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Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been
extensively studied but are unable to describe stochastic fluctuations or population-size-dependent birth and death
rates. Stochastic theories that treat semi-Markov age-dependent processes using, e.g., the Bellman-Harris equation
do not resolve a population’s age structure and are unable to quantify population-size dependencies. Conversely,
current theories that include size-dependent population dynamics (e.g., mathematical models that include carrying
capacity such as the logistic equation) cannot be easily extended to take into account age-dependent birth and death
rates. In this paper, we present a systematic derivation of a new, fully stochastic kinetic theory for interacting
age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of
kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that
the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability
densities, which then must be solved by using a Bogoliubov—Born—Green—Kirkwood—Yvon-like hierarchy.
Explicit solutions are derived in three limits: no birth, no death, and steady state. These are then compared with their
corresponding mean-field results. Our results generalize both deterministic models and existing master equation
approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent
stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution.
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I. INTRODUCTION

Aging is an important controlling feature in populations of
living organisms. Processes such as birth, death, and mutation
are typically highly dependent on an organism’s chronological
age. Age-dependent population dynamics, where birth and
death probabilities depend on an organism’s age, arise across
diverse research areas such as demography [1], biofilm forma-
tion [2], and stem cell proliferation and differentiation [3,4].
In this latter application, not only does the cell cycle give rise
to age-dependent processes [5,6], but often the small number
of cells requires a stochastic interpretation of the population.
Despite the importance of age structure (such as that arising
in the study of cell cycles [5–7]), there exists no theoretical
method to fully quantify the stochastic dynamics of age- and
population-dependent processes.

Past work on age-structured populations has focused on
deterministic models through the analysis of the so-called
McKendrick–von Foerster equation, first studied by McK-
endrick [8,9] and subsequently von Foerster [10], Gurtin
and MacCamy [11,12], and others [13,14]. In these classic
treatments, ρ(a,t)da is used to define, at time t , the number
of noninteracting agents with age between a and a + da. The
total number of particles in the system at time t is thus n(t) =∫ ∞

0 ρ(a,t)da. If μ(a; n(t)) is the death rate for individuals of
age a, then the McKendrick–von Foerster equations are [11,12]

∂ρ(a,t)

∂t
+ ∂ρ(a,t)

∂a
= −μ(a; n(t))ρ(a,t), (1)

with ρ(a,t = 0) = g(a) and

ρ(a = 0,t) =
∫ ∞

0
β(a; n(t))ρ(a,t)da (2)

for initial and boundary conditions, respectively. The boundary
condition [Eq. (2)] reflects the fact that birth gives rise to
age-zero individuals. Note in this formulation that the birth
and death rates β and μ can depend on both age a and
sample size n(t), a flexibility that facilitates a wide range
of applications. For example, interacting populations that are
limited can be modeled by birth and death rates β(a; n(t)) and
μ(a; n(t)) that are functions of n(t) and specifically chosen
to limit population growth. The McKendrick–von Foerster
equations [Eqs. (1) and (2)] need to be self-consistently solved
along with the definition of n(t) [11,12]. This was dealt
with more recently [15] by perturbative expansion (see also
Refs. [13,16]). Important applications can also be found in
evolutionary contexts [17,18].

The population dependence of β(a; n(t)) and μ(a; n(t)) in
Eqs. (1) and (2) are assumed without explicit derivation and it
is difficult to generalize these self-consistent approaches to the
stochastic domain. Therefore, a formal derivation will allow a
deeper understanding of how population dependence and cor-
relations arise in a fully stochastic age-structured framework.

Two approaches that have been used for describing
stochastic populations include master equations [19,20] and
evolution equations for age-dependent branching process
such as the Bellman-Harris process [21–25]. Master-equation
approaches can be used to describe population-dependent
birth and death rates [11,12,26,27], but they implicitly assume
exponentially distributed waiting times between events [20].
On the other hand, age-dependent models such as the Bellman-
Harris branching process [21] allow for arbitrary distributions
of times between birth and death events, but they cannot
resolve age structure of the entire population nor describe
population-dependent dynamics that arise from, e.g.,
regulation or environmental carrying capacities.
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A number of approaches attempt to incorporate stochas-
ticity into age-dependent population models [3,22,28–33].
For example, stochasticity can be implemented by assuming
a random rate of advancing to the next age window (by,
e.g., stochastic harvesting [30,31] or a fluctuating environ-
ment [34,35]). However, such models do not account for the
intrinsic stochasticity of the underlying birth-death process
that acts differently on individuals at each different age.
One alternative approach might be to extend the mean-
field, age-structured McKendrick–von Foerster theory into the
stochastic domain by considering the evolution of P (n(a); t),
the probability density that there are n individuals within
age window [a,a + da] at time t [3,36]. This approach is
meaningful only if a large number of individuals exist in each
age window, in which case a large system size van Kampen
expansion within each age window can be applied [19].
However, such an assumption is inconsistent with the desired
small-number stochastic description of the system.

