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A B S T R A C T   

Thanks to advancements in diagnosis and treatment, prostate cancer patients have high long-term survival rates. 
Currently, an important goal is to preserve quality of life during and after treatment. The relationship between 
the radiation a patient receives and the subsequent side effects he experiences is complex and difficult to model 
or predict. Here, we use machine learning algorithms and statistical models to explore the connection between 
radiation treatment and post-treatment gastro-urinary function. Since only a limited number of patient datasets 
are currently available, we used image flipping and curvature-based interpolation methods to generate more data 
to leverage transfer learning. Using interpolated and augmented data, we trained a convolutional autoencoder 
network to obtain near-optimal starting points for the weights. A convolutional neural network then analyzed the 
relationship between patient-reported quality-of-life and radiation doses to the bladder and rectum. We also used 
analysis of variance and logistic regression to explore organ sensitivity to radiation and to develop dosage 
thresholds for each organ region. Our findings show no statistically significant association between the bladder 
and quality-of-life scores. However, we found a statistically significant association between the radiation applied 
to posterior and anterior rectal regions and changes in quality of life. Finally, we estimated radiation therapy 
dose thresholds for each organ. Our analysis connects machine learning methods with organ sensitivity, thus 
providing a framework for informing cancer patient care using patient reported quality-of-life metrics.   

1. Introduction 

Approximately 175 thousand new cases of prostate cancer were re
ported in 2019 in the United States [18]. Depending the patient’s age 
and cancer stage, first-line treatments include prostatectomy, radiation 

treatment, and androgen ablation. Each of these treatments carries 
different side effects. For some patients, a prostatectomy is followed by 
radiation treatment (RT) to minimize the possibility of recurrence. Ra
diation planning for each patient begins with a CT scan, which is fol
lowed by the demarcation of the prostate or prostate bed (radiation 
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target) and the surrounding organs (bladder and rectum) by a physician. 
Each RT plan is customized to a patient to spatially optimize the dosing 
to the target organ without overexposing and damaging surrounding 
organs and structures. RT plans are developed using Dose Volume His
tograms (DVHs). DVHs discard all organ-specific spatial information, 
and they are usually based on a single planning CT scan that does not 
account for anatomical variations over the course of several weeks of 
therapy [11]. Various metrics have been developed in order to translate 
the information from a DVH into a computed probability of uncompli
cated tumor control using normal tissue complication probability 
models (NTCP) [11]. These efforts are necessary as the relationship 
between exposure to radiation of the surrounding organs/structures and 
the severity and probability of toxicity (urinary and bowel) is still not 
fully understood. From a physiological perspective, it is not clear how 
radiation dosage affects tissues and organ function. 

In order to develop a radiation plan that minimizes patient side ef
fects, one needs to quantify these side effects post-radiation. Tradition
ally, physician-assessed scoring systems have been widely used to 
measure patient side effects following cancer treatment [3]. However, 
more recent evidence indicates that clinicians often do not fully ascer
tain the frequency and severity of patients’ treatment-related symptoms 
[3,14]. Patient-reported quality-of-life (QoL) surveys are becoming an 
important tool in measuring outcomes after cancer treatment [17,20]. 
For example, a study by K. Diao et al. [5] explored urinary and bowel 
symptom development during treatment using patient-reported QoL 
scores (with 1 indicating no symptoms, to 5 indicating high frequency of 
symptoms). An IRB waiver was received at the University of North 
Carolina for this retrospective study using anonymized data. The results 
showed that average scores progressively increased from baseline 
throughout treatment, but all symptoms resolved to baseline levels by 
follow-up. In the context of RT, NTCP models can be correlated to 
patient-reported QoL data, as was done in Ref. [12]. However, their 
analysis focused only on urinary symptoms during post-prostatectomy 
radiotherapy, and NTCP models rely on already reduced DVH infor
mation. Given the rich organ-specific information obtained during 
treatment planning, it could be desirable to more directly connect 3D 
patient CT scans and dosing with QoL scores. 

Machine learning methods have become state of the art in many 
applications with impressive results; deep convolutional networks have 
many times outperformed traditional methods for diagnosis [15] or vi
sual recognition tools [9]. In biomedical imaging, deep convolutional 
neural network (CNN) algorithms have been applied to a wide array of 
problems. Of particular interest in our context are medical image seg
mentation machine learning algorithms, such as the U-net [16] archi
tecture that focuses on semantic segmentation of biomedical images. 
The U-net architecture has appealing features that we will employ in our 
approach as it uses a large number of max-pooling operations to allow 
for the identification of global, non-local features and up-convolution to 
return images to their original size. In the work of Nguyen et al. [13], a 
modified U-net architecture was shown to accurately predict voxel-level 
dose distributions for intensity-modulated radiation therapy for prostate 
cancer patients. These prior studies indicate tremendous promise of 
guidance of radiation treatment planning with artificial 
intelligence-based algorithms. Nevertheless, these algorithms can be of 
significant use in treatment planning if they can also incorporate QoL 
predictions that can provide immediate guidance for the dosimetrist 
during clinical plan optimization. To our knowledge, there are no prior 
approaches that integrate QoL in machine learning algorithms in the 
context of RT for prostate cancer. 

