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Abstract
We present a model of the mechanical and fluid forces associated with exudative retinal
detachments where the retinal photoreceptor cells separate, typically from the underlying
retinal pigment epithelium (RPE). By computing the total fluid volume flow arising from
transretinal, vascular and RPE pump currents, we determine the conditions under which the
subretinal fluid pressure exceeds the maximum yield stress holding the retina and RPE
together, giving rise to an irreversible, extended retinal delamination. We also investigate
localized, blister-like retinal detachments by balancing mechanical tension in the retina with
both the retina–RPE adhesion energy and the hydraulic pressure jump across the retina. For
detachments induced by traction forces, we find a critical radius beyond which the blister is
unstable to growth. Growth of a detached blister can also be driven by inflamed lesions in
which the tissue has a higher choroidal hydraulic conductivity, has insufficient RPE pump
activity, or has defective adhesion bonds. We determine the parameter regimes in which the
blister either becomes unstable to growth, remains stable and finite-sized, or shrinks, allowing
possible healing. The corresponding stable blister radius and shape are calculated. Our
analysis provides a quantitative description of the physical mechanisms involved in exudative
retinal detachments and can help guide the development of retinal reattachment protocols or
preventative procedures.

(Some figures may appear in colour only in the online journal)

1. Introduction

The retina is composed of multiple layers of photoreceptor
and nerve cells that sit atop the retinal pigment epithelium
(RPE). The RPE is a monolayer of cells attached to Bruch’s
membrane, a 2–4 μm elastic collagen layer that covers
the choriocapillaris, the inner, vascular part of the choroid
substrate. The choriocapillaris is the part of the choroid that
feeds the metabolically active RPE and retina. Separations
between cell layers give rise to retinal detachments that are
a major contributor to retinal tissue death and permanent
vision loss [1]. The two common types of detachments are
rhegmatogenous, in which a hole or tear forms in the thin
retinal layer that has separated from the choroid, and exudative,
in which a blister forms without a retinal hole (shown in
figure 1) [2]. The latter type of detachment is typically
associated with vitreous forces that pull the retina from the
RPE, or with inflammation or vascular abnormalities that

result in pockets of accumulated subretinal fluid, without
tearing the retina. In figure 1(a), a large blister has formed
between the retina and the RPE layer. While this is the
typical location of blister formation, separation of the RPE
cell layer (red curves) from Bruch’s membrane that covers the
choriocapillaris can also occur, as shown by the small blister in
figures 1(a) and (b).

There exist numerous clinical protocols for preventing
and treating detached retinas, including vitrectomy, laser
photocoagulation, scleral buckling [3] and pneumatic
retinopexy [1, 2]. These methods exploit different mechanical
forces and are used in different circumstances. For example,
vitrectomies sever the attachment of the vitreous humor to
the detached retina, laser photocoagulation induces injury,
allowing a stronger re-adhesion of the scar tissue, and
pneumatic retinopexy (injection of a gas bubble to envelope a
torn retinal flap) [4].
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(a) (b)

Figure 1. Optical coherence tomography image of exudative retinal detachments. The transverse dimension of each image is approximately
3 mm. (a) Exudative retinal detachment in which the retinal photoreceptor layer has separated from the RPE cell layer. The small blister on
the left has lifted the RPE from the choroid as in (b). (b) Detachment in which the RPE layer (red) has separated from the choroid substrate.
Used with permission from Dr T Bennett, CRA, FOPS and the Ophthalmic Photographers’ Society.
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Figure 2. (a) The intrinsic adhesion energy per area U (z) between
retinal layer cells and the RPE, uniformly separated by distance z.
The interaction is defined at a reference pressure difference where
Pb = PIOP (see figure 3). At this reference pressure difference, the
RPE–retina binding energy per area is defined by U∗. The pre-tear
interaction is shown by the solid blue curve. When the displacement
extends beyond z∗, bonds are irreversibly broken, and the attractive
interaction potential is destroyed (black dashed curve). (b) The
adhesive force per area (stress) σ (z) between the two cell layers.
The maximum yield stress σmax ∼ U∗/z∗ is also indicated.

Despite the physical forces implicated in retinal
detachment and many existing protocols for reattachment
[5], a quantitative description of the underlying mechanics
is lacking. In this paper, we develop a mathematical model of
exudative retinal detachments which incorporates the relevant
fluid flows, mechanical tensions and cellular adhesion forces.

2. Retinal structure, forces and flows

The basic forces associated with retinal detachment include
pressure-driven flows, active RPE pump flows, cell–cell
adhesion forces and possibly retinal tension forces. Retinal
photoreceptor cells normally adhere to the RPE. A schematic
of a typical macromolecular adhesion interaction between
adjacent cells is shown in figure 2. In the absence of
hydraulic forces, the cellular adhesion potentialU (z) exhibits a
minimum at z = 0, corresponding to the equilibrium adhesion
bond length between apposed retinal and RPE cells. The
adhesive force per area (stress) between the two cell layers
is defined as

σ (z) ≡ dU (z)

dz
for z < z∗, (1)

where z < z∗ corresponds to the maximum separation that
can be sustained by the tissue. The corresponding stress

maximum yield stress that can be sustained is approximately
σmax ∼ U∗/z∗.

