell biology, particularly during development. Since
there are many different species of mRNA or proteins, the expression pattern is a vector of fluctuating variables.

Although modern computational and statistical techniques can be used to quantitatively infer single cellular mRNA
[13] or protein [14, 15] levels from experimental data, mathematical models of how expression levels or cell states evolve
is often couched in terms of transport along Waddington or fitness landscapes [16, 17]. The value of the landscape
may represent an “energy” function that is shaped by different genes, or a proliferation rate that is a function different
gene expression rates. However, how populations of cells are represented in such high-dimensional “landscapes” is
unclear. Moreover, since cellular division rates and death rates typically depend in depend on internal stochastic cell
variables such as gene expression levels [18–20], it is important to model how fluctuating-gene-expression-dependent
birth or death rates feature in the evolution of a population along an appropriate landscape.

Kinetic models have the capability of precisely describing both the stochastic dynamics of individual cell states and
the stochastic birth-death processes associated with an evolving population. Not only is the coupling between indi-
vidual cell states and the evolution of the population explicit in a kinetic equation, but potential functions governing
intracell state dynamics and proliferation (defining a fitness function) arise naturally in the kinetic framework.

Previously derived kinetic models such as the timer-sizer model for cell populations distributed across size [10, 21]
incorporate stochastic differential equations (SDEs) to track the dynamics individual internal cell states such as size or



2

mRNA/protein levels. Marginalization of the kinetic equations results in equations for the correlation functions that
explicitly show how individual cell states are linked to key macroscopic quantities of the overall population. However,
these kinetic theories could not track lineages or generational subpopulations of cells nor did they incorporate cell
death or cell division that may also depend on other stochastic variables associated with the cell.

In this paper, we formally develop a complete kinetic model that tracks continuous-valued, stochastically evolving
variables (e.g., gene expression, cellular size, mRNA level, protein level, etc.) and the discrete generation number
of each cell. The mathematical framework we use for delineating cell of differernt attribute values across different
generations shares a related structure to one recently used to describe ages across different cell stages [11]. In our
problem, noise in gene expression is described by a continuous-time stochastic process while noise in division events
is described by a Markov jump process. Our model couples these stochastic processes through an SDE-jump-process
hybrid model in which the division and death rates explicitly depend on fluctuating gene expression levels [22, 23]. All
of these quantities are tracked along different generations. The mathematical framework we use for delineating cell of
differernt attribute values across different generations shares a related structure to one recently used to describe ages
across different cell stages [11].

In the next section, we define the kinetic model and show how potentials that govern the intracellular dynamics
and the population fitness can be motivated. Since the development of our generation-dependent kinetic equations
requires intensive book-keeping and associated notation to resolve the time-dependent attributes of each member of
the entire population, many of the steps are detailed in extensive mathematical Appendices. However, eventually,
in Section III we marginalize our high-dimensional kinetic PDE to derive a number of more meaningful “reduced”
equations that describe the evolution of key quantities of biological interest. These new results are summarized and
listed in the Summary and Conclusions. We also carry out a numerical experiment on a simple example to show
how cellular gene expression levels evolve over generations and how the macroscopic cellular density (with respect
to gene expression level), when interrupted by cellular division, can be prevented from returning to the equilibrium
distribution. In the Conclusions, we discuss potential applications and extensions.

II. KINETIC EQUATION FORMULATION

For simplicity, we first assume the internal state of each cell is characterized by a one-dimensional scalar quantity
X ∈ R. This continuous stochastic variable may represent, for example, the expression level of a single mRNA
transcript or protein abundance (or log-abundance). Besides this continuous variable, associated with each cell is the
discrete generation i ∈ N+ to which it belongs (assuming it is part of a lineage derived from an ancestor). We model
the evolution of Xi,j (the internal state of the jth cell in the ith generation) using an SDE of the standard form [24, 25]

dXi,j(t) = gi,j(Xi,j , t)dt+ σi,j(Xi,j , t)dWi,j , (1)

where gi,j(Xi,j , t)dt is the deterministic convection that depends on both Xi,j and the generation i, and dWi,j are
increments of independent Wiener processes for each i, j. Thus, the term σi,j(Xi,j , t)dWi,j represents the “intrinsic”
fluctuation in the evolution of Xi,j(t). Often, one can assume that the convection arises from gradients of a potential
“energy function” Φ: gi,j(Xi,j , t) := −∇Φ(x, t)|x=Xi,j

[17]. Although a gradient of Φ(x, t) may conveniently describes
a time-dependent force that changes gene expression, nonconservative driving with metabolically driven fluxes, which
cannot be described by a potential, is also to be expected [26].

We assume that both gi and σi are Lipschitz continuous so the solution Xi,j(t) of Eq. (1) exists and is almost
surely unique given any initial condition Xi,j(0). The evolution of Xi,j is interrupted by the cell division; an ith

generation cell with internal state Xi,j divides in time dt with total probability βi(Xi,j)dt. This Markovian birth rate
can be further stratified by internal state of the two resulting daughter cells immediately after their birth. We denote
the differential birth rate density of producing one daughter with internal state X1 and the other with state X2 as
β̃i,j(Xi,j , X1, X2). Integrating over all possible daughter cell states X1, X2 defines the total division rate:∫

β̃i,j(Xi,j , X1, X2)dX1dX2 = βi,j(Xi,j). (2)

A form for β̃ might be

β̃i,j(Xi,j , X1, X2) ∝ e−φ(X1,X2|Xi,j), (3)

which defines a “free energy” function φ(X1, X2|Xi,j) for the rate of a mother cell with attribute value X to divide
into daughters cell with attribute values X1 and X2. If the states of the daughter cells tend towards being similar in
value to that of their mother cell, then φ(X1, X2|Xi,j) would exhibit a minimum at X1, X2 ≈ X. Although Φ and
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Symbol Definition and explanation

n(t)
n(t) := (n1(t), ..., nk(t)(t)): time-dependent vector of random numbers of cells in the ith

generation, i = 1, ..., k

n n := (n1, ..., nk): vector of integer values ni of the number of cells in generation i = 1, ..., k

X(t)n(t)

X(t)n(t) := (X1(t), ...,Xk(t)(t)), Xi(t) := (Xi,1(t), ..., Xi,ni(t)(t)): time-dependent random

variable describing the state of each cell, e.g., gene expression level Xi,ni(t) of the nth
i cell in

the ith generation

Xn
Xn := (X1, ...,Xk), Xi := (Xi,1, ..., Xi,ni): values of X(t)n(t)

~Xn
~Xn := (X1, ..., Xn), the vector of state values for any collection of n cells

gi,j(Xi,j , t) deterministic growth rate of the jth cell in the ith generation

σi,j(Xi,j , t) noise in the growth of the jth cell in the ith generation

βi,j(Xi,j) division rate of the jth cell in the ith generation

µi,j(Xi,j) death rate of the jth cell in the ith generation

β̃i,j(Xi,j , X1, X2)
differential division rate of the jth cell in the ith generation into two cells in the (i + 1)th

generation with states X1, X2

X−jnb,−i

states of the cell population right after the jth cell in the ith generation divides. X−jnb,−i

differs from Xn in that the state variables for the cells in the (i − 1)th generation is
(Xi−1,1, ..., Xi−1,j−1, Xi−1,j+1, ...Xi−1,ni) and the state variables for the cells in the ith gen-
eration are (Xi,1, ..., Xi,ni , X1, X2)

X−jnd,−i

states of the cell population right after the jth cell in the ith generation dies. X−jnd,−i

differs from Xn in that the state variables for the cells in the (i − 1)th generation are
(Xi−1,1, ..., Xi−1,j−1, Xi−1,j+1, ...Xi−1,ni)

Xj
nb,i−1

pre-division cellular population: it differs from Xn in that the state variables for the cells
in the (i − 1)th generation is (Xi−1,1, ..., Xi−1,j−1, Y,Xi−1,j , ...) and the state variables for
the cells in the ith generation are (Xi,1, ..., Xi,ni−2) (an additional cell with Y in the (i −
1)th generation divides and gives birth to two new daughter cells Xi,ni−1, Xi,ni in the ith

generation)

Xj
nd,i

pre-death cell population states. This differs from Xn in that the state variables for the cells
in the ith generation are (Xi,1, ..., Xi,j−1, Y,Xi,j , ...) (an additional cell in the ith generation
with Y dies)

Xj1,j2
nb,i

pre-division state which differs from Xn in that the state vector associated with the ith

generation is (Y,Xi,1, ...Xi,ni) and the state of the (i + 1)th generation does not contain
components Xi+1,j1 and Xi+1,j2

TABLE I: Overview of variables. A list of the main variables and parameters used. The specific labels and definitions of
state vectors given provide the proper bookkeeping of all possible initial and final states upon birth and death.

φ might be loosely described in terms of Waddington and fitness landscapes, our unifying kinetic framework allows
them to be unambiguously described in terms of the intracellular advection gi,j(Xi,j , t) and proliferation function β̃,
respectively.

