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ABSTRACT We develop a method to reconstruct, from measured displacements of an underlying elastic substrate, the
spatially dependent forces that cells or tissues impart on it. Given newly available high-resolution images of substrate displace-
ments, it is desirable to be able to reconstruct small-scale, compactly supported focal adhesions that are often localized and
exist only within the footprint of a cell. In addition to the standard quadratic data mismatch terms that define least-squares
fitting, wemotivate a regularization term in the objective function that penalizes vectorial invariants of the reconstructed surface
stress while preserving boundaries. We solve this inverse problem by providing a numerical method for setting up a discretized
inverse problem that is solvable by standard convex optimization techniques. By minimizing the objective function subject to a
number of important physically motivated constraints, we are able to efficiently reconstruct stress fields with localized structure
from simulated and experimental substrate displacements. Our method incorporates the exact solution for a stress tensor
accurate to first-order finite differences and motivates the use of distance-based cutoffs for data inclusion and problem
sparsification.
INTRODUCTION
The adhesion of cells and tissues to their environment has
profound consequences for processes such as cell polariza-
tion (1), division, differentiation (2), tissue morphology
during development (3), wound healing (4–6), and cancer
metastasis (7). Hence, quantifying how cells attach to impart
force on the surrounding material is an important technical
challenge in cell biology.

Cell motility and cellular response to signals have hith-
erto typically been studied in two-dimensional geometries
in which cells are placed on a flat elastic substrate. Dynamic
adhesion between the cells and the substrate are realized
through dynamically reorganizing focal adhesions, often
mediated through cellular structures such as lamellipodia
and filopodia (8). Focal adhesions are typically spatially
localized, as shown in Fig. 1. Similarly, on larger length
scales, a collection of cells can give rise to localized stress
distributions. For example, the leading edge of a cell layer
produces the pulling force that leads to migration in
wound-healing assays (4–6).
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Dynamically varying force-generating structures are
often small and difficult to image. Mechanics-based
methods for inferring their positions and magnitudes, such
as using deformation of pillar structures (9) or textured sub-
strates (10), have been developed. These methods require
the cell to attach to a non-flat interface. The simplest
method compatible with a flat interface relies on measuring
the displacement of fiduciary markers, such as gold nano-
particles, embedded in the elastic substrate (11). The
measured displacements are an indirect probe of the
force-generating structures, e.g., focal adhesions. Any
inversion method should be able not only to reconstruct
the positions and magnitudes of the stress field, but also,
ideally, to capture potentially sharp boundaries of the
stress-generating structures. However, fiduciary markers
embedded in the three-dimensional substrate are typically
too sparse to reveal a displacement field with sufficient res-
olution to infer small cellular focal adhesion structures. To
image such sub-cellular stress structures, high-resolution
reconstructions are required (12,13). Experimentally, new
high-resolution imaging methods have been developed us-
ing methods to image higher densities of fiduciary markers
(13) or fluorescent grid patterning of the substrate (14). A
surface grid pattern of fluorescent adhesion proteins allows
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a b FIGURE 1 A schematic of an isolated cell. (a)

The boundary of the cell footprint is denoted by

the dashed curve, and the support of the stress

field is represented by the red regions that impart

a stress fðx; yÞ on the surface. Displacements

uðriÞ of the elastic medium are measured at posi-

tion ri ¼ xibx þ yiby þ zibz (blue dots) that can be

inside or outside the cell footprint, on the

surface ðzi ¼ 0Þ, or below the surface ðzi < 0Þ. (b)
A perspective view of the elastic substrate and

cellular footprint. To see this figure in color, go

online.
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surface deformation to be directly measured using conven-
tional microscopes.

In light of such higher spatial resolution techniques, we
develop an improved method for elastic stress source recov-
ery using ideas developed for image segmentation (15). This
class of methods relies on optimization that uses ‘‘compres-
sive’’ L1 regularization terms in the objective function that
favor solutions that are compactly supported (16). This
type of regularization term is not derived from any funda-
mental physical law, but represents prior knowledge that
the function to be recovered is sparse in content. In addition,
the overall objective function will be constructed to obey
physical constraints and symmetries.

In the next section, we review the standard linear equations
of elasticity that describe the forward problem of computing
the displacement field as a function of an arbitrary surface
stress distribution. This model is then used to construct the
data mismatch term in the objective function. We then moti-
vate regularization and constraint terms in the full objective
function. Finally, we demonstrate our method using both
simulated and experimental data. Our method provides
good reconstruction of localized structures that exhibit desir-
able qualities such as compressive recovery of compact
features as well as the suppression of the Gibbs ringing phe-
nomenon at the boundaries of the stress structures.
METHODS

Forward problem

We first derive the linear elastic Green’s function associated with a point

force applied to the surface of a semi-infinite half-space, as shown in

Fig. 1 b. We assume that the elastic medium is infinite in both depth

(d / N) and lateral extent. The Green’s function tensor defined in the

domain D ¼ fðx; y; zÞ j x; y˛R; z%0g is given by

G ¼
2
4Gxxðx; y; zÞ Gxyðx; y; zÞ Gxzðx; y; zÞ
Gyxðx; y; zÞ Gxyðx; y; zÞ Gyzðx; y; zÞ
Gzxðx; y; zÞ Gzyðx; y; zÞ Gzzðx; y; zÞ

