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Reconstruction of potential energy profiles from
multiple rupture time distributions

BY PAK-WING FOK† AND TOM CHOU*

Department of Biomathematics and Department of Mathematics,
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We explore the mathematical and numerical aspects of reconstructing a potential
energy profile of a molecular bond from its rupture time distribution. While reliable
reconstruction of gross attributes, such as the height and the width of an energy
barrier, can be easily extracted from a single first passage time (FPT) distribution,
the reconstruction of finer structure is ill-conditioned. More careful analysis shows
the existence of optimal bond potential amplitudes (represented by an effective
Peclet number) and initial bond configurations that yield the most efficient numerical
reconstruction of simple potentials. Furthermore, we show that reconstruction of more
complex potentials containing multiple minima can be achieved by simultaneously using
two or more measured FPT distributions, obtained under different physical conditions.
For example, by changing the effective potential energy surface by known amounts,
additional measured FPT distributions improve the reconstruction. We demonstrate the
possibility of reconstructing potentials with multiple minima, motivate heuristic rules-of-
thumb for optimizing the reconstruction, and discuss further applications and extensions.

Keywords: inverse problem; first-passage time; bond rupture

1. Introduction

In many applications, one wishes to infer properties of a material or a process
in an interior region of a sample not readily accessible to experimental probes.
Examples of such inverse problems involving boundary data include radiological
imaging, where radiation passing through tissues is detected outside the sample,
electrical impedance tomography, where potentials are measured on the exterior
of a body, and seismology, where reflected waves are measured at the earth’s
surface. Such problems are often ill-conditioned: there may be several different
interior structures that yield nearly the same measured boundary data.

One type of ‘boundary’ data that often arises in stochastic models is
a first passage time distribution (FPTD), describing the probability of a
random variable first reaching a particular value within a certain time window.
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Figure 1. (a) Three simulated realizations of a representative random walk and their first passage
times ti . The random variable y(t) could represent the transmembrane voltage of a neuron or
the bond coordinate of an unfolding macromolecule. (b) Histogram of the first passage times of a
stochastic process started at position x = y(0) = 0, W (x = 0, t), obtained from 2000 realizations of
the process shown in (a). The inset shows W̃ (s) = ∫∞

0 W (t)e−st dt, which is used extensively in
this paper. An arbitrary potential was used to generate the data.

Here, the boundary data are the probability fluxes out of the domain. Figure 1a
shows individual trajectories of a one-dimensional stochastic process and their
corresponding first passage times. The FPTD is shown in figure 1b along with
its Laplace transform in the inset. These types of first passage problems arise in
many biophysical contexts. For example, the voltage across a nerve cell membrane
fluctuates due to noisy inputs from other neurons, and can be described by a
biased random walk determined by a constitutive voltage–current relationship
intrinsic to the cell (Tuckwell et al. 2003) When the fluctuating voltage exceeds
a threshold, the potential rapidly spikes before resetting. The interspike times
define the first passage times of the fluctuating voltage from which one might
wish to reconstruct the neuron’s inherent current–voltage relationship.

Stochastic inverse problems are typically ill-posed: there may be several
different interior structures that could yield identical or nearly identical measured
boundary data. Nonetheless, for many physical systems, reconstruction of
constitutive relations from measured data can be cast in Sturm–Liouville form
with an unknown spatially dependent coefficient (McLaughlin 1986; Levitan
1987). Given the eigenvalues of the problem and assuming a symmetric coefficient
function, its full reconstruction is unique (Borg 1946). However, one eigenvalue
spectrum is insufficient to determine a general non-symmetric coefficient (Borg
1946). For stochastic problems, the spectrum of the corresponding Sturm–
Liouville problem cannot be readily extracted from data and algorithms
developed specifically for reconstruction through the eigenvalues (Rundell &
Sacks 1992a,b; Brown et al. 2003) are of limited use in our stochastic problem.
This motivates the development of new algorithms and techniques that deal
directly with the boundary data.
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Reconstruction of bond energy profiles 3481

In this paper, we investigate a stochastic inverse problem in the context of
another system commonly encountered in biophysics: macromolecule unfolding
and molecular adhesion bond rupturing. Macromolecular bond displacements
are often described by a single bond coordinate, represented by a fluctuating
Brownian ‘particle’ in a one-dimensional energy landscape. The metastable
bond is considered to be broken the instant the bond coordinate reaches a
critical extension. This problem is of great interest in single-molecule biophysics,
particularly in the context of dynamic force spectroscopy (DFS; Evans et al.
1995). In DFS, a pulling force protocol is applied to the bond and the force at
the instant of rupture is recorded. The mean rupture force by itself would give
very little information about the molecular potential (Schlierf & Rief 2006) since
many different potentials would yield the same mean rupture force. How much of
the bond potential can be recovered from the measured rupture force distribution?
All of the recent theoretical treatments of this problem have either analysed the
forward problem (Heymann & Grübmuller 2000), used physical approximations to
derive simple force-dependent and time-dependent dissociation rates (Bell 1978;
Walton et al. 2008) and/or considered simple 2–3 parameter single minimum
potentials (Hummer & Szabo 2003; Dudko et al. 2008; Freund 2009). The rate
of force increase as a function of displacement (the rupture stiffness) has also
been incorporated into a procedure to fit basic parameters of simple potentials
(Fuhrmann et al. 2008). However, by imposing such simple two or three parameter
forms for the reconstructed potential, one loses details such as multiple minima.

Here, we approach the inverse problem by allowing a wider class of potentials,
including those with multiple minima. Within a class of potentials, we numerically
determine the ones that best fit the entire measured FPTD. Although the
difficulty of extracting eigenvalues from FPTD data is avoided, the inverse
problem remains intrinsically ill-conditioned and it is not surprising that almost
all studies have focused on reconstructing only two or three attributes of the
stochastic process, typically, the energy barrier height and width. In §2, we
formulate the problem through the backward equation of a Brownian process
with a potential energy-derived drift. In §3, we decompose the drift function
into basis functions and develop an iterative optimization procedure to find the
coefficients of these basis functions. In §4, we show that using a single FPTD
restricts the type of potentials we can reconstruct. We also show how the inverse
problem can be optimized by tuning the amplitude of the unknown potential and
the initial bond displacement. Another key finding is that multiple FPTDs greatly
facilitate the reconstruction, allowing us to accurately determine potentials with
multiple minima. We propose experimental protocols that can be used to generate
these additional FPTDs. Finally in §5, we discuss limitations of our method and
possible refinements.