Since the derivation of our kinetic theory requires the use of a number of variables and indices, we define some
simplifying notation. Specifically, each of the ni elements of the bold vector Xi represents the expression level Xi,j

of the jth, 1 ≤ j ≤ ni cell in the ith-generation subpopulation. These vectors Xi for the subpopulations across
generations 1 ≤ i ≤ k can be collected as a matrix defined as Xn := (X1, . . . ,Xk), where n := (n1, ..., nk) is a vector
representing the total number of cells in each generation 1 ≤ i ≤ k. Each value ni evolves stochastically defined by
random birth and death events. Below is a table of the various definitions and overall notation used throughout this
paper.

Next, define pn(Xn, t|X(0)n(0), 0) as the probability density function that the population has n cells with internal
states Xn given the initial condition that the system has n(0) cells with internal state values X(0)n(0) at t = 0. For
notational simplicity, we name the cell state random variables (at time t) Xi,j(t),Xi(t), and X(t)n(t), and denote
their values by and Xi,j ,Xi, and Xn, respectively. The probability density pn(Xn, t|X(0)n(0), 0) can be defined as
the expectation over trajectories from (X(0)n(0), 0) to (Xn, t):
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pn
(
Xn, t|X(0)n(0), 0

)
=



E
[
δ
(
X(t)n(t) −Xn

)
S
(
t;X(t)n(t)

)∣∣∣X(0)n(0), 0;n(0 < s < t) = n(0)
]
, n = n(0)

+

∫ t

0

E
[
J̃
(
t, τ ;X(t)n(t),n(0)

)
S
(
τ ;X(τ)n(τ)

)∣∣∣X(0)n(0), 0;n(0 < s < τ) = n(0)
]
dτ,

E
[ ∫ t

0

J̃(t, τ ;X(0)n(0),n(0))S
(
τ ;X(τ)n(τ)

)
dτ
∣∣∣X(0)n(0), 0

]
, n 6= n(0)

(4)
where

S
(
t;X(t)n(t)

)
≡ exp

[
−
∫ t

0

k(0)∑
i=1

ni(0)∑
j=1

(
β
(
Xi,j(s)

)
+ µ

(
Xi,j(s)

))
ds
]

J̃
(
t, τ ;Xn,n(0)

)
≡
k(0)∑
i=1

ni(0)∑
j=1

[
β̃i,j
(
Xi,j(τ), X1(τ), X2(τ)

)
pn(Xn, t− τ |X(τ)−jn(0)b,−i

, 0)

+ µi,j
(
Xi,j(τ)

)
pn(Xn, t− τ |X(τ)−jn(0)d,−i

, 0)
]
.

(5)

Definitions of X−jn(0)b,−i
(s) and X−jn(0)d,−i

are given in Table I. The term S
(
t;X(t)n(t)

)
represents the survival

probability up to time t while J̃(t, τ ;X(t)n(t),n(0)) describes the probability flux from a given state X(τ)n(τ) to the
current state X(t)n(t) due to division or death at time τ . The first form on the RHS of Eq. (4) is the probability that
no division or death happens in the system during time [0, t] and the final internal states of the cell population are
X(t)n(t) while the second form in Eq. (4) denotes the probability that at least one division or death happened within
[0, t] to arrive at the final internal state X(t)n(t).

We shall show that under certain conditions, pn(Xn, t|X(0)n(0), 0) satisfies the partial differential equation

∂pn
∂t

+

k∑
i=1

ni∑
j=1

∂(gi,jpn)

∂Xi,j
=

1

2

k∑
i=1

ni∑
j=1

∂2(σi,jpn)

(∂Xi,j)2
−

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
pn

+

k∑
i=2

ni−1+1∑
j=1

∫
β̃(Y,Xi,ni−1, Xi,ni)pnb,i−1

(Xj
nb,i−1

, t|X(0)n(0), 0) dY

+

∞∑
i=1

ni+1∑
j=1

∫
µ(Y )pnd,i

(Xj
nd,i

, t|X(0)n(0), 0) dY.

(6)

In Eq. (6), the pre-division cell population Xj
nb,i−1

and the pre-death cell population Xj
nd,i

are explicitly defined in

Table I. The mathematical steps and necessary conditions needed to show that pn(Xn, t|X(0)n(0), 0) defined in Eq. (4)

satisfies Eq. (6) is given in Appendix A. We impose the normalization condition
∑

n

∫
pn(Xn, t|X(0)n(0), 0)dXn = 1

for every X(0)n(0) and average over an initial distribution of X(0)n(0)(0) (denoted by qn(0)(X(0)n(0), 0)) to define
an unconditional probability density

pn(Xn, t) :=
∑
n(0)

∫
Xn(0)

pn(Xn, t|X(0)n(0), 0)qn(0)(X(0)n(0), 0) dX(0)n(0) (7)

that also satisfies Eq. (6).
Next, we define the symmetric probability density distribution

ρn(Xn, t) :=

k∏
i=1

1

ni!

∑
π

pn(π(Xn), t) (8)

where pn is defined in Eq. (7) and π(Xn) is a permutation operator that reorders the sequence of the state vari-
ables Xi,j of cells within each generation, for all generations. Thus, the summation is taken over all such grouped

permutations (
∏k
i=1 ni! permutations in total). In the special case

gi,j = gi, σi,j = σi, βi,j = βi, µi,j = µi, β̃i,j = β̃i, (9)
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i.e., when the rate parameters depend at most on the generation of a cell, ρn(Xn, t) defined in Eq. (8) obeys

∂ρn
∂t

+

k∑
i=1

ni∑
j=1

∂(giρn)

∂Xi,j
=

1

2

k∑
i=1

ni∑
j=1

∂2(σi,jρn)

(∂Xi,j)2
−

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
ρn

+

k−1∑
i=1

ni + 1

ni+1(ni+1 − 1)

∑
1≤j1 6=j2≤ni+1

∫
β̃i(Y,Xi+1,j1 , Xi+1,j2)ρnb,i

(Xj1,j2
nb,i

, t) dY

+

∞∑
i=1

ni+1∑
j=1

∫
µi(Y )ρnd,i

(Xj
nd,i

, t) dY,

(10)

where Xj1,j2
nb,i

differs from Xn in that the state vector associated with cells in the ith generation are (Y,Xi,1, ...Xi,ni
)

and the state vector for cells in the (i+ 1)th generation does not have the components Xi+1,j1 and Xi+1,j2 .
Finally, in many systems, the state variable is a multi-dimensional vector instead of a scalar, i.e., Xi,j :=

(Xi,j,1, ..., Xi,j,d) ∈ Rd may also represent d different gene or protein expression levels in the jth cell in the ith

generation. This vector may represent, for example, d different gene or protein expression levels. We assume that the
evolution of Xi,j (each element now implicitly a vector of attributes) follows the Brownian SDE

dXi,j = gi,j(Xi,j , t)dt+ Σi,j(Xi,j , t)dWi,j (11)

where Wi,j is a d0-dimensional vector of independent Wiener processes (d0 ≤ d) for each i, j and the coefficients
gi,j(Xi,j , t) := (gi,j,1(Xi,j , t), ..., gi,j,d(Xi,j , t)) : Rd×R+ → Rd,

(
Σi,j

)
mn

:=
(
σi,j(Xi,j , t)

)
mn

: Rh×R+ → Rd×d0 ,m =
1, ..., d, n = 1, ..., d0 are all smooth, uniform Lipschitz continuous, and uniform bounded. We can also define the
symmetric probability density distribution ρn(Xn, t) as in Eqs. (8) and after applying the multi-dimensional forward
Feynman-Kac equation case in [27] we can show that the differential equation satisfied by such ρn is

∂ρn
∂t

+

k∑
i=1

ni∑
j=1

d∑
`=1

∂(gi,j,`ρn)

∂Xi,j,`
=

1

2

k∑
i=1

ni∑
j=1

d∑
`1,`2=1

∂2(
∑d0
h=1(Σi,j)`1,h(Σi,j)`2,h ρn)

(∂Xi,j,`1∂Xi,j,`2)

−
k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
ρn

k−1∑
i=1

ni + 1

ni+1(ni+1 − 1)

∑
1≤j1 6=j2≤ni+1

∫
β̃(Y,Xi+1,j1 , Xi+1,j2)ρnb,i

(Xj1,j2
nb,i

, t) dY

+

∞∑
i=1

ni+1∑
j=1

∫
µi,j(Y )ρnd,i

(Xj
nd,i

, t) dY

(12)

if the coefficients βi,j = βi, µi,j = µi, β̃i,j = β̃i are homogeneous for cells in the same generation.
In Appendix C, we also derive kinetic equations for the population density associated with cells that are also

labeled by their age. The derivation assumes the budding model of birth where on daughter cell’s age is set to zero
immediately after birth [8, 9].

III. MASS-ACTION DIFFERENTIAL EQUATIONS

Henceforth, we will consider the “simpler” single-gene model. Extension to d-dimensional attributes can be imple-
mented following the structure in Eqs. (11) and (12).

