
http://www.aimspress.com/journal/MBE

MBE, 17(1): 28–55.
DOI: 10.3934/mbe.2020002
Received: 29 December 2018
Accepted: 15 July 2019
Published: 23 September 2019

Research article

Dynamics of T cell receptor distributions following acute thymic atrophy
and resumption

Stephanie M. Lewkiewicz1, Yao-Li Chuang2 and Tom Chou1,3,∗

1 Department of Mathematics, UCLA, Los Angeles, CA, 90095-1555, USA
2 Department of Mathematics, CalState Northridge, Northridge, CA 91330, USA
3 Department of Biomathematics, UCLA, Los Angeles, CA, 90095-1766, USA

* Correspondence: Email: tomchou@ucla.edu; Tel: +13102062787; Fax: +13108258685.

Abstract: Naive human T cells are produced and developed in the thymus, which atrophies abruptly
and severely in response to physical or psychological stress. To understand how an instance of stress
affects the size and “diversity” of the peripheral naive T cell pool, we derive a mean-field autonomous
ODE model of T cell replenishment that allows us to track the clone abundance distribution (the mean
number of different TCRs each represented by a specific number of cells). We identify equilibrium
solutions that arise at different rates of T cell production, and derive analytic approximations to the
dominant eigenvalues and eigenvectors of the mathematical model linearized about these equilibria.
From the forms of the eigenvalues and eigenvectors, we estimate rates at which counts of clones of
different sizes converge to and depart from equilibrium values—that is, how the number of clones
of different sizes ”adjusts” to the changing rate of T cell production. Under most physiological
realizations of our model, the dominant eigenvalue (representing the slowest dynamics of the clone
abundance distribution) scales as a power law in the thymic output for low output levels, but saturates
at higher T cell production rates. Our analysis provides a framework for quantitatively understanding
how the clone abundance distribution evolves under small changes in the overall T cell production rate.
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1. Introduction

The thymus, a small organ located above the heart in humans, is a crucial component of the
primary lymphoid architecture, as the site of T cell development [1, 2]. The many different T cell
subpopulations together guide and assist the action of other immune agents during infection [3],
regulate the immune response [4], and retain memory of encountered pathogens [5]. As such, the
thymus supplies the immune compartment with its most essential source of direction, support, and
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regulation. T cells are produced when lymphocyte progenitors derived from hematopoietic stem cells
in the bone marrow migrate to the thymus and begin a process of role selection, maturation, and
vetting, before being exported to the peripheral blood [6]. The most significant event during
thymocyte development is the rearrangement of the α and β chains of the T cell receptor (TCR) [7]
that occurs in the thymic cortex, which is populated with thymocyte progenitors. The particular
rearrangement a T cell undergoes determines its antigen specificity; a naive T cell in the peripheral
pool is activated when its TCR is bound by a cognate antigen, a pathogen-derived peptide fragment
capable of stimulating that particular TCR [8]. The total number of distinct TCRs present across the
full T cell pool is the “TCR diversity” [9], and this quantifies the breadth of the pool’s antigen
responsiveness [10]. Thymocytes also undergo negative selection to eliminate cells that react too
strongly to self antigens presented by resident macrophages and dendritic cells. The small number of
T cells that survive this process are functionally competent and thus exported to the peripheral blood
to participate in the immune mechanism.

The thymus is known to experience both chronic and acute forms of atrophy [11], resulting from
both normal biological processes and the presence of disease or stress. The most universal form of
thymic atrophy is age-related involution, the process by which productive thymic tissue is gradually
replaced with nonproductive fat [12]. Involution begins at puberty and continues indefinitely, and the
resulting decline in T cell production has been implicated as a likely source of immune dysfunction in
the elderly [13–15]. Acute atrophy can occur under a plethora of conditions associated with a state of
disease or stress [16–18], including viral, bacterial and fungal infection [19–21], malnutrition [22],
cancer treatment [23], bone marrow transplant [24], psychological stress and pregnancy [25–27].
Each condition facilitates thymic atrophy in (at least) one of several ways, including reducing thymic
cellularity [11], decreasing thymocyte proliferation and increasing apoptosis [28], instigating
premature export of underdeveloped thymocytes [29], and inducing morphological changes to the
thymic microenvironment [30]. Such disturbances may consequently alter the size and composition of
the peripheral T cell pool. Decreased lymphocyte prevalence in the periphery during acute involution
has been documented [31–34], and Salmonella, which infects the thymus itself, has been shown to
disrupt positive and negative selection, producing a skewed TCR repertoire [35]. Radiation and
chemotherapy drugs, such as temozolmide, used to treat cancer can also be highly lymphotoxic,
producing a lymphopenic state referred to as “treatment-related lymphopenia” (TRL) [36–38]. Viral
infections, particularly HIV, and autoimmune disorders can induce lymphopenia by increasing
peripheral cellular death and redistributing cells to inappropriate tissues, in addition to affecting
production in the thymus [39]. Congenital thymic aplasia, as seen in complete DiGeorge syndrome,
results in a lymphopenic state at birth [40].

The activation of the hypothalamic-pituitary-adrenal axis by stress stimuli and subsequent release
of glucocorticoids, which are known to induce apoptosis in double-positive thymocytes [41] and
inhibit their differentiation [28], is also likely a major underlying catalyst of this acute
involution [17, 42]. Evidence suggests that glucocorticoid release is actually necessary to affect
thymic atrophy [18, 28]. Several other chemical agents have been observed to participate in thymic
atrophy, notably sex hormones [17], which have been shown to weaken thymocyte proliferation [25]
and induce apoptosis [43], and the IL-6 cytokine family, which is demonstrably
thymosuppressive [16]. Despite this apparent sensitivity to stress, the thymus is highly plastic, and
generally recovers in size and functionality after removal of the stressor [11]. Studies of the thymus
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during and after chemotherapy treatment in cancer patients indicate a return of thymic volume and
productivity during recovery from treatment [23]. A recuperating thymus may even surpass its
pre-treatment volume, in a phenomenon known as “thymic rebound” [44, 45]. Such thymic recovery
has also been seen after infection [46] and traumatic injury [47]. However, recovery is demonstrably
age-dependent, with thymi of older patients reconstituting the naive T cell compartment more weakly
than those of younger patients [23]. Although acute thymic atrophy has been observed extensively in
humans, much has yet to be learned about it, and clear treatment protocol is lacking [11].

To this end, we present a mechanistic mathematical model to predict changes in the size and
diversity of the peripheral naive T cell compartment in response to various immunologically diseased
conditions. We study how this pool’s size and composition adjust to changes in the rate of thymic
output. We compartmentalize the peripheral T cell pool by grouping clones–collections of T cells
with the same TCR–according to their size. We then use a high-dimensional autonomous ODE
system to follow the time evolution of the number of clones in each compartment. We assume that the
size of the peripheral naive T cell pool is dictated by rates of thymic export of new T cells, along with
homeostatic proliferation and death mechanisms. We assume a piecewise constant rate of thymic
export, as the atrophy/recovery cycle is known to be a rapid process, and that the proliferative and
death processes are subject to homeostatic regulation based on the total T cell pool size. We derive
analytic approximations to the dominant eigenvalues and eigenvectors of the system linearized around
its equilibria in both the presence and the absence of thymic activity. From this, we assess the rates of
convergence of different T cell compartments to equilibria that result from a changing thymic export
rate. We then compare the linearized and fully nonlinear models, and study several special cases. We
also compute explicit representations of solutions to an infinite-dimensional extension of our model.

2. Mathematical model and analysis

We assume that the total naive T cell population N(t) in the immune compartment (the blood and
lymphatic tissue) satisfies a general ODE of the form

dN
dt

= γ + p(N)N − µ(N)N, (1)

where γ ≥ 0 is the rate of naive T cell export from the thymus, and p(N), µ(N) ≥ 0 are regulated,
N-dependent rates of proliferation and death of naive T cells in the peripheral bloodstream. To prevent
unbounded growth, we take p(N) to be non-increasing and µ(N) to be non-decreasing as cell counts,
N, increase. We assume that p(0) > µ(0), as the lymphopenic proliferation rate should be higher
than the lymphopenic death rate [48–51]. At steady-state, when a healthy, homeostatic cell count N∗

is achieved, p(N∗) − µ(N∗) = −
γ

N∗ ≤ 0. Note that when γ = 0, simple decreasing functions p(N)
(and/or increasing functions µ(N)) admit multiple–typically two–fixed points. The N = 0 fixed point
is unstable, while the one at N > 0 is stable.

In order to compute the peripheral naive T cell diversity, we couple Eq 1 with a system of ODEs that
describes the time evolution of the size-segregated subpopulations of the peripheral naive T cell pool.
Let ck(t) denote the number of clones that are of size k at time t ≥ 0. As formally shown in Song &
Chou [52], the mean clone count is ck ∝ P(ni = k, t), the marginalized probability that any single clone
i has population k. The master equation for P(ni, t) is difficult to solve with regulation terms. Here,
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we provide a heuristic derivation of the equations obeyed by ck(t) by using a mean-field approximation
that the total population N is uncorrelated with any ni (although we know N =

∑∞
i=1 ni). Under this

mean-field approximation, the evolution of P(ni = k, t), and hence ck(t), obeys

dc1

dt
=
γ

Ω

Ω − M∑
i=1

ci − c1

 − p(N)c1 + µ(N) [2c2 − c1] , (2)

dck

dt
=
γ

Ω
[ck−1 − ck] + p(N) [(k − 1)ck−1 − kck] + µ(N) [(k + 1)ck+1 − kck] , (3)

dcM

dt
=
γ

Ω
cM−1 + p(N)(M − 1)cM−1 − µ(N)McM, (4)

where k = 2, 3, · · · ,M − 1, p(N) and µ(N) are approximated by p(N(t)) and µ(N(t)) (where N(t) is
the solution to Eq 1), and the index M in Eq 4 is the hypothetical maximum size a clone can achieve.
We take M to be finite for mathematical tractability and in accordance with evidence of intraclonal
competition that restricts clone sizes and preserves a balanced TCR diversity [53]. Each of the ODEs
in Eqs 2–4 describes how ck changes due to the effects of thymic export of new cells, and proliferation
and death in the periphery. The constant Ω denotes the large total number of clonotypes that can
potentially be assembled in and exported from the thymus. The basic model includes immigration,
birth, and death of multiple species (i.e., clones) and can be developed in a fully stochastic setting;
however, in that case, only steady-state solutions are available [54].