In the department of Radiation Oncology at the University of North 
Carolina, QoL scores were collected using a validated questionnaire [4, 
19] administered during weekly treatment visits as part of the routine 
clinical work-flow for prostate cancer patients. While QoL data have 
been studied after prostate cancer radiation treatment, data collected 
during the course of treatment can convey important information about 
symptom development, which can be a fertile ground for the use of 

quantitative modeling to guide optimal RT dosing. In this paper, we 
analyze data from a 14-question quality-of-life prostate cancer patient 
survey that was collected over the span of five years (2010–2015). The 
data we examined tracked patient urinary and bowel side effects before 
and during the course treatment (about seven weeks). Along with each 
patient’s QoL, we also examined the associated anatomical CT scans and 
radiation dosing patterns for approximately 50 patients. 

In this paper, we propose a CNN algorithm to explore the connection 
between the spatial distribution of the RT dose and the QoL outcomes 
reported from patients in our dataset. A significant problem with CNN 
algorithms in our context is the need for a sufficiently large dataset; to 
resolve this issue, we augmented our patient datasets using interpolation 
algorithms that generated synthetic patients by combining existing pa
tient data. In addition, we used transfer learning in order to improve the 
performance of our CNN algorithm and implemented steps to avoid 
overfitting problem. A key goal for our study was to generate insight into 
the most radiation-sensitive tissue regions. 

As a comparable alternative to the CNN approach, we also used 
analysis of variance and logistic regression to explore organ sensitivity 
to radiation and develop dose thresholds for each organ region. We 
identified regions of the rectum that were highly correlated with 
changes in individual patient symptoms. Finally, we estimated radiation 
therapy dose thresholds that could trigger collateral symptoms. 
Combining results from machine learning and direct analyses of organ 
sensitivity provides a powerful framework to inform patient care in the 
quality of life context. 

This paper is organized in three sections: In the Methods section, we 
formulate convolutional neural network algorithms and statistical 
models. In the Results section, we demonstrate that the CNN algorithm 
we developed can identify correlations between bowel-related symp
toms and radiation. We support these findings through statistical ana
lyses that explore organ sensitivity to radiation dosage. Finally, in the 
Discussion and Conclusions section, we compare our results with those 
of previous studies. 

2. Methods 

2.1. Quality-of-life data 

Our data are extracted from patients’ answers to a 14-question 
quality-of-life survey. Seven questions address urinary symptoms and 
address bowel symptoms. The specific survey questions and possible 
responses are shown in Fig. A.12 in Appendix A. Patients took the survey 
before undergoing radiation therapy, once a week during their seven- 
week treatment, and after completing therapy. Answers by patient j to 
question i at time point t = {0,1,2, 3,4, 5,6, 7}, aij(t), were scored on a 
discrete scale ranging from 1 to 4 or 5 (with 1 indicating the least 
severity in symptoms and 5 indicating very high severity in symptoms). 
We used this quality-of-life survey and de-identified CT scans and 
treatment plans for a total of 52 patients (57 patients were provided; 
however, five patients had incomplete data and were discarded in our 
analysis). 

The answers aij(t= 0) to the first survey taken before treatment were 
used as the baseline of symptoms before radiation therapy. Subsequent 
answers aij(t≥ 1) provide information on patient j’s symptoms associ
ated with question i. In order to reduce the dimensionality of the dataset 
collected over several weeks, we developed a single score for urinary- 
related symptoms and bowel-related symptoms. 

For each patient, we divided the questions and associated answers 
into those concerning urinary or bowel function and then identified the 
worst (maximum) score a∗

ij ≡ maxtaij(t) a patient reported throughout 
the multi-week treatment for each question. A single total difference score 
for each patient j, Δj, was computed as the difference a∗

ij − aij(0), sum
med over the urinary- or bowel-subset of answers i: 
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Δu
j =

∑7

i=1

[
a∗

ij − aij(0)
]
, Δb

j =
∑14

i=8

[
a∗

ij − aij(0)
]
. (1)  

here, we have ordered questions and corresponding answers associated 
with urinary function as i = {1,2,3, 4,5, 6,7} and the bowel-associated 
questions as i = {8,9,10,11,12,13,14}. The total difference scores, Δu

j 

and Δb
j , represent the total change in the quality of life associated with 

urinary and bowel function, respectively. 
Next, we used a cut-off (or threshold) value of 6 to convert the pa

tient’s quality-of-life responses into a binary classifier defined by the 
discrete Heaviside function 

yj ≡ H
(
Δj − 6

)
=

{
0 Δj < 6,
1 Δj ≥ 6. (2) 

Score thresholding is visualized in Fig. 1, where both the total 
changes in the bowel and urinary questionnaire scores are plotted for 
each patient, overlaid with colored boxes that mark the score cut-off 
value. A mid-point value of 6 was initially chosen for the threshold; 
however, we tested other threshold values in order to evaluate the 
sensitivity of the binary classifier, as detailed in the Results section. 