Through marginalization of the kinetic equation (10) we can derive he differential equations that describe the
evolution of certain “macroscopic” quantities such as the expected total-population levels of X. In this section, we
derive governing equations for examples of macroscopic quantities by marginalizing Eq. (10), which are then solved
numerically to show how quantities such as cellular gene expression levels can evolve over generations.
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A. Evolution of the population density

First, we can track the marginal cell distributions of certain cells in specified generations by defining the macroscopic
quantity

un(Xn, t) :=
∑
m≥n

∞∏
`=1

(m`)n`

∫
Xm\n

ρm(Xm, t)dXm\n, (13)

where m ≥ n means that for each component in m := (m1, ...,m`),m` ≥ n` and (m`)n`
:= m`(m`−1)...(m`−n`+ 1)

is the falling factorial. The integration is taken over the remaining variables Xm, but excludes the variables of interest
Xn which are retained. We find that un(Xn, t) satisfies the differential equation

∂un
∂t

+

k∑
i=1

ni∑
j=1

∂(giun)

∂Xi,j
=

1

2

k∑
i=1

ni∑
j=1

∂2(σiun)

(∂Xi,j)2
−

k∑
i=1

ni∑
j=1

(
βi(Xi,j) + µi(Xi,j)

)
un

+

k−1∑
i=1

∑
j1 6=j2

∫
β̃i,j(Y,Xi+1,j1 , Xi+1,j2)unb,i

(Xj1,j2
nb,i

, t) dY

+
k−1∑
i=1

ni+1∑
j=1

∫ (
β̃i,j(Y,Xi+1,j , Z) + β̃i(Y,Z,Xi+1,j)

)
unb,i

(Xj
nb,i

, t) dY dZ.

(14)

From Eq. (14), the set of macroscopic quantities {un} satisfies “sequential” closed-form equations in that the
PDE satisfied by un depends only on unb,i

(Xj1,j2
nb,i

, t) and unb,i
(Xj

nb,i
, t). In the specific case ni := (0, .., 0, 1) ∈ Ri,

uni
(Xni

, t) tracks the ith-generation cell population density in the structured, one-dimensional variable Xi,1. The
quantity {uni

(Xni
, t)}∞i=1 indicates how the cellular population density evolves across generations through division

and differentiation.
Consider the specific example studied in [28] where the coefficients in Eq. (14) take the form

gi,j(Xi,j , t) = −Xi,j , σ2
i,j(Xi,j , t) = exp(−X2

i,j). (15)

In this case, if the cells do not divide or die (i.e., the entire population stays in the stay first generation), and their
attributes converge to an equilibrium distribution

un1
(X1,1 = x, t→∞) =

exp
[
2x2 − 1

2e
2x2]

Z
, (16)

where Z =
∫∞
−∞ exp[2x2 − 1

2e
2x2

]dx is the normalization constant.
To include birth and death, we choose birth and death rates of the form

βi,j =
1

2
, µi,j =

i− 1

2i
,

∫
β̃i,j(Xi,j , Z, Y )dZ =

∫
β̃i,j(Xi,j , Y, Z)dZ ≡ βi√

2π
e−

(Y−Xi,j)
2

2 (17)

and set the initial condition to be uni({X}ni , t) =
(

1
100

)
δi,1 1−2.5≤X1,1≤2.5, where δi,j = 1 if i = j and δi,j = 0

otherwise is the Kroenecker δ-function and 1 is the indicator function). Using these parameters and initial condition,
we plot the scaled (using Eq. (16)) generation-dependent cellular density

ūi(x, t) ≡
(

1

un1
(x, t→∞)

)
uni

(Xni
, t)∫∞

−∞ uni
(Xni

, t)dXi,1

(18)

across the first 10 generations at t = 2. Fig. 1(a) shows that division events, which bring newborn cells into later
generations i ≥ 2, prevent structured cellular density in later generations from reaching the equilibrium.

If the coefficients g, σ, β, β̃ depend only on the cellular internal state X and time t and not on the cells’ generation,
we can define

ρ̂n( ~Xn, t) :=
∑

∑
ni=n

1

n!

∑
π

pn(π(Xn), t). (19)
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FIG. 1: (a) The equilibrium cellular density without division (Eq. (16)). (b) A differential birth rate
∫
β̃i,j(Xi,j , Y, Z)dZ using

the form given in Eq. (17). (c) Using the differential birth rate in (b) and Eq. (16) for normalization, we plot the associated
cellular density ūi(x, t = 2) (Eq. (18)) across different generations. The differentiation process prevents the population from
reaching an equilibrium (i ≥ 2) even when the death rate and division rate are x-independent. However, as time increases for a
certain generation (such as i = 1) in which no cell has entered, the structured population in that generation gradually returns
to equilibrium.

where pn is defined in Eq. (7) and the summation over π is over all possible rearrangements of Xn (defined in Table I)

of a generation-resolved cell population n such that the union of states of all cells in all generations is ~Xn (i.e., if we

pad Xn into one vector (X1,1, X1,2, ..., Xk,nk
), then such a vector is a rearrangement of ~Xn, the vector of attributes

of all n cells as defined in Table I).
It can be shown that the differential equation satisfied by ρ̂n is

∂ρ̂n
∂t

+

n∑
j=1

∂(gρ̂n)

∂Xj
=

1

2

n∑
j=1

∂2(σ2ρ̂n)

(∂Xj)2
−

n∑
j=1

(
β(Xj) + µ(Xj)

)
ρ̂n

+
1

n

∑
j1 6=j2

∫
β̃(Y,Xj1 , Xj2)ρ̂n−1( ~Xj1,j2

nb
, t)dY + (n+ 1)

∫
µ(Y )ρ̂n+1( ~Xnd

, t) dY,

(20)

where ~Xj1,j2
nb

is the pre-division cell states that are different from ~Xn in that it does not have contain the Xj1 , Xj2

terms but has an extra Y at the end; ~Xnd
is the pre-death cell states that is different from ~X in that it has an extra

Y component. In this case, we can define the generation-independent marginalized cell density

un( ~Xn, t) :=
∑
m≥n

(m)n

∫
ρ̂m( ~Xm, t)d ~Xm\ ~Xn (21)

which satisfies

∂un( ~Xn, t)

∂t
+

n∑
j=1

∂(gun)

∂Xj
=

1

2

n∑
j=1

∂2(σ2un)

(∂Xj)2
−

n∑
j=1

(
β(Xj) + µ(Xj)

)
un

+
∑
j1 6=j2

∫
β̃(Y,Xj1 , Xj2)un−1( ~Xj1,j2

nb
, t) dY

+

n∑
j=1

∫ (
β̃(Y,Xj , Z) + β̃(Y, Z,Xj)

)
un( ~Xj

nb
, t) dY dZ.

(22)

Here, ~Xj
nb

is different from ~Xn in that Xj is deleted, but an extra variable Y is added as the last component. If we
take n = 1, we can obtain a closed-form PDE for describing the cell density w.r.t. the scalar state variable X

∂u1(X, t)

∂t
+
∂(gu1)

∂X
=

1

2

∂2(σ2
ju1)

(∂X)2
−
(
β(X) + µ(X)

)
u1 +

∫ (
β̃(Y,X,Z) + β̃(Y,Z,X)

)
u1(Y, t) dY dZ. (23)

Eq. (23) is equivalent to the cell sizer model, or a timer-sizer model of cell division [10] after marginalizing over the
cells’ ages. As an implementation of this model, one can numerically solve Eq. (22) or (23) using different inferred
single-cell-level gene expression dynamics as candidates for g [29].
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B. Evolution of cell numbers

In the simplest case where all model parameters are constants, we can marginalize over all cell state variables to
obtain total cell populations. More specifically, if we define the generation vector i := (i1, ..., ik), 0 < i1 < ... < ik and
the associated orders of moments ` := (`1, ..., `k), `s > 0, then we can track the expectation of the product of different
orders of the number of cells in different generations

E
[ k∏
s=1

n`sis

]
:=
∑
n

k∏
s=1

n`sis

∫
ρn(Xn, t) dXn. (24)

The differential equation satisfied by E
[∏k

i=1 n
`i
i

]
can be shown to be

dE
[∏k

s=1 n
`s
is

]
dt

=

k∑
r=1,ir>1

βir−1

(
E
[ k∏
s=1

(nis − δir−1,is + 2δir,is)`snir−1
]
− E

[ k∏
s=1

n`sisnir−1
])

+

k∑
r=1

βir

(
E
[ k∏
s=1

(nis − δir,is + 2δir+1,is)`snir
]
− E

[ k∏
s=1

n`sisnir
])

−
k−1∑
r=1

βir

(
δir+1−ir,1

(
E
[ k∏
s=1

(nis − δir,is + 2δir+1,is)`snir
]
− E

[ k∏
s=1

n`sisnir
]))

−
∞∑
r=1

µir

(
E
[ k∏
s=1

n`sisnir
]
− E

[ k∏
s=1

(nis − δis,ir )`snir
])
.