3
5; (1)

where the components are explicitly given in Appendix A in the Supporting

Material. For example (17),
Gsz;zsðx; y; zÞ ¼ 1þ n

2pE

�
sz

R3
t

5
ð1� 2nÞs

RtðRt � zÞ
�

(2)

where s h x, y. The equation with 5 corresponds to Gsz and Gzs, respec-

tively, and Rth
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. The Young’s modulus and Poisson ratio of

the elastic substrate are denoted by E and n, respectively. For Matrigel,

Ez453� 102 Pa and nz0:5 (18). Throughout this manuscript, we will

express stress in units of E. The displacement of a material point at

ðx; y; z%0Þ in the medium due to a stress distribution f is simply the convo-

lution uðrÞh½ux uy uz�u ¼ G � f.
For our specific problem, we shall restrict the forces to surface stresses

f that act on the plane perpendicular to the bz axis. We define the in-plane

stress distribution, at depth z, as fðx; yÞ ¼ fxðx; yÞbx þ fyðx; yÞby. The resulting
surface-level displacement fields become

usðx; y; zÞ ¼
X

k¼ x;y;z

Z
U

dx0dy0Gskðx � x0; y� y0; zÞfkðx0; y0Þ:

(3)

Note that tangential stresses can induce displacements in the direction

normal to the surface. For cells on a flat surface, we assume that fz ¼ 0.
Inverse problem

Next, we develop an objective function for which the minimizing solution

provides a good approximation to the underlying stress field, at the same

time preserving discontinuities. The first component is simply a quadratic

data-mismatch term defined by the sum over the displacements measured

at the N measurement positions at ri:

Fdata½f� ¼
XN
i

��udataðriÞ � uðri j fÞ
�� 2: (4)

Since udataðriÞ is given, and uðri j fÞ is given by the linear model of Eq. 3,

this contribution to the objective function is a functional over the surface

force fðx; yÞ. For simplicity, we will assume that the data points are

measured only at the interface z ¼ 0 over a uniform grid with coordinates

given as fðxj; ykÞ : j˛f1; 2;.; Jg; k˛f1; 2;.;Kgg
In Eq. 3, we have restricted the domain of integration to lie within the cell

footprint, U, reiterating that fðx; yÞ has compact support. As a consequence

of compact support, for a fixed discretized approximation of fðx; yÞ, the dis-
placements can be obtained exactly by solving an equivalent system of

linear equations of finite dimension. We explicitly define this system of

linear equations given a piecewise-affine approximation of the stress field.
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Let us consider the first-order approximation of fxðx; yÞ and fyðx; yÞ using
central finite differences, for

x˛
�
xj � dx=2; xj þ dx=2ÞXy˛

�
yj � dy=2; yj þ dy=2Þ;

fxðx; yÞ ¼ fx
�
xi; yj

�
þðx � xiÞ

fx
�
xiþ1; yj

�� fx
�
xi�1; yj

�
2dx

þ�
y� yj

� fx�xi; yjþ1

�� fx
�
xi; yj�1

�
2dy

þOðdxÞ2 þOðdyÞ2;

(5)

where i; j denotes a tuple of grid coordinates. In effect, we are performing

sub-pixel interpolation where the stress is fully determined by its values at

the grid vertices.

Upon using Eq. 5, we can rewrite Eq. 3 by decomposing the integral into

a sum of integrals over grid cells. After further regrouping terms, we find a

linear system of equations for usðx; yÞ across all grid points. For example,

uxðxn; ymÞ ¼ Gnmjk
xx fx

�
xj; yk

�þ Gnmjk
xy fy

�
xj; yk

�
; (6)

where summation notation for each index tuple ðj; kÞ has been implicitly

assumed, and the tensors, Gnmjk
xx , Gnmjk

xy , and the analogous formulae for

uyðxn; ymÞ are given in Appendix B of the Supporting Material.

From an equation-counting perspective, the system of equations is

exactly determined given that one has at least as many measurement points

as grid cells in the resolution that one wishes to reconstruct the stress field,

provided that one is able to measure displacements in both directions. Even

if one is able to measure displacements in both directions, the measure-

ments may be imprecise and noisy, rendering the inversion of Eq. 6 highly

ill conditioned. To resolve these issues, we introduce a number of physi-

cally consistent constraints and regularization terms relevant to this system.
Physical constraints and regularization

The remaining components of the objective function should contain infor-

mation about the known physical constraints, as well as regularization

terms that better condition the overall optimization problem. Various regu-

larization terms have been motivated, but they can also be associated with

prior knowledge about the solution (19).

First, we consider explicit physical constraints. Since we are assuming

inertial effects are negligible, we require that the net force vanish, or thatZ
U

fxðx; yÞdxdy ¼
Z
U

fyðx; yÞdxdy ¼ 0: (7)

Likewise, we require that there is no net torque, or thatZ
U

xfyðx; yÞdxdy ¼
Z
U

yfxðx; yÞdxdy: (8)

Similar no-force and no-torque constraints have been previously applied to

the traction-force inference problem in the Fourier domain (20), for which

sparse solutions are difficult to resolve.

Another physical constraint is the requirement that surface stress at loca-

tions outside of the cell footprint vanish. In regions where there is no con-

tact between the cell and the substrate, no mechanism can impart stress.

Thus, the stress field is compactly supported within the cell footprint.

The stress field may be further localized within cellular focal adhesions in-
2532 Biophysical Journal 113, 2530–2539, December 5, 2017
side the cell footprint. Confining the stress within an arbitrary cell footprint

requires a complex iterative method (20).