In addition to cellular adhesion, forces arise from
pressure-driven fluid flows across the different tissue layers.
Assuming that the fluid pressure in the choriocapillaris is Pc

and the intraocular pressure of the vitreous humor is PIOP, the
total pressure difference across the entire system is Pc − PIOP.
Both Pc and PIOP are measurable and somewhat controllable.
The capillary pressure is related to the venous blood pressure,
while the intraocular pressure PIOP is controlled by the total
flow of vitreous humor, which is produced by the ciliary body
at the base of the iris and drains predominantly through the
trabecullar meshwork at the perimeter of the cornea [6–8].
Since �P ≡ Pc −PIOP � 5–10 mm Hg [9], the higher vascular
pressure drives fluid flow from the choriocapillaris to the inner
eye in the absence of other active processes.

We also define a fluid pressure Pb in the narrow
extracellular space between the RPE and retina that contains
the adhesion bonds (see figure 3). Given any specific state of
the eye, we will assume that PIOP and Pc are known parameters
that can be determined from measurements (e.g., tonometry
and blood pressure), but that the subretinal pressure Pb is
determined by fluid flow through the choroid and retinal
layer. When external separation forces exceed U∗, the cellular
adhesion bonds rupture irreversibly. Differences between Pb

and PIOP will tilt the potential U (z) → U (z) − z(Pb − PIOP),
changing the effective detachment energy per area to U∗ −
z∗(Pb − PIOP).

Pressure-driven fluid flows cross between the choroid
space and the subretinal space, and between the subretinal
space and the vitreous space. The corresponding volume
fluxes, Jc and Jr, are expressed as

Jc = Lc(Pc − Pb), and Jr = Lr(Pb − PIOP), (2)

where Lc and Lr are the effective hydraulic conductivities of
the choriocapillaris (including that of the RPE and Bruch’s
membrane) and the retina, respectively. These conductivities
will depend on the physiological state of the tissue. For
example, loss of integrity of the tight junctions between
the RPE cells or inflammation of the choriocapillaris may
increase substrate leakiness and Lc. The permeability of
Bruch’s membrane has also been shown to increase with age
[10], decreasing Lc. Nonetheless, if Pc > PIOP, passive flows
alone will tend to separate the retina from the substrate.

In addition to passive flows, there is a component of
the volume flux that is actively pumped by the RPE layer.
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Figure 3. Schematic of a uniform exudative retinal detachment. The retina, RPE, Bruch’s membrane and choriocapillaris are colored green,
red, gold and pink, respectively. The tissue hydraulic conductivities, intraocular and choroidal pressures, PIOP and Pc, and expected flow
directions are labeled. In (a), the RPE pumps are active and the indicated passive fluid flow direction results from Pc > Pb > PIOP. In this
case, the retinal is stable against delamination at the retina–RPE interface. (b) If Pc is increased, and/or the RPE pump flux Jp is decreased,
fluid accumulates at the retina–RPE interface, irreversibly separating the cell layers. The resulting delamination can only be reattached by
changing conditions to those that allow drainage of the interstitial fluid.

The RPE cell layer is special in that it actively pumps fluid
from the retinal space through Bruch’s membrane and back
into the choroid [2]. This volume flux derives from active
cellular processes and thus depends on the physiological state
of the RPE, and possibly on the trans-RPE hydrostatic pressure
difference Pb −Pc > 0. However, since RPE pumps are highly
metabolic and regulated, we will assume that Jp is independent
of Pb − Pc for physiologically representative pressures [11].
Since active RPE pumping is thought to provide an important
force keeping the retina attached to the choroid [12, 13], the
position and physiological state of the RPE cell layer is an
important component of our model. In our analysis, we assume
Jp is a pressure-independent parameter that depends on the
state of the RPE cells and the regulation mechanisms affecting
the pumps.

Table A1 in the appendix lists the parameters used in
our modeling and discusses their ranges of values. Whenever
possible, our results will be evaluated and discussed within
a reasonable range of experimentally measured parameter
values.

3. Uniform retinal detachments

First, we consider the stability of attached retina against large,
uniform delamination from the RPE. In the presence of fluid
flow, static equilibrium requires that the volume flow into the
subretinal space balances the flow out of it:

Jc = Jr + Jp. (3)

Upon using equations (2) in equation (3), we solve for the
hydrodynamic pressure difference Pb−PIOP tending to separate
the retina from the RPE, and balance this stress with the
membrane adhesion force σ (z) from equation (1):

Pb − PIOP = Lc�P

Lr + Lc
− Jp

Lr + Lc
= σ (z), (4)

where �P ≡ Pc − PIOP. For a given stress function σ (z) ≡
dU (z)/dz, equation (4) can be solved to find the cellular layer
separation z as a function of �P, the RPE pumping flux Jp,
and the tissue permeabilities Lr, Lc.