In Eq 3, the term γ

Ω
represents the rate at which cells of a given clonotype are exported to the

periphery from the thymus, and thus γ

Ω
ck represents the export rate of cells of clonotypes already

represented by size-k clones in the periphery. The addition of a new cell to a clone of k cells decreases
by one the number of clones with k cells and increases by one the number of clones with k + 1 cells.
Similarly, γ

Ω
ck−1 represents the rate at which clones move from ck−1 to ck due to thymic export. We

assume that cells immigrate, proliferate, or die one cell at a time, forcing clones to move only among
adjacent compartments. Thus, the term γ

Ω
[ck−1 − ck] fully accounts for changes to ck due to thymic

export. The term p(N)kck denotes the rate at which cells in size-k clones proliferate, which in turn
corresponds to the rate at which clones move from ck to ck+1 due to peripheral proliferation.
Analogously, p(N)(k − 1)ck−1 denotes the rate at which clones enter ck from ck−1 due to proliferation,
so that p(N) [(k − 1)ck−1 − kck] accounts for changes to ck due to proliferation. The death term in
Eq 3, given by µ(N) [(k + 1)ck+1 − kck], is defined analogously. Eqs 2 and 4 represent “boundary
conditions” for Eq 3. In Eq 2, the term

[
Ω −

∑M
i=1 ci

]
gives the number of clonotypes unrepresented in

the periphery, so that γ

Ω

[
Ω −

∑M
i=1 ci

]
provides the rate at which new clones enter the periphery from

the thymus. Equation 2 also retains the terms from Eq 3 that account for loss of clones in c1 due to
thymic export, proliferation, and death, and the addition of clones into c1 due to death of cells in c2.
Finally, Eq 4 retains terms accounting for the introduction of clones into cM via thymic export to and
proliferation within clones in cM−1, as well as loss of clones from cM due to cellular death. This
represents a “boundary condition” that prevents clones from surpassing size M.

Summing Eqs 2–4, we find that

d
(∑M

k=1 kck

)
dt

= γ + p(N)

 M∑
k=1

kck

 − µ(N)

 M∑
k=1

kck

 − (
p(N)McM +

γ0

Ω
cM

)
, (5)
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so that the ODE satisfied by N(t) (Eq 1) and that satisfied by
∑M

k=1 kck(t) (Eq 5) differ by(
p(N)McM +

γ0
Ω

cM

)
, and thus N(t) ,

∑M
k=1 kck. Thus, the very few numbers of clones of large sizes

k > M, whose population is accounted for in Eq 1, are not accounted for fully in Eqs 2–4. This is
especially salient in the γ → 0+ limit, in which the N > 0 fixed point is completely “missed” by the
ck = 0 solution to Eqs 2–4. Here, the γ → 0+ limit of the truncated system represents a singular limit
where the only solution to Eqs 2–4, ck → 0+, appears to violate the N =

∑∞
k=1 kck > 0 constraint at the

stable fixed point.
Nonetheless, we can use the ODE system Eqs 2–4 to analyze the effects of changes in the thymic

output rate γ provided we carefully use the solutions ck and N that are consistent with the N = 0 and
N > 0 fixed points. We denote the normal level of thymic export in an adult of a given age by γ = γ0.
To represent diminished thymic activity during atrophy, we take γ � γ0, or even γ = 0, depending on
the severity of the atrophy. As the thymus is highly plastic, the changes in γ throughout the process of
atrophy and recovery tend to be rapid. With this in mind, we model such cycles of disease with a
piecewise ODE system. Specifically, let us observe a human’s response to disease-induced changes in
thymic activity over some time interval I = [t0, tS +1]. We assume that this individual’s thymic export
rate undergoes S abrupt changes, at times t1, t2, · · · , tS , where t0 < t1 < t2 < . . . < tS < tS +1. Letting
Ii = [ti, ti+1], so that I =

⋃S
i=0 Ii, we assume that γ = γi ≥ 0, on Ii. If the initial condition {ck(t0)}Mk=1

represents the size of each ck compartment at the start of the process, we then let {ci
k(t)}

M
k=1 represent

the solution of the ODE in Eqs 1–4, on Ii, with γ = γi and initial condition {ci
k(ti)}Mk=1 = {ci−1

k (ti)}Mk=1, for
i = 1, 2, · · · , S . Thus, the solution {ci

k(t)}
M
k=1 represents the time evolution of the ck compartments after

a transition to a thymic activity level γi. This is the most general description of our model; in practice,
we will typically take S = 1, representing a single abrupt change in γ(t). Further descriptions of the
piecewise ODE formulation specific to certain disease patterns and particular initial conditions are
included in the relevant sections below.

Linear analysis of Eqs 2–4 will provide information on how the clone counts ck(t) evolve from
their steady-state values after a small perturbation in the system (through changes in γ). The
dynamics of ck are not equivalent–but qualitatively related to–those of ni(t), the number of cells in
clone i. For example, when large values of ni(t) increase, ck≈ni(t) decreases while ck≈ni+1(t) increases.
Thus, increases in large ni convect ck forward, especially for larger k. As will be explicitly shown,
since ck is typically monotonically decreasing in k, the dynamics of small(large) clone populations are
correlated with the dynamics of ck for small(large) k.

3. Analysis for γ > 0 (functioning thymus)

We begin by studying the behavior of solutions of our ODE model under the assumption of a strictly
positive thymic export rate, γ > 0. We perform an analysis of equilibrium solutions of Eqs 1–4 and
their stability, and also compute an explicit solution in the infinite dimensional case that arises when
M → ∞. At the beginning of sections 3.1 and 3.2 below, as well as in sections 4.1, 4.2 and 5, we focus
on solutions over one individual interval in the piecewise formulation described in section 2 above.
For simplicity when doing this, we omit the i notation that distinguishes the different subintervals,
writing γ instead of γi, etc. When the discussion returns to the full piecewise ODE, the i notation is
reintroduced.
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3.1. Analytic solution of the infinite dimensional system

We begin by computing analytic expressions for the solutions ck of Eqs 1–4. If we take M → ∞
and consider instead the infinite dimensional system, the ck compartments can be obtained through a
generating function in a conjugate variable q, defined as

Q(q, t) ≡
∞∑

k=0

ck(t)qk, (6)

Note that ∂kQ/∂qk
∣∣∣
q=0

= k!ck, which allows us to extract ck with k ≥ 0. In addition, the total population
can also be recovered from the generating function via the expression ∂Q/∂q|q=1 =

∑∞
k=0 kck = N.

In order to derive an explicit form for Q(q, t), we assume that an explicit solution N = N(t) of Eq 1
can be found, so that we may write p and µ as functions of t (p = p(t), µ = µ(t)). By substituting
Eqs 2 and 3 for dck/dt, the time derivative of Q can be expressed as

∂Q
∂t

=

∞∑
k=0

dck

dt
qk = (q − 1)(p(t)q − µ(t))

∂Q
∂q

+
γ

Ω
(q − 1)Q. (7)

The above partial differential equation can be solved analytically along any characteristic curve q(t)
defined by the solutions to dq

dt = −(q − 1)(p(t)q − µ(t)):

q(t) = 1 +
(1 − q0)A(t)

(1 − q0)B(t) − 1
, (8)

where q0 = q(0) and

A(t) ≡ exp
(
−

∫ t

0
(p(s) − µ(s)) ds

)
and B(t) ≡

∫ t

0
p(s)A(s)ds. (9)

Along each trajectory q(t), the generating function obeys dQ
dt = −

γ(t)
Ω

(1 − q(t))Q and can be expressed
as

Q(q(t), t) =

∞∑
k=0

ck(0)qk
0 exp

(
−

∫ t

0

γ(s)
Ω

(1 − q(s))ds
)
. (10)

By allowing all possible initial values q0, we can express the full solution as

Q(q, t) =

∞∑
k=0

ck(0)
[
1 −

1 − q
(1 − q)B(t) + A(t)

]k

exp
[
−

∫ t

0
ds
γ(s)
Ω

(1 − q)A(s)
(1 − q)(B(t) − B(s)) + A(t)

]
. (11)

The solutions ck(t) can then be extracted from Q(q, t) by taking a series expansion of Q(q, t) and
identifying coefficients with ck(t) according to Eq 6. These exact solutions ck(t) will be compared
with our subsequent results derived from direct numerical solution of Eqs 1–4. By verifying that the
time evolution of ck under a finite dimensional formulation as in Eqs 2–4 is sufficiently close to that of
ck under the infinite dimensional formulation in Eq 11, we allow the infinite and finite dimensional
systems to be used more or less interchangeably. The finite dimensional formulation has the
advantage of not only admitting simple, explicit steady state solutions, but also rates of convergence
to steady state.
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3.2. Equilibrium solution and linearization

Returning to the truncated formulation (finite M), we now study the equilibrium solution that results
when taking γ > 0 in Eqs 1–4. Denote such a generic equilibrium solution by {c∗k(γ)}Mk=1, N∗(γ). For a
given N∗(γ), the c∗k(γ) have the form

c∗1(γ) = γ

 M∑
i=1

γ/Ω

i!µ(N∗(γ))i−1

 i−1∏
j=1

[
γ

Ω
+ jp(N∗(γ))