To better condition the inference of fðx; yÞ, we regularize this problem by

forcing the reconstruction to obey some physically relevant characteristics

of the surface stress. In many other types of inverse problems, for example,

in the inference of the potential of mean force of a molecular bond, a

constraint on differentiability is typically imposed on the function to be in-

ferred (21). A typical constraint of this nature may be a quadratic penalty on

the gradients of the function to be inferred. However, such L2 functional

regularization often leads to over-smoothing of extreme values and failure

to recover compactness. Thus, L1 regularization on the function, or on its

variations, has been developed to allow for more ‘‘compressed’’ reconstruc-

tions. These approaches are suitable for problems such as segmentation of

images where boundaries are sharp (16). In these problems, the data are

sparse in the sense that the boundaries in an image contain most of the in-

formation. Likewise, in the stress recovery problem at hand, the data con-

sisting of displacements at a finite number of measurement positions may

be considered sparse.

To this end, one may employ variants of penalties often used in image-

processing applications, where one penalizes the L1 norm of the vector field

or its variations using regularization terms, Freg, of the form

FL1 ¼
Z
U

�jfxðx; yÞ j þ ��fyðx; yÞ �� �dr; (9)

Z � � � �

FTV1

¼
U

jVfxðx; yÞ j þ �Vfyðx; yÞ � dr; (10)

and

FTV2
¼

Z
U

�jvxfx j þ ��vyfx �� þ ��vxfy �� þ ��vyfy �� �dr; (11)

representing an L1 regularization of the surface stress and two forms of its

total variation, respectively. Since these regularization terms are not based

on any fundamental physical law, there is some freedom in choosing their

form. However, we do not want the choice of parameterization for the data

grid to affect the reconstruction results. Hence, the regularization terms

should not induce any additional anisotropy over that of the measured

displacement field. Thus, appropriate regularizations should be invariant

under coordinate rotation. Coordinate-invariant regularizers can be con-

structed from the magnitude of the force vector at the surface:

jfðx; yÞ j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2x þ f 2y

q
: (12)

Any regularization penalty imposed on the reconstruction problem must be

a functional of this quantity to maintain rotational invariance relative to the

choice of how the displacements are sampled. In this manuscript, we follow

an approach similar to those taken by Han et al. (22), Brask et al. (23), and

Sune-Auñón et al. (24,25), and focus on the isotropic L1 norm,

~FL1 ¼
Z
U

jfðx; yÞ j dxdy: (13)

However, in addition to exploring different regularization penalties, we also

incorporate physical constraints, which, we will see, influences the inverse

problem.

Other regularizations are possible; for example, one may also use the

isotropic L2 norm,



Reconstructing Cell-Force Distributions
~FL2 ¼
Z
U

jfðx; yÞ j 2dxdy; (14)

as was used by Plotnikov et al. (26). Employing any of the above expres-

sions as the regularization norm, F , we define the penalized optimization
reg

problem,

bf �� l ¼ argmin
f

	
Fdata½f� þ lFreg½f�



; (15)

subject to the no-force, no-torque (Eqs. 7 and 8), and footprint constraints

on fmentioned above. In Eq. 15, l> 0 is a tunable parameter. This problem

is in a standard form that is directly solvable using a variety of optimization

routines. In our implementation, we use a second-order quadratic cone

solver (27).

To reduce the size of the system of equations described in Eq. 6, we

note that the Green’s function falls off at a rate of jr j �1. However,

when combined with the zero-force constraint, the relationship between

the displacements and the support of the stress field falls off at the

much quicker rate of jr j �2 (see Appendix C in the Supporting Material).

Formally, ifU ¼ supðfÞ3R2 is compact, and
R
fðrÞdr ¼ 0, then as r/N,

ux;yðrÞ ¼ Oðjr j �2Þ. The decay of the influence of stress on the system

provides justification for setting distance-based cutoffs of the linear sys-

tem. The effect of the cutoff is to limit the left-hand side of Eq. 6 to loca-

tions only within some maximal distance, Rt, from the outline of the cell.
RESULTS

We implemented our regularized inversion method in Py-
thon version 3.5, where optimization is performed using
the cvxpy package with the ecos solver. Our implementation
is available at https://github.com/joshchang/tractionforce.
For all reconstructions, we assumed that n ¼ 0:5 and re-
ported all results in normalized units of the Young’s
modulus.
Simulated data

First, we tested our method on simulated data derived from a
force- and torque-free test stress field shown in Fig. 2. The
test pattern consists of four separated circular stress pads,
or focal adhesions, with radii r1 ¼ 1=5, r2 ¼ 1=6,
a b

FIGURE 2 Test stress pattern and surface displacements. (a) Four focal adhes

resents the extent of the cell footprint and can be determined experimentally as p

constraint on the stress distribution and we explore the dependence of the quality

the regular points at which displacements might be measured. (b and c) Schem

sponding to the four focal adhesions in (a). To see this figure in color, go onlin
r3 ¼ 1=8, and r4 ¼ 1=4, and centers at positions
ðx1; y1Þ ¼ ð�1;�1=2Þ, ðx2; y2Þ ¼ ð0;�1Þ, ðx3; y3Þ ¼ ð2; 1Þ,
and ðx4; y4Þ ¼ ð0; 1Þ. The pads 2, 3, and 4 are connected
in a triangle, as shown, whereas pad 1 is connected only
to pad 2. The tensions along these connections give rise to
surface stresses imparted by the pads onto the substrate.
We will assume that the stress fields in pads 1, 2, and 3
are uniformly distributed within the circular disks. For
pad 4, we assume that the filaments connected to it are
distributed according to a cone-like density function. Thus,
the stress field within pad 4 linearly decreases along the radial
direction. The stresses fðiÞ under each patch i are decomposed
into contributions arising from the total tension, Tij, connect-
ing them with pad j and can be expressed in the form

fð1Þ ¼ a12

�bx � by
2

�
; (16)