2. Stochastic theory and the inverse problem

The general problem of stochastic bond rupturing is geometrically complex,
particularly when considering deformations associated with large macromolecules
carrying many degrees of freedom. Although in principle these systems can
be modelled by stochastic processes in higher dimensions, for simplicity,
we restrict our mathematical analysis to a one-dimensional Brownian motion
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3482 P.-W. Fok and T. Chou

described by a diffusivity D(x) and a convective drift −D(x)(kBT )−1(dF(x)/dx)
proportional to the force derived from a time-independent molecular bond
potential F(x), and to the mobility D(x)(kBT )−1. Although we restrict ourselves
to time-independent potentials, corresponding to static forces, the rupture force
distribution can be transformed into a first rupture time distribution (FPTD) in
the quasi-adiabatic limit (Dudko et al. 2008). The continuous Brownian process
can be described by the probability P(y, t|x) dy for the bond coordinate to be
between positions y and y + dy at time t, given that it started at position
x at initial time t = 0. This probability density obeys the backward equation
(Gardiner 2004)

vP(y, t|x)
vt

+ D(x)
kBT

dF

dx

(
vP(y, t|x)

vx

)
= D(x)

v2P(y, t|x)
vx2

. (2.1)

Since the bond is irreversibly ruptured when stretched past a known position
y = L, we impose the absorbing boundary condition P(y = L, t|x) = 0. The bond
survival probability at time t, given that it started initially at position x is found
from integrating the probability density over all the final coordinates that an
unruptured bond can take, i.e. S(x , t) = ∫L

0 P(y, t|x) dy. From S(x , t), we define
the FPTD w(x , t) = −vtS(x , t), which obeys

vw(x , t)
vt

+ D(x)
kBT

dF(x)
dx

vw(x , t)
vx

= D(x)
v2w(x , t)

vx2
, (2.2)

subject to initial condition w(x , 0) = 0, and boundary conditions vxw(x , t)|x=0 = 0
and w(x = L, t) = d(t). The condition vxw(x , t)|x=0 = 0 represents a reflecting
boundary at x = 0 and ensures a non-negative bond coordinate. Henceforth,
we will only consider the problem in which the Brownian motion starts
from a specific, known position x . Our analysis can be straightforwardly
generalized to the case where a given initial distribution of starting positions
is experimentally imposed.

In the forward problem, F(x) and D(x) are given and one solves equation (2.2)
to find the function w(x , t), as shown in figure 2. Each fixed-x slice of the surface
w(x , t) represents the FPTD for a particle that started the random walk at a
specific position x .

In the inverse problem, the functions F(x) and D(x) are unknown and need to
be determined from an experimentally measured or simulated FPTD and a known
starting position x . In general, the unique pointwise reconstruction of both D(x)
and F(x) from FPT data is impossible (Bal & Chou 2003). At best, only half
of either D(x) or F(x) can be uniquely determined from a single FPTD (Chen
et al. 1985; Bal & Chou 2003). It has been shown that if we assume D is a known
constant, then F(x) is uniquely identifiable from a single FPTD provided it is
already known over a certain interval within (0, 1] (Bal & Chou 2003).

3. Reconstruction algorithm

Since in this problem, F(x) is not known on any requisite interval, it is not even
clear whether F(x) can be uniquely reconstructed. Nevertheless in this section
we express F(x) as a superposition of (smooth) basis functions and attempt to
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Figure 2. (a) The solution to the forward equation 2.2 for the first passage time distribution (FPTD)
as a function of starting position x with D = 1 , L = 1 and U (x) = 4 − 10x + 6x2. The delta function
at t = 0 when x = 1 was approximated by a sufficiently narrow gaussian centred at t = 0. (b) For each
starting position x , slices through the surface define the FPTD w(x , t). Two slices corresponding
to the starting positions x = 0 (solid line) and x = 0.45 (dashed line) are shown. Inset: The Laplace
transform of the same two slices.

reconstruct the coefficients, deferring a rigorous analysis of our algorithm for
a future publication. We find that representing F(x) using a relatively small
number of basis functions renders the problem computationally tractable, yielding
a unique solution in many cases.

Henceforth, we non-dimensionalize the problem by measuring distance in
units of L, time in units of L2/D, and the potential F(x) in units of the
thermal energy kBT . Finally, to avoid numerically representing the d-function
in the boundary condition w(1, t) = d(t), we work with the Laplace transform
w̃(x , s) = ∫∞

0 w(x , t)e−st dt, which obeys the infinite set (for each s ∈ R≥0) of
uncoupled ODEs

v2w̃(x , s)
vx2

+ U (x)
vw̃(x , s)

vx
= sw̃(x , s), (3.1)

subject to the associated Laplace-transformed boundary conditions vx w̃
(x , s)|x=0 = 0 and w̃(1, s) = 1.

In equation (3.1), we have defined the dimensionless drift U (x) ≡ −dF(x)/dx .
Equation (3.1) is a differential equation in the initial bond position for the
Laplace-transformed rupture time distribution w̃(x , s).