When �P < 0, equation (4) can be satisfied only if σ (z) is
negative. In this regime, the outward passive flow compresses
the retina onto the choroid and detachments can occur only
through external traction forces from the vitreous humor. On
the other hand, when �P > 0 is sufficiently large, and/or the
RPE pump flux Jp is sufficiently small, the fluid pressure could
push the layers to a new equilibrium separation z > 0. In cases
where Pb − PIOP > max{dU (z)/dz} ≡ σmax, the maximum
yield stress is exceeded; there is no value of z that can satisfy
equation (4), and the retina irreversibly rips from the RPE
(figure 2(b)). Thus, when

Lc�P

Lr + Lc
− Jp

Lr + Lc
> σmax, (5)

an exudative retinal detachment of infinite extent
spontaneously forms. Figure 3(b) shows the flows and
pressures at which the retina and RPE have irreversibly
separated. Condition (5) is one of our main results and shows
that if Lc(Pc−PIOP)/(Lr+Lc) < σmax, an exudative detachment
cannot arise solely from RPE pump failure (Jp → 0).

Using experimentally determined parameter values listed
in table A1, we find that for a reasonable effective bond length
z∗ ∼ 10−7m, a loss of RPE pump function will typically
not give rise to spontaneous uniform delamination unless
U∗ � 10−4 J m−2, which is much smaller than typically
measured values [14]. Therefore, loss of RPE function alone is
insufficient to induce large-scale delamination, which requires
external traction forces. However, we will show that loss
of RPE pump function can dramatically affect the size and
stability of a localized pre-existing retinal blister.

4. Retinal blisters

We now consider retinal blisters that result from local traction
forces from the vitreous, or from local heterogeneities in the
physiological state of the tissue. The basic geometry of a
localized retinal blister is approximated by a spherical cap
with radius of curvature R as depicted in figure 4. The circular
footprint of the blister is denoted Ad ≡ πR2

⊥, while the cap
area of the detached retina is Ar. A lesion of inflamed tissue, if
it exists, will have area A� � Ad. The tissue within this lesion
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Figure 4. Schematic of a retinal blister. The intraocular pressure, the
pressure in the blister and the effective pressure underneath the
attached retina are denoted as PIOP, P′

b and Pb, respectively. The
blister geometry is defined by a spherical cap with radius of
curvature R and footprint radius R⊥. A localized lesion with area Al

may exist within the blister.

may be inflamed with diminished RPE pump activity J̃′
p or

increased tissue permeability.
We assume that there is negligible lateral fluid flow

between the blister interior and the infinitesimally thin
extracellular space between the retina and the RPE, and that
the two pressures P′

b and Pb are independently approximated
by the fluid flow through each of the spaces, respectively [15].
Moreover, we neglect the tamponading forces that might arise
from the gel-like vitreous inside the eye. This assumption is
appropriate for older patients where the vitreous humor has
liquefied, and for patients who have undergone vitrectomy.
For a blister with the geometry shown in figure 4, static
equilibrium is achieved only when the appropriate pressure
and retinal tension forces are balanced and there is no
net volume flow into the blister. Our problem superficially
resembles one-dimensional, classic, static problems in elastica
as reviewed by Wang [16] and subsequently extended to
include inertial dynamics [17–19]. However, in our retinal
detachment problem, we must consider a two-dimensional
detached blister, the cellular adhesion energy between retina
and substrate, and the evacuating fluid flow generated by the
RPE.

According to Laplace’s law, the pressure difference
P′

b − PIOP must be balanced by the retinal tension T times
its curvature:

P′
b − PIOP = 2T

R
. (6)

Stability at the contact perimeter of the blister requires
balancing of the tension T and the binding energy per unit area
U (z) holding the retina to the RPE in the undetached region.
If the cellular bonds are ruptured by the total magnitude of the
tension force, the tension in the detached retina will obey

T � U∗ − z∗(Pb − PIOP) ≈ U∗. (7)

Equation (7) represents the external stress required to pull
off unit area of retina that is attached to the RPE in the
presence of the pressures Pb and PIOP. Henceforth, we assume
that the region outside the localized blister is far from being
delaminated by fluid flow and that Pb − PIOP 
 σmax ≈
U∗/z∗. Therefore, we can safely accept the last approximation
U∗ − z∗(Pb − PIOP) ≈ U∗. In the appendix, we describe a more

general rupturing relation that takes into account the angle at
which the tension is applied.

