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ABSTRACT Many biological assays are employed in virology to quantify parameters of interest. Two such classes of assays,
virus quantification assays (VQAs) and infectivity assays (IAs), aim to estimate the number of viruses present in a solution and
the ability of a viral strain to successfully infect a host cell, respectively. VQAs operate at extremely dilute concentrations, and
results can be subject to stochastic variability in virus-cell interactions. At the other extreme, high viral-particle concentrations are
used in IAs, resulting in large numbers of viruses infecting each cell, enough for measurable change in total transcription activity.
Furthermore, host cells can be infected at any concentration regime by multiple particles, resulting in a statistical multiplicity of
infection and yielding potentially significant variability in the assay signal and parameter estimates. We develop probabilistic
models for statistical multiplicity of infection at low and high viral-particle-concentration limits and apply them to the plaque
(VQA), endpoint dilution (VQA), and luciferase reporter (IA) assays. A web-based tool implementing our models and analysis
is also developed and presented. We test our proposed new methods for inferring experimental parameters from data using nu-
merical simulations and show improvement on existing procedures in all limits.
INTRODUCTION
Understanding viral dynamics is an important task in med-
icine, epidemiology, public health, and, in particular, for the
development of antiviral therapies and vaccines. Drugs that
hinder viral infection include blockers of viral entry into the
host cell (1–6) and inhibitors of genetic activity and protein
assembly inside the cytoplasm and nucleus (7–9). Mecha-
nistic models of drug action have recently emerged as useful
tools in helping design ad hoc experiments to study drug ef-
ficacy and in interpreting results (10–13). Mathematical
models typically assume prior knowledge of given physical
quantities pertaining to the virus, host cell, or the biological
assay being studied. Once these parameters are assigned,
viral and cell population dynamics and their statistical prop-
erties can be predicted. Among the different experimental
assays, one often seeks to evaluate the number of virus par-
ticles in a stock solution or the number of viruses that have
successfully infected host cells (6,14–19).

In the case of virus quantification assays (VQAs), per-
forming repeated controlled experiments on viral dynamics
or comparing results across multiple studies requires
knowing how many viruses are present in the initial stock
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solution of each experiment (4,5). Furthermore, antigens
that induce immune responses against viral infections may
be engineered from viral components such as capsid pro-
teins, viral enzymes, and genetic vectors (20) and may be
used in the development of vaccines. Being able to deter-
mine the exact number of virus-derived antigens helps
control the efficacy of vaccines and optimize yield (21–23).

Given the central role of VQAs, several assays have been
designed to estimate viral particle counts. These include pla-
que (24) and endpoint dilution (23,25) assays, which will be
discussed in more detail in the remainder of this work. For
now, we note that these assays involve repeatedly diluting
an initial solution of virus particles in the presence of a layer
of plated cells until viral concentrations are low enough that
the dynamics of an individual virus can be extrapolated. At
these low particle counts, however, the discrete nature of the
infection process cannot be neglected and can cause sub-
stantial discrepancies when replicating experiments.
Average quantities are not necessarily representative, and
a more in-depth approach in quantifying virus-cell interac-
tions is necessary.

Infectivity assays (IAs), on the other hand, aim to quan-
tify the number of viruses that have successfully infected
host cells under varying antiviral drug environments
(14–16). IAs may measure the total transcription activity
across all cells, such as the luciferase reporter assay
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FIGURE 1 A typical assay includes a plate of M host cells inoculated

with a solution of N0 viruses. Each viral particle has some probability of

infection, and the total number N of infections are distributed to the M*

infected cells. The probability of infection is roughly estimated with the

reciprocal of the a priori measured particle to PFU ratioQ. To see this figure

in color, go online.
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(15,26), or may count the number of host cells that were suc-
cessfully infected, such as the enzyme-linked immunosor-
bent assay and the immunofluorescence assay with
fluorescence-activated cell sorting (4,14,15,18). These as-
says are performed using undiluted solutions with large
numbers of viral particles, reducing stochastic variability.
The average number of viruses that infect a cell is estimated
as the ratio of the number of viruses in solution to the num-
ber of plated cells, a quantity known as the multiplicity of
infection (MOI) (19). However, each cell may be infected
by different numbers of viruses distributed around the
average given by the MOI. In these cases, one may be inter-
ested in the complete probability distribution for the number
of virus infections in each plated cell and in the related sta-
tistical variance.

In this work, we derive a probability model for the distri-
bution of viral infections per host cell, which we call the
statistical multiplicity of infection (SMOI). The SMOI can
be used as a starting point to help estimate the number of
viral particles in solution in VQAs and to determine a viral
strain’s ability to successfully infect host cells in IAs. In
Probabilistic Models of Statistical Multiplicity of Infection,
we present the mathematical foundations for the SMOI in
the two experimentally relevant parameter regimes of small
and large viral particle counts and derive a probability
model for the total number of infected cells under any dilu-
tion level. In Plaque Assay, we apply our models to the pla-
que assay and, to our knowledge, formulate a new method of
analyzing plaque count data. In Endpoint Dilution Assay,
we employ a special case of the derived probability distribu-
tion to the endpoint dilution assays and compare our results
to those arising from traditional titration techniques such as
the Reed and Muench (RM) (27) and Spearman-Karber
(SK) methods (28). In Luciferase Reporter Assay, we use
the large particle limit of our model to describe the lucif-
erase reporter assay. Lastly, a discussion of our results, a
side-by-side comparison with existing methods, and a link
to web-based data analysis tools are provided in Conclu-
sions. Mathematical appendices and further discussion of
experimental attributes such as cell-size variability, coinfec-
tion, viral interference, and optimal experimental design
using parameter-sensitivity analysis are presented in the
Supporting Materials and Methods.
METHODS

Probabilistic models of statistical multiplicity of
infection

A typical viral assay is initiated by laying a monolayer of M cells on the

bottom of a microtiter well, as illustrated in Fig. 1 (17,24,25). Although

variability exists among experiments, M is often set within the range of

104–105 (14,26) and is assumed to be a known experimental parameter.

A supernatant containing N0 virus particles in the range of 105–107

(24–26) is then added to the microtiter well. Although, theoretically, all

N0 particles are capable of infection, not all will successfully infect a

cell. Because infection of a host cell requires a complex sequence of
biochemical processes that may include receptor binding, membrane

fusion, reverse transcription, nuclear pore transport, and DNA integration

(10,19), virus particles that fail at one or several of these sequential steps

lead to abortive infections. To differentiate, the particles that do succeed

are called infectious units (IU) or plaque-forming units (PFU). We will

denote the number of IUs as N % N0. Depending on the strain of virus,

the particular experimental protocol used, and specific conditions of the

assay, the random quantity N is distributed according to N0 and the overall

effective probability that an arbitrary viral particle successfully infects a

host cell. A proxy that is typically used in place of this effective probability

is the ‘‘particle to PFU ratio’’ Q, an experimentally determined parameter

that quantifies, on average, the minimal number of particles required to

ensure at least one infected cell (29,30). Q is often treated as an a priori

measured quantity, primarily associated with the particular strain of virus

being studied. Low values of Q, such as with poliovirus (Q ¼ 30) (30),

have a high likelihood of successful infection compared to viruses

with large Q, such as human immunodeficiency virus type 1 (HIV-1)

(Q¼ 107) (31). Thus, the reciprocal Q�1 can be interpreted as the probabil-

ity for a single virus to infect a host cell. Assuming an initial stock of N0

particles, the discrete probability density function of N is

PrðN ¼ n jN0;QÞ ¼
�
N0

n

��
Q�1

�n�
1� Q�1

�N0�n
; (1)

which defines a binomial distribution with parameters N0 and Q�1.

Although we assume Q to be a priori known, in actuality, the probability

of a virus successfully infecting a host is highly dependent on the methods

used to harvest the virus stock, the experimental parameters of the assay, the

host receptor concentrations and binding rates, and the dynamics of the

physiological processes leading to infection (29,32). A thorough investiga-

tion into these processes would be necessary to mechanistically model Q

and is outside of the scope of this work. However, we will discuss in

Conclusions how, with direct measurements of certain other parameters,

especially N0, our derived methods may also be used to infer Q.

We assume each viral particle in solution acts independently of others

and that host cell infection attempts are random events. At high ratios

N0/M of particles to cells, a quantity referred to as the MOI, it becomes

increasingly probable for more than one IU to infect the same host cell.