Mathematically, our objective is to reconstruct U (x) and then extract, modulo
an irrelevant constant, the unknown potential F(x). However, to do so, we must
choose a reduced representation of U (x) that renders, for a chosen value of x ,
and all s ∈ R≥0, w̃(x , s) as close as possible to the measured or simulated Laplace-
transformed FPTD W̃ (s). Since it is known that approximating a function using
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3484 P.-W. Fok and T. Chou

a basis of monomials leads to a very ill-conditioned problem (Keller & Isaacson
1975), we represent the convection in terms of orthonormal polynomials:

U (x) =
n−1∑
i=0

aiui(x), (3.2)

where {ai} ≡ a is the vector of expansion coefficients, and the first few orthonormal
basis functions are

u0(x) = 1, u1(x) = √
3(1 − 2x), u2(x) = √

5(1 − 6x + 6x2), . . . (3.3)

Our method for reconstructing U (x) consists of using a spectral method
(Trefethen 2000) to repeatedly solve the forward problem equation (3.1) to refine
our estimate for the potential.1

Starting with an initial guess for the drift (say, U (x) = 0, the ‘null’ hypothesis),
we solve equation (3.1) for many positive values of s to obtain a numerical
approximation for w̃(x , s; a). We then compute the ‘distance’ between the
w̃(x , s; a) and the given data W̃ (s) using the objective function2

P(a) =
∫∞

0
|w̃(x , s; a) − W̃ (s)|2g(s) ds, (3.4)

where g(s) is a function that weights FPT data differently for different s. By
appropriately adjusting U (x), implemented through small changes in a, P(a) is
decreased. The incremental adjustments in a are repeated until P(a) is minimized.
Although many different algorithms can be used to minimize P(a), we first
consider g(s) = 1 and choose a safe-guarded Newton strategy that relies essentially
on computing the Hessian of P(a). Details of the algorithm are described in
appendix A.

4. Results and discussion

We test our algorithm and discuss reconstructing the drift function U (x) from (i)
a single, perfectly measured distribution of rupturing times, and (ii) multiple
perfectly measured distributions of rupturing times, realized under different
experimental conditions. We first generate perfect ‘data’ by solving the forward
problem using a hypothetical target potential function F∗(x) (and corresponding
U ∗(x) = ∑n−1

i=0 a∗
i ui(x)). After generating the data W̃ (s) = w̃(x , s; a∗), we pretend

we did not know the coefficients a∗, and try to reconstruct them by minimizing
P(a) through successive iterations k of the numerical algorithm detailed in
5. Starting from an initial guess for a(k = 0) = 0, we investigate if and how
a(k) approaches a∗, and the number of coefficients ai that can be reliably
reconstructed. Using a single FPTD, we find that reconstruction of F∗(x) is badly
conditioned for n � 4, but that using two or more distinct FPTDs allows us to
easily find five or more coefficients of F∗(x) in many cases.
1More general potentials and drift functions that diverge at x = 0 lead to highly singular differential
equations, but can still be solved using spectral methods (Trefethen 2000).
2If we had chosen to work in the time domain, a reasonable objective function that measures
the difference between measured and computed FPTDs would be P(a) = ∫∞

0 |w(x , t; a) −
W (t)|2g(t) dt.

Proc. R. Soc. A (2010)
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Figure 3. Reconstruction of three, five and six parameter potentials. Row (a) reconstruction of
a three parameter potential corresponding to drift coefficients (a∗

0 , a∗
1 , a∗

2 ) = (1/5, 9/10,
√

3/20).
Row (b) attempted reconstruction of a five parameter double-well potential. Solid line, target
potential F∗(x) and filled circles, reconstructed F(x). Row (c) failed reconstruction of a six-

parameter potential defined by a∗ = ( 1
5 , 1

2 , 2
5 , 1

2 , 1
5 ,

√
13
50 ). In the second column, the coefficient values

a0, a1, a2, a3, a4 and a5 at each iteration are indicated by open circles, filled circles, open triangles,
filled triangles, open squares, and filled squares, respectively. Note that all drift functions are of
unit magnitude:

∑n−1
i=0 (a∗

i )2 = 1.

(a) Single measurement

We first assume a target potential F∗(x) = −((1 + 7
√

3)/5)x + (12
√

3/5)x2 −√
3x3 corresponding to a target drift function U ∗(x) parametrized by

(a∗
0 , a

∗
1 , a

∗
2 ) = (1

5 ,
9
10 ,

√
3
20). Figure 3a shows that starting with the initial guess

U (x) = 0, minimizing the objective function equation (3.4) leads to accurate
convergence to the unknown target drift U ∗(x) within ∼10 iterations. We find in
figure 3b that a five-parameter potential is typically a marginal case in that it can
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Figure 4. (a) Objective function P(a0, a1, a∗
2 ) ≡ ∫∞

0 |w̃(x = 0.3, s; a0, a1, a∗
2 ) − w̃(0.3, s; a∗

i )|2 ds for
the potential shown in figure 2a as a function of a0 and a1. Projected onto a0 − a1 space, P

exhibits a much smaller curvature in one direction compared with the orthogonal direction.
(b) The minimum and maximum curvatures of P(a), and the inverse condition number. For
constant weighting g(s) defined in equation (3.4), we find that the condition number k decreases
monotonically as the amplitude of the target potential A∗ → 0 (dashed grey line, lmin; dashed
black line, lmax; solid line, k−1 ≡ lmin/lmax).

only be occasionally reconstructed, and only after a large number of iterations.
However, we are typically not able to accurately reconstruct a potential with six
parameters (see figure 3c), regardless of the number of iterations.

When the unknown target drift function U ∗(x) is structurally more complex,
extremely slow or non-convergence to a∗ arises because the curvature of P(a)
near the true minimum, in at least one direction, becomes extremely small.
Since our minimization algorithm relies on essentially inverting the n × n Hessian
matrix Hij = vai vaj P|a=a∗ (see appendix A), the mathematical feasibility of the
reconstruction is limited by its condition number k ≡ lmax/lmin. Here, lmax and
lmin are the largest and smallest eigenvalues of H , representing the largest
and smallest curvatures of P(a) at a∗, along the corresponding eigendirections,
respectively. In addition to increasing the number of eigendirections, increasing n
rapidly decreases, in particular, the minimum curvature lmin, thereby increasing
k ≡ lmax/lmin and making the minimum in P(a) harder to find. As suggested in
appendix B, larger values of i and j , corresponding to more oscillatory basis
functions, reduce the magnitude of Hij . This property renders the problem
badly conditioned and is the underlying mathematical reason for the difficulty
of extracting more than three parameters from a given potential landscape. To
explicitly illustrate the ill-conditioning of the problem, we plot in figure 4a the
three-parameter objective function P(a0, a1, a∗