] + µ(N∗(γ))


−1

, (12)

c∗k(γ) =
c∗1(γ)

k!µ(N∗(γ))k−1

k−1∏
n=1

[
γ

Ω
+ np(N∗(γ))

]
. (13)

In the discussion below, we will write N∗(γ) as N∗ and c∗k(γ) as c∗k for simplicity, unless desiring
to emphasize the γ-dependence. To identify the stability of this equilibrium solution–and the rates of
convergence of solutions to equilibria under the linearized model later on–we consider the linearization
of the system around this generic equilibrium solution, represented by the (M + 1)× (M + 1) matrix LS

(LS = (si j)1≤i, j≤M+1), with component si j given by

−
(

2γ
Ω

)
− (p(N∗) + µ(N∗)), if i = j = 1

−
(
γ

Ω

)
+ 2µ(N∗), if i = 1, j = 2

−
(
γ

Ω

)
, if i = 1; 3 ≤ j ≤ M

−
(
γ

Ω

)
− i(p(N∗) + µ(N∗)), if i = j; 2 ≤ j ≤ M − 1

−
(
γ

Ω

)
+ ip(N∗), if i = j + 1; 1 ≤ j ≤ M − 1

−M(p(N∗) + µ(N∗)), if i = j = M

(i + 1)µ(N∗), if i = j − 1, 2 ≤ j ≤ M

p′(N∗)[( j − 1)c∗j−1 − jc∗j] + µ′(N∗)[( j + 1)c∗j+1 − jc∗j], if i = M + 1; 1 ≤ j ≤ M − 1
p′(N∗)(M − 1)c∗M−1 − µ

′(N∗)Mc∗M, if i = M + 1; j = M

p′(N∗)N∗ + p(N∗) − µ′(N∗)N∗ − µ(N∗), if i = j = M + 1
0, otherwise.



(14)

For clarity, an example of the matrix LS with M = 4 is

LS =



−
2γ
Ω
− (p(N∗) + µ(N∗)) −

γ

Ω
+ 2µ(N∗) −

γ

Ω
−
γ

Ω
−p′(N∗)c∗1

γ

Ω
+ p(N∗) −

γ

Ω
− 2(p(N∗) + µ(N∗)) 3µ(N∗) 0 p′(N∗)[c∗1 − 2c∗2] + µ′(N∗)[3c∗3 − 2c∗2]

0 γ

Ω
+ 2p(N∗) −

γ

Ω
− 3(p(N∗) + µ(N∗)) 4µ(N∗) p′(N∗)[2c∗2 − 3c∗3] + µ′(N∗)[4c∗4 − 3c∗3]

0 0 γ

Ω
+ 3p(N∗) −4µ(N∗) 3p′(N∗)c∗3 − 4µ(N∗)c∗4

0 0 0 0 p′(N∗)N∗ + p(N∗) − µ′(N∗)N∗ − µ(N∗)


We now apply a simplifying assumption to the matrix LS to analytically compute its eigenvalues

more easily. In general, using previous estimates for γ [55] and Ω [56, 57], γ

Ω
∼ 10−8 − 10−6, and

p(N∗), µ(N∗) ∼ 10−1 (when rates are measured in units of year−1), thus, we assume γ

Ω
� p(N∗), µ(N∗)
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and define a new matrix LS̃ which is LS but with γ

Ω
= 0 only in elements in which it appears explicitly.

LS̃ is defined by Eq 14 with γ/Ω in the first five terms set to zero, but with N∗ determined under the
appropriate general immigration rate γ ≥ 0.

Numerical computation confirms that the eigenvalues of the new matrix LS̃ are essentially identical
to those of the original matrix LS ( γ

Ω
� 1), validating our assumption that the term γ

Ω
may be neglected

in LS . Note that this assumption does not cause us to omit the constant γ from the linearization matrix
LS entirely, as the steady state values N∗, c∗k depend on γ. Denote by λS

k for k = 1, 2, · · · ,M + 1 the
eigenvalues of LS̃ , and note that that the entry s̃(M+1,M+1) = dN

dt |N=N∗ = p′(N∗)N∗ + p(N∗) − µ′(N∗)N∗ −
µ(N∗) is an eigenvalue. We denote this eigenvalue by λS

M+1. Since N∗ is the stable equilibrium solution
of Eq 1, we assume that λS

M+1 < 0. As shown in [58], the eigenvalues of LS̃ all have strictly negative
real part, as do those of LS . The eigenvalues of the (M + 1)× (M + 1) minor of LS can be approximated
by λ̃S

k = k(p(N∗) − µ(N∗)), with corresponding eigenvectors ỹk shown in the following proposition:

Proposition 3.1. If p(N∗) − µ(N∗) < 0, the eigenvalues {λS
k }k=1,...,M of the matrix LS̃ are well

approximated by the terms λ̃S
k = k(p(N∗) − µ(N∗)), in the sense that there exist vectors ỹk such that

||(LS̃ − λ̃
S
k I)ỹk|| −→ 0 as M −→ ∞.

Proof. We begin by assuming that the terms λ̃S
k = k(p(N∗) − µ(N∗)) are themselves eigenvalues of

LS̃ , and search for their corresponding eigenvectors, ỹk = (ỹ1
k , ỹ

2
k , · · · , ỹ

M
k , 0). Choosing ỹ1

k = 1, we then
choose ỹi

k for i = 2, . . . ,M inductively so as to force the i-th component of the residual vector, which we
denote by [(LS̃ − λ̃

S
k I)ỹk]i, to equal zero for i = 1, 2, · · · ,M−1. We then verify that [(LS̃ − λ̃

S
k I)ỹk]M −→

0 as M −→ ∞, so that for M � 1, ||(LS̃ − λ̃
S
k I)ỹk|| ≈ 0, where || · || is any p-norm. (Trivially,

[(LS̃ − λ̃
S
k I)ỹk]M+1 = 0.) We first note that the components ỹ1

k , · · · , ỹ
M
k of the approximate eigenvector

ỹk corresponding to eigenvalue λ̃S
k are defined by the recurrence relation,

iỹi
k =

[
(i + (k − 1))

(
p(N∗)
µ(N∗)

)
+ (i − (k + 1))

]
ỹi−1

k − [i − 2]
(

p(N∗)
µ(N∗)

)
ỹi−2

k . (15)

The solution of this recurrence relation is then

ỹi
k =

k∑
n=1

[∏n−1
j=1(i − j)

] [∏k−n
j=1(i + j)

]
k(−1)n−1(n − 1)!(k − n)!

(
p(N∗)
µ(N∗)

)i−n

, (16)

where we let
∏0

j=1(i ± j) = 1, whenever such a term appears in the above sum. (This is verified in
Appendix 6.) As previously mentioned, [(LS̃ − λ̃

S
k I)ỹk]i = 0 for i = 1, 2, · · · ,M − 1. We now compute

[(LS̃ − λ̃
S
k I)ỹk]M, obtaining

[(LS̃ − λ̃
S
k I)ỹk]M = (M − 1)p(N∗)ỹM−1

k − Mµ(N∗)ỹM
k

= p(N∗)
k∑

n=1

[∏n−1
j=0(M − 1 − j)

] [∏k−n
j=1(M − 1 + j)

]
k(−1)n−1(n − 1)!(k − n)!

(
p(N∗)
µ(N∗)

)M−1−n

− µ(N∗)
k∑

n=1

[∏n−1
j=0(M − j)

] [∏k−n
j=1(M + j)

]
k(−1)n−1(n − 1)!(k − n)!

(
p(N∗)
µ(N∗)

)M−n

. (17)
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Each term in the sum above has the form pk(M)aM, where pk(M) is a polynomial of degree k in the
variable M, and a = p(N∗)/µ(N∗). Recalling that p(N∗)/µ(N∗) < 1, then limM−→∞ pk(M)aM = 0, so
that at large values of M, [(LS̃ − λ̃

S
k I)ỹk]M ≈ 0. This demonstrates that λ̃S

k may be regarded as an
approximation to the true eigenvalue λS

k , assuming that the eigenvalues of LS̃ are stable under small
perturbations. �
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Figure 1. Eigenvalues and eigenvectors of LS̃ , γ > 0. Here, and in all subsequent evaluations,
we parameterize our model using values in a range based qualitatively on human data, where
the unit of rates are expressed in 1/year [55, 59, 60]. However, the model can have arbitrary
units in general cases. (a) Numerically computed eigenvalue spectrum of the matrix LS̃ , with
p(N∗) = 0.12, µ(N∗) = 0.17 and M = 500. Dots identify the locations of the eigenvalues
λS

1 (red), λS
100 (blue), λS

200 (black). (b) First 100 components (ỹ1
k , · · · , ỹ

100
k ) of the eigenvectors

with indices k = 1, 100, 200, the eigenvalues corresponding to which are marked on the
spectral curve in (a). (c) Comparison of true eigenvalues (λS

k ) and approximate eigenvalues
(λ̃S

k ) for k = 1, · · · , 100. Approximation is strong for k . 50. (d) (Top) comparison of ỹ j
50

and y j
50 for j = 1, · · · , 40, showing that the approximation is strong. (Bottom) comparison

of ỹ j
200 and y j

200 for j = 1, · · · , 100, showing that the accuracy of the approximation breaks
down, but the qualitative behavior of y j

200 is captured in ỹ j
200.

The solutions ỹi
k, as functions of i for fixed k, are characterized by patterns of oscillatory behavior,

as shown in Figure 1, which depicts numerical solutions of true and approximate eigenvalues and
eigenvectors of LS̃ . We choose p(N∗) and µ(N∗) to satisfy p(N∗) < µ(N∗), so that at homeostatic
population levels, the death rate exceeds the proliferation rate, preventing exponential growth of the
population.