A mathematical theory that addresses the age-dependent
problem of constrained stochastic populations would provide
an important tool for quantitatively investigating problems in
demography, bacterial growth, population biology, and stem
cell differentiation and proliferation. In this paper, we develop
a new kinetic equation that intuitively integrates population
stochasticity, age-dependent effects (such as cell cycle), and
population regulation into a unified theory. Our equations form
a hierarchy analogous to that derived for the Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy in kinetic
theory [37,38], allowing for a fully stochastic treatment of
an age-dependent process undergoing population-dependent
birth and death.

II. KINETIC EQUATIONS FOR AGING POPULATIONS

To develop a fully stochastic theory for age-structured
populations that can naturally describe both age- and pop-
ulation size-dependent birth and death rates, we invoke
multiple-particle distribution functions such as those used
in kinetic theories of gases [38]. Our analysis builds on
the Boltzmann kinetic theory of D. Zanette and yields a
BBGKY-like hierarchy of equations. Here the positions of
ballistic particles will represent the ages of individuals.

Changes in the total population require that we consider
a family of multiparticle distribution functions, each with
different dimensionality corresponding to the number of
individuals. In this picture, birth and death are represented by
transitions between the different distribution functions residing
on different fixed particle-number “manifolds.” Processes
that generate newborns (particles of age zero) manifest
themselves mathematically through boundary conditions on
higher-dimensional distribution functions.

The microscopic model we consider is represented in
Fig. 1(a). We let n represent the population size at some
time t . Then each individual gives birth to a single progeny
at rate βn(x), where x represents the age of the individual.
This is a budding mode of birth where the parent does not
instantaneously die or renew itself as a result of the birthing
process. However, we do assume an age-dependent death
rate μn(x) for each individual. One can also think of these
age-dependent rates in terms of a waiting-time distribution. For
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FIG. 1. (a) A simple age-dependent birth-death process. Each
parent gives birth with an age-dependent rate βn(a), which may also
depend on the total population size n. Individuals can also die (open
circles) at an age- and population-dependent rate μn(a). (b) Age
trajectories in the upper (a > t) octant are connected to those in the
lower one (a < t) through the birth processes. Individuals that exist
at time t = 0 can be traced back and defined by their time of birth
bi . Here the labeling is ordered according to increasing age. The
pictured trajectories define characteristics ai(t) that can be used to
solve Eq. (12).

example, the probability that any one particle dies within time
[x,x + dx] after its birth is μn(x) exp [− ∫ x

0 μn(x ′)dx ′]dx.
However, in our formalism, we will need to deal with only
the rates.

To begin, we define

fn(x1,x2,x3, . . . ,xn; t)dx1dx2 . . . dxn (3)

as the probability that, at time t , one observes n distinguishable
(by virtue of their order of birth) individuals, such that
the youngest one has age within [x1,x1 + dx1], the second
youngest has age within [x2,x2 + dx2], and so on. If the
individuals are identical (except for their ages) and one does
not distinguish which are in each age window, then one can
define ρn(x1,x2,x3, . . . ,xn; t)dx1dx2 . . . dxn as the probability
that after randomly selecting individuals, the first one chosen
has age in [x1,x1 + dx1], the second has age in [x2,x2 + dx2],
and so on. For example, if there are three individuals with
ordered ages x1 < x2 < x3, then the probability of making
any specific random selection, such as choosing the individual
with age x2 first, the one with age x1 second, and the one
with age x3 third, is 1

3! . More generally, when the ages x1,n ≡
xn = (x1,x2, . . . ,xn) are unordered, the associated probability
density is

ρn(xn; t) = 1

n!
fn(T ({xi}); t), (4)

in which T is the time-ordering permutation operator such
that, for example, T (x2,x1,x3) = (x1,x2,x3). Note that in this
formulation, ρn(xn; t) is invariant under interchange of the
elements of xn.