2 ) (with g(s) = 1) as a function
of the parameters a0 and a1. Although the global minimum in P(a) occurs at
(a∗

0 , a
∗
1 ), it is clear that the curvature near the minimum is extremely small along

at least one direction, making the minimum difficult to find numerically.
Since all three target potentials considered in figure 3 were chosen to

have |a∗|2 = 1, figure 3 fairly compares the reconstruction of different-shaped
potential functions with equal amplitude While increasing the dimension n

Proc. R. Soc. A (2010)
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Reconstruction of bond energy profiles 3487

makes the problem more ill-conditioned, for fixed n, reconstruction efficiency may
nonetheless depend on the typical magnitude of the potential to be reconstructed.
To compare reconstructions of potentials of different expected magnitudes, we
define the amplitude factor

A∗ ≡
√√√√n−1∑

i=0

(a∗
i )2 = |a∗| (4.1)

for each target drift function. While the amplitude A∗ needs to be found from
reconstructing the values of a∗

i , its value sets the scale of the unknown drift
function relative to thermal diffusion and defines an effective Peclet number for
this problem. Experimentally, the shapes of potentials are fixed by molecular
details; however, the Peclet number A∗ is inversely proportional to temperature
and can in principle be tuned experimentally.

Figure 4b shows that for a fixed-shape target drift function U ∗(x) of the form
a∗ = A∗ × (1/5, 9/10,

√
3/20), and a single FPTD measurement, the inverse of

the condition number is maximized in the limit A∗ → 0. Therefore, the problem
has the best conditioning and the most efficient mathematical reconstruction in
the zero Peclet number limit, when the potentials are weak. Computationally,
a single FPTD data set arising from a vanishingly small drift perturbing the
purely diffusive problem gives the most numerical ‘signal’ for reconstructing the
coefficients of U ∗(x). Although the magnitudes of ai are vanishingly small, their
incremental effect on reducing the condition number k is nonetheless greatest
in this limit. This optimal limit arises from a mathematical analysis and is
not predicted by physical considerations. However, system and experimental
constraints may preclude measurement of effective potentials at extremely low
Peclet numbers A∗ (high temperatures), suggesting that an optimal, intermediate
temperature may still arise in practice.

In figure 5, the behaviour of k−1 as a function of a fixed starting position is even
more intriguing. For constant g(s) and all potentials we tested, the optimal value
of the starting position occurs roughly near x = 0.7–0.9. This starting position is
close to the rupture point at x = 1 and is somewhat insensitive to the amplitude
A∗, except for very large A∗. The robustness of this optimal starting position
arises from analysing the Hessian matrix, in particular the dependence of its
condition number on x .

From the form of Hij (see equation (B 2)), we can show numerically that
lmin has a maximum for x ≈ 0.7–0.9 and that the behaviour of k−1 is rather
insensitive to changes in lmax; thus, k−1 is typically maximal near x = 0.75.
For the three qualitatively different potentials used in figure 5, the optimal
starting positions all fall approximately within x= 0.7–0.9 for a wide range of
amplitudes A∗. In these examples, the best conditioning occurs in the limit
A∗ → 0, consistent with figure 4b. For non-constant g(s), the approximate optimal
starting position x typically ranges from 0.5 to 0.9, depending on the form of g(s)
(cf. figure 7 in appendix B).

In physical problems such as bond rupturing, the initial position cannot be
exactly determined, and is more likely to be drawn from an imposed starting
position distribution. For example, if the bond is held by a strong optical or
mechanical trap before being released, the distribution of starting positions would

Proc. R. Soc. A (2010)
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number) A∗ for three different potentials. (a) F∗(x) = −A∗(

√
3/2)x2, (b) F∗(x) = A∗[−(3

√
(3/7))

x + (2
√

(3/7))x2], (c) F∗(x) = A∗[−((1 + 7
√

3)/5)x + (12
√

3/5)x2 − √
3x3]. The ratio k−1 = lmin/

lmax is typically maximal for A∗ → 0 and x ∼ 0.75.

typically be gaussian in x , reflecting a quadratic confining potential. The ease
of reconstruction for a process started from a distribution of starting positions
would be measured by an effective condition number that is a weighted average
of the condition numbers associated with each specific starting position. Finally,
for typical macromolecular bonds, the physical binding energies are on the order
of many kBT , implying that the amplitude A∗ � 10. In this limit, the condition
number is large (cf. figures 4 and 5), and reconstruction is difficult. Note that
the successful reconstructions illustrated in figure 3 were of drift functions of
unit amplitude. Since a single measurement W̃ (s) is typically insufficient to
reconstruct the potentials well beyond three coefficients, particularly for potential
with large associated A∗, we consider how additional data can be used to refine
the reconstruction of U ∗(x).

(b) Multiple measurements

Even after optimizations with respect to Peclet number A∗(e.g. A∗ → 0) and
starting position x , reconstruction of F∗(x) from a single FPTD measurement is
extremely difficult. However, as indirectly suggested by the analysis of varying
A∗ and x , an unknown potential can be changed by a specified amount to yield
a FPTD different from that of the original unchanged potential. By imposing
any number of perturbations, multiple FPTD data W̃ can be measured and
used to aid the reconstruction of the original potential. Therefore, we propose
three protocols for modifying the potential to be reconstructed. Experimentally,
these protocols correspond to changing the system temperature, applying and
then quickly removing a force to change the starting position, and adding
an applied force at the start of the stochastic process. Mathematically, these
perturbations correspond to specific changes in A∗, x , and the form of the
potential F∗, respectively. The multiple FPT distributions, measured under
different conditions, can then be combined into a multi-distribution objective
function. We summarize the protocols below:
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Reconstruction of bond energy profiles 3489

— Changing amplitude via temperature. One way to obtain additional
data is by changing the amplitude (or effective Peclet number) A∗ of
the unknown drift. For each distinct value of A∗, a separate FPTD
w̃(x , s; a∗) can be measured. These different FPTDs all arise from bond
potentials with the same underlying shape, and can be used together to
better reconstruct F∗(x). While the absolute value of A∗ needs to be
determined from the reconstruction of a∗, the relative temperature at
which a second measurement is taken can be used to determine the ratio
q∗

2 ≡ A∗
2/A

∗
1.