Figure 1a presents a sample plot of the eigenvalue spectrum λS
k in the case M = 500; on the

spectral curve, several eigenvalues are marked, for which the first 100 components of the
corresponding eigenvectors are plotted in Figure 1b. As discussed previously, all eigenvalues are
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negative. The eigenvector plots in Figure 1b indicate that as k increases, the oscillatory “mass” of the
corresponding eigenvectors occurs at increasingly large values of j. Figure 1c presents a comparison
of the true eigenvalue spectrum (λS

k ) and the approximate eigenvalue spectrum (λ̃S
k ) of the matrix LS̃ .

The eigenvalue approximation is very strong for 1 . k . M/10, and this remains true as M varies.
The quantities λ̃S

k = k(p(N∗) − µ(N∗)) over-approximate the λS
k for k & M/10. Figure 1d depicts a

comparison of yk and ỹk for two values of k, one below the crossover ∼ M/10 (k = 50, top) and one
above M/10 (k = 200, bottom). As expected, the eigenvector approximation is accurate precisely
when the corresponding eigenvalue approximation is accurate. Even for k & M/10, the approximate
eigenvectors ỹk present an appearance similar to that of the ỹk for smaller k. The diminished accuracy
of the eigenvalue/eigenvector pairs at higher k (for fixed M) is attributable to the slower convergence
of [(LS̃ − λ̃

S
k I)ỹk]M to 0 as M → ∞ for larger k, which is immediately apparent from the form in Eq 17.

For a system of a fixed dimension M, increasing µ(N∗) relative to p(N∗) causes the approximate
eigenvalues λ̃S

k to become increasingly accurate at larger k, clearly due to the quicker convergence of
the residual quantity ||(LS̃ − λ̃

S
k I)ỹk|| to 0 when p(N∗)/µ(N∗) � 1, as indicated by Eq 16.

Increases to µ(N∗) relative to p(N∗) also cause an intensified dampening of the oscillations in the
eigenvector ỹk at lower components j, which creates the illusion of the oscillatory mass shifting to the
left as µ(N∗) increases for fixed p(N∗), as in Figure 2b. At the same time, the entire eigenvalue spectrum
becomes more negative as µ(N∗) increases, as indicated in Figure 2a, so that increases to the death rate
at homeostatic levels indicate much faster convergence to equilibrium of all ck compartments.

(a) (b)

Figure 2. Eigenvalues and eigenvectors of LS̃ , γ > 0, varying µ. (a) Numerically computed
eigenvalues, λS

k , for k = 1, · · · , 100, when µ(N∗) = 0.16 and µ(N∗) = 0.6. In both cases,
p(N∗) = 0.15, M = 100. (b) Numerically computed eigenvectors y81.

3.3. Behavior of the linearized and fully nonlinear systems

This section addresses the convergence behavior of solutions in the presence of a positive thymic
export rate γ > 0. This situation represents a functioning thymus, with the possibility for many different
levels of functionality, ranging from total health (high γ ∼ γ0) to dramatically diminished functionality
(low γ). It could also represent a new thymic export rate after transplant of thymic tissue, as studied
in the context of DiGeorge’s syndrome in Ciupe et al. [40]. In this case, we determined that for each
equilibrium solution of Eq 1, the system has an equilibrium solution given by Eqs 12 and 13. If the
steady state solution N∗(γ) > 0 of Eq 1 represents a stable fixed point, the corresponding equilibrium
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c∗k(γ) will also be stable (typical regulated forms of proliferation and death, p(N) and µ(N), tend to
result in one positive stable equilibrium solution in Eq 1). If for some i, γi > 0, the solution {ci

k(t)}
M
k=1,

N i(t) satisfies ci
k(t) → c∗k(γi), N i(t) → N∗(γi). The convergence of the total population N i(t) → N∗

occurs at rate p′(N∗)N∗ + p(N∗) − µ′(N∗)N∗ − µ(N∗). Based on the eigenvalues and eigenvectors
of the approximate linearization, LS̃ , of Eqs 1–4 around this equilibrium, we can formally construct
approximations to the time-dependent solutions for ck(t).

In the fully nonlinear system, however, the linearized eigenvalues provide only a priori rates of
convergence of solution trajectories initialized near equilibrium. The accuracy of the eigenvalues in
providing convergence rates of solutions depends on the initial conditions. If the initial conditions,
ci

k(ti),N i(ti), satisfy ci
k(ti) ∼ c∗k(γi), N i(ti) ∼ N∗(γi), then the solutions begin near the stable equilibrium,

and the eigenvalues provide accurate rates of convergence. If the initial conditions are far from
equilibrium, the eigenvalues may not provide accurate rates of convergence of the entire solution
trajectory. When trajectories are far from equilibrium at time ti, further information about the speed of
convergence can be discerned from the relationship between p(N i(ti)) − µ(N i(ti)) and
p(N∗(γi)) − µ(N∗(γi)), the disparity in proliferation and death rates at the starting and terminal
population levels. If these quantities differ significantly, solution trajectories are generally
characterized by a transient period of fast convergence, which carries the trajectory close enough to
the stable equilibrium that convergence rates from then on are dictated by the linearized eigenvalues.
For example, assume that an abrupt drop in thymic productivity occurs at ti, so that γi < γi−1. As the
naive T cell population evolves from N i(ti) to N∗(γi), for which
0 > p(N∗(γi)) − µ(N∗(γi)) > p(N i(ti)) − µ(N i(ti)), the T cell pool will experience a brief period of
higher cellular death. As N(t) approaches N∗(γi), the convergence rates correspond to the eigenvalues
found from the linearized approximation.

4. Analysis for γ = 0 (full thymic cessation)

We now proceed to study the system after thymic export is shut off (γ = 0). As in section 3 above,
we compute equilibrium solutions of the truncated system (finite M) that arise when γ = 0, and identify
the rates of convergence of the different ck(t) to equilibrium under the linearized model. We also take
M → ∞ and consider explicit solutions of the infinite-dimensional system.

4.1. Analytic solutions

In the γ = 0 case, the solution ck(t) for M → ∞ can be readily expressed using the method of
characteristics. By using the generating function Q(q, t) defined in Eq 11 and taking the k-th order
derivative of Q with respect to q at q = 0, we find

ck(t) =

[
B(t)

A(t) + B(t)

]k ∞∑
i=0

ci(0)
i∑

j=0

(
i
j

)(
k + j − 1

k

) (
1 −

1
B(t)

)i− j ( A(t)
B(t) (A(t) + B(t))

) j

(18)

and N(t) = A−1(t)
∑∞

k=0 kck(0). Note that for depleted initial conditions c0(0) = Ω and ck(0) = 0 for
k ≥ 1, Eq 18 leads to c0(t) = Ω and ck(t) = 0 for k ≥ 1 at all times. Indeed, the T cell pool is expected
to remain empty since there is no thymic export.

Figure 3a depicts a numerical computation of the solution, ck, of the infinite-dimensional
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formulation, obtained from the generating function. We include values of ck for k = 1, 2, · · · , 50 at
times t = 30, 60, 90. As a function of k, the ck present as linear on a logarithmic scale, as expected. To
compare the infinite dimensional system with the truncated system, we also compute solutions, yk, of
the truncated Eqs 2–4 (not pictured). Figure 3b depicts the relative error, |ck − yk|/ck. As we see, the
error is several orders of magnitude smaller than ck, yk themselves at each of the times t = 30, 60, 90,
indicating that the numerical solution of the truncated system Eqs 2–4 is accurately described by the
exact method-of-characteristics solution and that the infinite- and finite- dimensional systems may be
used more or less interchangeably.

Figure 3. Computation of ck from method of characteristics, comparison with truncated
system. (a) Plots of ck for k = 1, 2, · · · , 50, at times t = 30, 60, 90. Solutions ck were
computed numerically from the analytic method described in 4.1, based on the infinite-
dimensional system. As a function of k, ck presents as linear on a logarithmic scale. (b)
Relative error, |ck − yk|/ck for k = 1, 2, · · · , 50, at times t = 30, 60, 90, where ck denotes
the solutions depicted in (a), and yk denotes the numerically computed solutions of the
truncated system in Eqs 2–4. From (b), the disparity between the solutions of the infinite
dimensional systems (ck) and the finite dimensional truncated systems (yk) is negligible,
validating our decision to use them interchangeably. Coefficient functions: p(N) = p0 > 0,
µ(N) = µ0 +µ1(N2/(N2 + K2)). Parameter values: p0 = 0.18, µ0 = 0.17, µ1 = 0.04, K = 1010,
Ω = 1016, M = 100. Initial condition: c0(0) = 1016 − 1010, c1(0) = 1010, ck(0) = 0 for k ≥ 2.