ð2Þ G4 A1

� by�

f ¼

A2

by � a12
A2

bx �
2

þ a23ðbx þ byÞ; (17)

ð3Þ G4 A2

f ¼ �bx

A3

� a23
A3

ðbx þ byÞ; (18)

ð4Þ
�

r
�

f ¼ g4 1�
r4

ðbx � byÞ; (19)

where a12; a23; g4 > 0 are constant amplitudes, Ai ¼ pr2i are
the pad areas, and

G4 ¼ 2pg4

Z r4

0

�
1� r

r4

�
rdr ¼ g4pr

2
4

3
(20)

is the total force on pad 4 in each direction. Note that both
test stress fields are constructed to be free of force and
torque.
c

ions attached by filaments indicated by the green lines. The red border rep-

art of the imaging. Mathematically, the cell boundary forms the basis for a

of reconstruction on the footprint constraint. The faint blue grid represents

atics of the surface displacements uxðx; yÞ and uyðx; yÞ, respectively, corre-
e.
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In our examples, we used a12 ¼ 10�4, a23 ¼ 2� 10�4,
and g4 ¼ 9� 10�5. We generated displacement fields by
solving the forward problem (i.e., Eq. 3 for surface values
uðx; y; z ¼ 0Þ) and then corrupted the displacements with
Gaussian white noise with SD 10�5. From these noisy dis-
placements, we reconstructed f ðrÞ.

Fig. 3 compares the reconstruction achieved from using
the different forms of Freg. In all of these reconstructions,
we have imposed that the surface stress is both force-free
and torque-free and also that the support of the surface stress
is within the given boundary defined in Fig. 2. The adjust-
able parameter l was chosen in each instance by examining
the balance between data mismatch and regularity using
trade-off curves shown in Fig. S1 D in Appendix D in the
Supporting Material and taking the value for l that yields
a point farthest away from the line segment joining the
ends of the plot. The chosen value of l corresponds to a bal-
ance between regularity and data fidelity. The solution cor-
responding to each particular value of l is shown in Fig. 3.
Each column in Fig. 3 corresponds to the use of a different
regularization penalty. The parameter l can also be ex-
tracted using an empirical Bayesian framework in which
posterior probability is maximized (26).

Fig. 3 indicates that all forms of regularization yield
reasonable reconstructions of the four pads, albeit at
different levels of scarcity in reconstruction of the surround-
ing regions. The reconstruction using the isotropic L1 pen-
alty is seen to be more sparse than that of the isotropic L2

penalty, whereas the other penalties all yielded comparable
reconstructions. In the remaining analysis of the four-pad
test pattern we concentrate on using ~FL1 .

In many inverse problems, computational complexity is
a technical issue either due to memory constraints or
computational time. A tactic for reducing computational
complexity is to coarsen the reconstruction problem so
that one reduces the rank of the linear system to solve.
Fig. 4 shows reconstructions of the four-pad test patterns us-
ing ~FL1 as a function of the coarseness of the displacement
FIGURE 3 Comparing different regularizers. Reconstruction of the test patter

and ~FL2 . Regularization parameters chosen according to Fig. S1 D in Appendix
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data. We coarsened the data by taking only every
n˛f1; 2; 4g lattice points in each dimension, noting that do-
ing so reduces the rank of the problem by a factor of n2. The
general features of the stress patterns are preserved under
coarsening, but sufficient density of data points is needed
to resolve fine scale variations in the stress field.

In some applications, displacements are only measurable
along a single axis. Reconstruction of the surface forces us-
ing these types of data is related to the problem of missing
data or information loss. We tested reconstruction under
these circumstances by assuming that displacements only
in either the bx or the by directions are measured. In Fig. 5,
we show reconstructions using only ux or uy data. In both
cases, the reconstruction of the force in the direction perpen-
dicular to the measured displacements is most affected by
information loss. This effect is seen in the spurious bound-
ary forces generated at the cell boundary in both cases.
Nonetheless, the pads are clearly visible in both sets of re-
constructions, along both axes.

In all reconstructions so far, we have enforced the phys-
ical no-force and no-torque constraints. Fig. 6 explores
the influence of these constraints by providing the differ-
ences in the reconstructions between the physically con-
strained problem and unconstrained problems. In the first
column, the force constraint is not enforced. In the second
column, the torque constraint is not enforced. In the last col-
umn, neither force nor torque constraints are enforced. In all
cases, we see that the constraints are active; removing the
constraints affects the quantitative results of the reconstruc-
tion. In all cases, constraints are not satisfied automatically.
For example, without enforcing the force constraint, net
forces on the magnitude of 10�6 arise.

The other type of constraint that we have imposed on this
problem is the compactness constraint that is given by
enforcing zero force outside the independently determined
cell footprint U. We see from Fig. 3 that because of the
sparse target function fðx; yÞ, the reconstruction of the
four-pad test pattern is not likely to be sensitive to
ns using all constraints and the different forms of Freg: FL1 ;FTV1
;FTV2

; ~FL1

D of the Supporting Material. To see this figure in color, go online.