— Tuning starting positions. By adding a force to the system before the start
of the process, one can adjust the initial position x of the bond. At t =
0, this force is released, and the stochastic process proceeds under the
original target drift U ∗(x), provided the potential relaxes quickly to F∗(x).
Stochastic bond dynamics starting at different positions x yield different
measured FPT distributions.

— Adding probe forces. Finally, one can add known potentials to the original
target potential immediately after the start of the stochastic process to
obtain additional FPT distribution data. Here, F∗(x) → F∗(x) + DF(x),
where DF(x) is known. The associated drift then changes according to
U ∗(x) → U ∗(x) + DU (x), where DU (x) is implemented through a known
change in the expansion coefficients Da and represents an externally
applied force imposed by e.g., a pulling device such as an AFM tip or
an optical tweezer. The associated external potential in such cases may
be of the form DF(x) = −Fextx − Kx2/2, where Fext is the externally
applied time-independent force and K is the elastic response of the pulling
device. In this case, the new total bond potential F∗ + DF(x) induces a
drift U ∗(x) + DU defined by a∗ + Da where Da0 = Fext + K/2 and Da1 =
−K/(2

√
3). This new drift gives rise to another, different FPTD.

An objective function that incorporates all M FPT distributions measured under
M different conditions described above can be defined as

PM (a) =
M∑

m=1

∫∞

0
[w̃(xm , s; q∗

m , a + Dam) − W̃m(s)]2gm(s) ds, (4.2)

where xm , Dam , and q∗
m ≡ A∗

m/A∗
1 denote the known starting position, added

pulling force, and relative temperature of the mth measurement, respectively.
The function gm(s) weights each of the m measurements differently. If the data
W̃m in equation (4.2) were generated from a target drift U ∗(x), as is the case in
our analyses, then it is defined as W̃m(s) ≡ w̃(xm , s; q∗

m , a∗ + Dam). Measured data
W̃m should be obtained with different starting position xm , applied force Dam ,
and/or different temperature ratios q∗

m with at least one of the known parameters
xm , Dam , A∗

m different among the M measurements. Multiple data sets provide
additional constraints, increasing the curvature of the objective function near a∗.
In general, the smallest eigenvalue lmin of the Hessian matrix associated with PM
increases with M . Upon minimizing the multi-FPTD objective function PM , we
obtain a∗.
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Figure 6. Attempted reconstruction of 5-parameter potential wells (solid black) using single
and double data sets. (a) Blue dotted and red dashed lines, reconstructions from single data
sets generated using A∗

1 = 6.11755 . . . and A∗
2 = 1.22351 . . ., respectively. Circles, reconstruction

using both data sets x1 and x2; solid line F∗(x). Original potential was parametrized by a∗ =
(− 1

10 , 11
√

3
5 , 89

14
√

5
, 8√

7
, 50

21 ), starting position was x = 0.170. (b) Blue dotted and red dashed lines,
reconstructions from single data sets generated using x1 = 0.182 and x2 = 0.727, respectively.
Circles, reconstruction using both data sets x1 and x2; solid line, F∗(x). Original potential was
parametrized by a∗ = ( 2

3 , 2, 5
3 , 2, 4

3 )/
√

13), starting position was x = 0.170. (c) Blue dotted and red
dashed lines, reconstructions from single data sets generated without and with probe force DU = x .
Circles, reconstruction using both data sets DU = 0 and DU = x . Target potential was parametrized

by a∗ = ( 1
5 , 3

5 , 2
5 , 1

2 ,
√

19
100 ), starting position was x = 0.642.

To illustrate how additional data can improve potential reconstruction,
we compare how including two FPT distributions (M = 2) in our objective
function P simultaneously affects reconstruction relative to using each FPTD
separately. The two distributions will arise from two ideal measurements
taken under two different conditions within each of the proposed experimental
protocols described above. In figure 6a, we attempt to reconstruct the five-
parameter, double-well potential F∗(x) = −28x + (1451/10)x2 − 307x3 + 290x4 −
100x5 using two ‘temperatures’. This potential corresponds to A∗

1 = |a∗| =
6.11755 . . . . We then generated data associated with F∗(x)/5, corresponding
to A∗

2 = A∗
1/5 = 1.22351 . . . . Reconstruction of the original F∗(x) using each

individual FPTD fails, as does using both FPTD data sets. In figure 6b, we see
that when using data sets corresponding to either initial position x1 = 0.182 or
x2 = 0.727, the algorithm fails to reconstruct the target potential. However, using
both initial positions together allows us to accurately determine F∗(x). Similarly,
adding the perturbing potential DF2 = −x2/2 (DU2 = x) provides another FPTD
that allows accurate reconstruction of a double-well potential (figure 6c).

5. Summary and conclusions

We have analysed the mathematical aspects of reconstructing the drift of a
one-dimensional stochastic process from perfectly measured first passage time
distributions. In practice, insufficient number of bond rupture events are currently
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Reconstruction of bond energy profiles 3491

measured to enable quantitative potential reconstruction; therefore, we used
numerically generated data to illustrate our main mathematical results. For
single distributions, only very coarse attributes (approximately three parameters)
can be reconstructed. We demonstrate how to optimize the efficiency of the
reconstruction by controlling the effective amplitude or Peclet number A∗
and starting position x of the stochastic process. If only one FPTD can
be measured, our analysis suggests that A∗ → 0 and x ∼ 0.75 are the most
probable parameters to give the best chance for reconstructing relatively simple
potentials. However, these findings were found numerically by assuming perfect
data, uniform diffusivity, precisely defined starting positions x , and a constant
weighting function g(s). In practice, finite-time resolution, noisy data, and other
experimental limitations may be accounted for by a more suitable weighting
function g(s) (or g(t) if P were a functional of w(x , t) and the data W (x , t)). We
show in appendix B that the optimal parameters A∗ and x can change when a
non-constant weighting function g(s) is used. While the optimal values of A∗ → 0
and x ∼ 0.75 (for g(s) = 1) were found numerically, without physically realistic
limitations, they nonetheless provide a possible experimental starting point.