To derive kinetic equations for ρn(xn; t), it is easiest to first
define an ordered cumulative probability distribution,

Qn(an; t) =
∫ a1

0
dx1

∫ a2

x1

dx2 · · ·
∫ an

xn−1

dxnfn(xn; t), (5)

where an = a1,n = (a1, . . . ,an). Qn(an; t) describes the prob-
ability that there are n existing individuals at time t and that
the youngest individual has age x1 less than or equal to a1, the
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second youngest individual has age x2 ∈ [x1,a2], and so on.
The oldest individual has age xn ∈ [xn−1,an].

We now compute the change in Qn(an; t) over a
small time increment ε: Qn(an + ε; t + ε) = Qn(an; t) +∫ t+ε

t
J (an; t ′)dt ′, where J (an; t ′) = J+(an; t ′) − J−(an; t ′) is

the net probability flux at time t ′. The probability flux which
increases the cumulative probability is denoted J+ while that
which decreases the cumulative probability is labeled J−. Each
of the J± includes contributions from different processes that
remove or add individuals. A schematic of our birth-death
process, starting from a single parent, is depicted in Fig. 1(a).

In the ε → 0 limit, we find the conservation equation

∂Qn(an; t)

∂t
+

n∑
i=1

∂Qn(an; t)

∂ai

= J+(an; t) − J−(an; t). (6)

Equation (6) is a “weak form” integral equation for the
probability density which allows us to systematically derive
an evolution equation and the associated boundary conditions
for fn(xn; t). The probability fluxes can be decomposed into
components representing age-dependent birth and death,

J±(an; t) = J±
β (an; t) + J±

μ (an; t), (7)

where the birth and death that reduce probability can be
expressed as

J−
β (an; t) =

∫ a1

0
dx1

∫ a2

x1

dx2 · · ·
∫ an

xn−1

dxnfn(xn; t)
n∑

i=1

βn(xi),

(8)

J−
μ (an; t) =

∫ a1

0
dx1

∫ a2

x1

dx2 · · ·
∫ an

xn−1

dxnfn(xn; t)
n∑

i=1

μn(xi).

(9)

Similarly, the probability fluxes that increase probability are

J+
β (an; t) =

∫ a2

0
dx1 · · ·

∫ aj+1

xj−1

dxj · · ·
∫ an

xn−2

dxn−1fn−1(xn−1; t)
n−1∑
i=1

βn−1(xi), (10)

J+
μ (an; t) =

n∑
i=0

∫ a1

0
dx1 · · ·

∫ ai

xi−1

dxi

∫ ai+1

xi

dy

∫ ai+1

y

dxi+1 · · ·
∫ an

xn−1

dxn μn+1(y)fn+1(xi ,y,xi+1,n; t), (11)

in which xi,j ≡ (xi,xi+1, . . . ,xj ),x0 ≡ 0, an+1 ≡ ∞, and the
age- and population-dependent birth and death rates for
individual i are denoted βn(xi) and μn(xi), respectively. The
probability flux into Qn(an; t) arises when birth from one of the
n − 1 individuals with ages a2,n ≡ (a2,a3, . . . ,an) generates
an individual of age zero. Hence, a key feature of J+

β (an; t) is
that it does not depend on a1.

We can now describe the fully stochastic aging process in
terms of the ordered distribution function fn(xn; t) by using
Eqs. (7)–(11) in Eq. (6) and applying the operator ∂

∂an
· · · ∂

∂a2

∂
∂a1

to find

∂fn(an; t)

∂t
+

n∑
j=1

∂fn(an; t)

∂aj

= −fn(an; t)
n∑

i=1

γn(ai)

+
n∑

i=0

∫ ai+1

ai

μn+1(y)fn+1(ai ,y,ai+1,n; t)dy, (12)

where a0 ≡ 0, an+1 ≡ ∞, and the total age-dependent transi-
tion rate is

γn(ai) = βn(ai) + μn(ai). (13)

Note that the a1-independent source term J+
β that had con-

tributed to the ordered cumulative [Eq. (6)] does not contribute
to the bulk equation for fn(an; t). Rather, it arises in the
boundary condition for fn, which can be found by setting
a1 = 0 in Eq. (6). Since Q(0,a2, . . . ,an; t) = 0 and J+

β (an; t)
are independent of a1, the remaining terms are∫ a2

0
dx2 · · ·

∫ an

xn−1

dxnfn(x1 = 0,x2,n; t) = J+
β (an; t). (14)

Further taking the derivatives ∂
∂an

· · · ∂
∂a2

of Eq. (14), we find
the boundary condition

fn(a1 = 0,a2,n; t) = fn−1(a2,n; t)
n∑

i=2

βn−1(ai). (15)