With suitable constitutive relations between the pressure
P′

b and the tension T and the blister geometry, equations (6)
and (7) can be used to determine stable blister geometries and
sizes. In contrast to, say, a liquid–gas interface, the tension T
in our problem is not constant but depends on the amount of
stretching the detached membrane suffers, relative to the flat,
undetached retina. If we assume that the detached retina resists
stretching with a force linearly proportional to the amount
of excess area, the tension T will depend explicitly on the
dimensionless shape ratio

f ≡ Ad

Ar
= πR2

⊥
Ar

, (8)

according to

T ( f ) = Ed
(Ar − Ad)

Ad
= Ed

(
1

f
− 1

)
, (9)

where E is Young’s modulus of the detached retina and d is
its thickness. The combination Ed represents the stretching
elasticity of the detached retina. Geometrically, the radius of
curvature R can be expressed as

R( f ) = Ar√
4π(Ar − Ad)

= R⊥
2
√

f (1 − f )
. (10)

Finally, it will prove convenient to nondimensionalize all
hydraulic conductivities by Lc, all pressures by �P, all fluxes
by Lc�P, and the tension and adhesion energy by Ed. Our new
dimensionless variables are defined by

J̃p = Jp

Lc�P
, L̃r = Lr

Lc
, and Ũ∗ = U∗

Ed
. (11)

Upon using expressions (9) and (10) for T ( f ) and R( f )
in equations (6) and (7), the dimensionless equilibrium
conditions can be written as

P̃′
b − P̃IOP = 2T ( f )

R( f )�P
and (12)

f � 1

Ũ∗ + 1
≡ f∗, (13)

respectively. Note that the adhesion energy alone fixes possible
values of the shape parameter f which determines the
normalized blister cross-sectional profile. For h(0) � R, basic
geometry gives the blister profile as a function of f � 1/2:

h(r̃)

R⊥
=

√
1

4 f (1 − f )
− r̃2 −

√
1

4 f (1 − f )
− 1. (14)

Figure 5 plots the normalized blister height h(r̃)/R⊥ as a
function of the normalized radial coordinate r̃ = r/R⊥ for
various values of the adhesion energy Ũ∗.

In cases where the maximum height h(0) > R ( f < 1/2),
similar equations for blisters with overhangs can be derived.
The blister becomes more bulbous for larger adhesion energies
Ũ∗, with the transition from a blister with h(0) < R to one
with an overhang occurring when f falls below 1/2. From
equation (13), this occurs for Ũ∗ > 1, and is illustrated by
the Ũ∗ = 3 example in figure 5. For the sake of simplicity, we
have neglected the bending rigidity of the detached retinal layer
which can be estimated by κB ≈ 1

12 Ed3/(1 − ν2) ≈ Ed3/9,
where ν ≈ 1/2 is Poisson’s ratio of the fairly incompressible
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Figure 5. The blister profile plotted for various normalized adhesion
energies Ũ∗. Note that the blister shape depends only on the
normalized adhesion energy Ũ∗, while the radius R⊥ is a function of
all other parameters in the problem.

retinal tissue [20]. Incorporation of bending forces would
smooth the kink of the retinal surface across the point of
contact. The width of this transition region scales as

√
κB/T ∼

d/
√

Ũ∗ [21] which, using typical parameters from table A1
(appendix) yields d/(R

√
Ũ∗) 
 1 for small Ũ∗ and fairly

flat blisters. Therefore, the inclusion of retinal bending forces
will not qualitatively affect the shape of the blister and we
henceforth neglect it.

Equation (13) only provides a condition for the blister
shape. To determine the blister size, we must now solve
Laplace’s pressure jump equation (equation (12)) while
preserving the condition f � (Ũ∗ + 1)−1 found above
from balancing the tension with the retinal adhesion energy.
Equation (12) imposes an additional constraint on the physical
parameters J̃p, L̃r andŨ∗, which can only be satisfied for certain
blister radius R⊥. We now specify two models for P′

b − PIOP.
We will first assume that a circular region of some radius R⊥
has been previously mechanically detached and that within
this footprint, the molecular bonds have been irreversibly
broken, and the physiological state under the blister is uniform.
A relationship for the pressure difference P′

b − PIOP can be
found by imposing volume conservation under the blister
ArLr(P′

b − PIOP) = AdLc(Pc − P′
b) − AdJp. The dimensionless

form of equation (12) becomes

(1 − J̃p)

L̃r + f
= λ⊥

(
1

f
− 1

)3/2

, λ⊥ ≡
(

4Ed

R⊥�P

)
. (15)

Solving equation (15) with f � f∗ yields a finite blister
footprint radius R⊥ only if (L̃r+ f )(1/ f −1)3/2 > (1−J̃p)/λ⊥.
This constraint defines a critical blister radius

Rcr
⊥ =

(
4Ed

�P

)
[L̃r(Ũ∗ + 1) + 1]Ũ3/2

∗
(Ũ∗ + 1)(1 − J̃p)

, (16)

above which no stable solution to R⊥ exists. Pre-formed
blisters with R⊥ � Rcr

⊥ are stable while those with footprint
radius R⊥ > Rcr

⊥ are unstable. To maintain the same stable
blister pressure P′

b (so that net volume flow into the blister
remains zero) as the footprint radius R⊥ increases requires
that the curvature of the detached retina remains constant.
Therefore, stability requires that f decreases and the blister
becomes more bulbous. Beyond a certain critical radius Rcr

⊥,

the small- f , bulbous blister can no longer be supported by the
force condition f � 1/(Ũ∗ +1), and the blister spontaneously
grows without limit.