We also showed that additional measurements in the form of multiple FPTDs
can be used to provide dramatically better conditioning of the problem, allowing
finer details of the drift function to be extracted. The total objective function
including the constraints from all M measurements has a sharper minimum,
increasing the efficiency of standard optimization algorithms. We proposed
three ways of obtaining additional measurements under different experimental
conditions: tuning the effective amplitude or Peclet number A∗ through the
system temperature, adjusting the starting position x via an initially applied
force, and adding a known ‘probe’ force through a potential DF. This later
potential can be realized in a number of ways, from directly mechanically pulling
on the bond, to using mutagenesis to systematically change local properties of
the bond energy profile. Such mutant bonds may provide additional FPTD data
facilitating reconstruction of the original ‘wild-type’ potential.

A number of refinements are suggested by our analysis, and some are discussed
in the appendices. For example, rather than Laplace-transforming the data, one
can directly fit to W (x , t). Although this approach is computationally more
expensive, it would allow us to treat time-dependent potentials U (x , t), and
directly analyse dynamic force spectroscopy experiments (Evans et al. 1995;
Heymann & Grubmüller 2000; Fuhrmann et al. 2008), or scenarios in which the
temperature is changed in a time-dependent way (Getfert & Reimann 2009).
Moreover, specific to the bond rupture problem, data involving bond coordinates
as a function of time, if accurately measured, can also be incorporated into an
objective function. These additional data may be useful in combating the noise
problem and help improve the overall conditioning. Our assumption of an effective
one-dimensional potential of mean force can also be relaxed to include higher
dimensional stochastic processes if internal degrees of freedom at a point which
defines bond rupturing can also be experimentally resolved.

Other more mathematical refinements and extensions can also be implemented,
including exploring effects of using different basis functions for U (x), using more
sophisticated optimization methods, quantifying the reconstruction efficiency
for large M , defining the experimentally imposed weighting function g(s),
reconstruction of the diffusivity D(x) itself, and systematically exploring the
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3492 P.-W. Fok and T. Chou

effects of noise in the data. Here, a Bayesian approach to estimate likelihood
functions for the coefficients a∗, or information criteria to choose the size n of the
basis expansion might be useful (Getfert et al. 2009).

The authors thank S. Getfert, A. Fuhrmann, and A. Landsman for helpful comments. This work
was supported by NSF grant DMS-0349195 and NIH grant K25 AI058672.

Appendix A. Numerical methods

(a) Numerical scheme for the solution of the backward equation

In the forward problem, with D(x) and F(x) given, equation (2.2) can be solved
using standard finite difference schemes. Figure 2b shows numerically computed
FPTDs for two different starting positions with D = L = 1, U (x) = 4 − 10x + 6x2.
The singular boundary condition w(x = 1, t) = d(t) is treated by taking Laplace
transforms in time of equation (2.2) and solving equation (3.1) for discretized
values of the Laplace-transformed variable s. Moreover, the numerical solution
of equation (3.1) for a set of values s can be found much more quickly than
solving the full partial differential equation on a large x − t grid. For D = 1 and
a given drift function U (x), we use a spectral method (Trefethen 2000) to solve
the Laplace-transformed backward equation (3.1). First, the spatial domain is
mapped from [0, 1] to [−1, 1] using a change of variable. Then, the function
w̃(x , s) is represented by w̃(xi , s) ≡ w̃i and interpolated between the N Chebyshev
points xi = cos((i − 1)p/(N − 1)) with polynomials. The resulting N × N system
of equations for w̃i are

Qij w̃j = d1,i , (A 1)

where the matrix Qij is

Q1j = d1j ,

Qij = 4(D2
N )ij + 2(UDN )ij − sdij , i = 2, . . . , N − 1, j = 1, 2, . . . , N

and QNj = (DN )Nj , j = 1, 2, . . . , N , (A 2)

where DN is the usual N × N pseudospectral differentiation matrix (Trefethen
2000) and the diagonal matrix U is defined by

Uij = U (xi)dij . (A 3)

We used N = 51 spectral points in all of our computations within the iterative
algorithm. Fixed-x slices of the numerically obtained functions w̃(x , s) are
qualitatively similar to the plots shown in the inset of figure 2b.

(b) Evaluation of the objective function

In our analysis, we generate data by numerically computing distributions
derived from a target drift function U ∗(x) (defined by its polynomial
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Reconstruction of bond energy profiles 3493

coefficients a∗). Since the data are generated numerically, we use
W̃ (x , s) ≡ w̃(x , s; a∗) in the objective function and write

P(a) =
∫∞

0
[w̃(x , s; a) − w̃(x , s; a∗)]2g(s) ds. (A 4)

Note that the �th moment of the FPTD is given by

〈T �〉 = (−1)� v�w̃(x , s)
vs�

∣∣∣∣
s=0

. (A 5)

Therefore for two FPTDs with identical first few moments, their first few
derivatives are also identical. Such FPTDs can only be distinguished by their
differences at larger values of s (and the function g(s) in equation (A 4) can
be used to weight these differences accordingly). Only information contained
in the tails of the Laplace-transformed distributions can distinguish two FPT
distributions with equal lower moments. Therefore for the algorithm described
in appendix B to be effective, a numerical approximation to the integral in
equation (A 4) must evaluate the integrand for sufficiently large values of s. This
can be done by mapping s ∈ [0, ∞] to x ∈ [0, 1] through a change in variable
s(x) = x/(1 − x), and computing

P(a) =
∫ 1

0
[w̃(s(x); a) − w̃(s(x); a∗)]2g(s(x))

dx

(1 − x)2
. (A 6)

In order to choose g(s) such that P(a) remains convergent, we assume that g(s)
has no singularities in s ∈ (0, ∞) and consider the behaviour of the integrand at
the end points s = 0 and s = ∞ through the asymptotic expansions

w̃(s) =
∫∞

0
e−stw(t) dt

∼
∞∑

n=0

w(n)(0)n!
sn+1

, s  1 (A 7)

and

w̃(s) ∼
∞∑

n=0

snw̃(n)(0)
n! , s � 1. (A 8)

Since w(t = 0; a) = w(t = 0; a∗) = 0 for any two sets of drift coefficients a and a∗,
the asymptotic expansion (A 7) implies that [w̃(s; a) − w̃(s; a∗)]2 = O(s−4) as s →
∞. If the first k time derivatives of w(t; a) and w(t; a∗) match, equation (A 7)
implies that [w̃(s; a) − w̃(s; a∗)]2 = O(s−2(k+2)). For a weighting function of the
form g(s) = sq , the integrand in equation (A 6) is O((1 − x)2−q) as x → 1 and is
integrable at x = 1 provided q < 3.