We now consider indistinguishable individuals as described
by the density defined in Eq. (4). Equation (12) can then be
expressed in terms of ρn(an; t): the probability density that
if we randomly label individuals, then the first one has age
between a1 and a1 + da1, the second has age between a2 and
a2 + da2, and so on. The kinetic equation for ρn can then be
expressed in the form

∂ρn(an; t)

∂t
+

n∑
j=1

∂ρn(an; t)

∂aj

= −ρn(an; t)
n∑

i=1

γn(ai)

+ (n + 1)
∫ ∞

0
μn+1(y)ρn+1(an,y; t)dy, (16)

and the boundary condition becomes

nρn(a1, . . . ,a� = 0, . . . ,an; t) = ρn−1(a1, . . . ,â�, . . . ,an; t)

×
n∑

i(�=�)=1

βn−1(ai), (17)

where the sum precludes the i = � term and â� indicates that
the variable a� is omitted from the sequence of arguments [38].
Equation (16) and the boundary conditions of Eq. (17),
along with an initial condition ρn(an; t = 0), fully define the
stochastic age-structured birth-death process and is one of our
main results. Equation (16) is analogous to a generalized
Boltzmann equation for n particles [38,39]. The evolution
operator corresponds to that of free ballistic motion in one
dimension corresponding to age. However, instead of particle
collisions typically studied in traditional applications of the
Boltzmann equation, our problem couples density functions
for n particles to those of n + 1 and n − 1 (through the
boundary condition).
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III. SOLUTIONS

Equation (16) defines a set of coupled linear integrodiffer-
ential equations. We would like to find solutions for ρn(an; t)
expressed in terms of an initial condition gn(an − t ; t = 0).
However, we will see below that the presence of births during
the time interval (0,t] prevents a simple solution to Eq. (16)
due to interference from the boundary condition in Eq. (17).
Instead, we will obtain a solution for ρn(an; t) at time t in
terms of the distribution ρn(an − (t − t0); t0) at an earlier time
t0 selected such that no births occur during the time interval
(t0,t]. That is, if bi = t − ai represents the time of birth of the
i th individual [see Fig. 1(b)], we have the condition t0 � bi ∀ i.
The dynamics described by Eq. (16) are then unaffected by
the boundary condition [Eq. (17)] and can be solved using
the characteristics ai = t − bi indexed by individual times of
birth bi . Note that any individual initially present (at time
t = 0) has a projected negative time of birth. We can then
solve ρn(t − bn; t) explicitly along each characteristic and then
re-express the solution in terms of an, to obtain

ρn[an; t] = Un(an; t0; t)ρn[an − (t − t0); t0]

+ (n+ 1)
∫ t

t0

Un(an; t ′; t)
[∫ ∞

0
μn+1(y)ρn+1dy

]
dt ′,

(18)

where ρn+1 ≡ ρn+1(an − (t − t ′),y; t ′) above, and

Un(am; t ′; t) = exp

[
−

m∑
i=1

∫ t

t ′
γn[ai − (t − s)]ds

]

≡ U−1
n (am; t0; t ′)Un(am; t0; t) (19)

is the propagator for any set of m � n individuals from time
t ′ to t . We now derive explicit solutions for processes with (1)
pure death, (2) pure birth, and (3) conditions where the age
structure is in steady state.

In the case of a pure death process where no births occur
(βn = 0), we can set t0 = 0. A complete solution can be found
through successive iteration of Eq. (18). We further simplify
matters by assuming an initial condition that is factorable into
an initial total number distribution ρ(n) and common initial age
probability densities g(a): ρn(an − t ; 0) = ρ(n)

∏n
i=1 g(ai −

t). If we further assume a death rate μn(a) = μ(a) that is
independent of population size, Eq. (18) can be solved, after
some algebra, to yield

ρn(an; t) = U (an; 0; t)
n∏

i=1

g(ai − t)
∞∑

k=0

(
n + k

k

)
ρ(n + k)

×
[∫ t

0
g(y − s)

∫ ∞

s

U (y; 0; s)μ(y)dyds

]k

. (20)