We define M0 as the count of cells not infected by any IU, M1 as the count

of cells infected by exactly one IU, and so on, up to MN, the number

of cells infected by all N IUs. The SMOI is defined as the ensemble of

cell counts fM0; M1; /; MNg. Note that two constraints must
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hold:
PN

r¼0Mr ¼ M to account for all infected and uninfected cells andPN
r¼0rMr ¼ N for conservation of the total number of IUs. If we assume

all M cells are of identical size and volume, they carry equal probability

of being infected by a particular virus. Thus, evaluating the probability

distribution that Mr takes on the value mr reduces to the well-known occu-

pancy problem of randomly placing balls into identical urns (33), and we

derive

PrðMr ¼ mr jM;NÞ ¼
XM
j¼mr

�
j

mr

��
M

j

�

�
�

N

r;/; r; ðN � rjÞ

� ð�1Þj�mrðM � jÞN�rj

MN
;

(2)

where the r term is repeated j times in the lower argument of the

multinomial coefficient. The derivation of Eq. 2 is detailed in Appendix

A in the Supporting Materials and Methods, and an investigation into the

effects of inhomogeneous cell sizes is presented in Appendix B.

Furthermore, in Appendix A, we derive the expected value and variance

of Mr as

E½Mr� ¼ M

�
N
r

��
1

M

�r�
1� 1

M

�N�r

(3)

and

Var½Mr� ¼M

�
N

r

��
1

M

�r�
1� 1

M

�N�r

þMðM � 1ÞN!ðM � 2ÞN�2r

ðr!Þ2ðN � 2rÞ!MN

�M2ðN!Þ2ðM � 1Þ2N�2r

ðr!Þ2½ðN � rÞ!�2M2N
:

(4)

Note that the variance is equal to the expected value with two additional

correction terms that cancel each other as N and M increase, indicating the

probability distribution of Mr is Poisson-like for large N and M. A plot of a

representative probability distribution and a test of agreement between our

analytical result and numerical simulation is provided in Fig. 2.

We also derive the joint probability PrðM0 ¼ m0;/;MN ¼ mN jM;NÞ
that the SMOI fM0;M1;/;MNg takes on the set of values

fm0;m1;/;mNg as
in Eq. 2 matches the statistical frequency of virus cell counts from a simulation

error between the simulated proportions and the analytical result was calculated w

106, our square sum error is on the order of 10�6, indicating strong agreement
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PrðM0 ¼ m0;/;MN ¼ mNjM;NÞ ¼ 1

MN

 
M

m0;m1;/;mN

!

�
 

N

0;/; 0; 1;/; 1;/;N;/;N

!

¼ M!N!

MN

YN
r¼ 0

1

mr!ðr!Þmr
:

(5)

The first and second multinomial expressions enumerate the degeneracy

of how the M identical cells are distributed across the configuration

fm0;/;mNg and how the N identical IUs are chosen for those cells, respec-

tively. Although the second expression in Eq. 5 is more succinct, it must be

explicitly conditioned on the constraints
PN

r¼0mr ¼ M and
PN

r¼0rmr ¼ N.
The expressions in Eqs. 2 and 5 provide an exact discrete description of

the stochasticity of the MOI but are computationally expensive to evaluate

for large values of N andM. In a typical virology experiment, the number of

viral particles N0 and host cells M are large enough for certain asymptotic

methods to be applicable. Furthermore, for intermediate values of Q and

based on Eq. 1, the expected number of IUs N would be similarly large.

We can thus take the mathematical limit N;M/N while keeping the ratio

m ¼ N=M fixed and approximate Eq. 2 as

PrðMr ¼ mr jM;NÞz 1

mr!

�
Mmre�m

r!

�mr

exp

�
�Mmre�m

r!

�
:

(6)

Equation 6 implies that Mr is Poisson-distributed, with mean and

variance

E½Mr� ¼ Var½Mr�zMmre�m

r!
: (7)

A mathematical justification of Eq. 6 is given in Appendix A, and compar-

isons of Eq. 6 and the analytical result in Eq. 2 to simulations are shown in

Fig. 3.

Under the same largeM,N limit and using Eq. 6, we show in Appendix A

PrðM0 ¼ m0;/;MN ¼ mNjM;NÞz
YN
r¼ 0

PrðMr ¼ mrjM;NÞ;

(8)
FIGURE 2 (a) A collection of curves of the prob-

ability of findingmr cells that have been infected by

exactly r IUs, given a total number of IUs N ¼ 100

and a total number of cells M ¼ 10, using Eq. 2.

With N/M ¼ 10, we expect very few cells to be un-

infected, resulting in the probability distribution

concentrated close to 0 for low values of r. Simi-

larly, we expect few cells to be infected by a very

large number of IUs, accumulating the probability

distribution close to 0 for large r. Only at interme-

diate values of rzN=M ¼ 10 do we observe a Pois-

son-like distribution. (b) We perform a numerical

study to show empirically that our analytical result

of N ¼ 100 IUs being randomly assigned to M ¼ 10 cells. The square sum

ith increasing numbers of iterations of the simulation. For iterations around

between our model and simulation. To see this figure in color, go online.



FIGURE 3 Heat maps of the probability distribution Pr(Mr ¼ mr jM,N) of finding mr cells that have been infected by exactly r IUs given a total number of

viruses N ¼ 100 andM ¼ 10 cells. (a) The statistical frequency of virus cell counts after simulating IUs randomly distributing to theM cells is shown, aver-

aged over 1000 iterations. (b) The analytical result obtained from Eq. 2 is shown. (c) The asymptotic approximation with M ¼ 10 and m ¼ ðN=MÞ ¼ 10 is

shown, using the expression in Eq. 6. There is close agreement between the simulated and analytical results. The relatively low values ofM and N make the

asymptotic formula in Eq. 6 inappropriate for this parameter regime, explaining the discrepancy between the asymptotic result and the exact analytical result.

However, it is noteworthy how qualitatively small that deviation is, which will continue to vanish as M and N increase in value. To see this figure in color,

go online.
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which implies that asM;N/N, the random variablesM0,/,MN are inde-

pendently distributed. In the next section, we will apply results of our

probability model of SMOI to the case of a repeatedly diluted solution of

virus particles, a procedure used in many VQAs.

Serial dilution

Low viral-particle concentrations in assays are typically obtained via serial

dilution processes to increase the sensitivity to individual viral infections

(4,24,25). The initial viral stock containing N0 particles is diluted by a

fixed factor of D, and the process is repeated dmax times. At each dilution

number d, an assay can be performed to determine if the concentration of

virus particles in the diluted solution is sufficient to generate a qualitative

signal of infection, known as a ‘‘cytopathic effect’’ (CE). For example,

the diluted stock can be administered in vivo to a model organism such

as a mouse. The mouse’s death would indicate that at least one lethal

unit of the virus was present at that dilution level. Alternatively, an

in vitro assay can be carried out to measure a signal that, for example,

quantifies the exact number of plated cells that were successfully infected.

To model these assays, we first define M* as the number of host cells in-

fected by at least one IU and that are capable of producing new viruses.

In Appendix A we derive the discrete probability density function for

finding M* ¼ m infected cells at a given dilution number d and find

PrðM� ¼ mÞ ¼
�
M

m

��
1� exp

�
� N0

QMDd

��m
� exp

�
� N0

QMDd

�M�m

:

(9)

Equation 9 shows that the number of infected cells M* is binomially

distributed with expected value

E½M�� ¼ M

�
1� exp

�
� N0

QMDd

��
(10)

and variance � � �� � �

Var½M�� ¼ M 1� exp � N0

QMDd
exp � N0

QMDd
:

(11)

We can define the probability of observing a CE at dilution number d as

the probability of finding one or more infected cells:
Prð“Cytopathic effect”Þh
XM
m¼ 1

PrðM� ¼ mÞ

¼ 1� exp

�
� N0

QDd

�
:

(12)