2.2. Image augmentation 

Previous biomedical studies focusing on image processing have used 
datasets as small as 85 data points [8] and as large as 100,000 data 
points [15]. Since the amount of data points we have is even smaller 
than 85, we decided to enrich our dataset prior to training our algo
rithms. We used the Fischer-Modersitzki (FM) curvature-based image 
registration technique [6] in order to generate new in silico patients as 
interpolations of existing patient data. The FM approach was developed 
in the context of image registration. Although this algorithm has not yet 
been implemented in open-source toolboxes, we chose it for its mathe
matical simplicity and efficient implementation. 

For completeness, we outline the core ideas of image registration 
algorithms here. Let d-dimensional images be represented by compactly 
supported mappings T,R : Ω→R where Ω = (0, 1)d. Specifically, the 
quantity T(x) is the intensity or image grey value at the spatial position 

x ∈ Ω. Given a reference image R(x) and a deformable template image 
T(x), a registration algorithm outputs a deformation, or displacement 
field, u : Rd→Rd such that when applied to the template image, 
T(x − u(x)) a resulting modified template more closely matches the 
reference, R(x). The problem is then how to find a desired deformation 
u = (u1, …, ud). This becomes an optimization problem of minimizing 
the difference between the deformed template Tu := T(x − u(x)) and the 
reference R(x). 

For any optimization technique, variations in registration methods 
arise and a metric for measuring the goodness of a deformation must be 
defined. Let D be the distance measure between the reference R and 
deformed template T, and let S be a measure of the smoothness of the 
deformation u. The FM approach consists of finding u by minimizing the 
joint functional J[u], 

J[u] : =D[R, T;u] + αS[u]. (3) 

The regularization parameter α is used to control the strength of the 
smoothness of the displacement versus the similarity of the images. The 
difference-squared measure D is given by 

D[R, T;u] : =
1
2
‖R − Tu‖

2
=

1
2

∫

Ω

(R(x) − T(x − u(x)))2dx, (4)  

and the curvature-based smoothness 

S[u] : = 1
2
∑d

j=1

∫

Ω

(
Δuj

)2dx, (5)  

with Neumann boundary conditions defined by 

∇uj(x)= 0, x ∈ ∂Ω, j = 1,…, d. (6) 

We find a minimizer u by first ensuring that the Gâteaux derivative of 
the objective function vanishes. The resulting Euler-Lagrange equations 
are 

f (x,u(x))+ αA[u](x)= 0, x ∈ Ω, (7)  

with 

f (x,u(x))= (R − Tu)⋅∇Tu(x)

= (R(x) − T(x − u(x)))⋅∇T(x − u(x)), (8)  

A[u](x)=Δ2u. (9) 

The above semi-linear partial differential equations (PDE) are known 
as the Navier-Lame biharmonic and diffusion equations. The Euler- 
Lagrange equations can be solved using the following fixed-point 
iteration 

αA
[
uk+1](x, t)= − f

(
x, uk(x, t)

)
, k ≥ 0, (10)  

u0 = 0. (11) 

Since the computational domain Ω is of a simple geometry in this 
case, a finite difference approximation for the derivatives can be used. 
This yields a linear system of equations that are solved in each iteration 
step to obtain the deformation u; more details of the discretization 
scheme we implemented to solve for u are given in Ref. [6]. 

Returning to our problem, the goal is to take each CT slice of patient 
A and interpolate it with each CT slice of patient B creating a new stack 
of CT image slices for a new “patient” C. We achieved this interpolation 
by applying the FM registration approach and selecting one stack of 
images to serve as the reference and another to serve as the template. We 
implemented FM in MATLAB, using the discretization approach outlined 
above and also the implementation outlined in Ref. [10]. A new inter
polated patient C was obtained by applying the deformation to the 
template CT image stacks. We performed this procedure on the 52 

Fig. 1. Total difference of qualiy-of-life survey scores for patients 1–52. Pa
tients who were classified as having a significant change in symptoms, defined 
by Δb

j ≥ 6 or Δu
j ≥ 6, are shown in red, while those with little symptom change, 

Δb
j ,Δ

u
j ≤ 5 are shown in blue. Total change in (a) bowel symptom scores, and 

(b) urinary symptom scores for each of the analyzed patients. 
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patients’ cropped CT image stacks for the bladder and the rectum 
respectively, thus producing 1326 new images for each organ. An 
example of the interpolated CT images we obtained using this method is 
shown in Fig. 2. 

2.3. Radiation plans 

Radiation plans were overlaid on a baseline CT scan to give the 
spatial distribution of applied radiation doses over the course of treat
ment. When the plan is mapped onto a CT image, high radiation dosage 
regions are denoted by high pixel intensity (white), while low dosages 
are represented by darker pixels. A cross-section of a representative 
radiation plan is shown in Fig. 3. We applied the same FM interpolation 
used before onto the radiation plan images for each in silico patient. 
Specifically, we interpolate between radiation plans of patient A and 
patient B to create a new stack of radiation plans for a new “patient” C. 

2.4. Convolutional neural network model 

Next, we constructed separate 3D, three-layer (three-level) con
volutional neural networks (CNN) for each organ. Each CNN had two 
channels as part of its input layer: one to process information related to 
the patient CT scans and another to process information related to the 
patient RT plans. The architecture of the model is illustrated in Fig. 4, 
and more details can be found in Table D2. 