Next, we consider a pure birth process where μn = 0 and
the second integral term in Eq. (18) disappears. In this case,
we must use the boundary condition [Eq. (17)] to successively
bootstrap the solution by applying the propagator U between
birth times. Assume a starting time t = 0 with an initial
condition consisting of m individuals with corresponding ages
a > t . The symmetry of ρn(an; t) and Un(an; t ′; t) implies
that, without loss of generality, ages can be arranged in de-
creasing order: a1 > a2 > · · · > am > t > am+1 > · · · > an,

where the youngest was born most recently at time t − an > 0.
If we select t0 to be the moment of birth at time bn = t − an of
the most recently born (nth) individual, then the density over
all individuals is propagated forward according to

ρn(an; t) = Un(an; bn; t)ρn({an−1 − an,0}; t − an), (21)

where ρn({an−1 − an,0}; t − an) is the initial condition imme-
diately after the birth of the nth individual and can be related to
ρn−1 through the boundary condition in Eq. (17). The density
function thus obeys

ρn(an; t) = 1

n
Un(an; bn; t)ρn−1(an−1 − an; t − an)

×
n−1∑
i=1

βn−1(ai − an). (22)

Equation (22) can then be iterated back to t = 0 to find
the solution for randomly selected individuals. For the case
in which γn = γ is independent of the population size, the
propagator can be separated into a product across individuals.
If βn = β is also independent of n, then the solution takes the
simple form

ρn(an; t) = gm(am − t)U (am; 0; t)
m!

n!

n∏
k=m+1

U (ak; bk; t)

×
k−1∑
�=1

β(a� − ak), (23)

where bk = t − ak and gm is the initial distribution of ages for
the m individuals born before t = 0.

Finally, we also find a solution by assuming separation
of time and age and seek solution of the form ρn(a; t) =
ρn(t)

∏n
i=1 A(ai), where

∫
A(a)da = 1 and ρn(t) represents

the probability of a population size n at time t . If this form
is substituted into Eqs. (16) and (17) and integrated over all a
variables, one arrives at the following expression:

∂ρn(t)

∂t
= (n − 1)ρn−1(t)

∫ ∞

0
A(a)βn−1(a)da

− nρn(t)
∫ ∞

0
A(a)[βn(a) + μn(a)]da

+ (n + 1)ρn+1(t)
∫ ∞

0
A(a)μn+1(a)da. (24)

Thus, if we define birth and death rates bn =∫ ∞
0 A(a)μn(a)da and dn = ∫ ∞

0 A(a)μn(a)da, we recover the
standard age-independent Markovian master equation [26],
and the population size evolves independently of the age
structure A(a). To find A(a), we integrate Eqs. (16) and (17)
over all but one age variable a. If we define the total
expected population X(t) = ∑

n nρn(t), then we find, after
straightforward algebra,

∂X

∂t
A(a) + X(t)

∂A

∂a
= −A(a)

∞∑
n=0

nμn(a)ρn(t),

X(t)A(0) =
∞∑

n=1

(n−1)ρn−1(t)
∫ ∞

0
A(a)βn−1(a)da.

(25)
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In the case where birth and death rates βn(a) = β(a)
and μn(a) = μ(a) are independent of the population size n,
Eqs. (25) represent precisely the separable version of the
McKendrick–von Foerster equation that arises as a quasistatic
solution [13,14]. In this case, an explicit result for A(a)
can be obtained in the form A(a) = A(0)e−cae−M(a), where
M(a) = ∫ a

0 μ(x)dx, A(0) = [
∫ ∞

0 e−M(a)−cada]
−1

, and c satis-
fies

∫ ∞
0 β(a)e−M(a)−cada = 1.

Thus, we have demonstrated the existence of a solution of
the form ρn(a; t) = ρn(t)

∏n
i=1 A(ai), where the age structure

A(a) is equivalent to the steady state age structure of the
McKendrick–von Foerster equation. The resulting population
size evolves independently of the age structure, with dynamics
equivalent to a standard Markov process with effective age-
independent birth and death rates.

IV. FLUCTUATIONS

The above solutions for ρn(an; t) allow us to explicitly
compare differences between the fully stochastic theory and
the deterministic McKendrick–von Foerster model. As an
example, consider the expected number of individuals at time
t that have age between 0 and a,

P (a,t) =
∫ a

0
ρ(y,t)dy, (26)

where ρ(y,t) is found from Eqs. (1) and (2). We wish to
compare this quantity with the probability Pm(a,t) that there
are m individuals at time t with age between 0 and a. The
probability Pm(n,a,t) that there are n total individuals of which
exactly m have age between 0 and a can be constructed from
our fully stochastic theory via

Pm(n,a,t) =
(

n

m

) m∏
j=1

∫ a

0
daj

n∏
�=m+1

∫ ∞

a

da� ρn(an; t). (27)