The definition we use in Eq. 12 assumes an in vitro assay that can

exhibit a cytopathic signal after a single cell infection or more. For

in vivo assays, the probability that m infected cells are sufficient for a

CE will depend on many complex physiological factors such as immune

pressure, in-host viral evolution, and virion burst size (34). A plot of how

the initial particle count N0 and dilution factor D effect the characteristic

functional form of Eq. 12 is shown in Fig. 4. Although both Eqs. 9 and

12 assume each IU contains all viral genes required for in-host replica-

tion, an extended probability model that factors in genetic mutation

and degradation is provided in Appendix C. Furthermore, for the case

of retroviruses, infectious processes inside the host cytoplasm may be

suppressed by previous infections, known as viral interference, and is

explored in Appendix D. In Plaque Assay, we will use Eq. 9 to analyze

the plaque assay. Equation 12 will be used for ‘‘binary’’ assays that are

only concerned with the presence or absence of a CE, such as the

endpoint dilution assay, which we will explore in Endpoint Dilution

Assay.
RESULTS AND DISCUSSION

Plaque assay

The plaque assay is an example of a VQA in which
the objective is to infer the total number of viruses N0

present in a solution, assuming the PFU to particle ratio
Q has been independently measured and estimated
(24,25,35). After d serial dilutions, the viral stock is added
to a monolayer of M cells, and a layer of agar gel is added
to the well to inhibit the diffusion of virus particles in the
plate. If a virus successfully infects a host cell, the agar
will limit the range of new infections to the most
adjacent cells. Viral infection thus spreads out radially
from the initial nucleation infection and forms a visible
discoloration in the plate called a ‘‘plaque.’’ For high
particle concentrations, the number of plaques formed
Biophysical Journal 114, 2974–2985, June 19, 2018 2977



FIGURE 4 The probability of observing a

cytopathic effect (CE) given in Eq. 12 as a

function of the dilution number d and with

Q ¼ 1. (a) For D ¼ 10, as the initial particle

count N0 increases, the critical dilution moves

toward higher d. (b) Common dilution factors

include logarithmic dilution (D ¼ 10), half-loga-

rithmic dilution (D ¼ 101/2), and quarter-logarith-

mic dilution (D ¼ 101/4). Logarithmic dilution

requires a lower number of dilutions to cause

the characteristic decrease in probability, requiring

less individual assays to perform. Quarter-

logarithmic dilution, though requiring more

dilutions, has a slower transition from high to low probability across d, making the assay less sensitive to experimental error or noise. The plot

above can be used to quantify the tradeoffs between the choices of D.

Mistry et al.
may be large enough to cover the entire plate surface.
After a sufficient critical dilution number dc, however,
the number of plaques formed are low enough to be
visibly distinct and countable. For each dilution
number d, the assay can be performed for T number of
trials. The ‘‘signal’’ data arising from the plaque assay
Pd,t is defined as the number of visible plaques counted,
where t ¼ 1;/; T is the trial number. The standard method
of obtaining an estimate bN0 of the true particle count N0 is
to apply the sample mean of the data Pdc;t at the critical
dilution level dc to the formula

bN0 ¼ Ddc

 
1

T

XT
t¼ 1

Pdc;t

!
; (13)

which posits that the average number of plaques is
directly proportional to the particle count N0. Equation
13 assumes that each infected cell corresponds to one
IU, which is not necessarily true in the context of
SMOI. Furthermore, although data corresponding to
dilution numbers d < dc are unusable, data for d > dc
corresponding to countable plaques are not used at all in
Eq. 13.

To improve on Eq. 13 by using the entire set of plaque
counts Pd,t for our estimate of N0, we propose a maximal
likelihood estimation (MLE) scheme. Using the mathe-
matical models derived above, we can construct an
expression LðPd;t

��N0Þ of the probability that the observed
data Pd,t can be generated assuming a particular value
for N0, known as a likelihood function. A value for N0

that maximizes LðPd;t

��N0Þ corresponds to the most
probable estimate bN0 that could have generated the
data. As each nucleation of a plaque corresponds to a
distinct infected cell (and assuming that overlapping
lesions of necrotic cells are still discernible as distinct
plaques), we can equate Pd,t to the total number of suc-
cessfully infected cells M*. We will ignore the dynamics
of coinfection and viral interference. Using Eq. 9, we
propose the following likelihood function of the data
given N0:
2978 Biophysical Journal 114, 2974–2985, June 19, 2018
LðPd;t jN0Þ ¼
Ydmax

d¼ dc

YT
t¼ 1

�
M

Pd;t

��
1�exp

�
� N0

QMDd

��Pd;t

� exp

�
� N0

QMDd

�M�Pd;t

:

(14)

To obtain the MLE bN0, we take the derivative of the nat-
ural log of Eq. 14 with respect to N0 and set the result to zero
to obtain

0 ¼
Xdmax

d¼ dc

XT
t¼ 1

M exp
	
�

bN0

QMDd



�M þ Pd;t

QMDd

h
1� exp

	
�

bN0

QMDd


i : (15)

We can solve Eq. 15 for bN0 using numerical methods
such as Newton-Raphson (36), an iterative scheme that ap-
proaches the solution of an equation asymptotically starting

from an initial guess bN init

0 . To increase the stability of

convergence to the solution, we choose bN init

0 by equating
the sample average of plaque counts ð1=TÞPPdc;t with
the expected number of infected cells E[M*] in Eq. 10
at the critical dilution dc to derive

bN init

0 ¼ �QMDdc ln

"
1� 1

M

 
1

T

XT
t¼ 1

Pdc;t

!#
: (16)

An example of raw plaque-count data and the resulting
estimates for N0 are given in Fig. 5. To quantify the relative
improvement of the MLE of N0 over the standard method in
Eq. 13, we simulate plaque assay data assuming a fixed,
known N0 value. In our simulation, we use the models
established in Probabilistic Models of Statistical Multiplic-
ity of Infection to sample the N0 particles according to Eq.
S9 in Appendix A to account for serial dilution and sample
again the resulting particles according to Eq. 1 to obtain the
number of IUs N. The IUs are distributed randomly to theM
cells with equal probability, and the resulting number of



FIGURE 5 An example of raw plaque count data taken from Sloutskin

et al. (35). A viral solution was assayed in a plate of M ¼ 3 � 105 cells

at dilution numbers d ¼ 2, 3, 4, 5, 6, and 7 at a dilution factor of D ¼
10. The particle to PFU ratio is assumed to be Q ¼ 1. For T ¼ 3 separate

trials, the number of plaques were counted at each dilution level. The

bottom row of plates used as a control is ignored. For dilution numbers

d ¼ 2 and 3, the entire plate of cells shows cytotoxicity so that the numbers

of plaques were undiscernible and, thus, the countable data starts at dc ¼ 4.

For the old method featured in Eq. 13, the estimate for N0 is bN0 ¼ 1:19�
106, and for theMLE derived from Eq. 15, bN0 ¼ 1:26� 106. This results in

a relative difference of 5.5%. Furthermore, when applying these parameters

and the bN0 estimate to Eq. 17, we observe a 10.7% decrease in the estimate

variation using the MLE technique. To see this figure in color, go online.
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infected cells M* is recorded. Because plates of cells with
too many infections render the number of plaques uncount-
able, a ‘‘countable plaque threshold’’ renders the data unus-
able when the number of infected cells exceed the threshold.
Thus, the resulting plaque data Pd,t for a given dilution d and
trial t is assigned the number of simulated infected cells if
the latter is less than the given threshold. A scatter plot of
the data Pd,t of one such simulation is shown in Fig. 6 a,
and the corresponding likelihood function from Eq. 14 is
plotted in Fig. 6 b. Because the MLE method utilizes a
full probabilistic model of the plaque count distribution
instead of relying only on the expected value at the single
critical dilution dc, it produces an estimate consistently
closer to the original N0 that generated the data. To better
quantify this property, in Appendix E, we derive an asymp-
totic approximation of the variance of bN0 as

Var
�bN0

�
z

2664Xdmax

d¼ dc

T exp
	
� N0

QMDd



Q2MD2d

h
1� exp

	
� N0

QMDd


i
3775

�1

:

(17)