Note that for sufficiently large pump fluxes such that
1 − J̃p < 0, there is no formal solution to equation (12)
since any blister will be sucked flat onto the RPE, and
eventually possibly heal itself. These results highlight the
importance of the retina–choroid binding energy Ũ∗ and of
properly functioning RPE pumps. Sufficiently large binding
energies Ũ∗ impart stability to large areas of detachment, while
RPE pumping that is effective enough to render 1 − J̃p < 0
spontaneously reabsorbs blisters regardless of the value of Ũ∗.
Using the typical parameter values listed in the appendix, it
is typical that under normal physiological conditions J̃p � 1.
Finally, note that equations (15) and (16) also apply to RPE
detachments (as depicted in figure 1(b)), where the RPE is
lifted off Bruch’s membrane overlying the choroid and fluid is
actively pumped into the blister. An RPE detachment would
thus be described by our existing model, but with Jp → −Jp,
and Ũ∗ representing the RPE–Bruch membrane adhesion
energy. The corresponding solution to R⊥ (equation (16))
indicates that an RPE detachment can have a smaller critical
radius Rcr

⊥ due to fluid pumping into the blister, or a larger
Rcr

⊥ if the RPE–Bruch membrane adhesion is stronger than the
retina–RPE adhesion.

For a second class of physiologically motivated
detachment scenarios, we calculate the equilibrium size and
shape of an exudative detachment that covers a circular
choroidal/RPE lesion of known area A� (as shown in figure 4).
In this case, the equilibrium blister size R⊥ is not given by some
past trauma, but is to be determined by stability conditions.
Tissues within the lesion is in a different physiological state
and have associated parameters L′

c, J′
p, and/or U ′

∗ that can
be different from Lc, Jp, and/or U∗ of the non-lesioned
tissue. For example, the RPE layer, Bruch’s membrane, or
choriocapillaris may be inflamed within the lesion, leading to
a higher permeability, L′

c > Lc. The lesion may also represent
tissue with lower RPE pump expression or function, rendering
J′

p < Jp.
We now assume that retina over the lesion has lost

adhesion (Ũ ′
∗ = 0). Upon balancing the total volume flux into

the blister by summing the weighted volume flows associated
with each tissue type (lesion or non-lesion):

ArJr = A�J′
c + (Ad − A�)Jc − A�J′

p − (Ad − A�)Jp

= ArLr(P
′
b − PIOP). (17)

Upon using the form J′
c = L′

c(Pc − P′
b), defining the relative

lesion area

g ≡ A�

Ar
� f � 1, (18)

and solving equation (17) for the dimensionless transretinal
pressure jump P̃′

b − P̃IOP, we re-express equation (12) in a
dimensionless form:

( f − g) + gL̃′
c − ( f − g)J̃p − gJ̃′

p

L̃r + ( f − g) + gL̃′
c

= 2T ( f )

R�P
. (19)

Since the lesion radius R� = √
A�/π is constant, we express

the radius of curvature as R( f , g) ≡ R�/
√

4g(1 − f ). Upon

5
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using equation (9) for T ( f ), equation (19) can be rewritten in
the form of a cubic equation for the ratio g ≡ A�/Ar:√

f	( f )
(1 − L̃′

c)

(L̃r + f )
g3/2 + [L̃′

c − 1 + J̃p − J̃′
p]g

−
√

f	( f )
√

g + f (1 − J̃p) = 0, (20)

where 	( f ) ≡ λ�(1/ f − 1)3/2(L̃r + f ) and λ� ≡ (
4Ed

R��P

)
are convenient dimensionless combinations of parameters. By
solving equation (20) for g as a function of f , λ�, L̃′

c, J̃p and
J̃′

p, we can find the parameter range that supports steady-state
blisters, and the precise shape and size of the detachment. In
this scenario, we assume that the blister grows until the tension
is exactly balanced (the equality in equation (7)) so that the
operative value of the shape parameter is f = (Ũ∗+1)−1 ≡ f∗,
leading to the dimensionless control parameter

	( f∗) ≡ 	∗ = λ�Ũ
3/2
∗

(
L̃r + 1

Ũ∗ + 1

)
. (21)

Without loss of generality, further analytic progress can be
made in a number of physiologically relevant subcases. First,
assume the RPE cell layer becomes locally more permeable
to fluid flow (L̃′

c > 1) and the adhesion outside the lesion is
also weak. Solving equation (20) in the small 	∗ limit for the
physical root g∗, we find a stable blister footprint radius

R̃⊥ ≡ R⊥
R�

=
√

f∗
g∗

≈
√√√√ L̃′

c − 1 + J̃p − J̃′
p

J̃p − 1
(22)

only when J̃p > 1. Figure 6(a) plots R̃⊥ as a function of J̃p for
various L̃′

c − J̃′
p. As expected, detached blisters increase in size

as lesion conductivity increases, and diminish in size as RPE
pumping J̃p increases.