The marginal probability Pm(a,t) of having m individuals
with age between 0 and a is then found by summing over
the unwanted variable n � m:

Pm(a,t) =
∞∑

n=m

Pm(n,a,t). (28)

The comparison can be made more explicit by considering
simple cases such as an age-independent birth-only process
with fixed birth rate β. If the process starts with precisely
N individuals, then standard methods [13,14] yield a simple
solution of the McKendrick–von Foerster equation which
when used in Eq. (26) gives P (a < t ; t) = Neβt (1 − e−βa).
Substituting the pure birth solution of Eq. (23) into Eqs. (27)
and (28) yields

Pm(a,t) =
(

m + N − 1

m

)
e−Nβt (1 − e−βa)m

(1 − e−βa + e−βt )m+N
. (29)

In Fig. 2(a) we compare the expected value P (a,t) derived
from solutions to the McKendrick–von Foerster equation
with stochastic simulations that sample the stochastic result
Pm(a,t). The fully stochastic nature of the process is clearly
shown by the spread of the population about the expected
value. Figure 2(b) plots the corresponding number distribution
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FIG. 2. Comparison of P (a,t) [Eq. (26)] derived from the
McKendrick–von Foerster equation with Pm(a,t) of a fully stochastic
pure birth process with constant β = 0.1. We start with N = 10
individuals and analyze our quantities at time t = 10 for ages
a < t . (a) Each of the 100 gray lines counts the number of
individuals younger than age a in one simulation. The solid black
curve indicates the deterministic (McKendrick–von Foerster) solution
P (a,t) = ∫ a

0 ρ(y,t)dy, which can also be obtained through P (a,t) =∑∞
m=1 mPm(a,t). The shaded region represents the inter-quartile

range of Pm(a,t), (the central count of individuals occupied by 50%
of simulations). (b) Distribution constructed from 1000 simulations
(bars) and theoretical distribution Pm(a = 5,t = 10) (black curve).

Pm(5,10). This highlights one of the main advantages of
our approach: a full probability distribution arises from our
theory, while the deterministic McKendrick–von Foerster
theory captures only the expected population size.

V. EQUATION HIERARCHIES

To connect our general kinetic theory with statistically
reduced (and deterministic) descriptions, we consider reduced
k dimensional distribution functions defined by integrating
ρn(an; t) over n − k age variables:

ρ(k)
n (ak; t) ≡

∫ ∞

0
dak+1 . . .

∫ ∞

0
dan ρn(an; t). (30)

The symmetry properties of ρn(an; t) indicate that it is
immaterial which of the n − k age variables are integrated
out. If we integrate Eq. (16) over all ages (k = 0), and assume
ρ(1)

n (a = ∞; t) = 0, then we find

∂ρ(0)
n (t)

∂t
= nρ(1)

n (a = 0; t) − n

∫ ∞

0
γn(y)ρ(1)

n (y; t)dy

+ (n + 1)
∫ ∞

0
μn+1(y)ρ(1)

n+1(y; t)dy. (31)

Furthermore, integrating Eq. (17) over ai �=� yields nρ(1)
n (a =

0; t) = (n − 1)
∫ ∞

0 βn−1(y)ρ(1)
n−1(y; t)dy. Thus, Eq. (31) can be

written in the form

∂ρ(0)
n (t)

∂t
= (n − 1)

∫ ∞

0
βn−1(y)ρ(1)

n−1(y; t)dy

− n

∫ ∞

0
(βn(y) + μn(y))ρ(1)

n (y; t)dy

+ (n + 1)
∫ ∞

0
μn+1(y)ρ(1)

n+1(y; t)dy. (32)
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Equation (32) describes the evolution of the probability
ρ(0)

n (t) that the system contains n individuals at time t , but
it depends on the single-particle marginal density ρ(1)

n (y; t)
and the equation is not closed. Upon deriving equations for
ρ(1)

n (y; t), one would find that they depend on ρ(2)
n (y1,y2; t),

and so on. Therefore, the marginal probability densities form

a hierarchy of equations, as is typically seen in classic settings
such as the kinetic theory of gases [37] and the statistical theory
of turbulence [40]. Note that if the birth and death rates βn and
μn are age independent, they are constants with respect to the
integral and Eq. (32) reduces to the familiar constant birth and
death rate master equation for the simple birth-death process:

∂ρ(0)
n (t)

∂t
= (n − 1)βn−1ρ

(0)
n−1(t) − n(βn + μn)ρ(0)

n (t) + (n + 1)μn+1ρ
(0)
n+1(t), (33)

where ρ(0)
n (t) is the probability the system contains n individuals at time t , regardless of their ages.