FIGURE 4 Grid coarsening using every

n˛f1; 2; 4g lattice points of observations. The

reconstruction is also performed at the same resolu-

tion. In general, the optimization is stable and the

qualitative features of the reconstructed fðx; yÞ are
robust to modest data coarsening. To see this figure

in color, go online.
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expansions of the cell boundary. However, the effect of
failing to enclose all of the pads within a given cell bound-
ary is dramatic. In Fig. 7, we performed reconstructions
where the footprint was drawn in an incorrect orientation
along the by axis, thereby failing to capture two of the pads
within the cell footprint. In these reconstructions, the two re-
maining pads emerge in the reconstruction, but the effect of
the two missing pads is the spurious generation of traction
forces near the boundary of the erroneously drawn cell.

Thus, the reconstruction is sensitive to both the complete-
ness of the data and the footprint boundary constraint. In
particular, for systems where the stress fields are spread
FIGURE 5 Unidirectional displacement measurements. We explore sur-

face-stress reconstruction from displacements only in one direction. Recon-

structions of both components of the four-pad surface stress are shown

under measures along only bx or only by; using the ~FL1 norm. To see this

figure in color, go online.
about the outer boundary, an erroneously applied perimeter
constraint that misses some of the interior domain would
lead to errors, particularly if only one component of the
displacement is given. However, if the misspecified bound-
ary completely contains the cell footprint, the stress recon-
struction is fairly robust when both components of the
displacement are available.
Reconstruction from single-cell data

To apply our method to high-resolution experimental data,
we consider the displacements resulting from stress gener-
ated by a single isolated mesenchymal stem cell. The sur-
face displacements were measured using Hilbert space
dynamometry, which uses phase information of the periodic
signal arising from a chemically patterned grid on the sub-
strate (14). In the preliminary data set shown in Fig. 8,
only x-displacements at a resolution of the patterned grid
spacing were measured. As we have done for the simulation
data in Fig. 3, the l-optimal results for the reconstructed
stress field bf using the experimental data and the full set
of constraints are shown in Fig. 9.

In contrast to our simulated example, these results are
highly dependent on the choice of regularization. They
also illustrate the importance of using isotropic regulariza-
tion, particularly in reconstruction problems using this
type of data where only unidirectional displacements are
available. In the reconstructions using anisotropic penalties,
the forces are qualitatively distinct along the two directions.
This behavior is undesirable, as it appears that the choice
of observation axis heavily influences the outcome of
the reconstruction procedure. The isotropic L1 norm, by
contrast, is robust.

As is evident from the reconstructions, the surface forces
are concentrated near the border of the cell footprint. For
such boundary-dominated stress fields, the footprint
constraint is expected to be important in the recovery of f.
Fig. 10 compares the reconstruction with that computed
with an artificially expanded footprint. Using an incorrect
Biophysical Journal 113, 2530–2539, December 5, 2017 2535



FIGURE 6 Constraints are unsatisfied unless en-

forced. Plotted are the best reconstructions under

the ~FL1 penalty and the difference between these

reconstructions and the corresponding fully con-

strained reconstruction in Fig. 3. To see this figure

in color, go online.
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footprint results in a force distribution, bf , that differs from
the ‘‘true’’ distribution, especially near the borders. Particu-
larly, the qualitative properties of the reconstruction are
markedly different when not imposing the true footprint.

To further probe the influence of footprint specification on
the reconstruction of traction forces, we assumed that our
isotropic-L1-reconstructed ð~FL1Þ stress field is the ‘‘true’’
stress field, used it to generate displacements, and attempted
to replicate it using the expanded (and ‘‘false’’) cell bound-
ary of Fig. 10. In this exercise, we added noise of magnitude
10�5 mm to approximate the noise in the real data.

The reconstruction results are shown in Fig. 11. In these
reconstructions we assumed that we had available either
both components of the displacement or only a single
component (x-only). In the case where both displacements
are available (middle row), the reconstruction looks similar
to that of the assumed true stress field, with the stress highly
concentrated on the actual cell boundary, without explicit
specification of this boundary. However, there is some
leakage of forces outside of the actual boundary as well,
FIGURE 7 Footprint misspecification. Reconstructions were performed

with the footprint drawn in an incorrect orientation. The erroneous footprint

constraint misses two of the stress pads, resulting in erroneous forces

distributed along the edge of the footprint. If the misspecified footprint mis-

ses actual stress pads, spurious stresses will be generated at the misspecified

boundaries to satisfy the no-force and no-torque constraints. To see this

figure in color, go online.
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with some forces concentrated near the rim of the expanded
false boundary.

When only a single component of the displacements is
used, the reconstructed stress distribution does not gather
near the actual cell boundary (Fig. 11, bottom row). The
forces outside of the actual cell boundary are of similar
magnitude to the forces within the cell in these reconstruc-
tions, particularly in the reconstruction of the forces in theby component. In that component, very little of the actual
cell boundary is reconstructed.
DISCUSSION

We presented a systematic real-space approach to solving
the inverse problem associated with the reconstruction—
from displacements of the underlying substrate—of surface
stresses imparted by isolated cells. Our approach combines
sparsity-favoring regularization, all appropriate physical
constraints, and an accurate piecewise affine approximation
of the exact solution to the forward problem as a system of
linear equations. This approximation to the forward problem
FIGURE 8 Mesenchymal stem cell displacement field. The displacement

field is measured along the bx (horizontal) axis. The boundary of the cell

(yellow) was hand drawn based on a bright-field image of the cell. The im-

age is courtesy of G. Popescu (University of Illinois Urbana-Champaign).