A more complex situation arises if the choroidal
permeability within the lesion is approximately that of healthy
tissue (Lc = L′

c and L̃′
c = 1) and the pump flux in the

lesion tissue J̃′
p ≈ 0. In this case, equation (20) reduces to

J̃pg− √
f∗	∗

√
g+ f∗(1 − J̃p) = 0. Upon finding the physical

root g∗, we construct a normalized blister footprint radius

R̃⊥ = 2J̃p

	∗ +
√

	2∗ − 4J̃p(1 − J̃p)

(23)

which depends on only two dimensionless parameters,
the dimensionless healthy-tissue RPE pump flux J̃p, and
the parameter combination 	∗. A real, stable solution to
equation (23) exists only if 	2

∗ � 4J̃p(1 − J̃p). Once this
condition is no longer satisfied, the blister radius R̃⊥ → ∞.
Furthermore, equation (23) is valid only when R̃⊥ � 1. When
the parameters are such that the blister footprint shrinks to
below that of the lesion, the problem becomes one of fixed
blister radius R� and equation (16) applied, but with R⊥
interpreted as R�.

For RPE pump fluxes J̃p > 1, fluid in the subretinal space
is sufficiently evacuated such that the blister radius R̃⊥ is
always finite. The retina is held down by the healthy-tissue RPE
pumps and even when Ũ∗ (and hence 	∗) vanish, the blister

radius R̃⊥ →
√

J̃p/(J̃p − 1). However, when J̃p < 1, stability
of the blister relies on the chorioretinal adhesion energy. For
sufficiently low Ũ∗, the blister becomes unstable and grows

without bound. For example, if Ũ∗ is decreased to the point

that 	∗ = 2
√

J̃p(1 − J̃p), R̃⊥ →
√

J̃p/(1 − J̃p). If 	∗ is further

decreased (for example, by decreasing λ� and/orŨ∗), the blister
becomes unstable and R̃⊥ → ∞.

For sufficiently large 	∗, the retina is always stable. When
	∗ > 1, the physical solution g∗ is such that R̃⊥ = 1 indicating
that the blister radius has contracted to within the boundary
of the lesion, and no retina above healthy choroid tissue is
detached. The shape of a fully contracted blister in this regime
is determined only by f∗ = (Ũ∗ + 1)−1, where the value of Ũ∗
is found from solving equation (21) when 	∗ = 1:

Ũ∗ =
{

(λ�L̃r)
−2/3 λ�L̃r 
 1,

(λ�(L̃r + 1))−2/3 λ�L̃r  1.

The first case arises when, for example, the retina is highly
stretchable and/or impermeable. Here, Ũ∗ is large, f∗ is small
and the blister is bulbous in shape. In the opposite limit of
permeable and/or stiff retinas, f∗ � 1, indicating that the
blister is relatively flat.

When 	∗ < 1, and J̃p < 1/2
[
1 + √

1 − 	2∗
]
, the blister

pressure P′
b − PIOP cannot be balanced by the retinal tension

term and the blister is unstable to unbounded growth R̃⊥ → ∞.
Only when J̃p > 1/2

[
1 +√

1 − 	2∗
]

is a finite blister footprint
radius stable. Our results are summarized in figure 6(b), where
values of R̃⊥ are shown in the 	∗ − J̃p plane. For a more
detailed plots representing equation (23), see the appendix.

5. Discussion and conclusions

We have developed a mathematical framework to describe
exudative retinal detachments. Forces arising from hydraulic
pressure differences, active and passive fluid flow and cellular
adhesion are balanced to determine the stability conditions
of a uniform retinal layer. We find that spontaneous retinal
detachment occurs whenever equation (5) is satisfied. Using
realistic parameter values, we find that spontaneous, uniform
tissue separation can occur only if both the RPE pumps fail
and the retina–RPE adhesion energy are globally reduced.

A more realistic scenario involves a localized exudative
detachment, or blister, under which subretinal fluid has
accumulated [15]. One of our main findings is that the shape
of the blister depends only on the stretching elasticity of
the detached retinal sheet and the adhesion energy per area
between the retina and the RPE. To find the size, or footprint
radius R⊥, of the blister, the pressure difference across the
detached retina must be balanced with the geometry-dependent
tension of the retina. We consider two clinically relevant
scenarios. The first assumes that a circular patch of retina
has been detached from an unspecified external force (such
as vitreous shear forces or transient normal tension forces
through collagen fibers that may be attached to the retina).
The physiological properties (adhesion strength, choroidal
hydraulic conductivity and RPE pump flux) under the detached
region may be different from those in the normal undetached
region. In this scenario, we find a critical blister radius Rcr