The variance is an explicit function of Q, which is
assumed to be a priori known. If there is uncertainty in
the value of Q, Eq. 17 can quantify how sensitive the dis-
tribution of bN0 is to variation in Q, as shown in Fig. 7 a.
We can see that for small assumed Q, such as in poliovirus
(30), error in this measurement can cause a large relative
change in the accuracy of bN0. This type of sensitivity
analysis on estimation variance can be done with any
experimental parameter included in the likelihood func-
tion in Eq. 14. Furthermore, for directly controllable pa-
rameters, such as the serial dilution factor D, Eq. 17 can
provide insight into optimizing the assay protocol, as
shown in Fig. 7 b. Although it is evident that small D
would increase the accuracy of the bN0 estimate, doing
so requires more serial dilutions, which increases the
time and expense of the assay. Thus, our sensitivity anal-
ysis provides a quantitative method for making experi-
mental design choices between minimizing uncertainty
versus the cost of an assay protocol. Lastly, if we compute
the variance of the standard method in Eq. 13 due to
the known variance in the data Pd,t and compare with
Eq. 17, we find, when using realistic parameter values
from Fig. 5, the standard method results in a 10.7% higher
variance than that of our method. Although the signifi-
cance of the relative increase in precision of estimating
N0 found using our method is highly dependent on the
context of the experimental study for which the assay
FIGURE 6 Results of plaque assay simulation

for parameters N0 ¼ 106, M ¼ 105, Q ¼ 1,

D ¼ 10, dmax ¼ 10, and T ¼ 10. (a) The scatter

plot of simulated data Pd,t (circles) and the ex-

pected value of plaque counts as given by Eq. 10

show close agreement. (b) The likelihood function

LðPd;t

��N0Þwith respect to N0 using the same simu-

lated data. The MLE obtained by iteratively solving

Eq. 15 is bN0 ¼ 9:97� 105 and is relatively closer

to the true value of N0 than the estimate calculated

from the standard method in Eq. 13, bN0 ¼ 1:02�
106. To see this figure in color, go online.
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FIGURE 7 Approximations of the standard devi-

ation sbN0

¼ Var½bN0�1=2 of MLEs for the plaque

assay using Eq. 17 and parameters bN0 ¼ 105,

106, and 107, M ¼ 3 � 105, dc ¼ 4, dmax ¼ 7, and

T ¼ 3, corresponding to the assay displayed in

Fig. 5. (a) For D ¼ 10, the standard deviation in-

creases proportional to the square root of Q. (b)

For Q ¼ 1, we can see a low dilution factor

D will increase the accuracy of the estimate bN0.

To see this figure in color, go online.
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was performed, similar sensitivity analysis can be used to
determine such tolerances.
Endpoint dilution assay

Another widely used assay for quantifying the initial viral
particle count N0 is the endpoint dilution or endpoint titra-
tion assay (23,25,37). It is often used in place of the plaque
assay, as it can be more rapidly performed and is useful for
viral strains that are unable to form plaques. Here, serial di-
lutions at a factor of D are employed, and at every dilution
number d, an assay is performed T times to test for a
successful CE. The number Ed of observed CEs among
the T trials at a given dilution number d is recorded as the
signal. For low dilution, we expect many cells to be infected,
and the probability of observing a CE, as shown in Eq. 12, is
close to 1. If every trial of the assay is likely to display a
CE, then Ed is expected to be close to T. However, at
high dilution, the probability in Eq. 12 rapidly decreases
to 0, as shown in Fig. 4, and Ed will be similarly small.
For a large initial stock of viral particles N0, a larger dilution
number d is needed to ensure the dramatic change in
probability in Eq. 12. Thus, the critical dilution at which
Ed most rapidly decreases from T can be used to estimate
the particle count N0. This occurs at the point of inflection
exponential decay of the expectation. Obtaining the characteristic decay rate o

done numerically using the data Ed. However, according to our model, many of t

integration to overestimate the area and, thus, decay too slowly. This gradual decr

this figure in color, go online.
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when d ¼ logD(N0Q
�1) and corresponds to when the ex-

pected number of successful trials E[Ed] ¼ T (1 � e�1),
as shown in Fig. 8.

One commonly used way to estimate N0 is the RM
method, which utilizes the two dilution numbers that cap-
ture the greatest change in the data Ed (27). We first define
a critical dilution number d50% to be the largest dilution such
that at least 50% of the trials exhibit a CE. The estimate bN0

for the particle count N0 is given by

log10
�bN0

� ¼ d50% þ Ed50% � 0:5T

Ed50% � Ed50%þ1

: (18)
The RM method effectively attempts to approximate
the steepest descent of the CE probability given in
Eq. 12 with a line connecting the assay data at dilutions
d50% and d50%þ1, as displayed in Fig. 8 a. Unfortunately,
this line always rests above the actual expectation curve
of Ed, so any estimate bN0 obtained from this method
will overestimate the true N0. Another commonly used
estimation scheme is the SK method, which uses the crit-
ical dilution number d100%, the largest dilution such that
100% of trials exhibit a CE (28,37). The SK estimatebN0 is given by
FIGURE 8 An illustration of the consistent over-

estimation of the Reed and Muench (RM) and

Spearman-Karber (SK) methods using the expected

curve E[Ed] of CEs given T trials as a function of

the dilution number d derived from Eq. 12. (a)

The RM method approximates the steepest decent

of the expectation curve with a line connecting

the two data points Ed50%%0:5T <Ed50%þ1. Because

of the relative convexity of the expected curve, the

linear approximation consistently rests above the

curve and results in an overestimate of log10ðbN0Þ.
(b) From the last dilution d100% such that all trials

exhibit a CE, the SK method assumes an

f the exponential involves calculating the area under the curve, which is

he expected values of Ed exist above the exponential, causing the numerical

ease in the exponential curve results in a larger estimate of log10ðbN0Þ. To see
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log10
�bN0

� ¼ d100% � 1

2
log10ðDÞ þ log10ðDÞ

Xdmax

d¼ d100%

Ed

T
:

(19)

In this method, the downward slope for the expectation of
Ed is assumed to follow a decaying exponential starting at
dilution d100%, as shown in Fig. 8 b. The intention is to
find the dilution at which Te�1 CEs are expected by calcu-
lating the area under the exponential curve, given by the
summation term in Eq. 19. However, the actual values of
Ed will follow the expected curve from our model, leading
to an overestimate of the area and, by extension, a larger
value for bN0. Both standard methods were derived from
the heuristic observation that Ed exhibits sigmoidal behavior
as a function of the dilution number d, but an underlying
probabilistic model was missing, resulting in consistent
overestimation of the true N0. Furthermore, neither method
uses the ‘‘particle to PFU ratio’’ Q, accounts for the stochas-
ticity of serial diluting viral samples, considers the dy-
namics of SMOI, or employs the entire set of data Ed.

We present an alternative way to infer N0, using Eq. 12 to
establish anMLE scheme.We restrict ourselves to in vitro as-
says inwhich a single infected cell is sufficient to display aCE.
Then each cytopathic count is binomially distributed with pa-
rameters T and the probability given in Eq. 12. Thus, for a set
of data fE1;E2;/;Edmax

g, we propose the likelihood function

LðEd jN0Þ ¼
Ydmax

d¼ 1

�
T

Ed

��
1� exp

�
� N0

QDd

��Ed
� exp

�
� N0

QDd

�T�Ed

:

(20)

Equation 20 is an expression of the probability of the data
fE1;/;Edmax

g given the current assumed value of N0.
To obtain the best estimate bN0 ofN0, we maximize the likeli-
hood function by taking the log and derivative of LðEd jN0Þ
with respect to N0 and set it equal to zero to obtain

0 ¼
Xdmax

d¼ 1

Ed � T þ T exp
	
�
bN0

QDd



QDd

�
1� exp

�
�
bN0

QDd

��: (21)

As with Eq. 15, solving Eq. 21 for bN0 requires a numer-
ical method such as Newton-Raphson. As an appropriate
initial estimate for bN0, the formula

bN init

0 ¼ �0:5QDdc

�
ln

�
1� Edc

T

�
þ D ln

�
1� Edcþ1

T

��
(22)

can be used, where dc is the largest dilution number such that
at least half of the trials exhibit a CE. Equation 22 is the
average of the N0 estimates at dilutions dc and dcþ1 when
setting the CE probability in Eq. 12 to 1/2. For a comparison
of our MLE method with the RM and SK methods, we simu-
late data similar to that described in Plaque Assay. Here, we
take the number of trials such that the simulated count of in-
fected cells is greater than zero as the values of Ed for a given
dilution number d. We plot the likelihood from Eq. 20 and
compare the MLE of N0 with those derived by the RM and
SK methods in Fig. 9 a. Although both RM and SK estimate
very similar values of bN0, they both consistently overesti-
mate the a priori set N0 relative to the MLE method. This
demonstrates the advantage of a probabilistic model for
parameter inference over heuristically determined formulas.