The convolutional layers use filters of size 3 × 3 × 3 and strides of 1. 
Each of the three convolutional layers is followed by max pooling, which 
reduced the feature size by a factor of two on all three dimensions. We 
chose to use max pooling for our pooling method so that the filters 
captured the strongest (and thus highest) pixel value for each stride (we 
used strides of 1 for each filter and a pooling size of [2,2,2]). In addition, 
each convolutional layer is followed by an exponential linear unit (ELU) 
activation function defined as 

f (x) =
{

ex − 1 x < 0,
x x ≥ 0. (12) 

We used batch normalization (BN) after the convolution and ELU 
operations, which have been shown to update weights equally 
throughout the CNN, resulting in faster convergence [13]. In addition, 
we used drop-out (40% rate) to reduce overfitting since our dataset was 
small. Because our model is a classifier, we use a cross-entropy loss 
function that the network minimizes through back-propagation: 

Loss(k)= −
1
N

∑N

j=1
yjlogpk

(
yj
)
+
(
1 − yj

)
log

(
1 − pk

(
yj
))
, (13)  

where k is the step number, yj = {0,1} classifier label of the jth patient, 
and pk(yj) represents the predicted probability for the corresponding 
label at the kth iteration. 

Our input images are three-dimensional and of different sizes, 48×
48 × 32 for the rectum and 34 × 42 × 40 for the bladder. The images 
used in our study came from patients undergoing radiation after 

prostatectomy, so no prostates are included in our images or analyses. 
Both CT scan stacks and RT plans were cropped around the organ of 
interest (either the bladder or the rectum) with the respective doctor- 
annotated organ contours for each CT scan. The minimum size was 
chosen so that the organ of each patients could fit into the cropped 
images. We used cropped CT and RT images because the information 
outside of the organs of interest was not deemed useful for the purposes 
of this study. Cropping also minimized the computational power needed 
to run our algorithm. The final layer of the model consisted of two nodes: 
one providing the predicted probability that a patient would manifest a 
change in (urinary or bowel) symptoms throughout treatment and 
another giving the predicted probability that a patient would not man
ifest a change in (urinary or bowel) symptoms throughout treatment. In 
addition, the CNN produced a confusion matrix (for either the urinary or 
bowel symptoms) outlining how many patients it accurately predicted 
from the testing set. 

To assess the overall performance of our model, the CNN trained on 
39 patients with a batch size of 20 and learning rate of 0.001 for 
approximately 12 hours. It was then tested against the remaining 13 
patients. The CNN was trained on the original patient dataset, not the 
augmented one through FN interpolation, as only the 52 patient data 
had QoL information that could be used for model prediction. Patients 
were shuffled and randomly assigned to the training and testing sets to 
avoid bias. The CNN also employed a 5-fold cross-validation procedure 
on the training set, similar to the approach in Jiang et al. [7]. Each of the 
5 folds splits the training set into 31 training patients and 8 validation 

Fig. 2. Interpolation of CT images of the bladder using the FM algorithm. The 
interpolated image (c) is the deformed version of the template image (b) against 
the reference image (a). 

Fig. 3. A representative radiation plan. The highest doses correspond to the 
greatest pixel intensity (in white). Black pixels correspond to no radiation. 

Fig. 4. Architecture of the CNN classification model. We used three layers that 
had convolution, activation, and pooling. The last convolution layer was con
nected by fully-connected layers and a drop-out layer which dropped out 40% 
information to avoid over-fitting. The model outputs the probability that a 
patient will experience urinary or bowel symptoms and probability that a pa
tient will not experience symptoms. 
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patients, respectively. Every fold initialized a classifier (for a total of 5 
classifiers), from which we could select the model that performed best, 
based on its accuracy and number of true-positives, and evaluated it on 
the testing set. The cross-validation model and corresponding loss 
functions used can be visualized in Fig. 5. 

2.5. Autoencoder 

Due to the small training set and complexity of imaging data, directly 
training the CNN model resulted in overfitting and poor generalization 
to the validation set. Therefore, we decided to use transfer learning as a 
way to improve classification performance. To this end, we employed a 
convolutional autoencoder network that used a portion of the CNN ar
chitecture. Specifically, instead of connecting to a fully-connected layer 
after all the convolution layers, as we did with the CNN, the autoencoder 
was used to pre-train the network on unlabeled augmented image data 
(i.e., data including “synthetic” patients obtained from FM interpola
tion) by reconstructing the images. The convolutional autoencoder 
network architecture is illustrated in Fig. 6 and is similar to the U-net 
architecture used in related segmentation problems [2,8]. More details 
on autoencoder implementation can be found in Table D3. After the 
autoencoder was trained, we truncated the network at the start of the 
deconvolution layers without changing parameters and concatenated it 
to a fully connected layer that served as the output for our new CNN 
model. 

Training of the autoencoder allowed us to implement a transfer 
learning approach where we first trained the autoencoder network to 
reconstruct augmented patient images. We then assigned the near- 
optimal weights obtained from this autoencoder training as initial 
weights for the CNN network with the binary classifier. This pre-training 
turned out to be necessary in our study due to the small size of the 
original patient dataset. 