4.2. Equilibrium solutions and linearization

We now investigate the solution ck(t) near the fixed points that arise when we take γ = 0 in Eqs 1–4.
In this case, the system has two possible equilibrium solutions. Denoting generic equilibrium solutions
by {c∗k}

M
k=1 and N∗, the unstable solution is c∗k = 0 for all k ≥ 1 and N∗ = 0, and the asymptotically

stable solution is c∗k = 0 for all 1 ≤ k ≤ M. However, in the stable state we define N∗ = Ñ > 0, where
Ñ satisfies p(Ñ) = µ(Ñ). To verify the stability of these solutions, we consider the linearization of
the system around this equilibrium, which is represented by the (M + 1) × (M + 1) matrix we call LU

(LU = (ui j)1≤i, j≤M+1). The components ui j of LU are given explicitly by:
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

− j(p(N∗) + µ(N∗)), if i = j ≤ M − 1
−Mµ(N∗), if i = j = M

jµ(N∗), if i = j − 1; 2 ≤ j ≤ M

jp(N∗), if i = j + 1; 1 ≤ j ≤ M − 1
p′(N∗)N∗ + p(N∗) − µ′(N∗)N∗ − µ(N∗), if i = j = M + 1
0. otherwise


(19)

As before, u(M+1),(M+1) = p′(N∗)N∗ + p(N∗) − µ′(N∗)N∗ − µ(N∗) is an eigenvalue with eigenvector
(0, . . . , 0, 1), and the remaining eigenvalues are those of the (M + 1) × (M + 1) minor of LU . All
eigenvalues of the (M + 1) × (M + 1) minor have negative real part, and the stability of an equilibrium
solution depends on the sign of u(M+1),(M+1). If N∗ = 0, then u(M+1),(M+1) = p(0)− µ(0) > 0, as described
previously, and the equilibrium c∗k = 0, N∗ = 0 is unstable. On the other hand, if N∗ = Ñ with p(Ñ) =

µ(Ñ), then N∗ represents a positive, homeostatic cell count, and u(M+1),(M+1) = (p′(N∗) − µ′(N∗)) N∗ < 0,
as p(N), µ(N) are assumed to be non-increasing and non-decreasing, respectively. Therefore, we have
that c∗k = 0 and N∗ = Ñ > 0 is a stable equilibrium solution.

If γ = 0, the solution {ck(t)}Mk=1, N(t), will evolve away from the unstable equilibrium c∗k = 0, N∗ = 0
and towards the equilibrium c∗k = 0, N∗ = Ñ > 0. In this instance, the pool of low-population clones
is eradicated due to lack of thymic productivity, and the high lymphopenic proliferation rate pushes
existent clones past the truncation threshold M, where they are no longer accounted for in ck but are
accounted for in N, causing N(t) → N∗ despite the fact that ck(t) → 0 for all k. As before, we wish to
explore further the rates at which individual functions ck diverge from the unstable fixed point towards
the stable one under the linearized and fully nonlinear models. To this end, we study the eigenvalues
of the linearization matrix, LU , evaluated at the two equilibria.

First, consider the eigenvalues of LU evaluated at the unstable equilibrium. In this case, we assume
p(0) > µ(0), as described earlier. Without thymic export, new clones are not generated in the
periphery, and existent clones expand due to the high proliferation rate. Under the dynamics described
by Eqs 2–4, clones quickly expand beyond the small-k compartments and get “caught” at the
boundary at size M, before depleting due to the slow death-induced passage of single cell clones
through the boundary at k = 1. According to Eq 1, the total cell population reaches a natural
homeostatic level through peripheral maintenance alone. To investigate the rates at which these
processes occur under the linearized model, we derive approximations to the dominant eigenvalues of
LU . Under the assumption that p(0) > µ(0), we denote the true eigenvalues of LU by λU

k for
k = 0, 1, · · ·M, with corresponding eigenvectors zk = (zM

k , z
M−1
k , · · · , z1

k , z
0
k) (note that we have reversed

the index ordering here). Assign to the eigenvalue u(M+1),(M+1) = p(0) − µ(0) the label λU
M, and to its

eigenvector (0, . . . , 0, 1) the label zM. What remains is to find approximations to the other M
eigenvalues of LU , which are precisely the eigenvalues of the (M + 1) × (M + 1) minor. For
k = 0, 1, . . . ,M − 1, denote the approximation to the eigenvalue λU

k by λ̃U
k , and the approximation to

the eigenvector zk by z̃k = (z̃M
k , z̃

M−1
k , · · · , z̃1

k , 0). We begin by establishing that the eigenvalue of the
(M + 1) × (M + 1) minor with the smallest magnitude, λU

0 , is well approximated by λ̃U
0 = 0.

Proposition 4.1. The eigenvalue of LU of smallest magnitude, λU
0 , is well approximated by λ̃U

0 = 0,
in the sense that there exists a vector z̃0 = (z̃M

0 , z̃
M−1
0 , · · · , z̃2

0, z̃
1
0, 0) such that ||(LU − λ̃

U
0 I)z̃0|| −→ 0 as
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M −→ ∞.

Proof. (Note: The components of z̃0 are written above in “descending” order for notational
convenience, as this reflects the order in which they will be chosen recursively below. The i-th
component from the left of z̃0, denoted explicitly by z̃M−i+1

0 , still corresponds to the function ci.) We
begin by considering the matrix (LU − λ̃

U
0 I) = LU and searching for an appropriate eigenvector, z̃0. We

define z̃1
0 = 1, and once again choose the components z̃i

0 inductively via a three-term recurrence
relation so as to force the i-th component of (LU − λ̃U

0 I)z̃0, which we denote as before by
[(LU − λ̃

U
0 I)z̃0]i, to satisfy [(LU − λ̃

U
0 I)z̃0]i = 0 for i = 2, 3, · · · ,M + 1. While [(LU − λ̃

U
0 I)z̃0]1 , 0, we

show that [(LU − λ̃U
0 I)z̃0]1 −→ 0 as M −→ ∞, so that z̃0 may be regarded formally as an

“approximate” eigenvector corresponding to the approximate eigenvalue λ̃U
0 .

Defining z̃1
0 = 1 and z̃2

0 =
Mµ(0)

(M−1)p(0) , we let z̃0 be defined by solutions to the recurrence relation,

z̃i+2
0 =

(
(M − i)(µ(0) + p(0))

(M − (i + 1))p(0)

)
z̃i+1

0 −

(
(M − (i − 1))
M − (i + 1)

) (
µ(0)
p(0)

)
z̃i

0, (20)

for i = 1, 2, · · · ,M − 2. It can be directly verified by induction that the solution to this recurrence
relation is

z̃i
0 =

(
M

M − (i − 1)

) (
µ(0)
p(0)

)i−1

. (21)

By construction of the recurrence relation, [(LU−λ̃
U
0 I)z̃0]i = 0 for i = 2, 3, · · · ,M. The first component,

[(LU − λ̃
U
0 I)z̃0]1, satisfies

[(LU − λ̃
U
0 I)z̃0]1 = −µ(0)M

(
µ(0)
p(0)

)M−1

−→ 0 (22)

as M −→ ∞. Thus, when M � 1, ||(LU − λ̃
U
0 I)z̃0|| ≈ 0, and we may conclude that λ̃U

0 = 0 and z̃0 are
suitable approximations to λU

0 and z0, respectively. �

Recalling that all eigenvalues of LU have negative real parts, the true eigenvalue λU
0 has a negative

real part of very small magnitude. We now identify which entries in the eigenvector z0, as
approximated by z̃0, are particularly large in magnitude in comparison with the others. Recalling that
the i-th component of z̃0 is given by z̃i

0 = [M/(M − i + 1)] (µ(0)/p(0))i−1, the z̃i
0 decay nearly

exponentially in i, so that ck for large k are preserved by this slow eigenvalue, in agreement with the
described “build up” of clones at the boundary k = M when γ = 0.

The eigenvalue λU
1 of second smallest magnitude is well separated from λU

0 , and it encodes
information about how the number of small clones evolves. Similar analysis of an eigenvalue λ̃U

1 and
eigenvector z̃1 approximating λU

1 and z1 indicates that ck empties much more rapidly for small k than it
does for large k, as small clones expand in size and race to the boundary at k = M. In particular, all ck

except those with k ∼ M, which had been preserved by the slow eigenvalue λU
0 , empty at nearly the

same rate, λU
1 ≈ λ̃

U
1 = (µ(0) − p(0)).
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Proposition 4.2. In the case p(0) > µ(0), the matrix LU has an eigenvalue, λU
1 , which is well

approximated by λ̃U
1 = (µ(0) − p(0)), in the sense that there exists a vector z̃1 such that

||(LU − λ̃
U
1 I)z̃1|| −→ 0 as M −→ ∞.

Proof. First define z̃1
1 = 1, and z̃2

1 =
(

M+1
M−1

) (
µ(0)
p(0)

)
− 1

M−1 . Then for i = 1, 2, · · · ,M − 2, let z̃i+2
1 be given

by the solutions to the following recurrence relation:

z̃i+2
1 = z̃i+1

1 +

(
M − (i − 1)
M − (i + 1)

) (
µ(0)
p(0)

) (
z̃i+1

1 − z̃i
1

)
. (23)

It is worth nothing that if we were to instead choose z̃1
1 = z̃2

1, then the recurrence relation in Eq 23
would have a constant solution, z̃i

1 = z̃1
1 for all i = 1, 2, · · · ,M. Although z̃1

1 , z̃2
1 for our purposes,

solutions of the recurrence relation do converge rapidly to constants, as will be discussed later.
By construction, [(LU − λ̃

U
1 I)z̃1]i = 0 for i = 2, 3, · · · ,M + 1. Additionally, [(LU − λ̃

U
1 I)z̃1]1 =

2µ(0)(z̃M
1 − z̃M−1

1 ). To show that [(LU − λ̃
U
1 I)z̃1]1 −→ 0 as M −→ ∞, we use Eq 23 to derive an explicit

bound on the quantity 2µ(0)(z̃M
1 − z̃M−1

1 ). Consider

|z̃i+2
1 − z̃i+1

1 | =

(
M − (i − 1)
M − (i + 1)

) (
µ(0)
p(0)

)
|z̃i+1

1 − z̃i
1|

=

(
M − (i − 1)
M − (i + 1)

) (
M − (i − 2)

M − i

) (
µ(0)
p(0)

)2

|z̃i
1 − z̃i−1

1 |

...

=

(
M − (i − ( j − 1))

M − (i + 1)

) (
M − (i − j)

M − i

) (
µ(0)
p(0)

) j

|z̃i+2− j
1 − z̃i+1− j

1 |

...