The expressions we derived in Eqs. 14 and 20, applied to
simulated data, can also help quantify tradeoffs in experi-
mental design. As discussed above, there exist viruses that
cannot form plaques, restricting the options of VQAs to
endpoint dilution. However, for many cases, the choice be-
tween using one assay over the other can be one of conve-
nience. More specifically, endpoint dilution assays can often
be performed more rapidly than plaque assays. Using the
same simulated data for both assays, we plot Eqs. 14 and 20
together in Fig. 9 b. The plots clearly show the superiority
of the plaque assay for estimating the viral stock number N0

in respect to both how close the MLE infers the true N0 value
and the amount of variance in that estimate. Although the
amount of variability and error that is tolerable for an exper-
iment may be context dependent, the plots in Fig. 9 b provide
a quantitative way to differentiate between the two methods.
Luciferase reporter assay

The luciferase reporter assay is commonly used to measure
the infectivity of a viral strain. Here, the ratio m ¼ N/M of
total infections over the number of plated cells is estimated
by measuring the transcription activity of viral proteins
(14–16). The reporter employs an oxidative enzyme lucif-
erase that facilitates a reaction when introduced to the sub-
strate luciferin, resulting in bioluminescence. The protocol
begins with attaching the luciferase gene to the viral
genome. The altered viral strain is cloned to a total particle
count N0, which, in this case, is assumed to be fixed and
known. The solution of viruses is added to a plated mono-
layer of M host cells. An incubation time is allowed for
transcription of viral proteins and, incidentally, the lucif-
erase enzyme. Subsequently, all cells are lysed to release
all cytoplasmic contents into the solution, upon which lucif-
erin is added. The oxidation of luciferin is facilitated by the
luciferase enzyme, and the resulting bioluminescence yields
a measurable signal (38). The light intensity is thus a
measure of total transcription activity of the viral genome
in all infected cells and can be used as a proxy for the total
number of viruses N that successfully infected host cells.

Although there is stochasticity in transcription-factor bind-
ing and, in the case of retroviruses, the number of integration
Biophysical Journal 114, 2974–2985, June 19, 2018 2981



FIGURE 9 (a) The likelihood function

LðEd jN0Þ in Eq. 20 for the endpoint dilution assay
and the corresponding maximal likelihood, RM,

and SK estimates given simulated data generated

with N0 ¼ 106, Q ¼ 1, D ¼ 10, and dmax ¼ 10.

The estimates for maximal likelihood ðbN0 ¼
1:33� 106Þ, RM ðbN0 ¼ 2:51� 106Þ, and SK

ðbN0 ¼ 2:51� 106Þ all overestimate N0, but the

smaller relative error of the MLE is an improve-

ment on the errors of the existing two methods.

(b) The likelihood functions LðPd;t

��N0Þ and

LðEd jN0Þ for the plaque and endpoint dilution as-

says, respectively, are shown, given simulated data.

The data were generated with the parameters N0 ¼ 106,M¼ 105, Q ¼ 1, D ¼ 101/4, dmax ¼ 30, and a ‘‘countable plaque threshold’’ of 150. The plaque assay

likelihood is concentrated close to the true N0 value, whereas the endpoint dilution likelihood is far more spread out and overestimates N0. This direct quan-

titative comparison can inform an experimentalist when choosing between the two methods. To see this figure in color, go online.
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sites on the host DNA,wewill assume that each successful vi-
rus infection contributes one viral genome to be transcribed
and each transcription occurs at a constant rate proportional
to the total number of integrated viral genomes. Note that
the limited number of transcription factors, ribosomes, and
other cell machinery necessary to produce viral proteins and
the luciferase reporter causes the production rate to saturate
as the number of infecting viruses r per cell increases. Thus,
transcription activity saturates with increasing number of in-
fections r. We can model this effect by defining a monotoni-
cally increasing function f(r) representing the number of
transcribed viral proteins when a cell is infected by r viruses
over the course of the assay. Thus, for a given SMOI fM0;/;
MNg, we will model the intensity signal L of the total lucif-
erase reporter luminescence with

L ¼
XN
r¼ 0

L0f ðrÞMr; (23)

where L0 is the fluorescence intensity arising from a single
luciferase reporter present in the solution. Although f(r) may
take on many functional forms, a commonly used model for
transcription-factor kinetics is the Hill function (39) given by

f ðrÞ ¼ fmaxr
h

K þ rh
; (24)
1.49, represented by the shaded region. (b) The normally distributed approxim

1, and L0 ¼ 1 is shown. The distributions are plotted for m ¼ 1.4, 1.5, and 1.

1 � 105 and the variances Var[L] ¼ 1.7 � 105, 1.24 � 105, and 1.3 � 105 resp
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where fmax is the maximal transcription activity of lucif-
erase, h is the Hill coefficient that effectively describes
cooperative binding of multiple transcription factors at
a promoter region, and K is an effective dissociation
constant relating the binding and unbinding rates of tran-
scription factor. The functional form of Eq. 24 accounts
for the limited transcription machinery available for the
multiple copies of viral genome present in the cell. In
Fig. 10 a, we calculate the discrete probability distribution
PrðL ¼ ‘Þ by considering the cumulative weight of every
allowable configuration of N viruses infecting M cells
through Eq. 23.

Because luciferase reporter assays typically involve large
values of initial virus count N0 and cell countM, we can use
the asymptotic approximations in Eqs. 6 and 7 along with
the central limit theorem (40) to assume L is normally
distributed with expected value

E½L� ¼ L0fmaxMe�m
XN
r¼ 0

rhmr

ðK þ rhÞr! (25)

and variance

Var½L� ¼ L2
0f

2
maxMe�m

XN
r¼ 0

r2hmr

ðK þ rhÞ2r!: (26)
FIGURE 10 Probability distributions of the lucif-

erase assay fluorescence intensity L from Eq. 23. (a)

A toy example of a discrete probability distribution

of allowable fluorescence intensities for N ¼ 30 vi-

ruses infecting M ¼ 20 cells is shown. Due to the

MN finite number of allowable configurations of

the SMOI, there are a corresponding finite number

of intensities with specific probabilities determined

by Eq. 5 and represented by a unique circle. The pa-

rameters used for the reporter kinetics are fmax ¼ 2,

h ¼ 1, K¼ 1, and L0 ¼ 1. The mean intensity of the

fluorescence signal is E[L] ¼ 19.5, represented by

the vertical dotted line, and variance is Var[L] ¼
ation of fluorescence intensity using M ¼ 1 � 105, fmax ¼ 2, h ¼ 1, K ¼
6 by computing the expected values E[L] ¼ 9.23 � 104, 9.64 � 104, and

ectively. To see this figure in color, go online.
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A visualization of the normal approximation of the prob-
ability distribution of L is shown in Fig. 10 b. Furthermore,
with Eqs. 25 and 26, we can derive the likelihood function
LðLdatat

��mÞ of the data Ldatat , given m:

L�Ldata
t

��m� ¼
YT
t¼ 0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pVar½L�p exp

"
�
�
Ldata
t � E½L��2
2Var½L�

#
;

(27)

where 1 % t % T is the trial number. Because of the
complicated functional form of the mean and variance
of L, creating a maximal likelihood scheme to estimate m

from experimental data is intractable, so we use Eq. 25
by replacing the expected value with the experimental
average of measurements Ldatat . If we assume no coopera-
tive transcription binding (h ¼ 1), we solve for the estimatebm by applying the Newton-Raphson iterative method to the
equation

0 ¼ 1

T

XT
t¼ 0

Ldata
t � L0fmaxMe�bmXN0

r¼ 0

rbmr

ðK þ rÞr!: (28)

The typical method, under the assumption that lumines-
cent intensity is proportional to the number of IUs N,

is to use the sample mean via the formula bminit ¼
ð1=L0MTÞPT

t¼0L
data
t . This standard approach fails to ac-

count for the effects of SMOI, but can be used to generate
an initial guess for solving Eq. 28 iteratively. To compare
the two estimates, we simulate data similar the descriptions
in the previous two sections. Here, we do not dilute the
initial particle count and, after distributing the N IUs to
the M cells with equal probability, we compile the SMOI

configuration and calculate Ldatat using Eq. 23. The results
are shown in Fig. 11. The iterative method produces an
estimate bm far closer to the true value of m than the former
method. A similar approach can be used to compare
FIGURE 11 The likelihood function LðLdatat

��mÞ using Eq. 27 and simu-

lated data. We set m ¼ 1.5 and assign other parameters with M ¼ 1 � 105,

fmax ¼ 2, h ¼ 1, K ¼ 1, and L0 ¼ 1. The estimate derived from solving

Eq. 28 is bm ¼ 1:502, whereas the standard method based on the sample

mean yields bm ¼ 0:97, far lower than what is displayed in the plot.
methods for alternative functional forms of the viral protein
transcription dynamics described in Eq. 24.
CONCLUSIONS

In this work, we derived probability models that quantify the
viral infectivity of host cells in an in vitro environment. By
factoring in the stochastic nature of virus-host engagement,
defective and/or abortive events, and the possibility of mul-
tiple infections of a single host, we defined the SMOI and
determined related probabilistic models. We analyzed two
limiting regimes: small numbers of infecting viruses N
and large N. For the low N regime, Eqs. 2 and 5 model
how the limited number of IUs are distributed among the
M host cells. Alternatively, for large N, we showed that
the cell counts of the SMOI become statistically indepen-
dent, as displayed in Eq. 8, and that they display a Poisson
distribution (Eq. 6). Lastly, we explored the effects of serial
dilution on the total number of infected cells and the prob-
ability of observing an infectious signal in Eq. 9.