⊥
above which the blister is unstable to further growth. Estimates
for Rcr

⊥ range from millimeters to a centimeter, although the

6
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(a) (b)

Figure 6. (a) Plot of R̃⊥ (equation (22)) in the weak adhesion (Ũ∗ ≈ Ũ ′
∗ ≈ 0) and leaky lesion (L̃′

c > 1) limit. (b) Contour plot of R̃⊥
(equation (23)) as functions of the RPE pump flux J̃p and the dimensionless combination 	∗. Three qualitatively different regimes for R̃⊥ are
clearly indicated. For 	∗ > 1, the physical solution g∗ is such that R̃⊥ = 1 indicating that the blister radius has contracted to the boundary of

the lesion. For 	∗ < 1, and J̃p < 1/2
[
1 + √

1 − 	2∗
]
, the blister pressure P′

b − PIOP cannot be balanced by the retinal tension term and the

blister is unstable to unbounded growth R̃⊥ → ∞. Only when J̃p > 1/2
[
1 + √

1 − 	2∗
]

is a finite blister footprint radius stable.

actual critical radius may be larger due to restoring forces from
vitreous tamponading, which we neglect.

In the second scenario, we assume a localized circular
lesion of radius R�, above which the retina is already detached
from e.g. prior trauma. The physiological parameters in the
lesion differ from the rest of the healthy tissue. Here, the blister
footprint radius is determined by the physical solution to a
cubic equation and other constraints. Two relevant subcases
with simple analytic results arise. When the substrate tissue
within the lesion is leaky and L̃′

c > 1 (for example, if the
tight junctions of the RPE monolayer are locally disrupted),
the blister radius in the weak adhesion limit (	∗ ≈ 0) is
determined by equation (22) and is plotted in figure 6(a).
In the case where the RPE pump flux is not affected by the
inflamed tissue, the resulting quadratic equation can be solved
to find the blister radius as a function of the dimensionless
combination 	∗ (equation (21)) and J̃p = Jp/(Lc�P). Here,
blister sizes are delineated in (J̃p,	∗) space in figure 6(b),
while the more detailed dependences of R̃⊥ = R⊥/R� on 	∗
and J̃p are illustrated in figure A3 in the appendix.

Our model for blister formation relates the physiological
state of the retinal and choroidal tissue to physical parameters
such as intraocular and vascular pressures, hydraulic
conductivity, adhesion strength, retinal elasticity and RPE
pump flux. Some of these parameters can be experimentally
or clinically altered using e.g., anti-inflammatory drugs to
decrease hydraulic conductivities, or intraocular pressure
lowering drugs to decrease PIOP. Retinal detachments under
different physiological and structural conditions can also
be compared using the mechanical principles quantified
in our model. Our analyses can potentially guide the
clinical prediction, prevention and repair of exudative retinal
detachments.
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Appendix

A.1. Relevant physiological parameters

The parameter values, including values for the elasticity
of detached retina, are taken from different experiments
performed on dog, pig, rabbit and human retina. While the
parameter values in table A1 vary greatly, we nonetheless
use them as rough guides to the magnitude of the forces
detailed in our modeling. The variability in the parameters

Table A1. Table of measured parameter values. Note that 1 mm Hg
is equivalent to 133 Pa = 133 N m−2.

Physical parameter Symbol Typical values Reference

Intraocular pressure PIOP 10–20 mm Hg [6, 7]
Vascular pressure Pc 15–25 mm Hg [9, 23]
Blister pressure Pb Pc > Pb > PIOP [9, 15]
Retinal conductivity Lr 10−7, 10−10 m/(Pa s) [24]
Choriodal conductivity Lc 10−8, 10−9 m/(Pa s) [25]
RPE pump flux Jp ∼ 10−8 m s−1 [7, 11]
Retina–RPE adhesion U∗ ∼ 0.1 J m−2 [14, 15, 22]
Retinal Young’s modulus E 103, 104, 105 Pa [26–28]
Retinal thickness d ∼ 100–250 μm [7]
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arises from measurements across different animals, possibly
different tissue layers, using different experimental techniques
and sample preparation protocols.

For example, the retinal elasticity E appears to be highly
sensitive on whether it was measured using mechanical
stretching [27, 28], indentation force microscopy [29], with
the force indentation results giving lower values of E ∼ 1 kPa,
more consistent with a neural tissue.

Similarly, the retina–RPE adhesion energy U∗ is typically
obtained by measuring the force required to separate the retina
from the RPE. However, the force required to separate the
layers will depend on the RPE pump activity, which would
need to be carefully subtracted from the applied force in order
to obtain the intrinsic, pump-free adhesion energy. The range
of values observed is ∼ 0.01–0.1 J m−2 which is on the order
of that of an air–water interface.