=

(
M − 1

M − (i + 1)

) ( M
M − i

) (
µ(0)
p(0)

)i

|z̃2
1 − z̃1

1|. (24)

Taking i = M − 2 in the above relation, we find

|[(LU − λ̃
U
1 I)z̃1]|1 = 2µ(0)|z̃M

1 − z̃M−1
1 |

= µ(0) (M(M − 1))
(
µ(0)
p(0)

)M−2

|z̃2
1 − z̃1

1| −→ 0

as M −→ ∞. Thus, for M � 1, ||(LU − λ̃
U
1 I)z̃1|| ≈ 0, and we find that z̃1 is “almost” an eigenvector of

LU corresponding to the approximate eigenvalue λ̃U
1 . �

We now wish to identify which of the ck empty at the rate determined by the second approximate
eigenvalue, λ̃U

1 . As it turns out, the eigenvector z̃1 corresponding to this eigenvalue is “nearly” constant,
and thus all ck empty at essentially the same rate. We see this by identifying that even though we are
only concerned with a finite number (M) of terms of the sequence generated by the recurrence relation
in Eq 23, as the index M becomes infinitely large, the sequence {zi

1}
M
i=1 exhibits “Cauchy-like” behavior,

mimicking “convergence” to a limiting value. We make this more precise in the following proposition:
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Proposition 4.3. Let z̃1 be an approximate eigenvector of LU corresponding to approximate eigenvalue
λ̃U

1 , where z̃1 is generated by the recurrence relation in Eq 23. Then at large M, the components of
z̃1 exhibit “Cauchy-like” behavior: for any ε > 0 and 0 < c < 1, we may choose M ∈ N such that
|z̃m

1 − z̃n
1| < ε for all cM ≤ m ≤ M and cM ≤ n ≤ M.

Proof. Recalling the bound on |z̃i+2
1 − z̃i+1

1 | obtained in Eq 24, we find

|z̃m
1 − z̃n

1| =

∣∣∣∣∣∣∣
m−1∑
i=n

(
z̃i+1

1 − z̃i
1

)∣∣∣∣∣∣∣ ≤
m−1∑
i=n

|z̃i+1
1 − z̃i

1|

=

m−1∑
i=n

(
M − 1
M − i

) (
M

M − (i − 1)

) (
µ(0)
p(0)

)i−1

|z̃2
1 − z̃1

1|

≤ M(M − 1)|z̃2
1 − z̃1

1|

m−1∑
i=n

(
µ(0)
p(0)

)i−1

= M(M − 1)|z̃2
1 − z̃1

1|

(
µ(0)
p(0)

)n−1
m−n−1∑

j=0

(
µ(0)
p(0)

) j


= M(M − 1)|z̃2
1 − z̃1

1|

(
µ(0)
p(0)

)n−1
1 −

(
µ(0)
p(0)

)m−n

1 − µ(0)
p(0)


≤
|z̃2

1 − z̃1
1|(

1 − µ(0)
p(0)

)M(M − 1)
(
µ(0)
p(0)

)n−1

≤
|z̃2

1 − z̃1
1|(

1 − µ(0)
p(0)

) M(M − 1)
(
µ(0)
p(0)

)cM−1 .

Recalling that M(M − 1)
(
µ(0)
p(0)

)cM
−→ 0 as M −→ ∞, we may choose M large enough that

M(M − 1)
(
µ(0)
p(0)

)cM

≤ ε

[
1 −

(
µ(0)
p(0)

)] (
µ(0)
p(0)

)
|z̃2

1 − z̃1
1|

, (25)

allowing us to conclude that |z̃m
1 − z̃n

1| < ε for all M ≥ m, n ≥ cM. �

By taking 0 < c, ε � 1, we find that “most” components of z̃1 are within an ε-distance of each other,
so that the eigenvector is nearly constant. (The constancy breaks down at the components representing
large-k compartments.) With this, we are able to classify the rates at which all of the ck are lost from
the pool. As the eigenvector corresponding to the second smallest magnitude eigenvalue, λU

1 ≈ λ̃U
1 ,

is nearly constant, all ck, except those with k ∼ M, empty at nearly the same rate, on a time scale
∼ |µ(0) − p(0)|−1.
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Figure 4. Eigenvalues and eigenvectors of LS̃ , γ = 0. (a) Numerically computed eigenvalue
spectrum of the matrix LU , with p(0) = 0.17, µ(0) = 0.12, and M = 500. Dots identify the
locations of the eigenvalues λU

1 (red), λU
6 (blue), λU

21 (black). The first several eigenvalues
of the full system, including the positive eigenvalue (open circle when p(0) > µ(0)) and
the eigenvalue λU

0 ≈ 0, are highlighted in the zoomed-in axis. (b) First 30 components
(z500

k , · · · , z470
k ) of the eigenvectors with indices k = 1, 6, 21, the eigenvalues corresponding to

which are marked on the spectral curve in (a). Note that the eigenvectors were defined in a
“reverse-order”, so that z500

k corresponds to compartment c1, z495
k to compartment c6, and z480

k

to compartment c21. Generally, zM− j+1
k corresponds to compartment c j.

The remaining eigenvalues λU
2 , · · · , λ

U
M−1 are not treated analytically, but numerical computation

indicates that a similar general approximation to the k-th eigenvalue, λ̃U
k , may be made, taking the

form λ̃U
k = k(µ(0) − p(0)). The true eigenvalues, λU

k , are depicted in Figure 4a (comparison of the
true and approximate spectra is omitted, as the result is similar to that depicted in Figure 1c. That is,
λU

k ≈ k(µ(0)−p(0)) if k . M/10.). The oscillatory behavior observed in the approximate eigenvectors in
the case p(N∗) < µ(N∗) of section 3 is absent here; although the subsequent approximate eigenvectors
z̃2, · · · , z̃M−1 do not share the Cauchy-like behavior of z̃1, the components corresponding to ck for
small k do not vary much in magnitude, and are thus interpreted as being nearly constant themselves
(Figure 4b). Thus, we conclude that for small k, the functions ck all have very similar dynamics,
diverging at the rate |µ(0) − p(0)|, while for large k, the ck converge very slowly, at a rate governed by
the dominant, near-zero eigenvalue λU

0 .
We now consider the stable equilibrium solution, c∗k≤M = 0 for k ≥ 1, N∗ = Ñ > 0. In this case, the

linearization around this equilibrium may be expressed as p(N∗)LU′ , where LU′ = (u′i j)1≤i, j≤M+1 is the
(M + 1) × (M + 1) matrix with component u′i j given by



−2 j, if i = j ≤ M − 1
−M, if i = j = M

j, if i = j − 1; 2 ≤ j ≤ M

j, if i = j + 1; 1 ≤ j ≤ M − 1
p′(N∗)N∗+p(N∗)−µ′(N∗)N∗−µ(N∗)

p(N∗) , if i = j = M + 1

0. otherwise


(26)
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For reference, an example of the matrix LU′ , with M = 4, is given below:

−2 2 0 0 0

1 −4 3 0 0

0 2 −6 4 0

0 0 3 −4 0

0 0 0 0 p′(N∗)N∗+p(N∗)−µ′(N∗)N∗−µ(N∗)
p(N∗)



(27)

Denote by λU′
k for k = 1, 2, · · · ,M,M + 1 the eigenvalues of the matrix LU′ evaluated at the stable

equilibrium solution, and xk = (x1
k , x

2
k , · · · , x

M
k , x

M+1
k ) their corresponding eigenvectors. As before,

let λU′
M+1 = 1

p(N∗)
∂[(p−µ)N]

∂N |N=N∗ < 0. Then, the remaining eigenvalues λU′
1 , · · · , λ

U′
M are those of the

(M + 1) × (M + 1) minor of LU′ , which are independent of the parameters of the system except M.
(Of course, the eigenvalues of p(N∗)LU′ are then p(N∗)λU′

k for k = 1, · · · ,M + 1. ) These eigenvalues
and eigenvectors are not treated analytically. The analysis conducted in section 3 does not apply, as
it relied on the assumption p(N∗) < µ(N∗), which no longer holds. However, numerical computation
indicates that in the case p(N∗) = µ(N∗), which applies here, the eigenvalue spectrum and associated
eigenvectors qualitatively resemble the λS

k , yk studied analytically in section 3.

4.3. Behavior of the linearized and fully nonlinear systems

We now interpret these results in the context of the particular diseased states to which they
naturally apply. We first identified an unstable equilibrium solution, c∗k = 0, N∗ = 0, and studied the
linearization of the system around this equilibrium. Under the linearized model, if γi = 0 for some i,
the eigenvalue/eigenvectors pairs suggest that solutions diverge away from this equilibrium, with ci

k
for small k evolving at a rate ∼ λU

1 = (µ(0) − p(0)), and ci
k for k ∼ M evolving at the very slow rate

given by the small-magnitude eigenvalue, λU
0 . The total population N i(t) evolves at the rate

(p(0) − µ(0)). This situation represents the repopulation of the T cell pool from a small number of
cells via peripheral proliferation in a highly pathological state involving both complete thymic
inactivity (e.g. thymectomy or total functional cessation) and near full lymphopenia (as may result
from treatment regimens for cancer, etc.).

We then identified a stable equilibrium solution, c∗k = 0, N∗ = Ñ > 0. As Ñ is asymptotically stable,
N i(t) → Ñ after diverging from N∗ = 0. Under the linearized model, the eigenvalue/eigenvector pairs
suggest that ci

k(t)→ 0 slowly for small k, and ci
k(t)→ 0 much more quickly for large k.