Using our probability models along with reasonable as-
sumptions of applied combinatorics and nonlinear infer-
ence, we analytically derived expressions for several virus
assays to improve on existing methods of experimental
data analysis. For virus quantification assays, serial dilution
results in low numbers of viral particles. Using the appro-
priate probability model, we created to our knowledge
newmethods of estimating the particle count N0 in the initial
viral stock for the plaque assay and the endpoint dilution
assay. For measuring infectivity of a viral strain, the objec-
tive is to determine the effective multiplicity of infection
m ¼ N/M as the ratio of successfully infecting viruses N
and the total number of cells M included in the assay. As
these assays operate under no dilution, we employed the
large N limit probability model to analytically derive ex-
pressions for the luciferase reporter assay to estimate m. A
summary of each estimation method along with the most
commonly used counterpart is displayed in Table 1.

VQAs are primarily concerned with inferring N0 and
assume a priori knowledge of M and the particle to PFU
ratio Q. In actuality, there can be variability in the number
of cells present in the microtiter well, and, as discussed in
Probabilistic Models of Statistical Multiplicity of Infection,
the true value of Q is dependent on the particular protocol
and particular conditions under which an assay was per-
formed. If an alternative assay (RNA tagging, spectroscopy,
super-resolution imaging, etc.) not using cell infection can
accurately measureN0, then, in theory, a subsequent infection
assay can be used to infer amore reliablemeasure ofQ. In fact,
in our analysis of the plaque assay presented in Appendix E of
the Supporting Materials and Methods, we show that one can
determine a significantly higher amount of information about
Q with the same assay protocol if N0 is a priori known rather
than the reverse case. Thus, one may argue that assays that
employ serial dilution, such as plaque and endpoint dilution
Biophysical Journal 114, 2974–2985, June 19, 2018 2983



TABLE 1 A Summary of the Analytically Derived Expressions Used to Analyze Experimental Results

Comparison of Virological Assay Analyses

Assay (parameter) Standard Method New Method

Plaque (N0) bN0 ¼ Ddc

 
1

T

XT
t¼1

Pdc ;t

!
0 ¼

Xdmax

d¼dc

XT
t¼1

M exp

�
�

bN0

QMDd

�
�M þ Pd;t

QMDd

�
1� exp

�
�

bN0

QMDd

��
Initial guess: bN init

0 ¼ � QMDdln

 
1� 1

MT

XT
t¼1

Pdc ;t

!

Endpoint dilution (N0) RM: log10ðbN0Þ ¼ d50% þ Ed50% � 0:5T

Ed50% � Ed50%þ1

0 ¼
Xdmax

d¼1

Ed � T þ Texp

�
�
bN0

QDd

�
QDd

�
1� exp

�
�
bN0

QDd

��

SK: log10ðbN0Þ ¼ d100% �
"
1

2
�

Xdmax

d¼d100%

Ed

T

#
log10 D Initial guess: bN init

0 ¼ �QDdc

2
ln

"�
1� Edc

T

��
1� Edcþ1

T

�D
#

Luciferase reporter�
m ¼ N

M

� bm ¼ 1

L0MT

XT
t¼0

Ldatat 0 ¼ 1

T

XT
t¼0

Ldatat � L0fmaxMe�bmXN0

r¼0

rbmr

ðK þ rÞr!

Initial guess: bminit ¼ 1

L0MT

XT
t¼0

Ldatat

For virus quantification assays, such as the plaque and endpoint dilution assays, one typically wishes to estimate the number of initial viral particles N0. For

luciferase reporter infectivity assay, the ratiom¼N/M is desired.Our improved parameter estimationmethods are listed next to standardmethods currently used.

Mistry et al.
assays, may be better utilized to inferQ. Because the underly-
ing likelihood of the data in all assays would be the same, the
same derivation techniques would follow with respect toQ to
formulate its MLE. This analysis shows the robust utility of a
full probabilistic model and data likelihood function.

Although the derived assay models provide explicit equa-
tions for inference, many of the expressions are analytically
unsolvable and require numerical solutions. To improve the
accessibility of some of our results, we have created a web-
based tool (available at https://bamistry.github.io/SMOI/)
that can accept data from plaque, endpoint dilution, or lucif-
erase reporter assays and automatically estimate the param-
eter of interest. Ultimately, these tools can be used for
analysis of future virological studies but may also be useful
when revisiting the results of studies that stress quantifying
viral infectivity (15,41). For studies that use serial dilution
assays, our approach stresses the advantages of using infor-
mation in the data associated with all dilution numbers
rather than just that of the critical dilution.

Our probabilistic models of viral infection can be further
generalized to include, for example, the effects of cell size
inhomogeneity, coinfection, and viral interference. In the
Supporting Materials and Methods, we provide a framework
that would allow one to explore how these confounding fac-
tors can further alter the signal of a virus assay. Future
refinement of these extensions can help to ultimately derive
a mechanistic model for the probability of a single virus suc-
cessfully infecting a host cell, which we defined asQ�1. Un-
derstanding this probability of infection can help aid further
2984 Biophysical Journal 114, 2974–2985, June 19, 2018
experimental design and allow better quantification and res-
olution of the infection dynamics of particular viral strains.
SUPPORTING MATERIAL

Supporting Materials and Methods are available at http://www.biophysj.

org/biophysj/supplemental/S0006-3495(18)30575-7.
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Supplementary Information

A Mathematical Appendices

SMOI Probability

To derive Eq. 2, we index all cells with i ∈ {1, · · · ,M} and define Ar
i as the event that cell i is infected by exactly r IUs. Then,

given N IUs across all M cells, the probability of Ar
i is given by

Pr(Ar
i |M,N) =

(

N

r

)(

1

M

)r (

1−
1

M

)N−r

. (S1)

Since cell sizes are assumed to be homogeneous, the probability in Eq. S1 is the same for all cells, but the events {Ar
1, · · · , A

r
M}

are not independent as the number of IUs N shared among the M cells is finite. Thus, we use the inclusion-exclusion principle

[1] to derive

Pr(Mr = mr|M,N) =

M
∑

j=mr

(−1)j−mr

(

j

mr
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∑
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j
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j
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j
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)(

M

j

)(
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(−1)j−mr (M − j)
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MN
. (S2)

Note that the inner summation in the first identity above is over every possible collection of cells of size j, but as each cell is

identical, the sum can be reduced to a single joint probability with the binomial degeneracy
(

M
j

)

.

Expected Value and Variance

For the generalized c-th moment E [M c
r ] of the number of cells Mr infected by exactly r viruses, we start with Eq. 2 to obtain

E [M c
r ] =

M
∑

mr=0

M
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j=mr
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j

mr
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To aid our derivation, we define the function u(j, c) as

u(j, c) =

j
∑

m=0

mc(−1)j−m

(

j

m

)

= j

j−1
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)
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This is a recursive relationship from which we can evaluate any u(j, c) using all u(j − 1, i) such that 0 ≤ i < c. We evaluate

the first three cases u(j, 0) = δ0,j , u(j, 1) = δ1,j , and u(j, 2) = δ1,j + 2δ2,j , where δ0,j is the Kronecker delta operator that

returns the value 1 when the two subscript arguments are equal and 0 otherwise. We use the result for c = 1 and Eq. S3 to

calculate the expected value of Mr as

E [Mr] =

M
∑

j=0

δ1,j

(

M

j

)

(

N !
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j
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. (S5)

We obtain the second moment E
[

M2
r

]

using the same method in order to obtain the variance of Mr as

Var [Mr] = E
[

M2
r

]

− E [Mr]
2

= M

(

N

r

)(

1

M

)r (

1−
1

M
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(r!)2(N − 2r)!MN
−

M2(N !)2(M − 1)2N−2r
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2
M2N

. (S6)

Asymptotic Approximation

For the derivation of Eq. 6, we take the mathematical limit N,M → ∞ while keeping the ratio µ = N
M

fixed and approximate

Eq. 2 as follows:

Pr(Mr = mr|M,N) =
M
∑

j=mr
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. (S7)

Note that, although the first approximation requires j in the summation to be sufficiently smaller than M , any contribution

from the summation for j close to M vanishes due to both the (j − mr)! term in the denominator and the
(

1− j
M

)N−rj

term approaching 0. Under the same large M,N limit, we can derive an asymptotic approximation of the joint probability

distribution by taking the natural log of both sides of Eq. 5:
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Since the argument in the right-hand-side of the last approximation is the same as Eq. 6, we arrive at the result in Eq. 8.