A.2. Angle-dependent detachment condition

The precise balancing of tension and adhesion forces at the
edge of a blister will depend on the microscopic details of
how macromolecular bonds are oriented and adhere the retinal
cells to the stiff choroid. For example, if the bonds are free
to ‘swivel’, then the cells detach when the magnitude T
of the tension exceeds that of the binding energy per area
U∗. This case is described by equation (7) and the analyses
subsequent to it. However, if the bond-rupturing coordinate is,
say, normal to the retina then the binding energy per area is
balanced by only the normal component T sin θ of the retina
tension. Since the bonds (or the cells themselves) holding the
retinal cells can be ruptured by forces along different bond-
rupture ‘coordinates’, we interpolate between the total force
and normal force rupturing modes by defining the parameter
α through the force balance equation

T
√

α cos2 θ + sin2 θ ≈ U∗ − z∗(Pb − PIOP)

≈ U∗,
(A.1)

where the angle θ is the contact angle the retinal makes at the
perimeter of detachment and can be related to the blister radius
through R⊥/R = sin θ . Upon expressing the tension T and θ

in terms of the shape factor f , we find
1 − f

f

√
α + 4(1 − α) f (1 − f ) � Ũ∗. (A.2)

As the case with equation (13), the shape parameter f �
f (Ũ∗;α) depends only Ũ∗ and α. If α = 1, the magnitude of
the tension T contributes to cell detachment and we recover
equation (13). However, for α = 0, only the normal component
of T acts to detach the retinal cells. In this case, we find

f (Ũ∗;α = 0) ≡ Ad

Ar

= 1 − Ũ4/3
∗
6

⎛
⎝

√
1 + Ũ2∗

27
− 1

⎞
⎠

−1/3

+Ũ2/3
∗
2

⎛
⎝

√
1 + Ũ2∗

27
− 1

⎞
⎠

2/3

.

(A.3)

(a) (b)

Figure A1. (a) The blister shape parameter f (Ũ∗; α) ≡ Ad/Ar as a
function of the normalized retinal adhesion energy per area
Ũ∗ = U∗/(Ed) (solid curve). Shape parameters for both normal
force (α = 0) and total force (α = 1) rupturing mechanisms are
shown. (b) The maximum height h(0)/R⊥ plotted as a function of
Ũ∗ for various α. The dependence on α is modest.

Figure A2. Change in the blister profile for varying α and fixed
Ũ∗ = 0.2. When only the normal component of tension induces
detachment (α = 0), larger retinal stretching is required at the stable
contact perimeter (red curve).

(a) (b)

Figure A3. (a) The normalized blister radius R̃⊥ as a function of 	∗
at various dimensionless rescaled RPE pump fluxes
J̃p = 0.8, 0.9, 1, 1.1, 1.5. (b) The normalized blister radius R̃⊥ as a
function of the normalized RPE pump flux J̃p for various values of
	∗ = 0.1, 0.3, 0.5, 0.7, 0.9.

For irreversible delamination, these solutions f (Ũ∗;α) provide
a lower bound for the appropriate shape factor f and are
plotted in figure A1(a). The dashed curves in figure A1 shows
f (Ũ∗;α = 0). Intermediate values of α yield ratios Ad/Ar that
interpolate between the plotted curves. Figure A1(b) shows
the relative height of the blister for various α. Note that the
effect of the rupture mode α on the blister shape is minimal
except at large Ũ∗ � 3, where the relative difference becomes
appreciable.

To illustrate the effects of the retinal detachment mode on
the allowed shapes, in figure A2 we plot h(r̃)/R⊥ at a fixed
adhesion energy Ũ∗ for α = 0, 0.5, 1. Although for α = 0, the

8



Phys. Biol. 9 (2012) 046001 T Chou and M Siegel

complicated expression for f (Ũ∗;α = 0 does yield the simple
analytic expressions for α = 1 derived in the main body of
this paper, figures A1 and A2 show that the different modes of
detachment do not qualitatively alter our overall results except
in the extreme case where Ũ∗ � 3 and blisters have overhangs.

A.3. Analysis of R̃⊥(	∗, J̃p)

For completeness, we plot slices of the solution R̃⊥(	∗, J̃p)

in figure A3. Figure A3(a) plots the expected normalized
blister footprint radius R̃⊥ (equation (23)) as a function of
the dimensionless combination 	∗ and various values of the
normalized, rescaled, RPE pump flux J̃p. R̃⊥ increases with
decreasing 	∗, and in particular, for J̃p < 1, there is an abrupt
transition to instability and R̃⊥ → ∞, at the points indicated
by the solid dots. This plot is qualitatively similar to a plot
where 	∗ is replaced by λ�Ũ

3/2
∗ (L̃r + 1) (for Ũ∗ 
 1) or

λ�Ũ
3/2
∗ L̃r (for Ũ∗  1).
Figure A3(b) shows R̃⊥ as a function of J̃p for fixed 	∗. For

each fixed 	∗, as J̃p is decreased, R̃⊥ increases. Less effective
RPE pumps lead to larger blisters. Below a critical J̃p, the
radius R̃⊥ growth without bound at a maximum permissible
radius (dots).
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