In general, integration of Eq. (16) over n − k � 0 age variables leaves k remaining independent age variables. The resulting
kinetic equation for ρ(k)

n (ak; t) involves both ρ
(k+1)
n+1 (ak,y; t) and boundary terms ρ(k+1)

n (ak,ak+1 = 0; t). These boundary terms can
be eliminated by using the result obtained from integration of the boundary condition [Eq. (17)] over n − k − 1 age variables.
By exploiting the symmetry properties of the marginals ρ(k)

n , we find

∂ρ(k)
n (ak; t)

∂t
+

k∑
i=1

∂ρ(k)
n (ak; t)

∂ai

=
(

n − k

n

)
ρ

(k)
n−1(ak; t)

k∑
i=1

βn−1(ai) + (n − k)(n − k − 1)

n

∫ ∞

0
βn−1(y)ρ(k+1)

n−1 (ak,y; t)dy

− ρ(k)
n (ak; t)

k∑
i=1

γn(ai) − (n − k)
∫ ∞

0
γn(y)ρ(k+1)

n (ak,y; t)dy

+ (n + 1)
∫ ∞

0
μn+1(y)ρ(k+1)

n+1 (ak,y; t)dy. (34)

Each function ρ(k)
n in the hierarchy not only depends on the

functions in the n ± 1 subspace but is connected to functions
with k + 1 variables. The latter coupling arises through the
boundary condition for ρ(k)

n which involves densities ρ(k−1)
n . As

with similar equations in physics, the hierarchy of equations
cannot be generally solved, and either factorization approxi-
mations or truncation (such as moment closure) must be used.

We now show that the k = 1 equation explicitly leads to the
classic McKendrick–von Foerster equation and its associated
boundary condition. For k = 1, ρ(1)

n (a; t)da is the probability
that there are n individuals and that if one is randomly chosen, it
will have age between a and a + da. Therefore, the probability
that we have n individuals of which any one has age between
a and a + da is nρ(1)

n (a; t)da. Summing over all possible pop-
ulation sizes n � 1 gives us the probability ρ(a,t)da that the
system contains an individual with age between a and a + da:

ρ(a,t) ≡
∞∑

n=0

nρ(1)
n (a; t). (35)

Multiplying Eq. (34) (with k = 1) by n and summing over all
positive integers n, we find after carefully canceling like terms

∂ρ(a,t)

∂t
+ ∂ρ(a,t)

∂a
= −

∞∑
n=1

nμn(a)ρ(1)
n (a; t). (36)

Equation (36) generalizes the McKendrick–von Foerster
model to allow for population-dependent death rates but
does not reduce to the simple form shown in Eq. (1).
Population-dependent effects in Eq. (36) for ρ(a,t) depend
on the “single particle” density function ρ(1)

n (a; t) and
subsequently all higher-order distribution functions.

A boundary condition is naturally recovered by integrating
over all ages but a� in Eq. (17) and summing over all n:

∞∑
n=1

nρ(1)
n (a = 0; t) ≡ ρ(a = 0,t)

=
∞∑

n=1

n

∫ ∞

0
βn(y)ρ(1)

n (y; t)dy. (37)

Equations (36) and (37) represent the lowest-order equations in
the hierarchy. For the archetype models of Markovian and age-
dependent birth-death processes [14,26], the population-wide
birth and death rates are proportional to the population size
and the mean-field Eq. (37) reduces to the McKendrick–von
Foerster theory only if both per individual birth and death rates
βn(a) = β(a) and μn(a) = μ(a) are independent of population
size. In this case, μ(a) can be pulled out of the sum in
Eq. (36) and

∑∞
n=1 nμn(a)ρ(1)

n (a; t) = μ(a)ρ(a,t). Similarly,∫ ∞
0 β(y)[

∑∞
n=1 nρ(1)

n (y; t)]dy = ∫ ∞
0 β(y)ρ(y,t)dy, which is

the simple boundary condition associated with the classic
McKendrick–von Foerster model.