Number of Infected Cells

To derive Eq. 9, we first define Nd as the number of virus particles present in the viral solution after dilution by a factor of

Dd. Obtaining Nd is effectively analogous to taking a volume of the initial viral stock scaled by D−d and counting the number

of particles captured in the volume. Thus, we expect Nd to be Poisson-distributed with mean N0D
−d and discrete probability

density function given by

Pr (Nd = nd|N0) =
1

nd!

(

N0

Dd

)nd

exp

(

−
N0

Dd

)

. (S9)

Once Nd is chosen from the above distribution, for a given “particle to PFU ratio” Q, the number of IUs N follows a bi-

nomial distribution with a probability function similar to Eq. 1, but with N0 replaced with Nd. Note that, given an SMOI

{M0, · · · ,MN}, it is immediate that M∗ = M −M0. Using this modified density of N and Eqs. 2 and S9, we can derive the

discrete probability density function of M∗ at a given dilution number d as

Pr (M∗ = m) =

N0
∑

nd=0

nd
∑

n=0

Pr(N = n|Nd = nd)Pr(M0 = M −m|N = n)Pr(Nd = nd)
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exp
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. (S10)

Note that the approximation that closes the exponential term in the final result employs the assumption that N0 is sufficiently

large.

B Inhomogeneous Cell Size

We derived the probability distribution in Eq. 2 assuming the plated host cells are of identical size and volume. This may not

necessarily be the case as each cell exists at different stages of the mitotic cycle, will attach to the plate bottom at random

locations, and contains deformities in shape and size. Assuming cells cover the entire surface of the well bottom, Pineda et al.

[2] showed that the cell size proportion pi for cell i is gamma distributed with probability density

f(pi) =
Mνννpν−1

i exp(−νMpi)

Γ(ν)
, (S11)

where ν is a parameter that can be estimated, for example, by fitting imaging data of cells. Under a specific realization of cell

size distributions {p1, · · · , pM}, we define Ar
i as the event that cell i is infected by exactly r viruses with probability

Pr(Ar
i ) =

(

N

r

)

pri (1− pi)
N−r. (S12)
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Using the inclusion-exclusion principle as above, we derive the conditional probability distribution of the number of cells Mr

that were infected by exactly r viruses as

Pr(Mr = mr|p1, · · · , pM ) =
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. (S13)

In order to obtain the full probability, we first take note that each cell size proportion pi is dependent on each other as they are

constrained by
∑M

i pi = 1. We avoid this dependency by noticing the expression in Eq. S11 approaches zero very rapidly as

pi moves away from the expected value 1/M . If we define a sufficiently large proportion p̂ such that the interval [0, p̂] contains

the majority of the area under the probability density in Eq. S11, we can make the approximation

Pr(Mr = mr) =

∫ 1

0

· · ·

∫ 1

0

Pr(Mr = mr|p1, · · · , pM )f(p1, · · · , pM )dp1 · · · dpM

≈

[

Mνννe−ν

Γ(ν)

]M ∫ p̂

0

· · ·

∫ p̂

0

Pr(Mr = mr|p1, · · · , pM )

(

M
∏

w=1

pw

)ν−1

dp1 · · · dpM . (S14)

It is clear that introducing cell size inhomogeneity dramatically increases the complexity of our probabilistic SMOI model.

For relatively small numbers of cells M , image processing can be used to determine an estimation of a particular realization of

cell size distribution {p1, · · · , pM} for a given experiment and factored into Eq. S13. Note that once the probability distribution

of cell counts {M0, · · · ,MN} is determined for a given realization of cell sizes {p1, · · · , pM}, all subsequent analysis and

derivations follow the same way as in the homogeneous cell size assumption.

C Coinfection

As a vector for infection, the primary function of a single virus particle is to deliver its genetic contents into the host cell

cytoplasm or nucleus [3–5]. The typical model for viral infection assumes each virus contains all the genetic material required to

replicate within a host cell [6, 7]. Certain plant and fungi viruses, however, require two or more particles to successfully replicate

within a host cell since each particle contains only part of the complete genome [8]. Similarly, RNA viruses that target animal

cells undergo error prone replication, resulting in partially complete genome sequences. These damaged viral genes may encode

proteins needed for the host cell to successfully replicate new viruses. In this case, regardless of a successful viral infection, new

viruses capable of infecting further host cells will not be produced. Additional viral infections that contain the missing sequence

fragments, though, can “rescue” the cell’s ability to replicate the virus, a phenomenon known as coinfection. In the context of

our definition of SMOI, we now make the distinction between Mr, the number of cells that have been infected by viral genomes

from exactly r distinct virus particles, and M∗
r , the number of cells that are fully capable of replicating new functioning viruses

upon undergoing r distinct viral infections. It is clear that each M∗
r ≤ Mr and their sum M∗ ≡

∑N

r=1 M
∗
r ≤ M −M0, so the

results in Eqs. 9 and 12 are not sufficient to quantify the total number of virus-producing cells.

In order to model coinfection, we need to consider the genome of the virus species of interest. Specifically, we assume

the genome is made up of G distinct genes. For example, many variants of HIV-1 carry a gene sequence containing G = 9
genes [3]. In our model, we assume each gene encodes a protein that is essential for replication. Though individual nucleotide

changes due to random mutations may result in an amino acid chain that is no longer functioning, some genes may be robust

to these changes due to codon degeneracy or the gene’s shear length [9]. Thus, we assume each gene g = 1, · · · , G contained

within a viral particle has a probability qg of losing function. If a cell is infected by exactly r viral genomes, we define Br
g as

the event that gene g is still no longer functional, so that Pr(Br
g) = qrg . To quantify the probability that k genes are no longer
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functional in a host cell that has been infected by exactly r viral genomes, we use the inclusion-exclusion principle [1] to derive

Pr (“k failed genes given r infections”) =

G
∑

j=k

(−1)j−k

(

j

k

)

∑

I⊂{1,··· ,G}
|I|=j

Pr





⋂

g∈I

Br
g





=

G
∑

j=k

(−1)j−k

(

j

k

) 1
∑

σ1=0

· · ·

1
∑

σG=0

1

∑
G
g=1

σg=j

G
∏

g=1

qσgr
g , (S15)

where 1∑
G
g=1

σg=j is an indicator function that returns zero when the number of nonzero σg is not exactly j. The infected cell

is only capable of producing viable viruses if none of the genes have failed and is equivalent to setting k = 0 in Eq. S15. Then

we define the probability Hr that a cell infected by exactly r viral genomes will successfully produce new viruses as

Hr =

G
∑

j=0

(−1)j
1
∑

σ1=0

· · ·

1
∑

σG=0

1

∑
G
g=1

σg=j

G
∏

g=1

qσgr
g . (S16)

Note that the probability that a cell not infected by any viral genome will produce viruses is H0 = 0. Then, given an SMOI

{M0, · · · ,MN}, the number of cells M∗
r capable of virus replication after being infected by exactly r viral genomes is bino-

mially distributed with parameters Mr and Hr. The probability of M∗ cells producing viruses is given by

Pr (M∗ = m|M0, · · · ,MN ,M,N) =
∑

M∗

1
,··· ,M∗

N

(

m

M∗
1 , · · · ,M

∗
N

) N
∏

r=1

(

Mr

M∗
r

)

H
M∗

r
r (1−Hr)

Mr−M∗

r . (S17)

If we let m = 0 and sum over the density in Eq. 5 for all possible SMOI, given an IU count N , we can derive the probability of

observing a cytopathic effect as

Pr(“Cytopathic effect”|N) = 1−
∑

M0,··· ,MN

1

MN

(

M

M0, · · · ,MN

)(

N

0, · · · , 0, 1, · · · , 1, · · · , N, · · · , N

) N
∏

r=1

(1−Hr)
Mr

= 1−
M !N !