(25)

where δir,is = 1 if ir = is and δir,is = 0 otherwise is the Kronecker δ-function. Note that if i = (i) is one-dimensional,
and ` = (1), then Eq. (25) reduces to the evolution of the average cell number in the ith generation

dE[ni]

dt
= 2βi−1E[ni−1]− βiE[ni]− µiE[ni]. (26)

Finally, we can consider another special simplifying case where

P (n, t) :=

∫
ρn(Xn, t)dXn (27)

is the probability that the population contains {n1, n2, . . . , nk cells in generations 1, . . . , k, respectively, regardless of
the individual’s values of X. It turns out that P (n) satisfies the series of interdependent master equations

dP (n, t)

dt
=
k−1∑
i=1

βi−1(ni−1 + 1)P (nb,i, t)−
k∑
i=1

(
βi + µi

)
niP (n, t) +

∞∑
i=1

µi(ni + 1)P (nd,i, t). (28)

when the division rates and the birth rates are constants within the same generation, i.e., µi,j ≡ µi, βi,j ≡ βi, β0 := 0.
Eq. (28) is a multigenerational birth-death master equation for the number of individuals in each generation i which
carries the same structure as birth-death processes for cells grouped by different attributes other than generation [30].
Note that generating new members of a successive generation arises only from birth, while death only decreases the
numbers within a generation.

C. Evolution of “biomass”

Another quantity of specific interest is the biomass (e.g., the total amount of protein or mRNA within a subpop-
ulation). For example, the total mass within cells of the ith generation can be defined as Xi ≡

∑ni

j=1Xi,j and its
expectation evaluated from

E
[
Xi(t)

]
=
∑
n

∫ ( ni∑
j=1

Xi,j

)
ρn(Xn, t)dXn (29)
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where ρn(Xn, t) is defined in Eq. (10).
In general, the differential equation satisfied by Xi(t) involves higher moment quantities; thus, the model is not

closed. However, given certain constraints on the parameters, the dynamics for Xi(t) can be closed, and a solution
can be explicitly computed (analytically, or numerically). For example, if βi(Xi,j) := βi, µi(Xi,j) := µi are constants,
gi(Xi,j) := giXi,j is linear, and the quantity X is conserved across cell division (that is, if the mother cell carries the
state variable X and the two daughter cells have are in states Y1 and Y2, then Y1 + Y2 = X), then

dE[Xi(t)]

dt
=
(
gi − µi − βi

)
E
[
Xi(t)

]
+ βi−1E

[
Xi−1(t)

]
. (30)

Furthermore, if the growth rate and division rate are independent of the generation number i, we can define expec-
tations over any moment of the total biomass summed over cells of all generations as

E
[
Xq(t)

]
=
∑
n

∫ ( k∑
i=1

ni∑
j=1

Xi,j

)q
ρn(Xn, t) dXn, q > 1. (31)

Specifically, if µ is a constant and g(X) = g0X (and X is conserved across cell division), the differential equations
satisfied by the first and second moments of the total biomass X(t) and X2(t) are

dE[X(t)]

dt
=
(
g0 − µ

) ∫
xu1(x, t)dx ≡

(
g0 − µ

)
E
[
X(t)

]
,

dE
[
X2(t)

]
dt

=
(
g0 − 2µ

)
E
[
X2(t)

]
+ σ2E

[
X(t)

]
+ µ

∫
x2u1(x, t)dx.

(32)

Only the equation for the mean total biomass E[X(t)] is closed. Its second moment depends on averages over u1(x, t)
requiring the solution to Eq. (23). General cases for the equations satisfied by E

[
Xq(t)

]
for arbitrary q ∈ N+ are

discussed in Appendix B.

D. Tracking dead cells

Thusfar, we have assumed that the “biomass” X originates from live cells. Once cells die, they are no longer
counted in the population and the biomass X associated with them is no longer included. However, experimentally,
the protein and/or mRNA extracted from a solution of cells may come from both living and dead cells (at the time
of extraction). To describe these types of measurements, we keep track of cells that have died and assign them to the
0th generation g0 = β0 = 0. We denote their states by X0 := (X0,1, ..., X0,n0

). We then define p̃n(Xn, t|X(0)n(0), 0)
to include the zero-generation (cells that have died) population. Using arguments similar to those in Proposition 2
we can show that under certain conditions p̃n satisfies the differential equation

∂p̃n
∂t

+

k∑
i=1

ni∑
j=1

∂(gi,j p̃n)

∂Xi,j
=

1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j p̃n)

(∂Xi,j)2
−

k∑
i=1

ni∑
j=1

(
βi,j + µi,j

)
p̃n

+

k−1∑
i=1

ni−1+1∑
j=1

ntβ̃i,j(Y,Xi+1,ni+1−1, Xi+1,ni+1)p̃nb,i
(Xnj

b,i
t|X(0)n(0), 0) dY

+

∞∑
i=1

ni+1∑
j=1

µ(X0,n0
)p̃nd̃,i

(Xj
nd̃,i

t|X(0)n(0), 0)

(33)

where nd̃,i differs from in that its 0th component is n0 − 1 but its ith component is ni + 1, and Xj
nd̃,i

differs from

Xn in that the internal states of the 0th generation (dead cells) are (X0,1, ..., X0,n0−1) and the internal states of the
ith generation are (Xi,1, ..., Xi,j−1, X0,n0 , Xi,j , ..., Xi,ni) (X0,n0 is in the jth component). Similarly, we can define the
unconditional probability density function p̃∗n(Xn, t) as defined in Eq. (7) as well as the symmetrized probability
density function

ρ̃n(Xn, t) :=

k∏
i=0

1

ni!

∑
π

p̃∗n(π(Xn), t). (34)
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The PDE satisfied by ρ̃n is

∂ρ̃n
∂t

+

k∑
i=1

ni∑
j=1

∂(gi,j ρ̃n)

∂Xi,j
=

1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j ρ̃n)

(∂Xi,j)2
−

k∑
i=1

ni∑
j=1

(
βi,j + µi,j

)
ρ̃n

+

k−1∑
i=1

ni + 1

ni+1(ni+1 − 1)

∑
j1 6=j2

∫
β̃i,j(Y,Xi+1,j1 , Xi+1,j2)ρ̃nb,i

(Xj1,j2
nb,i

, t) dY

+
1

n0

∞∑
i=1

(ni + 1)

n0∑
j=1

µi,j(X0,j)ρnd̃,i
(Xj

nd̃,i
, t).

(35)

The expectation of the total biomass X0 ≡
∑n0

j=1X0,j associated with dead cells can be found from

E
[
X0(t)

]
≡
∑
n

∫ ( n0∑
j=1

X0,j

)
ρ̃n(Xn, t) dXn. (36)

If the death rates µi of cells are equal and constant within each generation i, then E
[
X0(t)

]
satisfies

dE
[
X0(t)

]
dt

=
∞∑
i=1

µiE
[
Xi(t)

]
, (37)

where E
[
Xi(t)

]
is the total expected biomass from cells in the ith generation, as defined in Eq. (29).

We can also define second moments involving the biomass from dead cells

E
[
X2

0 (t)
]

=
∑
n

∫ ( n0∑
j=1

X0,j

)2
ρ̃n(Xn, t) dXn (38)

and

E
[
X0(t)X(t)

]
=
∑
n

∫ ( k∑
i=1

ni∑
j=1

Xi,j

)( n0∑
`=1

X0,`

)
ρ̃n(Xn, t) dXn. (39)

If we assume that the death rate is a constant µ for all cells, the growth rate g(X) = g0X, and the state variable X
is conserved at division, we can derive the differential equations

dE
[
X2

0 (t)
]

dt
= 2µE

[
X0(t)X(t)

]
+ µ

∑
n

∫ ( k∑
i=1

ni∑
j=1

X2
i,j

)
ρ̃n(Xn, t) dXn (40)

dE
[
X0(t)X(t)

]
dt

= (g0 − µ)E
[
X0(t)X(t)

]
+ µE

[
X2(t)

]
− µ

∑
n

∫ ( k∑
i=1

ni∑
j=1

X2
i,j

)
ρ̃n(Xn, t) dXn. (41)

Higher moments of X0, X can also be evaluated, which we do not include for brevity.

E. Correlations and interactions

Although examples so far have involved simple forms of g, σ, β, µ that depend only on the state of of the cell being
tracked, these rates can depend on the states of other cells in the population. These more complex dependences prevent
closure of the PDEs and signal more complex correlations, or “interactions.” Simple interactions can be incorporated
in the “mean-field” limit if we consider the parameters g, σ, β, µ to be functions of only averaged macroscopic quantities
such as X(t).

As an intuitive example, if we allow the death rate of the jth cell in the ith generation to also depend on the total
“biomass” from all living cells, µi,j = µi,j(Xi,j ,

∑
i

∑ni

j=1Xi,j). Using this form of death rate leads to a symmetric

population density ρn({X}n that satisfies
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∂ρn
∂t

+

k∑
i=1

ni∑
j=1

∂(giρn)

∂Xi,j
=

1

2

k∑
i=1

ni∑
j=1

∂2(σi,jρn)

(∂Xi,j)2
−

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j

(
Xi,j ,

k∑
`=1

n∑̀
m=1

X`,m

))
ρn

+

k−1∑
i=1

ni + 1

ni+1(ni+1 − 1)

∑
1≤j1 6=j2≤ni+1

int

∫
β̃i(Y,Xi+1,j1 , Xi+1,j2)ρnb,i

(Xj1,j2
nb,i

, t) dY

+

∞∑
i=1

ni+1∑
j=1

∫
µi,j
(
Y,

k∑
`=1

n∑̀
m=1

X`,m + Y
)
ρnd

(Xj
nd,i

, t)dY.