Since w̃(s = 0; a) = w̃(s = 0; a∗) = 1, the asymptotic expansion (A 8) implies
that [w̃(s; a) − w̃(s; a∗)]2 = O(s2) as s → 0. If the first k s-derivatives agree (i.e.
the first k moments of w(t; a) and w(t; a∗) are identical), equation (A 8) implies
that [w̃(s; a) − w̃(s; a∗)]2 = O(s2(k+1)). If g(s) = sq then the integrand in equation
(A 6) is O(x2+q) as x → 0 and is integrable at x = 0 provided q > −3.
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3494 P.-W. Fok and T. Chou

To summarize, if we take g(s) = sq , then convergence of the integral in equation
(A 6) requires −3 < q < 3. When evaluating P(a), a fourth-order open trapezoid
rule (that does not require evaluation of the integrand at the end points) was used
and typically 100–1000 uniformly spaced trapezia were found to give sufficient
accuracy for the plots shown in figures 3 and 6.

(c) Minimization of P(a)

The linear system (3.1) must be solved for many different values of s so that
it can be used in the discrete approximation to the objective function (3.4). To
minimize equation (3.4), we use a safe-guarded Newton strategy:

a(k + 1) = a(k) − sG−1(a(k))VaP(a(k)). (A 9)

Here, G is a positive definite matrix and s > 0 is the step size chosen to minimize
P(a(k + 1)) along the descent direction G−1VaP.

To compute G, we adopt the following procedure. If the Hessian Hij ≡
vai vaj P(a) is positive definite, we set G ≡ H. If the Hessian H is not positive
definite, we choose a small Tikhonov regularization (Vogel 2002) parameter a
such that H + aI is safely positive definite (I is the identity matrix) and set
G = H + aI. In either case, G−1 is also positive definite and moving in the
direction of −sG−1VaP is guaranteed to decrease P(a(k + 1)) for sufficiently
small s. The value of s is found by performing an exact line search to minimize
P(a(k + 1)) along the descent direction. All Jacobian and Hessian matrices are
approximated numerically using a suitably small da, typically on the order of 10−5.
The algorithm terminates when the relative change in the objective function is
less than 10−3.

We represent the drift function U (x) using orthonormal polynomials on [0, 1]
given in equation (3.3). Often, the potential and drift arising from molecular
interactions diverge as x → 0 (such as in the Lennard-Jones potential). In this
case, F(x) and U (x) could be represented using basis functions with the correct
divergent behaviour for x → 0. Although the Laplace-transformed backward
equation (3.1) has an irregular singular point in this case, the spectral method
retains its ability to find solutions as long as x = 0 is not included in the
Chebyshev grid.

Finally, although the possibility of multiple minima in P exists, we find that
given our example potentials and our initial guess U (x) = 0, we always either
converged to the correct minimum, or failed to converge because of an extremely
flat minimum. Convergence to an incorrect minimum was rarely observed in
our studies.

Appendix B. Analysis of eigenvalues and condition numbers

Since the ease of minimizing P(a) is quantified by the condition number
k ≡ lmax/lmin of the Hessian H, we now consider the behaviour of the minimum
and maximum eigenvalues lmin and lmax. If k = O(1), the problem is well-
conditioned; if k  1, the problem is badly conditioned. Clearly, the one parameter
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Reconstruction of bond energy profiles 3495

optimization problem has k ≡ 1 and is well-conditioned. However, when the
number of parameters increases, it is desirable to find conditions under which
k−1 is maximized.

(a) Small Peclet number analysis

We now analyse k in the A∗ � 1 limit. The components of the Hessian at a∗
(the drift coefficients of the target potential) are given by

Hij = v2P(a)
vaivaj

∣∣∣∣
a=a∗

= 2
∫∞

0
g(s)

(
vw̃
vai

vw̃
vaj

)∣∣∣∣
a=a∗

ds. (B 1)

For weak potentials, we find solutions to w̃ ′′ + U (x)w̃ ′ = sw̃ in the U (x) → 0 limit.
If U (x) = O(A∗), we expand the solution in the form w̃(x , s) = ∑∞

m=0 w̃m(x , s)
where w̃m = O(A∗m), and use the boundary conditions w̃0(1, s) = 1, w̃ ′

0(0, s) =
0 and w̃m(1, s) = w̃ ′

m(0, s) = 0 (m ≥ 1) where primes denote differentiation with
respect to x . The first two terms in the expansion are

w̃0(x , s) = cosh
√

sx
cosh

√
s

,

and

w̃1(x , s) =
√

s
cosh

√
s

∫ 1

0
G(x , x ′)U (x ′) sinh

√
sx ′ dx ′,

where the Green’s function

G(x , x ′) = sinh
√

s(1 − x>) cosh
√

sx<√
s cosh

√
s

,

satisfies G ′′ − sG = −d(x − x ′) and x<(x>) is the lesser(greater) value of x , x ′.
Upon using the full orthonormal polynomial expansion U (x) = ∑∞

i=0 aiui(x), we
find explicitly

Hij =
∫∞

0

2g(s)s

cosh2 √
s

ds
∫ 1

0

∫ 1

0
G(x , y)G(x , y ′)ui(y)uj(y ′) sinh(

√
sy) sinh(

√
sy ′) dy dy ′.

(B 2)

Since all elements of H are independent of the drift coefficients ai , they are also
independent of A∗, and so are all eigenvalues. Therefore, as a function of A∗,
the inverse condition number 1/k ≡ lmin/lmax approaches a constant as A∗ → 0.
Moreover, for all forms of g(s) tested, we find numerically that k−1 is maximal in
the A∗ → 0 limit. These results confirm the numerical data in figures 4b and 5.