To see this figure in color, go online.



FIGURE 9 Reconstruction of experimental surface stress field. The reconstruction of f is from the measured displacements shown in Fig. 8 using the norms

defined in the manuscript. In each case, l was chosen using the L-curve method as described in Appendix D in the Supporting Material. To see this figure in

color, go online.

Reconstructing Cell-Force Distributions
is used in a data-mismatch term, Fdata (Eq. 4). In the numer-
ical implementation of the optimization problem, we also
motivated the use of a cutoff in the solution of the forward
problem that greatly reduces the rank of the inverse prob-
lem, thereby decreasing both the computational complexity
of the problem and the memory requirements. This cutoff
approach is appropriate only in scenarios in which the
FIGURE 10 False-footprint constraint. The surface-force reconstruction

using the estimated cell footprint (from the bright field image) is compared

with the reconstruction derived from a false cell footprint. Since the forces

are concentrated near the cell border, the reconstruction is sensitive to the

location of the border (recall that only one direction of the displacement

field was available). To see this figure in color, go online.
stress-generating cell is localized and far from the system
boundaries. Assays in which cells or layers that extend to
the boundary of the sample or in which the substrate is of
finite depth will require the careful implementation of
boundary conditions defined by the sample size.

Upon further consideration of physical and geometric as-
pects of the problem, we motivated additional important
terms in the objective function. The fundamental optimiza-
tion problem involves minimizing an objective function
containing L1 regularization terms that are invariant to coor-
dinate rotation. The anisotropy of bf derives solely from the
anisotropy in the data. Although L1 regularization has been
used in traction-force microscopy (22), in this work, we also
imposed a number of important physical and geometric con-
straints, including vanishing net force/net torque and zero
stress outside the cell footprint. Through exploration of
the mathematical features of the stress inference problem,
we find that properly identifying and implementing physical
constraints (such as no force and no torque) are crucial to ac-
curate stress recovery.

We also showed that the footprint boundary constraint
can critically impact the reconstruction, especially when
adhesion sites are distributed near the cell boundary.
Such boundary-localized focal adhesion configurations are
commonly observed in cells grown on two-dimensional sub-
strates. In general, cell boundaries that artificially extend
beyond the true footprint worsen the inversion, allowing
for ‘‘leakage’’ of stress beyond its actual support. These
effects are especially pronounced in reconstructions using
only single-component displacement data.

For surface-stress distributions that are sparse and that
arise from localized focal adhesions, it is also important to
use a footprint that circumscribes all sources of stress.
This is especially important for cells that emanate long,
thin protrusions or filopodia that may be difficult to image.
Indeed, the full problem may be extended to include the
Biophysical Journal 113, 2530–2539, December 5, 2017 2537



FIGURE 11 Influence of boundary specification on force reconstruction.

In the top row, we take the original reconstruction (first columns in Figs. 9

and 10) as the new ground ‘‘truth.’’ Using this ‘‘true’’ stress field to generate

displacements, we try to recover this ‘‘true’’ stress field using a false foot-

print boundary. If both components of the displacement field are used,

reasonable reconstruction is achieved (middle row). However, if only the

x-component of the displacements is used, the reconstruction with the false

expanded boundary constraint fails to detect the stress localized to the

‘‘true’’ boundary. To see this figure in color, go online.

Chang et al.
footprint as a variable in the objective function to be mini-
mized. In this way, the bright-field image can also be used
as data to automatically infer the segmentation of the foot-
print. A similar extension can be implemented to reconstruct
the elastic parameters if they are not known with high cer-
tainty, resulting in a fully automated inverse problem that
utilizes both imaging and substrate displacements.
SUPPORTING MATERIAL

Supporting Materials and Methods and two figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(17)31033-0
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Supplementary Material: Mathematical Appendices

Appendix A: Elastic Green’s function

For completeness, we explicitly list the components of the Green’s tensor for a linear elastic substrate [27]

Gss(x, y, z) =
1 + ν

2πE

[
2(1− ν)R⊥ − z
R⊥(R⊥ − z)

+
[2R⊥(νR⊥ − z) + z2]s2

R3
⊥(R⊥ − z)2

]
, (A1)

Gzz(x, y, z) =
1 + ν

2πE

(
2(1− ν)

R⊥
+

z2

R3
⊥

)
, (A2)

Gxy(x, y, z) = Gyx =
1 + ν

2πE

[2R⊥(νR⊥ − z) + z2]xy

R3
⊥(R⊥ − z)2

, (A3)

Gsz,zs(x, y, z) =
1 + ν

2πE

(
sz

R3
⊥
± (1− 2ν)s

R⊥(R⊥ − z)

)
. (A4)

where s ≡ x, y. The last equation with ± corresponds to Gsz and Gzs, respectively, and R⊥ ≡
√
x2 + y2. The

Young’s modulus and Poisson ratio of the elastic substrate are denoted by E and ν, respectively.