As before, the validity of the eigenvalues in providing accurate convergence rates of ci
k,N

i to and
from equilibria depends on the initial condition ci

k(ti) in the full nonlinear model. If the human is
in a state of immune health for t < ti, so that γi−1 > 0 and the initial conditions ci

k(ti),N i(ti) > 0
satisfy ci

k(ti) ∼ c∗k(γi−1), N i(ti) ∼ N∗(γi−1), we expect that p(N i(ti)) < µ(N i(ti)). The higher rate of
death than proliferation at ti may cause a transient period of quick collapse, with N i(t) decreasing to
Ñ. As N i(t) → Ñ, convergence occurs at the rates dictated by the linearized eigenvalues. If γi−1 > 0
but ci

k(ti),N i(ti) ∼ 0, so that the thymus is functioning to some extent but the T cell pool has been
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eradicated, trajectories first diverge away from the unstable zero equilibrium at rates given by the
linearized eigenvalues. As p(N i(ti))−µ(N i(ti))→ p(Ñ)−µ(Ñ) = 0, the motion of trajectories transitions
from being dictated by the eigenvalues of the unstable equilibrium to those of the stable equilibrium.

In summary, we show in Proposition 4.1 that ck for larger k is sustained by a near-zero eigenvalue
λU

0 ' 0, as the solution evolves away from the unstable empty state when γ = 0. Furthermore,
in Propositions 4.2 and 4.3 we identify a series of negative eigenvalues, and a uniform eigenvector
corresponding to the slowest decay rate λU

1 < 0. It suggests a uniform asymptotic decay of components
other than the larger k components preserved by λU

0 .

5. Special cases and numerical evaluation

Using the approximate rates of convergence provided by linearization, we can now study the time
scale of the T cell pool’s adjustment to a new export rate. While some T cell clones will expand and
attain a large size, most are small. Thus, in both the cases of thymic atrophy and recovery, we take as
a proxy for the rate at which the T cell diversity converges to equilibrium the eigenvalue that dictates
the rate of convergence of c1, typically given by the quantity p(N∗) − µ(N∗) (this tends to also be the
dominant eigenvalue). Recalling that p(N∗) < µ(N∗), high proliferation rates (p(N∗) ∼ µ(N∗)) lead to
small values of |p(N∗) − µ(N∗)|, thus slower adjustment of diversity to the changing γ. That is, in a
proliferation-dominant scenario, a drop in thymic export leads to repopulation via clonal expansion. In
this section, we study several specific models arising from canonical choices of p and µ, and compute
the changing convergence rate as gamma varies.

5.1. The logistic model: Regulated proliferation, constant death

We begin with the canonical logistic growth model, taking p(N) = p0(1 − N/K), µ(N) = µ0, where
p0, µ0 > 0 are basal rates of cellular proliferation and death, respectively, and K > 0 is an inherent
carrying capacity. Under this model, Eq 1 has a positive steady state, N∗, given by

N∗ =

(
K

2p0

) (p0 − µ0) +

√
(p0 − µ0)2 +

4γp0

K

 . (28)

In this case, p(N∗) − µ(N∗) = p0

(
1 − N∗

K

)
− µ0 = 1

2

(
(p0 − µ0) −

√
(p0 − µ0)2 +

4γp0
K

)
< 0, so that the

assumption p(N∗) < µ(N∗) always applies. Moreover, λ̃S
M+1 = −

√
(p0 − µ0)2 +

4γp0
K , so it is clear that

0 > λ̃S
1 > λ̃

S
M+1, and λ̃S

1 is the dominant eigenvalue. Then,

|p(N∗) − µ(N∗)| =
1
2

−(p0 − µ0) +

√
(p0 − µ0)2 +

4γp0

K

 . (29)

In Figure 5, the quantity λ̃S
1 is plotted against γ for several different combinations of p0, µ0, showing

the unboundedness of the convergence rate as γ increases. Within this physiological range of γ values,
the dependence of λ̃S

1 on γ presents as linear on a log-log plot, indicating a power law relationship.
Indeed, the power law is described in detail in the caption of Figure 5.
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γ
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λ̃
S 1
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102 (a)
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7

K = 10
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K = 10
11

γ
101 105 109 1013

(b)

γ
101 105 109 1013

(c)

Figure 5. Dominant eigenvalue, λ̃S
1 , of LS̃ , plotted against γ, case 1. In (a), p0 = 0.18,

µ0 = 0.17. In (b), p0 = 0.018, µ0 = 0.017. In (c), p0 = 0.0018, µ0 = 0.0017. There is an
approximate power law relationship between λ̃S

1 and γ within this range of parameter values.
In (a), for example, the best fit line to the curve K = 107 is given by log λ̃S

1 = 0.5731 log γ −
4.869, with R2 = 0.9862. The curve K = 109 is fit by log λ̃S

1 = 0.6749 log γ − 6.894, with
R2 = 0.9752, and the curve K = 1011 is fit by log λ̃S

1 = 0.7939 log γ−9.206, with R2 = 0.9801.

5.2. Constant proliferation, regulated death

Let us now assume that p(N) = p0 > 0 and µ(N) = µ0 +
µ1N2

K2+N2 , with µ0, µ1 > 0, in the determination
of N(t) via Eq 1. We assume that p0 > µ0 and p0 − (µ0 + µ1) < 0, so that the action of the proliferation-
death mechanism results in net cellular birth at low cell counts and net cellular death at high cell counts.
The steady states of Eq 1 are given by the roots of the following cubic

P(N) = (p0 − (µ0 + µ1)) N3 + γN2 + (p0 − µ0)K2N + γK2. (30)

First note that P(0) = γK2 > 0, and the highest order coefficient satisfies (p0 − (µ0 + µ1)) < 0 by
assumption, so that P(N) −→ −∞ as N −→ ∞, and P(N) has at least one positive, real root. From
Descartes’ rules of signs, the polynomial has at most one positive real root, so we may conclude that it
has precisely one positive real root. This root corresponds to the only physically relevant stable fixed
point of dN

dt . By regarding this root, N∗, as the intersection of the line γ + (p0 − µ0)N and the rational
expression µ1

(
N3

K2+N2

)
, we see that N∗ → ∞ as γ → ∞.

We also verify that the eigenvalues λ̃S
1 , λ̃

S
M+1 satisfy 0 > λ̃S

1 > λ̃S
M+1, so that λ̃S

1 is, in fact, the
dominant eigenvalue. We first check that 0 > λ̃S

1 . Recalling that
λ̃S

1 = p(N∗) − µ(N∗) = p0 −
(
µ0 + µ1

(
(N∗)2

(K2+(N∗)2)

))
, we see after some simple algebraic manipulation that

the condition λ̃S
1 < 0 is equivalent to

N∗ >
(

(p0 − µ0)K2

|p0 − (µ0 + µ1)|

) 1
2

:= N. (31)

But P(N) =
γ(p0−µ0)K2

|p0−(µ0+µ1)| + γK2 > 0. That P(N) > 0 and P(N) −→ −∞ as N −→ ∞, along with the fact
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Figure 6. Dominant eigenvalue, λ̃S
1 , of LS̃ , plotted against γ, case 2. In (a), p0 = 0.18,

µ0 = 0.17, and µ1 = 0.004. In (b), p0 = 0.018, µ0 = 0.017, and µ1 = 0.004. In (c),
p0 = 0.0018, µ0 = 0.0017, and µ1 = 0.0004. The relationship between λ̃S

1 and γ follows a
power law for low values of γ, before reaching a plateau for high values of γ. In (a), the best
fit line to the curve K = 107 over the power law region (∼ γ ∈ [101, 105]) is given by log λ̃S

1 =

0.9606 log γ − 6.679, with R2 = 0.9989. The curve K = 109 over the power law region
(∼ γ ∈ [101, 107]) is fit by log λ̃S

1 = 0.9807 log γ − 8.708, with R2 = 0.9995, and the curve
K = 1011 over the power law region (∼ γ ∈ [101, 109]) is fit by log λ̃S

1 = 0.9883 log γ−10.72,
with R2 = 0.9998.

that P(N) has only one real positive root indicates that N∗ does, in fact, satisfy Eq 31, so that λ̃S
1 < 0.

It is easily verified that −µ′(N∗)N∗ < 0, and consequently that λ̃S
1 > λ̃

S
M+1.

From the fact that N∗ → ∞ as γ → ∞, we have that |p(N∗) − µ(N∗)| → p0 − (µ0 + µ1) as γ → ∞.
This limiting behavior is reflected in the eventual plateau seen in Figure 6, which plots the quantity
λ̃S

1 in this case. Before the plateau occurs, γ and λ̃S
1 are again related by a power law. The transition

from power law to plateau occurs at a “threshold” value, γ∗, of γ, at which the rate of T cell adjustment
becomes sensitive to a changing thymic export rate. If, for some i, γi−1, γi ≥ γ

∗, λ̃S
1 is unaffected by the

transition from thymic export rate γi−1 to thymic export rate γi–that is, the T cell pool adjusts to the new
thymic export rate γi as quickly as it had adjusted to the previous thymic export rate γi−1. If, however,
(γi−γ

∗)(γi−1−γ
∗) < 0, then a dramatic shift in the adjustment rate will occur. Thus, parameter choices

that result in a low threshold value γ∗ might correspond to physiological conditions under which an
instance of acute thymic atrophy actually does not affect T cell adjustment rates. Likewise, a high
threshold value of γ∗ indicates potential sensitivity of adjustment rates to the changing level of thymic
export, with adjustment rates obeying a power law dependence on γ.

6. Discussion and conclusions

In this paper, we formulated a model of how the naive T cell pool adjusts to changes in the rate of
thymic export of new T cells during a cycle of stress-induced atrophy and recovery, and how it may
be reconstituted following an instance of severe lymphopenia induced by a state of immune disease, or
treatments such as chemotherapy. Our underlying model is a birth-death-immigration process studied
under a mean-field approximation for the mean clone abundance distribution (or clone count) ck(t). A
recent investigation into the fully stochastic model indicates that the true ck differs from the ck derived
using the mean-field assumption (Eqs 2–5) only for very large k ≈ N [52]. Thus, our analyses may be

Mathematical Biosciences and Engineering Volume 17, Issue 1, 28–55.