2.6. Statistical analysis for dose thresholding 

In order to further explore the relationship between QoL scores and 
RT dosage, we investigated whether there were any correlations be
tween RT dosage in certain organ regions and whether the patients 
experienced a change in symptoms related to specific organs. Based on 
correlations, we then computed ranges of RT dosage that could trigger 

Fig. 5. (a) Model cross-validation. We initialized 5 different models. For each 
model, in order to fully sample the data and evaluate model performance, the 
validation set was selected from a different training subset as illustrated in the 
diagram. (b) Training (red) and validation (blue) loss for the best model chosen 
through cross-validation. As shown in red, the training loss decreased signifi
cantly, but the validation loss remained around 0.2. 

Fig. 6. Convolutional Autoencoder. (a) Schematic of the architecture of the 
convolutional autoencoder network. Three layers have convolution, activation, 
and pooling. The network deconvolves with activation and pooling for three 
more layers. The network aims to reconstruct the input image and learn the key 
features of the CT scans and RT plans. (b) Autoencoder loss while training on 
the bladder data. The blue curve shows the loss for the validation set; the red 
curve shows the loss for the training set. Both decrease with the number of 
iterations of the autoencoder. 
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these changes in QoL. 
We conducted our analysis on larger (thicker contour) regions sur

rounding doctor-annotated organ contours for two reasons. First, 
doctor-annotated organ contours were established before treatment; 
however, organ shape and position may shift between daily treatments. 
Moreover, we expanded the region beyond annotated organ boundaries 
because inflammation can arise from radiation delivered outside the 
organ. This organ-exterior radiation can impact the organ and corre
sponding reported symptoms. The region outside the contour was con
structed in such way so that the farthest boundary points in the 
surrounding region fell within a pre-selected distance (pixels) from the 
doctor-annotated contour (note that our regions included the doctor- 
annotated contour). To avoid arbitrary selection of the surrounding re
gion, we systematically increased the size of the surrounding organ re
gions and conducted statistical analysis for each case. This allowed us to 
obtain more information about the RT dosage located surrounding the 
organ positions, as originally annotated. Had we analyzed RT dose only 
on the original organ doctor-annotated contours, we may not have had 
the most useful information because of the uncertainty in the organs’ 
positions during treatment. Some representative regions with the cor
responding RT dosage are shown in Fig. 7. 

Next, we defined d(Ra
jk) as the average RT dose measured in cGy for 

each patient j and for each selected region Ra
jk with maximum sur

rounding region thickness of k pixels. We use a = 1 to represent regions 
around the bladder and a = 2 to represent regions around the rectum. 
We examined regions with maximum thickness between k = 1 to k = 8 
pixels. 

Organ sensitivity. On each region, we investigated whether differ
ences in average RT dosage across different patients had an impact on 
their QoL scores throughout treatment. To accomplish this, we con
verted the QoL survey scores into a binary classifier per question as 
follows 

yij ≡ H
((

a∗
ij − aij(0)

)
− 2

)
=

{
0 a∗

ij − aij(0) < 2,
1 a∗

ij − aij(0) ≥ 2.
(14) 

Using this approach, we obtained a binary value yij for each survey 
question i and patient j so that we could identify which symptoms were 
significantly affected by the corresponding RT dosage. 

For each selected region with maximum distance k, we first 
compared the mean and range of average doses between the groups of 
patients who had significant change in all symptoms and those who did 
not (i.e., yj = 1 vs yj = 0 from Eq. (2)). 

This analysis allowed us to understand how the group difference was 
affected by the thickness of the organ region, k. Then, the binary data for 
each survey question were used in a one-way ANOVA, which compared 
the distribution of RT dosage d(Ra

jk) between the two patient groups 
(yij = 1 vs yij = 0) for a given symptom question i. Recall that using our 
convention urinary questions, i = 1 : 7 correspond to regions R1

jk and 
bowel-associated questions, i = 8 : 14 correspond to regions R2

jk. This 
analysis allowed us to identify which specific symptoms were signifi
cantly affected by the corresponding RT dosage for each given region 

and what size of surrounding region, k, captures any correlations, if any, 
between symptoms and RT dosage. 

Dosage Thresholding. Using the most effective size k of the region 
surrounding an organ (inferred from previous analysis), we next inves
tigated the range of RT dosages that could trigger significant changes in 
symptoms. To perform this analysis, we first separated organ regions 
into two parts (or subregions). 

To obtain each organ subregion, we combined all CT images for each 
patient into a cube and separated it into either top and bottom, or front 
and back regions. Since the bottom of the bladder is closer to the pros
tate, we speculated this region would be exposed to more radiation and 
thus be associated with a higher incidence of collateral urinary symp
toms. Therefore, we split the bladder into top and bottom regions. Since 
the front of the rectum is closer to the prostate, we anticipated it would 
be exposed to more radiation. Thus, we split the rectum into front and 
back regions. Organ regions are illustrated in Fig. 7(c). 