Appendix B: Displacements and stresses at discrete positions

Here, we show the explicit expressions relating displacements u(xn, ym) = Γf at grid points (xn, ym) in terms of
stress fields at the same locations. Using the interpolation of f(x, y) defined by Eq. 5 in Eq. 3, we find

ux(xn, ym) =∑
(xj ,yk)∈Ω

{[
fx(xj , yk)− xj

(
fx(xj+1, yk)− fx(xj−1, yk)

2δx

)
− yk

(
fx(xj , yk+1)− fx(xj , yk−1)

2δy

)]
〈Gxx〉nmjk

+

[
fx(xj+1, yk)− fx(xj−1, yk)

2δx

]
〈xGxx〉nmjk +

[
fx(xj , yk+1)− fx(xj , yk−1)

2δy

]
〈yGxx〉nmjk

+

[
fy(xj , yk)− xj

(
fy(xj+1, yk)− fy(xj−1, yk)

2δx

)
− yk

(
fy(xj , yk+1)− fy(xj , yk−1)

2δy

)]
〈Gxy〉nmjk

+

[
fy(xj+1, yk)− fy(xj−1, yk)

2δx

]
〈xGxy〉nmjk +

[
fy(xj , yk+1)− fy(xj , yk−1)

2δy

]
〈yGxy〉nmjk

}
, (B1)

where

〈g(x, y)Guv〉nmjk =

∫ yk+δy/2

yk−δy/2

∫ xj+δx/2

xj−δx/2
g(x′, y′)Guv(xn − x′, ym − y′)dx′dy′, (B2)

except that at the edges where we use one-sided differences so that we are only differentiating within Ω. A similar
expression can be found for solving for uy (not shown). Collecting terms, we write ux,y(xn, ym) in terms of f(xj , yk)
in Eq. 6, where

Γnmjkxx = 〈Gxx〉nmjk − 〈Gxx〉n,m,j−1,k xj−1

2δx
+ 〈Gxx〉n,m,j+1,k xj+1

2δx
− 〈Gxx〉n,m,j,k−1 yk−1

2δy

+ 〈Gxx〉n,m,j,k+1 yk+1

2δy
− 〈xGxx〉

n,m,j−1,k

2δx
+
〈xGxx〉n,m,j+1,k

2δx
− 〈yGxx〉

n,m,j,k−1

2δy
+
〈yGxx〉n,m,j,k+1

2δy
, (B3)
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Γnmjkxy = 〈Gxy〉nmjk − 〈Gxy〉n,m,j−1,k xj−1

2δx
+ 〈Gxy〉n,m,j+1,k xj+1

2δx
− 〈Gxy〉n,m,j,k−1 yk−1

2δy

+ 〈Gxy〉n,m,j,k+1 yk+1

2δy
− 〈xGxy〉

n,m,j−1,k

2δx
+
〈xGxy〉n,m,j+1,k

2δx
− 〈yGxy〉

n,m,j,k−1

2δy
+
〈yGxy〉n,m,j,k+1

2δy
. (B4)

Explicit closed-form expressions for the integrals in Eq. B2 are given below. By defining ∆x+
nj = xn − (xj + δx/2),

∆x−nj = xn − (xj − δx/2), ∆y+
mk = ym − (yk + δy/2), and ∆y+

mk = ym − (yk − δy/2), we find

〈Guv〉nmjk = guv(∆x
+
nj ,∆y

+
mk)− guv(∆x+

nj ,∆y
−
mk)− guv(∆x−nj ,∆y+

mk) + guv(∆x
−
nj ,∆y

−
mk) (B5)

where

gxx(x, y) =
ν + 1

πE

[
x(1− ν) log

(√
x2 + y2 + y

)
+ y log

(√
x2 + y2 + x

)
− y
]

(B6)

gyy(x, y) =
ν + 1

πE

[
y(1− ν) log

(√
x2 + y2 + x

)
+ x log

(√
x2 + y2 + y

)
− x
]

(B7)

gxy(x, y) = −ν(ν + 1)

πE

√
x2 + y2. (B8)

The first moments are

〈xGxx(x, y)〉nmjk =
[
gxx(∆x+

nj ,∆y
+
mk)− gxx(∆x+

nj ,∆y
−
mk)− gxx(∆x−nj ,∆y

+
mk) + gxx(∆x−nj ,∆y

−
mk)

]
xn

−
[
gxxx(∆x+

nj ,∆y
+
mk)− gxxx(∆x+

nj ,∆y
−
mk)− gxxx(∆x−nj ,∆y

+
mk) + gxxx(∆x−nj ,∆y

−
mk)

]
, (B9)

where

gxxx(x, y) =
ν + 1

2πE

[
(ν + 1)y

√
x2 + y2 − (ν − 1)x2 log

(√
x2 + y2 + y

) ]
, (B10)

〈yGxx(x, y)〉nmjk =
[
gxx(∆x+

nj ,∆y
+
mk)− gxx(∆x+

nj ,∆y
−
mk)− gxx(∆x−nj ,∆y

+
mk) + gxx(∆x−nj ,∆y

−
mk)

]
ym

−
[
gyxx(∆x+

nj ,∆y
+
mk)− gyxx(∆x+

nj ,∆y
−
mk)− gyxx(∆x−nj ,∆y

+
mk) + gyxx(∆x−nj ,∆y

−
mk)

]
, (B11)

where

gyxx(x, y) =
ν + 1

2πE

[
y2 log

(√
x2 + y2 + x

)
−
√
x2 + y2

(
(2ν − 1)x+

1

2

√
x2 + y2

)]
, (B12)

and

〈xGxy(x, y)〉nmjk =
[
gxy(∆x−nj ,∆y

+
mk)− gxy(∆x−nj ,∆y

−
mk)− gxy(∆x+

nj ,∆y
+
mk) + gxy(∆x+

nj ,∆y
−
mk)