MN

N
∏

r=0

M
∑

Mr=0

(1−Hr)
Mr

Mr!(r!)Mr

≈ 1−
M !N !

MN
exp

[

N
∑

r=0

1−Hr

r!

]

, (S18)

where the approximation is due to the assumption that the number of cells M is large. For intermediate values of N , computing

the summation in the exponential is numerically viable, assuming the probabilities of gene failure q1, · · · , qG are known.

Though this expression may be used in place of Eq. 12 to analyze some virus quantification assays, for large values of N ,

numerically evaluating Hr becomes computationally expensive.

D Viral Interference

To infect healthy cells, all species of viruses must undergo a series of events including cell attachment, entry via membrane

fusion or endocytosis, and intracellular transport. Retroviruses, such as HIV-1, must also undergo reverse transcription, nuclear

pore transport, and DNA integration in order to use the host cell’s transcription machinery to produce viral protein. In the

models developed in this paper, the probabilities of success for each of these processes was assumed to be subsumed into the a

priori estimated particle to PFU ratio Q. However, for certain retroviruses, it has been observed that after an initial infection,

subsequent infections from the same virus species become less likely [10, 11]. This phenomenon, known as viral interference,

is often due to the host producing new viral proteins after a refractory period that can inhibit one or more of the intracellular

processes leading to integration of subsequent viral infections. To include this dynamic into our models, we first decouple the

probabilities of integration from Q and define N as the number of viruses that have successfully completed viral entry into the

host cytoplasm, but before all intracellular processes that lead to integration. Note that all of our results concerning the statistical

multiplicity of infection (SMOI) still hold and we make the distinction between the number Mr of cells infected by r of the
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N infectious units and the number M∗
s of cells with exactly s integrations. Furthermore, some species of virus can contain

multiple copies of their genome, such as HIV-1 which contains two copies per particle [3]. Let a be the number of genomes

contained in a single virus particle to be integrated into the host cell. Then the maximum number of possible integrations for a

cell from Mr is ra. Let ps be the probability of a viral genome integrating into the host DNA given that s− 1 integrations have

already occurred. Define Hr,s as the probability a cell contains s successful integrations given that it was infected by exactly r
distinct virus particles and is given by

Hr,s =

{

p1p2 · · · ps(1− ps+1)
ra−s 0 ≤ s ≤ ra

0 s > ra.
(S19)

If we define M∗
r,s as the number of cells with s integrations after infection by exactly r virus particles, then given an SMOI

{M0, · · · ,MN} and N , we can derive the probability function

Pr(M∗
r,s = m|M0, · · · ,MN , N) =

(

Mr

m

)

Hm
r,s (1−Hr,s)

Mr−m . (S20)

Noting that M∗
s =

∑N

r=0 M
∗
r,s is the number of cells with exactly s integrations, we can use Eqs. 6 and S20 to derive the

expected value as

E [M∗
s |N ] =

N
∑

r=0

E
[

M∗
r,s|N

]

=

N
∑

r=0

Hr,sE [Mr|N ]

= Me−µ

N
∑

r=0

Hr,sµ
r

r!
, (S21)

where µ = N
M

. Note that if we are concerned with the total number M∗ = M −M∗
0 of cells with at least one integration, as is

the case for the probability distributions derived for assays employing serial dilution, the issue of viral interference is negligible,

allowing us to subsume the probability of the first integration into the particle to PFU ratio Q as before and leave all subsequent

virus quantification analysis unchanged from the results in Plaque Assay and Endpoint Dilution Assay. However, for assays

that attempts to quantify the total number of integrations, such as the luciferase reporter assay, the expectation in Eq. S21 can

be used, assuming the probabilities p1, · · · , pN have a priori been estimated.

E Sensitivity Analysis

The probability models derived in Probabilistic Models of Statistical Multiplicity of Infection allow us to construct the like-

lihood functions for the plaque, endpoint dilution, and luciferase reporter assays in Eqs. 14, 20, and 27 for the primary purpose

of inferring unknown parameters such as N0 and µ. The utility of these functions can be extended to performing sensitiv-

ity analysis on these maximum likelihood estimates (MLE) and optimizing experimental design. This requires constructing a

Fisher Information Matrix (FIM), a quantitative measure of the information one can extract from a likelihood function with an

arbitrary set of data [12, 13]. The FIM, which we will denote as J , is constructed by computing the gradient of the log of the

likelihood function with respect to the parameters being inferred. For example, for the plaque assay and potentially inferred

parameters N0, Q, and M , J is given by

J = E
[

(∇ lnL) (∇ lnL)
T
]

=





JN0,N0
JN0,Q JN0,M

JQ,N0
JQ,Q JQ,M

JM,N0
JM,Q JM,M



 , (S22)
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where we derive

JN0,N0
= E

[

(

∂ lnL

∂N0

)2
]

=

dmax
∑

d=dc

T exp
(

− N0

QMDd

)

Q2MD2d

[

1− exp
(

− N0

QMDd

)] , (S23)

JQ,Q = E

[

(

∂ lnL

∂Q

)2
]

=

dmax
∑

d=dc

TN2
0 exp

(

− N0

QMDd

)

Q4MD2d

[

1− exp
(

− N0

QMDd

)] , (S24)

JM,M = E

[

(

∂ lnL

∂M

)2
]

=

dmax
∑

d=dc

TN0 exp
(

− N0

QMDd

)

QM2Dd

[

1− exp
(

− N0

QMDd

)] , (S25)

JN0,Q = JQ,N0
= E

[(

∂ lnL

∂N0

)(

∂ lnL

∂Q

)]

= −

dmax
∑

d=dc

TN0 exp
(

− N0

QMDd

)

Q3MD2d

[

1− exp
(

− N0

QMDd

)] , (S26)

JN0,M = JM,N0
= E

[(

∂ lnL

∂N0

)(

∂ lnL

∂M

)]

= −

dmax
∑

d=dc

TN0 exp
(

− N0

QMDd

)

Q2M2D2d

[

1− exp
(

− N0

QMDd

)] , (S27)

JQ,M = JM,Q = E

[(

∂ lnL

∂Q

)(

∂ lnL

∂M

)]

=

dmax
∑

d=dc

TN2
0 exp

(

− N0

QMDd

)

Q3M3D2d

[

1− exp
(

− N0

QMDd

)] . (S28)

In particular, the elements of the main diagonal of J , known as Fisher Information Numbers, are interpreted as the “precision”

of each MLE and can inform an experimentalist of the potential variation in their inferred parameter with respect to data defined

by the likelihood function. Comparing the main diagonal elements can offer insight into experimental design. To illustrate, in

the example above, it is immediately apparent that the ratio of JQ,Q to JN0,N0
is N2

0 /Q
2, where it is understood that N0 is

typically several orders of magnitude higher than Q. This implies that the likelihood function of Eq. 14, and, by extension, the

plaque assay itself contains far more information about the parameter Q than N0. This provides an analytical way to decide

which parameter estimation should be the focus of a particular assay.

A more general use for the FIM is to understand the variance of an MLE given an arbitrary set of data. Independent, but

identical experiments can produce different estimates for each parameter and, according to the Cramer-Rao inequality, the ma-

trix inverse J−1 will provide a theoretical lower bound on the covariance matrix of the parameter estimates [12]. Furthermore,

it can be shown that the distribution of MLEs asymptotically approaches a normal distribution centered around the true experi-

mental parameter value with covariance J−1 as the amount of data increases [14]. For single point estimation, the FIM reduces

to the one Fisher Information Number with which the reciprocal can be used to approximate the variance of a parameter. For

example, the plaque assay is typically used to infer only the parameter N0, so using Eq. S23, we can obtain the asymptotic

approximation

Var
[

N̂0

]

≈ J−1
N0,N0

=





dmax
∑

d=dc

T exp
(

− N0

QMDd

)

Q2MD2d

[

1− exp
(

− N0

QMDd

)]





−1

. (S29)

This analytical expression for the variance can be used to determine confidence intervals of the MLE, perform sensitivity

analysis of other parameters, and aid in optimal experimental design.
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