For each organ region and its two corresponding subregions, we 
identified the lowest RT dose (zero false positive point) for patients with 
changes in symptoms (yj = 1) and the highest RT dose (zero false 
negative point) for patients that did not have a change in symptoms 
(yj = 0) and from which we inferred how high RT dosage had to be in 
different parts in order to trigger collateral symptoms. 

2.7. Summary of study workflow 

Fig. 8 shows a flowchart that summarizes all the steps we took in this 
study. Specifically, there were two main branches for our approach. One 
branch included image analysis and prediction of QoL scores using 
image augmentation and transfer learning for construction of a predic
tive CNN algorithm. A second branch used statistical analysis to capture 
specific organ regions that seemed to correlate most with QoL changes; 
this statistical analysis could be used to predict organ sensitivity to ra
diation. Both analysis branches complement each other and enrich our 
analysis of QoL scores. 

3. Results and discussion 

3.1. CNN results 

We evaluated the performance of the CNN network using a measure 
of accuracy defined to be the number of patients with correctly predicted 
outcomes over the total number of patients. We estimated the accuracy 
of our results for the bladder and the rectum symptoms by running our 
algorithm 10 times. We did not find consistent patterns for the bladder, 
as we obtained a median accuracy of 38% with a range of 23%–53%. 
This indicated that the CNN model, using the available data, did not find 

Fig. 7. Organ contouring and organ regions. (a) A CT slice of the bladder wall 
of patient 32 showing his organ contour. (b) Same as (a) but showing the 
thicker contour (k = +8 pixels) for RT-symptom analyses. (c) Lateral view di
agram showing how the bladder (yellow) and rectum (red) were split for spatial 
RT analyses. Image from http://libcat.org/anatomy-of-prostate-cancer. 

Fig. 8. A flowchart summarizing our analysis of patient images and quality-of- 
life surveys. Two analysis branches are highlighted. One branch encompasses 
image analysis through an autoencoder and a CNN for patient QoL predictions. 
A second statistical analysis branch examines correlations of organ regions with 
changes in QoL scores as a way to predict organ sensitivity. Both approaches are 
used complementary for our QoL analysis. 
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any patterns to classify the patients for bladder symptoms. For the pa
tients with a change in bladder symptoms (denoted by bladdersymp in 
Fig. 9), there was a lot of variability in model predictions ranging any
where from 0% to 50% with a median of 27%. 

In contrast, promising results were obtained for classification of 
rectal symptoms. Our model with cross-validation accurately predicted 
a median of 74% changes in rectal symptoms with a range of 62%– 
84.5%, as illustrated in Fig. 9. For patients with a change in symptoms, 
(denoted by rectumsymp in Fig. 9), the model was accurately predicting 
the change in symptoms with a median of 56% with a range from 25% to 
100%. 

In Table 1, we show the confusion matrix for the rectum model with 
the validation set that resulted in an 84.6% accuracy. Of the 10 patients 
without a change in symptoms, 9 of them were accurately predicted. Of 
the 3 patients with a change in symptoms, 2 were accurately predicted. 
The result is promising because the model is not always predicting one of 
the classes; instead, it is picking up some patterns from the patients’ data 
so that it can classify the patients in either category. 

We discuss next the steps that we took to ensure that our results were 
not influenced by our choice of threshold value used to delineate 
changes in quality of life. 

3.2. Outcome thresholding 

In addition to classifying patients based on their quality-of-life score 
with a cut-off value of 6, we also used thresholds of 5 and 7 to train the 
classification model. We found accuracy rates similar to those found 
using a threshold of 6. 

For the data reclassified with a threshold of 5, our model with cross- 
validation accurately predicted an average of 69% changes in rectal 
symptoms. For the data reclassified with a threshold of 7, we found an 

average accuracy rate of 69%. As there are no considerable differences 
in results when we change the threshold, reinforcing that our original 
choice of a cut-off-value, the half of the greatest sum of changes, is a 
reasonable way to classify patients based on their quality-of-life scores. 

3.3. Statistical analysis 

In Fig. 10(a)-(b) we show the p-values obtained from one-way 
ANOVA comparing the distribution of average RT dosage in surround
ing organ shells (for varying thickness) between patients with or without 
significant changes in symptoms (for each of the QoL questions). We 
observed no significant correlations for the bladder. A more interesting 
signal arises between bowel symptoms and average shell doses where we 
see that p − values decrease with increasing shell size (or as we include 
more surrounding regions around the rectum). Fig. 10(c)–(d) show the 
average doses for patients with and without symptoms, as a function of 
averaging volume. Patients with symptoms appear to have larger 
rectum-exterior radiation doses, indicating that bowel function may be 
sensitive to radiation delivered to tissues outside the rectum. Since the 
applied RT dosage is defined relative to the anatomy before treatment 
and the organs may shift between treatment, the result depicted in 

Fig. 9. Accuracy of our trained classification model. The overall accuracy for 
the bladder and rectum and the model accuracy within patients who experi
enced symptoms (denoted with “symp”). For the bladder and bladder symptom 
accuracies, there were no significant differences, as the median accuracy were 
below the 50% line. For the rectum, both the overall accuracy for predicting 
rectum and median rectum symptoms exceed the 50% line. 