(42)

Due to the dependencies on the mean-field term
∑k
i=1

∑ni

j=1Xi,j , we cannot obtain a closed-form equation for

macroscopic quantities such as the cellular density u1(X1, t) defined in Eq. (23). However, if the approximation∑k
i=1

∑ni

j=1Xi,j ≈
∑k
i=1

∑ni

j=1Xi,j + Y ≈ E[X(t)] can be made, with E[X(t)] defined in Eq. (29), an approximate

PDE for u1(X, t) defined in Eq. (21) can be motivated:

∂u1(X1, t)

∂t
+
∂(gu1)

∂X1
=

1

2

∂2(σ2
ju1)

(∂X1)2
−
(
β(X1) + µ

(
X1,

∫
Y u1(Y, t)dY

))
u1(X, t)

+

∫ (
β̃(Y,X1, Z) + β̃(Y, Z,X1)

)
u1(Y, t) dY dZ.

(43)

Eq. (43) is nonlinear because the mean-field term depends on
∫
xu1(x, t)dx. Similarly, if other coefficients depend on

mean-field quantities or some specific interaction terms among cells exist, then by making assumptions and marginal-
ization, it might still be possible to find self-consistent integrodifferential equations for macroscopic quantities of
interest. For example, death rates that depend on the values of X of two different cells have been shown to generate
a nonlinear interaction term in kinetic derivations of single-species predator-prey type models [31].

IV. SUMMARY AND CONCLUSIONS

In this work, we used the forward-type Feynman-Kac formula and Markov jump process to formulate a kinetic
theory for describing the cellular population density of a generation-resolved cellular population with fluctuating
rates of changing internal states as well as random division times. Such a general kinetic theory not only tracks each
cell’s continuous-valued state attribute such as its volume, protein or mRNA abundance, but also its generation (i.e.,
how many times its ancestors have divided). In general, our kinetic theory framework can apply to any collection
of particles that experience demographic noise from birth-death processes as well as noise in specific individual-level
attributes.

A number of new results were presented. The underlying kinetic theory describing the intra-generation-symmetrized
cell populations is given by Eq. (10) (or Eq. (12) for a vector of attributes). We find that this fully resolved, high-
dimensional probability density can be marginalized in to different directions. First, one can sum over moments
of the discrete populations/subpopulations to find the dynamics of a generalized cell population density un(Xn, t)
(Eq. (13)), which is found to obey Eq. (14) when generations are tracked, and Eq. (23) in the generation-independent
case. Further marginalizing over all cell attributes Xn allows one to derive simpler equations for useful quantities
such as the expected total number of cells in each generation (Eq. (26)) and the generation structure of the total
population (Eq. (28)).

Alternatively, the full probability densities can be used to define moments of mean-field quantities such as total gene
expression levels or biomass X across the entire population. These are derived in Eqs. (30) and (32), which depend
on integrals over the single-particle number density u1(x, t). We also show how the biomass X0 from dead calls can
also be tracked, as is often the case in experiments. Expressions for the lowest moments are given in Eqs. (37), (40),
and (41). Our results are tabulated below:

Finally, we discussed cell-cell “interactions” that manifest themselves through birth or death rates that depend on
the attribute Xi,j of multiple cells. Such forms of the birth and death rate precludes full marginalization, leading to
higher order correlation terms for which an approximation must be imposed to close the equations. We show how a
death rate that also depends on the total biomass results in the implicitly nonlinear (in u1(x, t)) PDE given in (43).

Note that the PDEs for marginalized densities un(Xn, t) can be solved numerically using newly developed adaptive
spectral methods suited for unbounded domains [32–34] and provide an “Eulerian” representation of the structured
population. Our kinetic theory/PDE framework does not directly track the structure of populations along lineages of
cells (a more “Lagrangian” picture) but connecting our Eulerian representation with representations that delineate
cell lineages would be useful area of future analysis.
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Quantity Meaning Equation

un(Xn, t)
partially marginalized cell population density
of any order

Eq. (14). Closed set of PDEs for non-
interacting systems

un( ~Xn, t)
generation-independent cell population den-
sity (may include intercellular dependence)

Eqs. (21) and (22)

E[n(t)] expectation of moments of total cell number Eqs. (24), (25), and (26)

P (n, t) probability of n = {ni} in each generation i Eqs. (27) and (28)

E[Xq(t)]
expectation of moments of total biomass or ex-
pression levels

Eqs. (31), (32), and (23)

E[Xp
0 (t)Xq(t)], p+q ≤ 2 mean and variance of biomass from dead cells Eqs. (37),(38),(39), (40), (41), and (35)

TABLE II: Summary of our main results. Functions describing cell numbers and overall attributes are listed, along with
the equation numbers of their mathematical definitions and dynamical equations.

Other directions for future analysis include developing tractable models of interactions that arise through complex
dependences of birth and death rates on Xn. The equations we derived can also inform inverse-type problems by
serving as constraints for neural network-based machine learning approaches for inferring model parameters (such
as interacting birth and death rates) from data [35]. Structured populations that vary spatially also arise in many
applications [36–38]. For models in which convection and diffusion depend on expression levels, the dynamics of Xn

can be modeled as being coupled to transport.
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Appendix A: Derivation of the differential equation satisfied by the cell population probability density
function

To show pn(Xn, t|X(0)n(0), 0) defined in Eq. (4) satisfies Eq. (6), we require the following two propositions.

Proposition 1. (Forward-type Feynman-Kac formula) If the coefficients gi,j , σi,j , βi,j , µi,j are smooth, uniform Lips-
chitz continuous, and uniformly bounded, then, under certain conditions, the solution to the following PDE

∂p̂n(Xn, t|X(0)n(0), 0)

∂t
+

k∑
i=1

ni∑
j=1

∂(gi,j(Xi,j , t)p̂n)

∂Xi,j
=

1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j(Xi,j , t)p̂n)

(∂Xi,j)2

−
k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
p̂n

(A1)

with initial condition p̂n(Xn, 0) = δ(X(0)n(0) −Xn) if n = n(0) (and p̂n(X(0)n(0), 0) = 0 if n 6= n(0)), is

p̂n(Xn, t|X(0)n(0), 0) := E
[
δ(X(t)n(t) −Xn)S

(
t;X(t)n(t)

)∣∣∣X(0)n(0), 0;n(0 ≤ s ≤ t) = n(0)
]

(A2)

where each component in X(t)n(t) satisfies Eq. (1).

Proposition 1 provides the PDE satisfied by the density function for all cells with states Xn in the absence of division
and death. The proof of Proposition 1 and the associated specific technical assumptions are given in section A 1 below.

When cell division or death occurs, the total number of cells changes according to a Markov jump process. Thus,
we need the following proposition to derive the differential equation satisfied by the conditional probability density
function pn(Xn, t|X(0)n(0), 0) defined in Eq. (4).

Proposition 2. (Markov jump process) Given the initial condition n(0) with states X(0)n(0) at t = 0 and a target
state at time t with n cells and their internal states Xn, we start with the conditions

p0n(Xn, t|X(0)n(0), 0) :=0,

p1n(Xn, t|X(0)n(0), 0) :=p̂n(Xn, t|X(0)n(0), 0),
(A3)

and recursively define

pm+1
n (Xn, t|X(0)n(0), 0) :=p̂n(Xn, t|X(0)n(0), 0)

+

∫ t

0

E
[
S
(
τ ;X(τ)n(τ)

)
Jm
(
t, τ ;Xn,n(0)

)∣∣∣X(0)n(0), 0;n(0 < s < τ) = n(0)
]
dτ,

(A4)

where the birth-death probability flux is defined by

Jm
(
t, τ ;Xn,n(0)

)
:=

k(0)∑
i=1

ni(0)∑
j=1

[
β̃i,j
(
Xi,j(τ), X1(τ), X2(τ)

)
pmn (Xn, t− τ |X(τ)−jn(0)b,−i

, 0)

+ µi,j
(
Xi,j(τ)

)
pmn (Xn, t− τ |X(τ)−jn(0)d,−i

, 0)
]
.

(A5)

Then, pm+1
n satisfies

∂pm+1
n

∂t
+

k∑
i=1

ni∑
j=1

∂(gi,jp
m+1
n )

∂Xi,j
=

1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,jp

m+1
n )

(∂Xi,j)2
−

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
pm+1
n

+

k−1∑
i=1

nb
i−1∑
j=1

∫
β̃(Y,Xi+1,ni+1−1, Xi+1,ni+1

)pmnb,i
(Xj

nb,i
, t |X(0)n(0), 0)dY

+

∞∑
i=1

nd
i∑

j=1

∫
µ(Y )pmnd,i

(Xj
nd,i

, t |X(0)n(0), 0)dY .