49

inaccurate only if a single large clone dominates the whole population.

Another modeling choice we made is that TCRs are generated one naive T cell at a time. Successive
emigrations from the thymus are uncorrelated with the TCRs that are produced. However, emigration
can be clustered, with cell proliferation generating ∆ ∼ 2 − 4 copies of naive T cells carrying the
same TCR during each emigration event. In this case, we simply modify the immigration terms in
Eqs 2–3. For Eq 2, the immigration term proportional to γ/Ω is removed, while the immigration term
γ/Ω(ck−1−ck) is replaced by γ/Ω(ck−∆−ck) in Eq 3. By setting c`<0 = 0, the solution to Eqs 2 and 3 can
be numerically evaluated but a closed-form analytic solution is not possible. Solutions with clustered
immigration (∆ > 1) show no qualitative difference from ∆ = 1, with minor quantitative differences
arising only for very small k.

In section 3, we found that our mean-field ODE model admitted one stable equilibrium solution
when γ > 0. From an analysis of the eigenvalues and eigenvectors of the system linearized around
this stable equilibrium, we found that for small k, perturbations in ck about a steady-state solution
are weighted more strongly in the slowest mode (slowest eigenvalue) λS

1 = p(N∗) − µ(N∗) < 0. As
also shown in Figure 1, the variation in ck for larger k contains higher weights of the faster modes
corresponding to more negative (faster) eigenvalues λS

` = `(p(N∗)−µ(N∗)) < 0. Similarly, in section 4,
we analyzed the eigenvalue and eigenvector decomposition of the solution for γ = 0, for which two
equilibrium points, N∗ = 0 and N∗ > 0, arise. For p(N∗) − µ(N∗) < 0, we find the same decomposition
of ck(t) as in the γ > 0 case in section 3. Thus, in terms of the relaxation of ck(t) towards a finite steady-
state, our eigenvalue/eigenvector analysis suggests that the counts of large clones might evolve faster
towards the new steady-state. For the unstable equilibrium state N∗ = 0, the eigenvalue/eigenvector
decomposition of ck is shown in Figure 4. In this unstable case, the slowest eigenvalue λU

0 ≈ 0 has a
corresponding eigenvector zi

0 with elements that decay with i. This result predicts that large-population
(M − i) clones relax slowly (recall that the labeling is inverted: i = M − 1 corresponds to c1).

In addition to decomposing the linearized solutions in terms of eigenvalues and eigenvectors, we
explicitly plot trajectories of ck(t) following small, abrupt changes in γ.
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(b)

Figure 7. Time-dependence of ck(t) near fixed points. (a) The explicit time-evolution of
δck = (ck(t) − ck(∞))/ck(∞) following a small abrupt change γ = 1.8 × 1010 → 0.99 × 1.8 ×
1010 at t = 0. The evolution from one nonzero steady state to another nonzero steady state
shows that clone counts of small clones appear to evolve faster than counts of larger clones.
(b) Similarly, the number of small clones also evolve faster away from an unstable empty
equilibrium state N∗ = 0.
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By plotting the log of the deviation δck = (ck(t) − ck(∞))/ck(∞) in all cases (Figure 7a), we can
see that counts of small clones evolve faster after perturbation. Although this seems to contradict the
eigen decomposition of the γ > 0 case, the coefficients and eigenvector elements corresponding to
larger ` are negative (see Figure 1b,d), and convert fast decaying modes into short bursts of growth and
conspire to cancel the fast dynamics indicated by the more negative eigenvalues. In fact, we see that
the clone counts of large clones actually evolve more slowly than the rate associated with the largest
eigenvalue. This behavior can also be heuristically understood by noticing that under a given change
in γ, the immigration term γ(ck−1 − ck)/Ω is larger for smaller k because ck ∼ 1/k. Thus, for a given
change in γ, the perturbation is larger in the equations with smaller k and induces changes in ck(t) that
appear larger.

In section 5, we infer the rate of convergence of the counts of the smallest (but most common)
clones to equilibrium by computing the dominant eigenvalue as a function of γ > 0 for two choices of
regulated functions p(N), µ(N). In section 5.1, we test the logistic model, which assumes a constant
death rate but a population-dependent proliferation rate. From the explicit form of λ̃S

1 in Eq 29,
p(N∗) − µ(N∗) → ∞ as γ → ∞ for fixed values of the other parameters, which produces the
power-law relationship between γ and λ̃S

1 depicted in Figure 5. In section 5.2, we assumed instead a
constant rate of cellular proliferation with an N-dependent death rate. In this case, which differs from
the logistic formulation in that regulation is incorporated into µ(N) via a Hill-type function, γ and λ̃S

1
are related by a power law for low γ, before reaching a plateau at higher γ.

Since regulation through death is typically associated with the actual mechanism of naive T cell
survival, we expect this mechanism to be more realistic than a population-dependent proliferation
rate p(N). Thus, jumps in the thymic export rate that either cross the threshold value of γ, or occur
between two values of γ both in the power-law region, can be expected to produce changes in both the
equilibrium values of ck and also the convergence rates. If a jump in γ occurs between two values of
γ that are both in the plateau region, the equilibrium values shift, but the convergence rates stay the
same. The presence of the power law region indicates the robustness of the T cell diversity during a
time of severe thymic atrophy. That is, the slower convergence of the T cell diversity to equilibrium at
low γ values protects the pool from quick shifts to the lower diversity associated with lower γ values.
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Appendix A. Verification of recurrence relation solution

Here, we verify that Eq 16 satisfies the recurrence relation in Eq 15. For notational simplicity, we
assume p/µ ≡ p(N∗)/µ(N∗) is evaluated at the relevant steady state defined by N∗. Inserting Eq 16 into
the right-hand-side of Eq 15, we find[
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−
(i − 1)(i − s)

(s − 2)!k(k − (s − 1))!

] (
p
µ

)i−s
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+

 (i + (k − 1))
(−1)k−1k!

 k−1∏
j=1

(i − 1 − j)

 +
(i − (k + 1))

[∏k−2
j=1(i − 1 − j)

]
i

(−1)k−2(k − 2)!k
−

(i − 2)(i − 1)
[∏k−2

j=1(i − 2 − j)
]

(−1)k−2(k − 2)!k

 ( p
µ

)i−k

=

 k−1∏
j=0

(i + j)


(

p
µ

)i−1

k!
+

 k−3∏
j=0

(i + j)

 [−i2 − (k − 3)i + (k − 2)
k(k − 2)!

] (
p
µ

)i−2

+

k−1∑
s=3

(−1)−s

 s−1∏
j=2

(i − j)


k−(s+1)∏

j=0

(i + j)

 ( p
µ

)i−s [
−(k − (s − 1))(i − s)(i + (k − 1)) + (s − 1)(i − (k + 1))(i + (k − s)) − (s − 1)(i − 1)(i − s)

(s − 1)!k(k − (s − 1))!

]

+

(
p
µ

)i−k

(−1)−k

 k−1∏
j=2

(i − j)

 [−(i + (k − 1))(i − k) + (k − 1)(i − (k + 1))i − (i − 1)(i − k)(k − 1)
k!

]

=

 k−1∏
j=0

(i + j)


(

p
µ

)i−1

k!
−

 k−3∏
j=0

(i + j)

 [ (i + (k − 2))(i − 1)
k(k − 2)!

] (
p
µ

)i−2

+ (−1)k

 k−1∏
j=2

(i − j)

 [−i2 + i
k!

] (
p
µ

)i−k

+

k−1∑
s=3

 s−1∏
j=2

(i − j)


k−(s+1)∏

j=0

(i + j)

 (−1)−s

(
p
µ

)i−s [
−(k − (s − 1))i2 − (k − (s − 1))(k − (s + 1))i + (k − s)(k − s + 1)

(s − 1)!k(k − (s − 1))!

]

=

 k−1∏
j=0

(i + j)


(

p
µ

)i−1

k!
−

 k−2∏
j=0

(i + j)

 (i − 1)
k(k − 2)!

(
p
µ

)i−2

+ (−1)−(k−1)

 k−1∏
j=2

(i − j)

 i(i − 1)
k!

(
p
µ

)i−k

+

k−1∑
s=3

 s−1∏
j=2

(i − j)


k−(s+1)∏

j=0

(i + j)

 [−i2 − (k − (s + 1))i + (k − s)
(s − 1)!k(k − s)!

] (
p
µ

)i−s

(−1)s

=

 k−1∏
j=0

(i + j)


(

p
µ

)i−1

k!
−

 k−2∏
j=0

(i + j)

 (i − 1)
k(k − 2)!

(
p
µ

)i−2

+ (−1)−(k−1)

 k−1∏
j=0

(i − j)


(

p
µ

)i−k

k!

+

k−1∑
s=3

 s−1∏
j=1

(i − j)


 k−s∏

j=0

(i + j)


(

p
µ

)i−s

(−1)s−1(s − 1)!k(k − s)!

=

 k−1∏
j=0

(i + j)


(

p
µ

)i−1

k!
+

k−1∑
s=2

 s−1∏
j=1

(i − j)


 k−s∏

j=0

(i + j)


(

p
µ

)i−s

(−1)s−1(s − 1)!k(k − s)!
+

 k−1∏
j=0

(i − j)


(

p
µ

)i−k

(−1)k−1k!

= i


 k−1∏

j=1

(i + j)


(

p
µ

)i−1

k!
+

k−1∑
s=2

 s−1∏
j=1

(i − j)


 k−s∏

j=1

(i + j)


(

p
µ

)i−s

(−1)s−1(s − 1)!k(k − s)!
+

 k−1∏
j=1

(i − j)


(

p
µ

)i−k

(−1)k−1k!

 = iyi
k
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