Table 1 
Confusion matrix for rectum model. Table shows the accuracy for one 
completely validated model. We show the actual classification of the patient, 
and what the model predicted.  

Confusion Matrix (Rectum Symptoms) 

Actual Predicted  
No Change Change 

No Change 9 1 
Change 1 2  

Fig. 10. Correlations between mean doses and symptoms for each organ. (a–b) 
p-values for each question as a function of the volume taken outside the bladder 
and rectum “shells” for inclusion in the average radiation dose received, 
respectively. (c–d) The mean dose as a function of averaging volume divided 
into patients with and without symptoms. Note that larger averaging volumes 
outside the rectum are associated with higher average doses and higher average 
doses are seen to correlate with bowel symptoms. 
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Fig. 10(d) may also be a consequence of a smaller (decreasing) gradient 
of dosage for symptomatic patients. 

Based on our results thus far we decided to fix the size of the sur
rounding organ region for analysis to k = 8 pixels since this value cor
responds to the region thickness with the lowest p values shown in 
Fig. 10. We next proceed to compute dose thresholds for this fixed 
surrounding region thickness for each organ. In Fig. 11(a), we assumed 
zero false positive and zero false negatives to find a “safe” range of mean 
doses 3081 − 4175 cGy for the expanded rectum region, implying that a 
dose greater than ̃ 4200 cGy could induce the development of collateral 
symptoms. If we further assume the radiation dosages to the different 
parts of the rectum are uncorrelated, we can also independently find 
dosage thresholds for the front and back of the expanded rectum regions. 
We observed that the front of the expanded rectum region could tolerate 
a higher range of mean dosage (4123–5586 cGy) than the back of the 
expanded rectum region (901–3009 cGy). These threshold values are 
listed in Fig. 11(a) and similar results for the top, bottom, and total 
bladder regions are shown in Fig. C.14 in Appendix B. 

While this conclusion is consistent with the published correlations 
found between the rectal symptoms and rectum dosages in the interval 
2500–4200 cGy [1], we cannot rule out that it could result from a 
possible collinear effect in which patients received high doses to both 
front and back of the rectum. Since the symptoms cannot be associated 
with excess radiation to the front or back of the rectum, the 
region-dependent dosage thresholds are likely a function of the total 
radiation delivered to all regions. The dosage-symptom instances are 
shown in a scatter plot in Fig. 11(b). Here, symptoms are typically 
associated with larger overall dosages. The current patient data are not 
sufficient to resolve independent region-specific thresholds. 

For the bladder, the dose thresholds for the top and bottom of the 
bladder showed significant overlap: the top of the bladder could tolerate 
a mean dose of 0–5147 cGy while the bottom could tolerate a mean dose 
of 3622–6141 cGy (see Appendix B). The corresponding scatter plot 
shows no discernible correlation between symptoms and sampled doses. 

Finally, we computed the correlations between changes in symptoms 
for the rectum questions and similarly for urinary symptoms, shown in 
Table D.4. We observed correlations in between questions for rectum 
and only two questions in bladder. We also computed correlations be
tween sum of changes in rectal and urinary symptoms and observed little 
correlation there. We also did not obtain correlations between symptom 
changes and organ fractions that received more than common dose 

constraints of 40 and 65 Gy, as illustrated by scatterplots of the changes 
in QoL scores as a function of the fraction of the organ receiving more 
that the threshold levels in Figure B13. Taken together, these data seem 
to indicate that bowel and urinary symptoms can be analyzed inde
pendently and that there is possibly more consistent reporting of bowel 
symptoms, or, that there is overlap in the information being covered 
between bowel symptom questions. 

4. Summary and conclusions 

With the lowering of the prostate cancer mortality rate, an emphasis 
has been placed on increasing the quality of life for patients undergoing 
radiation treatment. Utilizing machine learning algorithms and statis
tical methods, we provide an in-depth analysis on the spatial dosage 
provided to each patient. By analyzing a patient’s anatomical CT image 
and the radiation therapy dosing, we were able to connect under
standing of how radiation influences side-effects. We were able to do this 
by using a convolutional neural network that analyzed the CT image and 
associated radiation dosage. Our second method used ANOVA analysis 
on summarized spatial information. Using a brute-force technique, we 
were able to identify that splitting the bladder into a top region and 
bottom and the rectum into a front and back region was the best 
approach. Our outcomes from ANOVA agreed with our convolutional 
neural network and also provided dosage thresholds for each region. 
These results for the dosage thresholds for the rectum and bladder align 
with the results we obtained from our CNN prediction model, but should 
be interpreted with care. The thresholds across different regions should 
not be thought of as independent parameters because the doses applied 
in the patient samples are correlated and the binary, whole patient 
symptom indicators are not attributed to any region. Moreover, the 
number of patients and the range of radiation doses they received are 
not large enough clearly resolve sharper thresholds. This explains the 
wide range for the bladder dosage thresholds and the overlap we 
observed between the top and bottom of the bladder. 

On the other hand, our CNN prediction model found that the radi
ation dose (and the CT scan features) does in fact play a large role in 
explaining the differences in symptom development across patients. 
Physiologically, it is possible that radiation dose causing an inflamma
tory reaction to the area just outside the rectum may actually impact the 
rectum and patient symptoms. This is an interesting and novel finding, 
and would need further studies to confirm. 