(A6)

Furthermore, pmn is non-decreasing in m.



15

The proof of Proposition 2 will be given in section A 2 below. Intuitively, m in Eq. (A4) is the maximal number
of birth or death events allowed within the cell population. Since pmn is increasing in m, there exists a p∗ such that
pm → p∗ a.s. for all X(0)n(0) and Xn. After integrating over Xn and summing over all n on both sides of Eq. (A4)
and assuming ∑

n

∫
pm−1n (Xn, t|X(0)n(0), 0) dXn ≤ 1 (A7)

for m ∈ N and any initial condition X(0)n(0), we have
∑

n

∫
pmn (Xn, t |X(0)n(0), 0)dXn ≤ Fm(t;X(0)n(0), 0) where

Fm(t;X(0)n(0), 0) :=

∫
p̂n(0)(Xn(0), t |X(0)n(0), 0)dXn(0)

+

∫ t

0

E
[
S
(
τ ;X(τ)n(τ)

) k(0)∑
i=1

ni(0)∑
j=1

(
β(Xi,j(τ)) + µ(Xi,j(τ)

)∣∣X(0)n(0), 0;n(0 < s < τ) = n(0)
]

dτ

(A8)

and S
(
τ ;X(τ)n(τ)

)
is defined in Eq. (5). Taking the derivative of Fm(t;X(0)n(0), 0), we find dFm(t;X(0)n(0), 0)/dt =

0. It is straightforward to verify that Fm(0;X(0)n(0), 0) = 1; therefore, we have Fm(t;X(0)n(0), 0) ≡ 1,∀t ≥ 0, which
indicates that ∑

n

∫
pmn (Xn, t|X(0)n(0), 0)dXn ≤ 1. (A9)

By induction, Eq. (A7) holds true for all m ∈ N+. Finally, it is easy to show that pmn (X(0)n, t|X(0)n(0), 0) ≥ 0, so
by the monotone convergence theorem,∑

n

∫
p∗n(Xn, t|X(0)n(0), 0)dXn ≤ 1, (A10)

which indicates 0 ≤ p∗ <∞ exists a.e..
If i) the convergence pm → p∗ is uniform and ii) taking the limit w.r.t. m is interchangeable with taking the partial

derivatives in Eq. (A6), then p∗ is the solution to

∂p∗n
∂t

+

k∑
i=1

ni∑
j=1

∂(gi,jp
∗
n)

∂Xi,j
=

1

2

k∑
i=1

ni∑
j=1

∂2(σi,jp
∗
n)

(∂Xi,j)2
−

k∑
i=1

ni∑
j=1

(
β(Xi,j) + µ(Xi,j)

)
p∗n

+

k−1∑
i=1

ni+1∑
j=1

∫
β̃i,j(Y,Xi+1,ni+1−1, Xi+1,ni+1

)p∗nb,i
(Xj

nb,i
, t|X(0)n(0), 0)dY

+

∞∑
i=1

ni+1∑
j=1

∫
µi,j(Y )p∗nd,i

(Xj
nd,i

, t|X(0)n(0), 0)dY

(A11)

Since by taking the limit m→∞ in Eq. (A4), p∗ can also be written as

p∗n(Xn, t|X(0)n(0), 0) =p̂n(Xn, t|X(0)n(0), 0)

+

∫ t

0

E
[
S
(
τ ;X(τ)n(τ)

)
Jm(t, τ ;Xn,n(0))

∣∣∣X(0)n(0)(0), 0;n(0 < s < τ) = n(0)
]

dτ
(A12)

which solves the differential equation Eq. (6).
Finally, the definition of p∗ in Eq. (A12) coincides with the definition of p in Eq. (4). Thus, if Eq. (A12) defined

a unique p∗, then p∗n(Xn, t|X(0)n(0), 0) = pn(Xn, t|X(0)n(0), 0). Therefore, pn also solves the differential equation
Eq. (6). Specifically, if ∑

n

∫
pn(Xn, t|X(0)n(0), 0)dXn = 1, (A13)

then pn is indeed a probability density function of the total cell population that satisfies Eq. (6).
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1. Proof of Proposition 1

Here, we prove Proposition 1 and provide the needed technical assumptions. We shall apply Theorem 6.2 in [27].
If n 6= n(0), then by definition p̂n = 0, which solves Eq. (A1). If n(s) ≡ n(0), s ∈ [0, t], for any smooth function

φ ∈ C∞(R|n|1), |n|1 :=
∑k
i=1 ni, we define the measure

γm(φ, t) :=

∫
C|n|1

φ(Xn(t;ω))S
(
t;X(t, ω)n(t)

)
dm(ω), X(0;ω)n = X(0)n(0), (A14)

where Cd := C([0, t],Rd) (the integration is taken all realizations of X(t;ω)n). Using Theorem 6.2 in [27], γm(φ)
solves the PDE

∂γm

∂t
+

k∑
i=1

ni∑
j=1

∂(gi,j(Xi,j(t), t)γ
m)

∂Xi,j(t)
=

1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j(Xi,j(t), t)γ

m)

(∂Xi,j(t))2
−

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j(t))+µi,j(Xi,j(t))

)
γm (A15)

in the sense of distributions. Let Kε = 1
ε|n|1

K(·), where K(·) is a smooth mollifier, and define

vε(Xn, t) := γm
(
Kε(· −Xn), t

)
, (A16)

or,

vε(Xn, t) = E
[
Kε
(
X(t)n(t) −Xn

)
S
(
t;X(t)n(t)

)∣∣∣X(0)n(0), 0;n(0 ≤ τ ≤ t) = n(0)
]
, (A17)

where S(t;X(t)n(t)) is the survival probability defined in Eq. (5). By Eq. (A15), we have

∂vε(Xn, t)

∂t
=E
[ k∑
i=1

ni∑
j=1

∂Xi,j(t)K
ε(X(t)n(t)−Xn

)
gi,j(Xi,j(t), t)S

(
t;X(t)n(t)

)∣∣∣X(0)n(0), 0;n(0 ≤ τ ≤ t) = n(0)
]

+ E
[ k∑
i=1

ni∑
j=1

1

2
∂2
Xi,j(t)K

ε(X(t)n(t)−Xn

)
σ2
i,j

(
Xi,j(t), t

)
S
(
t;X(t)n(t)

)∣∣∣X(0)n(0), 0;n(0 ≤ τ ≤ t) = n(0)
]

− E
[ k∑
i=1

ni∑
j=1

(
βi,j(Xi,j(t)) + µi,j(Xi,j(t))

)
Kε(X(t)n(t) −Xn)S

(
t;X(t)n(t)

)∣∣∣X(0)n(0), 0;n(0 ≤ τ ≤ t) = n(0)
]
.

(A18)
The assumptions that we shall impose for Proposition 1 are that: i) the limit

v := lim
ε→0+

vε = E
[
δ(X(t)n(t)−Xn)S

(
t;X(t)n(t)

)∣∣∣X(0)n(0), 0;n(0 ≤ τ ≤ t) = n(0)
]

(A19)

exists, and ii) taking the limit ε→ 0+ commutes with taking the expectation and the derivative w.r.t. t and Xi,j , i.e.,

∂v(Xn(t), t)

∂t
=E
[ k∑
i=1

ni∑
j=1

∂Xi,j(t)δ
(
X(t)n(t)−Xn

)
gi,j
(
Xi,j(t), t

)
S
(
t;X(t)n(t)

)∣∣∣X(0)n(0), 0;n(0 ≤ τ ≤ t) = n(0)
]

+ E
[ k∑
i=1

ni∑
j=1

1

2
∂2
Xi,j(t)δ

(
X(t)n(t)−Xn

)
σ2
i,j

(
Xi,j(t), t

)
S
(
t;X(t)n(t)

)∣∣∣X(0)n(0), 0;n(0 ≤ τ ≤ t) = n(0)
]

− E
[ k∑
i=1

ni∑
j=1

(
βi,j(Xi,j(t)) + µi,j(Xi,j(t))

)
δ
(
X(t)n(t)−Xn

)
S
(
t;X(t)n(t)

)∣∣∣X(0)n(0), 0;n(0 ≤ τ ≤ t) = n(0)
]
.

(A20)
After integration by parts and noticing that

gi,j(Xi,j , t)v ≡E
[ k∑
i=1

ni∑
j=1

δ(X(t)n(t) −Xn)gi,j(Xi,j(t), t)S
(
t;X(t)n(t)

)∣∣∣X(0)n(0), 0;n(0 ≤ τ ≤ t) = n(0)
]
,

σ2
i,j(Xi,j , t)v ≡E

[ k∑
i=1

ni∑
j=1

δ(X(t)n(t)−Xn)σ2
i,j(Xi,j(t), t)S

(
t;X(t)n(t)

)∣∣∣X(0)n(0), 0;n(0 ≤ τ ≤ t) = n(0)
]
,

(A21)
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the partial differential equation satisfied by v is

∂v

∂t
+

k∑
i=1

ni∑
j=1

∂(gi(Xi,j , t)v)

∂Xi,j
=

1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j(Xi,j , t)v)

(∂Xi,j)2
−

k∑
i=1

ni∑
j=1

(
β(Xi,j) + µ(Xi,j)

)
v, (A22)

which proves Proposition 1.