]
xn

−
[
gxxy(∆x+

nj ,∆y
+
mk)− gxxy(∆x+

nj ,∆y
−
mk)− gxxy(∆x−nj ,∆y

+
mk) + gxxy(∆x−nj ,∆y

−
mk)

]
(B13)

where

gxxy(x, y) =
ν(ν + 1)

πE

[y2

2
log
(√

x2 + y2 + x
)
− 1

4

√
x2 + y2

(√
x2 + y2 + 2x

) ]
. (B14)

Analogous expressions are straightforwardly derived for Γnmjkyx and Γnmjkyy .
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All of the above expressions may be found through direct iterated evaluation of the integrals, as long as n 6= m or
j 6= k the integrand (effectively the Green’s function) is bounded, hence making Fubini’s theorem applicable given
the compactly supported domains of integration.

In the special case where n = m and j = k, these formulae also hold. This fact is found by decomposing the
integration domain to exclude the origin, for instance in the manner∫ ∆y/2

−∆y/2

∫ ∆x/2

−∆x/2

dr = lim
ε→0

(∫ ∆y/2

ε

+

∫ ε

−∆y/2

)∫ ∆x/2

∆x/2

dr. (B15)

Since the antiderivatives of Eqs. B6, B7, B8, B10, B12, and B14 all have well-defined limits with only removable
discontinuities at the origin, integrals of the Green’s functions defined through Eq. B15 all converge about the origin
and the equations above also hold in the case where n = m and j = k. These explicit expressions allow us to accurately
evaluate u(ri) in Φdata[f ].

Appendix C: Decay of displacement fields

Note that ux and uy are symmetric in form. Hence, it will suffice to prove just one of these assertions. Eq. 3 can
be written as

ux(r) =
1 + ν

πE

∫
dr

|r− r′|

{[
ν(x− x′)2

|r− r′|2 + 1− ν
]
fx(r′) + ν

(x− x′)(y − y′)
|r− r′|2 fy(r′)

}

≡ 1 + ν

πE

∫
ρx(r, r′)
|r− r′| dr′ (C1)

where ρx(r, r′) is O(1) as |r| → ∞. Without loss of generality, we assume that the coordinate system is centered at
some point 0 ∈ Ω. The Euclidean distances can then be represented through the binomial expansion,

1

|r− r′|p =
1

|r|p
1(

1− 2r·r′
|r|2 + |r′|2

|r|2
)p/2 =

1

|r|p
∞∑
k=0

(p
2 + k − 1

k

)2r · r′ − |r′|2
|r|2︸ ︷︷ ︸
O(|r|−1)


k

. (C2)

Since r 6∈ Ω and r′ ∈ Ω, the series converges in the |r| → ∞ limit. Plugging this series into the last line of
Eq. C1, where p = 1, one sees that in order to show that the magnitude of ux(r) is O(|r|−q), it suffices to show that∫
ρx(r, r′)dr′ ≤ O(|r|−q+1).
Using the fact that

∫
f(r)dr = 0, one finds that∫

ρx(r, r′)dr′ =

∫
(1− ν)fx(r′)dr′ + ν

∫ [
(x− x′)2

|r− r′|2 fx(r′) +
(x− x′)(y − y′)
|r− r′|2 fy(r′)

]
dr′

=
ν

|r|2
∫ [

(x− x′)2fx(r′) + (x− x′)(y − y′)fy(r′)

] ∞∑
k=0

[
2r · r′ − |r′|2
|r|2

]k
dr′. (C3)

Expanding the leading order term of this expression, we see that

∫
ρx(r, r′)dr =

ν

|r|2
∫ [

(x− x′)2fx(r′) + (x− x′)(y − y′)fy(r′)

]
dr′

=
ν

|r|2

[
− 2x

∫
x′fx(r′)dr′ +

∫
x′2fx(r′)dr′ − x

∫
y′fy(r′)dr′ − y

∫
x′fy(r′)dr′ +

∫
x′y′fy(r′)dr′

]
= O(|r|−1). (C4)
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Hence, it is evident that this integral is of O(|r|−2), where to the leading order we have

ux(r) =
1 + ν

πE|r|2

[
− 2ν

x

|r|

∫
x′fx(r′)dr′ − xν

|r|

∫
y′fy(r′)dr′

− yν

|r|

∫
x′fy(r′)dr′ + (1− ν)

r

|r| ·
∫

r′fx(r′)dr′
]

+O(|r|−3). (C5)

Appendix D: Choice of regularization penalty parameter λ

The “L-curve” below illustrates the optimal choice of λ for each reconstruction used in this paper.
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Fig. D 1: Choice of λ by plotting the tradeoff between regularity and data mismatch for different values of λ. The “optimal”
value (red circle) is chosen by to be the point farthest away from the line segment joining the two ends of the plot (green and
black circles). Reconstructions under the different values of λ given by these circles are shown. The green circle corresponds to
solution with low regularity and is hence “under-regularized.” The black circle coincides with a solution of high regularity and
is hence “over-regularized.”
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Fig. D 2: Choice of λ for mesenchymal cell data (where displacements are known only in one direction). The optimal
reconstruction corresponds to the elbow of the tradeoff curve. Color contrast enhanced relative to scale used in the manuscript
body.
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