In conclusion, we developed a deep learning framework and com
plementary statistical methods to identify the connection between 
spatial dosage and symptoms caused by prostate radiation therapy. A 
strength of machine learning is that it can produce accurate predictions 
if presented with sufficiently large datasets; however, the underlying 
mechanisms or specific features are difficult to discern in these ap
proaches. In our application, it has the potential not only to accurately 
predict patient side effects, but also to learn what regions of the organs 
might be responsible for specific side effects. As there is significant in
terest in integrating machine learning approaches with more traditional 
modeling approaches, we also found that classical statistical approaches 
was also useful in our problem. We expect that our CNN results will be 
much more accurate upon subsequent training on larger patient datasets 
and can be extended to predicting specific question scores to further 
refine treatment planning. 
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Fig. 11. Scatter plots, thresholds and corresponding RT dosages for each 
rectum region. (a) Scatter plot for patients and their corresponding front and 
back RT doses for rectum. Patients with symptoms and without symptoms are 
shown in red and blue, respectively. The distribution of sampled RT doses are 
just broad enough to observe that higher doses lead to symptoms. The mean 
front and back radiation doses of patients with and without symptoms are 
indicated by the thick red and blue bars on the x- and y-axes, respectively. (b) 
Table of computed thresholds assuming independence. The current data are 
insufficient to resolve anything other than a total dosage thresholding effect. 
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Appendix A. Quality-of-Life Survey

Fig. A.12. Quality-of-Life surveys given to patients before and weekly after RT. In our analysis, we assigned the bowel-related questions 1–7, and relabeled the 
urinary-related questions 8–14. 
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Appendix B. No correlation with V40Gy and V65Gy radiation thresholds

Fig. B.13. Scatter plots of the changes in QoL scores as a function of the fraction of the organ receiving more that the threshold levels 40Gy and 65Gy. There is no 
apparent correlation with how much of the organ is exposed beyond these threshold levels. 

Appendix C. Bladder region thresholds

Fig. C.14. Scatter plots and thresholds of RT doses for each bladder region. (a) Scatter plot of RT doses for the bottom and top of the bladder. The mean front and 
back radiation doses of patients with and without symptoms are indicated by the thick red and blue bars on the x- and y-axes, respectively. We see less separation of 
doses between patients with symptoms and without symptoms for this organ, compared to rectum. (b) Table of independently computed thresholds. These thresholds 
were estimated from logistic analysis with significant dosage overlap. For the bladder, there is a much smaller range in bottom bladder RT dose and no clear 
thresholds, i.e., the patients with and without symptoms have significant overlap in their RT dosages.  
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Appendix D. Autoencoder and CNN details 

Table D.2 
Parameters of the CNN prediction model.  

Details of CNN prediction model 

Layer Filter Number of Stride Pooling Dropout  

Size filters Size Size Rate 

Conv1+Elu 3× 3× 3  16 1 1 – 
MaxPool1+BN 2× 2× 2  – 2 0 – 

Conv2+Elu 3× 3× 3  32 1 1 – 
MaxPool2+BN 2× 2× 2  – 2 0 – 

Conv3+Elu 3× 3× 3  64 1 1 – 
MaxPool3+BN 2× 2× 2  – 2 0 – 

FC + Relu – 1024 – – – 
Dropout – – – – 0.4 
Softmax – – – – –   

Table D.3 
Parameters of the autoencoder pre-train model.  

Details of autoencoder pre-train model 

Layer Filter (Upsampling) Number of Stride Pooling  

Size filters Size Size 

Conv1+Elu 3× 3× 3  16 1 1 
MaxPool1+BN 2× 2× 2  – 2 0 

Conv2+Elu 3× 3× 3  32 1 1 
MaxPool2+BN 2× 2× 2  – 2 0 

Conv3+Elu 3× 3× 3  64 1 1 
MaxPool3+BN 2× 2× 2  – 2 0 

Upsample1 2× 2× 2  – – – 
Conv4+Elu 3× 3× 3  64 1 1 
Upsample2 2× 2× 2  – – – 
Conv5+Elu 3× 3× 3  32 1 1 
Upsample3 2× 2× 2  – – – 
Conv6+Elu 3× 3× 3  16 1 1 

Conv7+Sigmoid 3× 3× 3  2 1 1   

Table D.4 
Spearman correlation between rectal and urinary symptoms and correlation among different 
types of symptoms within them. For comparison among different types of symtoms, only 
correlations > 0.4 are shown in the table.  

Spearman correlation among symptoms 

Change in Rectal Symptoms 
Q1 vs Q2 0.744 Q2 vs Q4 0.458 
Q1 vs Q3 0.404 Q2 vs Q5 0.457 
Q1 vs Q4 0.517 Q3 vs Q7 0.441 
Q1 vs Q5 0.532 Q6 vs Q7 0.431 
Q2 vs Q3 0.426  

Change in urinary symptoms 
Q8 vs Q11 0.459  

Sum of changes in rectal and urinary symptoms 
Rectal vs Urinary 0.338  
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