2. Proof of Proposition 2

We prove Proposition 1 by induction on m. Clearly, when m = 0, 1, p0 and p1 solve Eq. (A6) by using Proposition 1.
If the conclusion holds for m ≥ 1, then when n 6= n(0), we have

∂pm+1
n

∂t
=E
[
S
(
t;X(t)n(t)

)
Jm(t, t;Xn,n(0))

∣∣∣Xn(0)(0), 0;n(0 < s < t) = n(0)
]

+

∫ t

0
E
[
S
(
τ ;Xn

)
∂tJ

m
(
t, τ ;Xn,n(0)

)∣∣∣X(0)n(0), 0;n(0 < s < τ) = n(0)
]
dτ

=−
k∑
i=1

ni∑
j=1

∂(gi,j(Xi,j , t)p
m+1
n )

∂Xi,j
+

1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j(Xi,j , t)p

m+1
n )

(∂Xi,j)2
−

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
pm+1
n

+

k−1∑
i=1

ni+1∑
j=1

∫
β̃i,j(Y,Xi+1,nr+1−1, Xr+1,ni+1 )E

[
δ(Xi,j(t)− Y )δ(X(t)−j

n(0)b,−i
−Xn)

× δn(0)b,−i,n
S
(
t;Xn

)∣∣∣X(0)n(0), 0;n(0 < s < t) = n(0)
]
dY

+

k−1∑
i=1

ni+1∑
j=1

∫
β̃i,j(Y,Xi+1,ni+1−1, Xi+1,ni+1 )

×
(∫ t

0
E
[
S
(
τ ;Xn

)
Jm−1

(
t, τ ;Xj

nb,i
,n(0)

)∣∣∣X(0)n(0), 0;n(0 < s < t) = n(0)
]
dτ

)
dY

+
∞∑
i=1

ni+1∑
j=1

∫
µi,j(Y )E

[
δ(Xi,j − Y )δ(X−j

n(0)d,−i
(t)−Xn)δn(0)d,−i,n

S
(
t;X(t)n(t)

)∣∣∣X(0)n(0), 0;n(0 < s < t) = n(0)
]
dY

+

∞∑
i=1

ni+1∑
j=1

∫
µi,j(Y )

∫ t

0
E
[
S
(
τ ;Xn

)
Jm−1

(
t, τ ;X−jnd,i

,n(0)
)∣∣∣X(0)n(0), 0

]
dτ dY

=−
k∑
i=1

ni∑
j=1

∂(gi,jp
m+1
n )

∂Xi,j
+

1

2

k∑
i=1

ni∑
j=1

∂2(σi,jp
m+1
n )

(∂Xi,j)2
−

k∑
i=1

ni∑
j=1

(
βi,j(Xi,j) + µi,j(Xi,j)

)
pm+1
n

+

k−1∑
i=1

ni+1∑
j=1

∫
β̃(Y,Xi+1,ni+1−1, Xi+1,ni+1 )p

m
nb,i

(Xj
nb,i

, t|X(0)n(0), 0)dY

+
∞∑
i=1

ni+1∑
j=1

∫
µ(Y )pmnd,i

(Xj
nd,i

, t|X(0)n(0), 0)dY.

(A23)
Here, the function δn(0)b,−i,n = 1 if n(0)b,−i = n and δn(0)b,−i,n = 0 otherwise; similarly, δn(0)d,−i,n = 1 if

n(0)d,−i = n and δn(0)d,−i,n = 0 otherwise. Proposition 1 shows that

E
[
δ(X(t)n−Xn)S(t;X(t)n(t))

∣∣X(0)n(0), 0;n(0 ≤ s ≤ t) = n(0)
]

(A24)

satisfies Eq. (A1), so we can verify that Eq. (A6) also holds for m + 1 when n = n(0). Thus, we have proved that
Eq. (A6) holds true for m + 1. Additionally, it is obvious that pm+1

n ≥ pmn holds for m = 0. If pmn ≥ pm−1n for any
n,Xn, we have for ∆m

n := pmn − pm−1n ,

∆m+1
n =

∫ t

0

E
[
S
(
τ ;Xn

) k(0)∑
i=1

ni(0)∑
j=1

(
β̃i,j(Xi,j(τ), X1, X2)∆m

n (Xn, t− τ |X(τ)−jn(0)b,−i
, 0)

+ µi,j(Xi,j)∆
m
n (Xn, t− τ |X(τ)−jnd,−i

, 0)
)∣∣∣X(0)n(0), 0;n(0 ≤ s ≤ τ) = n(0)

]
dτ ≥ 0.

(A25)

Therefore, we have proved that pm+1
n satisfies Eq. (A6) and that pm+1

n ≥ pmn for all m ∈ N by induction.
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Appendix B: Differential equations satisfied by Xq(t), q ∈ N+

With Xq(t) according to Eq. (31), it can be shown that for q > 1,

dXq(t)

dt
=q
∑
n

∫ ( k∑
i=1

ni∑
j=1

Xi,j

)q−1( k∑
`=1

n∑̀
m=1

g`(X`,m, t)
)
ρn(Xn, t)dXn

+
q(q − 1)

2

∑
n

∫ ( k∑
i=1

ni∑
j=1

Xi,j

)q−2( k∑
`=1

n∑̀
m=1

σ2
` (X`,m, t)

)
ρn(Xn, t)dXn

−
∑
n

∫ [ k∑
i=1

ni∑
j=1

µi(Xi,j , t)

q∑
r=1

(−1)r−1
(
q

r

)( k∑
`=1

′ n∑̀
m=1

′
X`,m

)q−r
Xr
i,j

]
ρn(Xn, t)dXn

−
∑
n

∫ ( k∑
i=1

ni∑
j=1

Xi,j

)q k∑
`=1

n∑̀
m=1

β`(X`,m)ρn(Xn, t)dXn

+
∑
n

∫ ( k∑
i=1

ni∑
j=1

Xi,j

)q( k−1∑
`=1

n` + 1

n`+1(n`+1 − 1)

∫ ∑
j1 6=j2

β̃(Y,X`+1,j1 , X`+1,j2)ρnb,`
(Xj1,j2

nb,`
, t)dY

)
dXn,

(B1)

where ρn is the symmetric probability density function defined in Eq. (8). Here,
k∑̀
=1

′ n∑̀
m=1

′
denote sums over which

` 6= i or m 6= j.
In particular, if X is a conserved quantity at division, then the evolution of the second-order moment can be further

simplified as

dXq(t)

dt
=q
∑
n

∫ ( k∑
i=1

ni∑
j=1

Xi,j

)q−1 k∑
`=1

n∑̀
m=1

g`(X`,m, t)ρn(Xn, t)dXn

+
∑
n

q(q − 1)

2

∫ ( k∑
i=1

ni∑
j=1

Xi,j

)q−2 k∑
`=1

n∑̀
m=1

σ2
`

(
X`,m, t

)
ρn(Xn, t)dXn

−
∑
n

∫ [ k∑
i=1

ni∑
j=1

µi(Xi,j)

q∑
r=1

(−1)r−1
(
q

r

)( k∑
`=1

′ n∑̀
m=1

′
X`,m

)q−r
Xr
i,j

]
ρn(Xn, t)dXn.

(B2)

Eq. (B2) can be further simplified if the coefficients gi and σi satisfy certain conditions. For example, if the cells grow
exponentially, i.e., gi(Xi,j , t) = λXi,j and σ2

i (Xi,j , t) = σ2Xi,j . Eq. (B2) can be more simply expressed as

dXq(t)

dt
=λqXq(t) +

q(q − 1)

2
σ2Xq−1(t)

−
∑
n

∫ [ k∑
i=1

ni∑
j=1

µi(Xi,j)

q∑
r=1

(−1)i−1
(
q

r

)( k∑
`=1

′ n∑̀
m=1

′
X`,m

)q−r
Xr
i,j

]
ρn(Xn, t)dXn.