For more bespoke models [such as stochastic Verhulst-like
models where birth rates have capacity-dependent forms such
as βn(a) = β(a)(1 − n/K)], we cannot derive a mean-field
equation without considering the hierarchy of population
densities and closure approximations. For example, note that
Eqs. (36) and (37) reduce to Eq. (25) if we assume the form
ρ(1)

n (a; t) = ρn(t)A(a). This represents the simplest closure by
neglecting all correlations between the ages of all particles.
One can go further to investigate how a closure approximation
can lead to an equation for the dynamics of the total population,
n(t), regardless of age. Integrating Eq. (36) over all ages, we
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find

dn(t)

dt
+ ρ(∞,t) − ρ(0,t) = −

∞∑
n=1

n

∫ ∞

0
μn(a)ρ(1)

n (a; t)da.

(38)
After assuming ρ(∞,t) = 0 and using the boundary condition
in Eq. (37) for ρ(0,t), we find

dn(t)

dt
=

∞∑
n=1

n

∫ ∞

0
[βn(a) − μn(a)]ρ(1)

n (a; t)da

≈ [βn(t) − μn(t)]n(t). (39)

In the last “mean-field” approximation above, we have
assumed βn and μn are uncorrelated with ρ(1)

n (a; t) by taking
these terms out of the summation and replacing them with
functions of the mean population βn(t) and μn(t). The result is
a standard growth equation with population-dependent birth
and death rates.

How much the solutions to Eqs. (36) and (39) differ from
those of the standard McKendrick–von Foerster and growth
equations, respectively, is an interesting mathematical issue
that can be further quantified with asymptotic and numerical
analyses of our hierachical kinetic theory.

VI. DISCUSSION AND CONCLUSIONS

We have developed a general kinetic theory for age-
structured birth-death processes important for the quantifica-
tion of small age-structured populations where fluctuations
will play a significant role. To stochastically describe the
age structure of a population requires a higher-dimensional
probability density. The evolution of this high-dimensional
probability density mirrors that found in the Boltzmann
equation for one-dimensional, ballistic, noninteracting gas
dynamics. However, one crucial difference is that the number
of individuals can increase or decrease according to the age-
dependent birth and death rates. Thus, the dynamics are deter-
mined by a phase-space-conserving Liouville operator so long
as the number of individuals does not change [37]. Once an
individual is born or dies, the system jumps to another manifold
in a higher- or lower-dimensional phase space, immediately
after which conserved dynamics resume until the next birth or
death event. Such variable-number dynamics share similarities
with the kinetic theory of chemically reacting gases [41].

Our main mathematical results are Eqs. (16) and (17). These
equations show that birth-death dynamics couple densities
associated with different numbers n and describe the aging
process in terms of ballistic particles moving with unit velocity
in the age “direction.” The individual particles can die at
rates that depend on their distance from their origin (birth).
Particles can also give birth at rates dependent on their age.

The injection of newborns at the origin (zero age) is described
by the boundary condition [Eq. (17)].

One important advantage of our approach is that it
provides a natural framework for incorporating both age-
and population-dependent birth and death rates into a
stochastic description, which has thus far not been possible
with other approaches. In general, our kinetic equations
need to be solved numerically; however, we found analytic
expressions for ρn(an; t) when either birth or death vanishes
and the other is independent of population, along with a
separable solution. Furthermore, we define marginal density
functions and develop a hierarchy of equations analogous
to the BBGKY hierarchy [Eq. (34)]. These equations for
the marginal densities allow one to construct any desired
statistical measure of the process and are also part of our main
results. We explicitly showed how a zeroth-order equation
leads to the equation for the marginal probability of observing
n individuals in the standard age-independent birth-death
processes [Eq. (33)] [27]. The first-order equation is also
used to derive a hybrid equation for the mean density ρ(a,t)
that involves the single-particle density function ρ(1)

n (a; t)
[which ultimately depends on higher-dimensional densities
ρ(k>1)

n (ak; t) through the hierarchy]. Only when birth and
death are independent of population size does the theory
reduce to the deterministic McKendrick–von Foerster model.

Extensions of our high-dimensional age-structured kinetic
theory to more complex birth-death mechanisms such as
sexual reproduction and renewal or branching processes can be
straightforwardly investigated. The simple birth-death process
we analyzed allows for the birth of only a single age-zero
daughter from a parent at a time. We note that the Bellman-
Harris process described via generating functions [23,24]
(which can describe age-dependent death and branching but
cannot be used to model population-dependent dynamics)
assumes self-renewal at each branching event. That is, two (or
more) daughters of zero age are simultaneously produced from
a parent. Such differences in the underlying birth process can
lead to qualitative differences in important statistical measures,
such as first passage times [25]. The branching-renewal
process, as well as sexual reproduction, requires nontrivial
extensions of our kinetic theory and will be explored in a
future investigation.
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