Within the A∗ → 0 limit, different weightings g(s) can also be used to better
maximize k−1. Using the asymptotic form (B 2) for the Hessian and g(s) = sq

(−3 < q < 3), we plot k−1 as a function of starting position x and exponent
q in figure 7. Note that q > 0 puts more weight into the tails of [w̃(x , s; a) −
w̃(x , s; a∗)]2, accentuating differences in higher moments of the FPTD. If q < 0,
more weight is given to small values of s. For each value of q, there is an optimal
starting position x∗ that minimizes the condition number and greatly improves
the efficiency of reconstructing the bond potential. Although in §4 we discussed
changing the starting positions to optimize the reconstruction, in cases where
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Figure 7. Inverse condition number k−1 in the A∗ → 0 limit as a function of starting position x and
the weighting function g(s) used in the objective function P(a). In this limit, the Hessian matrices
are given by equation (B 2). (a) Two parameter potentials with weighting function g(s) = sq . (b)
Three parameter potentials with weighting function g(s) = sq . (c) Two parameter potentials with
weighting function g(s) = e−ps . (d) Three parameter potentials with weighting function g(s) = e−ps .

the starting position cannot be controlled, another strategy may be to estimate
an optimal q = q∗ from figure 7 and minimize P(a) using the weighting function
g(s) = sq∗

. We also experimented with weighting functions of the form g(s) = e−ps

for p > 0: see figures 7c,d. This class of weighting functions seems to give poorer
conditioning compared with g(s) = sq since k−1 is generally smaller.

(b) Conditioning with multiple data sets

In figure 8, we assumed g(s) = 1 and plot the inverse condition number
k−1 = lmin/lmax as a function of the Peclet number A∗. The potential used
was proportional to the one in figure 3a: F∗(x) = A∗[−((1 + 7

√
3)/5)x +

(12
√

3/5)x2 − √
3x3]. The starting position was x = 0.433.

The thin solid curve in figure 8 is taken from figure 4b and corresponds to k−1

when only one FPTD data set (M = 1) is used. We compare these values to those
when two FPTDs (M = 2) are used as data in PM (a). The second data set was
generated using each of the protocols discussed in §4b. The dotted, dashed-dotted
and dashed curves were generated from the Hessian of PM (a) by using both A∗
and A∗/5, two starting positions x1 = 0.433 and x2 = 0.65, and both the original
potential F∗(x) and F∗(x) − 5x2/2, respectively. In each case we see a different
improvement in the conditioning at each value of A∗.
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Figure 8. The inverse condition number k−1 as a function of the potential’s magnitude A∗ for one
and two data sets. The thin solid curve corresponds to one FPTD (M = 1), while broken curves
correspond two FPTDs (M = 2) obtained under different conditions. The dotted curve represents
k−1 when A∗ and A∗/5 are used in the multi-distribution objective function PM (a) (see equation
(4.2)). The dotted-dashed curve corresponds to k−1 when x1 = 0.433 and x2 = 0.65. Finally, the long
dashed curve represents the inverse condition number when two target drifts U ∗(x) and U ∗(x) + 5x
are used. The weighting functions gm(s) = 1 in all computations.

Since the largest eigenvalue lmax does not change much with increasing M , the
improvement in conditioning is due mostly to increasing the smallest eigenvalue
lmin (not shown). Reducing the Peclet number A∗ only improves the conditioning
for large A∗. Increasing the contraction factor in the two values of A∗ (e.g. from
A∗ → A∗/5 to A∗ → A∗/10) further improves the conditioning by increasing k−1

at ever smaller values of A∗. In this example, changing the starting position is
perhaps the most reliable way of facilitating the reconstruction: the condition
numbers k are decreased by at least an order of magnitude over a wide range
of A∗ and the improvement becomes even better for larger A∗. Finally adding a
probe force greatly enhances the reconstruction for moderate A∗ = O(1) and there
is now an optimal A∗ (and hence system temperature) where the reconstruction is
easiest. This is in contrast to the M = 1 case, here we always find a monotonically
increasing k−1 as A∗ decreases.

Appendix C. Reconstruction of many-parameter potentials

Using additional FPT data, we demonstrate the feasibility of reconstructing
complex potentials that are described by many parameters.

In figure 9 we successfully reconstruct 7-parameter and 8-parameter potential
wells containing multiple minima using g(s) = 1 and three (M = 3) FPTDs. For
both (a) the 7-parameter and (b) the 8-parameter potential, we see that any
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Figure 9. Reconstruction of seven and eight parameter potentials with unit amplitude A∗ = 1
and drift coefficients (a) a∗ = ( 1

2 , 1, 1, 3
2 , 1, 3

2 , 1)/
√

14, and (b) ( 1
2 , 5, 2, 5

2 , 1, 5
2 , 2, 15

2 )/
√

103. In (a)
the three different protocols, (x1 = 0.07, DU1 = 0), (x2 = 0.404, DU2 = 0) and (x3 = 0.404, DU3 = x),
were used to generate three data sets (in each case, A∗ = 1), denoted by FPTD1, FPTD2 and
FPTD3, respectively. In (b) the three different protocols (x1 = 0.06, DU1 = 0), (x2 = 0.323, DU2 = 0),
and (x3 = 0.323, DU3 = 5x) were used to generate three data sets also denoted by FPTD1, FPTD2
and FPTD3, respectively. Solid line, F∗(x), M = 3; dashed line, FPTD1 + FPTD2; dotted-dashed
line, FPTD1 + FPTD3; grey line, FPTD2 + FPTD3.

combination of two first passage time distribution data sets fails to accurately
reproduce the original F∗(x). However, using the three defined data sets (M = 3),
we were able converge to the correct F∗(x) in fewer than 20 iterations.
Importantly, we were able to quantitatively resolve the multiple minima. It should
be noted, however, that with the current optimization algorithm we were only
able to obtain about 2 significant digits of accuracy on the coefficients ai for
these potentials.
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