(B3)

Appendix C: Birth-induced boundary conditions

We can also consider variables that describe cellular quantities that reset upon cell division. Example of such
variables include cell size and cell age [10, 21]. Specifically, consider simple “timer” models where a new daughter
cell acquires age 0 at its birth, while the other cell is assumed to be the “mother” that continues to age. This
assignment of age across a proliferating population is described as “budding” birth [8, 9]. A kinetic theory can track
both cell volume and cell age through the variables Xn and An := (A1, ...,Ak), respectively. Here, in analogy with
Xi,j (j ≤ ni) (Table I), Ai := (Ai,1, ..., Ai,ni

) and Ai,j (j ≤ ni) is the age of the jth cell of generation i.
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We can show that the solution to

∂p̂n(An,Xn, t)

∂t
+

k∑
i=1

ni∑
j=1

∂p̂n
∂Ai,j

+

k∑
i=1

ni∑
j=1

∂(gi,j(Ai,j , Xi,j , t)p̂n)

∂Xi,j

=
1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j(Ai,j , Xi,j , t)p̂n)

(∂Xi,j)2
−

k∑
i=1

ni∑
j=1

(
βi,j(Ai,j , Xi,j) + µi,j(Ai,j , Xi,j)

)
p̂n

p̂n(An,Xn, 0|A(0)n(0),X(0)n(0), 0) = δ(X(0)n(0) −Xn)δ(A(0)n(0) −An), if n = n(0),

p̂n(An,Xn, 0) = 0 if n 6= n(0)

(C1)

can be expressed as

p̂n(An,Xn, t|A(0)n(0),X(0)n(0), 0) :=E
[
δ(X(t)n(t)−Xn)δ(A(t)n(t)−An))SA

(
t;X(t)n(t),A(t)n(t)

)∣∣∣A(0)n(0),X(0)n(0), 0;n(0 ≤ s ≤ t) = n(0)
]
,

p̂n(An,Xn, t) =0, if n 6= n(0),

(C2)

where here,

SA
(
t;X(t)n(t),A(t)n(t)

)
:= exp

(
−
∫ t

0

k(0)∑
i=1

ni(0)∑
j=1

(
β(Ai,j(τ), Xi,j(τ)) + µ(Ai,j(τ), Xi,j(τ))

)
dτ
)
. (C3)

Furthermore, if we set

p0(An,Xn, t|A(0)n(0),X(0)n(0), 0) =0,

p1(An,Xn, t|A(0)n(0),X(0)n(0), 0) =p̂n(An,Xn, t|A(0)n(0),X(0)n(0), 0)
(C4)

we can define the recursion

pm+1
n (An,Xn, t|A(0)n(0),X(0)n(0), 0) = p̂n(An,Xn, t|A(0)n(0),X(0)n(0), 0)

+ E
[ ∫ t

0

SA(τ ;X(τ)n(τ),A(τ)n(τ))J
m
A

(
t, τ ;Xn,An,n(0)

)
dτ
∣∣∣A(0)n(0),X(0)n(0), 0;n(0 ≤ τ ≤ t) = n(0)

]
, if An > 0,

pm+1
n (An,Xn, t|A(0)n(0),X(0)n(0), 0) =

E
[ ni∑
j=1

β̃(Ai,j , Y (t), Xi,j(t), Xi+1,ni+1)pmn (Aj
nb,i

,Xj
nb,i

, t|A(0)n(0),X(0)n(0), 0)
]
, if Ai+1,ni+1 = 0,

pm+1
n (An,Xn, t|A(0)n(0),X(0)n(0), 0) = 0, otherwise.

(C5)

Here, An > 0 indicates that each component in Ai of An is greater than 0. β̃(Ai,j , Y (t), Xi,j , Xi+1,ni+1
) is the rate

of a cell in the ith generation giving birth to a cell in the (i + 1)th generation with the state Xi+1,ni+1 and its own

state shifting to Xi,j . Aj
nb,i

differs from An in that its (i+ 1)th generation does not contain the (ni+1)th component.

Xj
nb,i

differs from Xn in that its jth component in the ith generation is Yi,j(t), not Xi,j and it does not have the

(ni+1)th component in the (i+ 1)th generation. In analogy to Eq. (A5), JA(t, τ ;An,Xn) in Eq. (C5) is defined as

JmA
(
t, τ ;Xn,An,n(0)

)
:=

k(0)∑
i=1

ni(0)∑
j=1

[
β̃i,j
(
Ai,j(τ), Xi,j(τ), X1(τ), X2(τ)

)
pmn (An,Xn, t− τ |A(τ)−jn(0)b,−i

,X(τ)−jn(0)b,−i
, 0)

+ µi,j(Ai,j(τ), Xi,j(τ))pmn (An,Xn, t− τ |A(τ)−jn(0)d,−i
,X(τ)−jn(0)d,−i

, 0)
]
.

(C6)

In Eq. (C6), A−jn(0)b,−i
differs from An(0) in that its (i+ 1)th generation has an extra component Ai+1,ni+1(0)+1 = 0.

X−jn(0)b,−i
(τ) is different from Xn(0)(τ) in that compared to Xn(0)(τ), the jth component of the ith generation of

X−jn(0)b,−i
(τ) is Yi,j(τ) in the jth, but the jth component of the ith generation is Xi,j(τ) for Xn(0)(τ); furthermore,

the (i+ 1)th generation of Xn(0)(τ) does not have the (ni+1 + 1)th component Xi+1,ni+1(0)+1(τ). A(τ)−jn(0)d,−i
differs
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from A(τ)n in that its ith generation is (Ai,1(τ), ..., Ai,j−1(τ), Ai,j+1(τ), ..., Ai,ni(0)(τ)), and X(τ)−jn(0)d,−i
differs from

X(τ)n in that its ith generation is (Xi,1(τ), ..., Xi,j−1(τ), Xi,j+1(τ), ..., Xi,ni(0)(τ)).

Then, similar to the proof of Proposition 2, pm+1
n satisfies the following PDE

∂pm+1
n (An,Xn, t)

∂t
+

k∑
i=1

ni∑
j=1

∂pm+1
n

∂Ai,j
+

k∑
i=1

ni∑
j=1

∂(gi,j(Ai,j , Xi,j , t)p
m+1
n )

∂Xi,j

=
1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j(Ai,j , Xi,j , t)p

m+1
n )

(∂Xi,j)2
−

k∑
i=1

ni∑
j=1

(
βi,j(Ai,j , Xi,j) + µi,j(Ai,j , Xi,j)

)
pm+1
n

+

∞∑
i=1

nd
i∑

j=1

∫
µ(A, Y )pmnd,i

(Aj
nd,i

,Xj
nd,i

, t|A(0)n(0),X(0)n(0), 0)dY dA , if An > 0

pm+1
n (Xn,An, t|X(0)n(0),A(0)n(0), 0)

=

∫ k−1∑
i=1

ni∑
j=1

β̃i,j(Ai,j , Yi,j , Xi,j , Xi+1,ni+1
)pmn (Aj

n(0)b,i
(t),Xj

n(0)b,i
(t), t|A(0)n(0),X(0)n(0), 0)dYi,j ,

if Ai+1,ni+1
= 0.

(C7)
Likewise, it can be shown that pmn is non-negative, increasing in m, and satisfies∑

n

∫
pmn (An,Xn, t|A(0)n(0),X(0)n(0), 0)dXndAn ≤ 1, ∀A(0)n(0),X(0)n(0). (C8)

Therefore, under certain technical conditions such as commuting derivatives, there exists a limit p∗n = lim
m→∞

pmn that

satisfies the PDE

∂p∗n(An,Xn, t)

∂t
+

k∑
i=1

ni∑
j=1

∂p∗n
∂Ai,j

+

k∑
i=1

ni∑
j=1

∂(gi,j(Ai,j , Xi,j , t)p
∗
n)

∂Xi,j

=
1

2

k∑
i=1

ni∑
j=1

∂2(σ2
i,j(Ai,j , Xi,j , t)p

∗
n)

(∂Xi,j)2
−

k∑
i=1

ni∑
j=1

(
βi,j(Ai,j , Xi,j) + µi,j(Ai,j , Xi,j)

)
p∗n

+

∞∑
i=1

nd
i∑

j=1

∫
µi,j(A, Y )p∗nd,i

(Aj
nd,i

,Xj
nd,i

, t|A(0)n(0),X(0)n(0), 0)dY dA , if An > 0,

p∗n(An,Xn, t|X(0)n(0),A(0)n(0), 0) =∫ k−1∑
i=1

ni∑
j=1

β̃i,j(Ai,j , Yi,j , Xi,j , Xi+1,ni+1
)p∗n
(
A−jn(0)b,−i

,X−jn(0)b,−i
, t|A(0)n(0),X(0)n(0), 0

)
dYi,j ,

if Ai+1,ni+1
= 0.

(C9)

If p∗ satisfies the normalization conditions, i.e.,
∑

n

∫
p∗n(An,Xn, t)dXndAn ≡ 1,∀t ≥ 0, we can also define the

unconditional probability density by averaging over the initial probability density qn(0)

(
A(0)n(0),X(0)n(0), 0

)
pn
(
An,Xn, t

)
:=
∑
n(0)

∫
p∗n(An,Xn, t|A(0)n(0),X(0)n(0), 0)qn(0)

(
A(0)n(0),Xn(0), 0

)
dX(0)n(0)dA(0)n(0). (C10)

From Eq. (C10), we can define the symmetric probability density function

ρn(An,Xn, t) :=

k∏
i=1

1

ni!

∑
π

p∗n
(
π(An), π(Xn), t

)
, (C11)

where π is the same rearrangement for the age variables An and state variables Xn. From Eq. (C11), we could
derive the macroscopic quantities such as the marginalized cell density. We shall omit detailed discussions on those
macroscopic quantities for brevity.
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