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Abstract
Different ways of calculating mortality during epidemics have yielded very different results,
particularly during the current COVID-19 pandemic. For example, the ‘CFR’ has been
interchangeably called the case fatality ratio, case fatality rate, and case fatality risk, often without
standard mathematical definitions. The most commonly used CFR is the case fatality ratio,
typically constructed using the estimated number of deaths to date divided by the estimated total
number of confirmed infected cases to date. How does this CFR relate to an infected individual’s
probability of death? To explore such issues, we formulate both a survival probability model and an
associated infection duration-dependent SIR model to define individual- and population-based
estimates of dynamic mortality measures to show that neither of these are directly represented by
the case fatality ratio. The key parameters that affect the dynamics of different mortality estimates
are the incubation period and the time individuals were infected before confirmation of infection.
Using data on the recent SARS-CoV-2 outbreaks, we estimate and compare the different dynamic
mortality estimates and highlight their differences. Informed by our modeling, we propose more
systematic methods to determine mortality during epidemic outbreaks and discuss sensitivity to
confounding effects and uncertainties in the data arising from, e.g., undertesting and
heterogeneous populations.

1. Introduction

Mortality metrics are key quantities describing the
severity of a viral disease [1]. During an outbreak,
these metrics typically evolve in time before converg-
ing to a constant value and can be defined in a number
of ways. Commonly used metrics are the case fatal-
ity ratio, case fatality rate, and case fatality risk, which
are all confusingly denoted ‘CFR’ [2, 3]. Fatality rate
implies a change in deaths per unit time, risk implies
an individual probability, while ratio implies a frac-
tion of two numbers, typically populations. CFR is
most often defined as the ratio of the total estimated
number of deaths to date, D(t), to the estimated num-
ber of all confirmed cases to date Nc(t) [1, 4–6].
These numbers are key to estimating disease sever-
ity. Usually, antibody [7] and reverse transcription-
polymerase chain reaction (RT-PCR) testing [8]
is used to confirm SARS-CoV-2-positive patients.

To find D(t), the number of patients who actually die
of COVID-19 must also be quantified. In Italy, deaths
of patients with positive RT-PCR testing for SARS-
CoV-2 are reported as COVID-19 deaths, but the cri-
teria for COVID-19-related deaths are currently not
clearly defined and may vary from region to region
[9].

Studies that define CFR as the ‘case fatality risk’
associate it with the probability of death of an indi-
vidual confirmed case within ‘a period of time’ [10].
Yet others define case fatality ratio as simply ‘case
fatality’ and reserve the term case fatality ratio to
mean the ratio of the case fatalities of two dif-
ferent diseases [3]. Infection fatality ratios (IFR),
the number of deaths to date divided by the num-
ber of all infected individuals, have also been used
[11–13] although the IFR = D(t)/N(t) requires an
estimate of N(t), the number of total (including
unconfirmed) infected individuals. Similar to the
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Figure 1. Mortality estimates. (a) and (b) estimates of mortality ratios (see equations (9) and (14)) of SARS-CoV infections in
Hong Kong (2003) [20] and SARS-CoV-2 infections in Italy. (c) Evolution of the cumulative number of infected (red), death
(black), and recovered (green) cases. The size of the circles indicates the number of cases in the respective compartments on a
certain day. Note that CFR and M0

p(t) have exhibited qualitatively similar behavior across different epidemics. The data are based
on reference [21].

ambiguity in the definition of CFR, the IFR has also
been called the ‘infection fatality risk,’ the probability
of an individual dying conditioned on being infected.
This individual-based definition of IFR is thus
equivalent to the individual-based case fatality risk.
However, in nearly all practical cases, both the CFR
and IFR are estimated from aggregated population
data from past outbreaks [4] as well as from those of
the recent SARS-CoV-2 outbreaks [1, 11, 13–17].

Since case fatality ratio is the most commonly
used, we henceforth define CFR = D(t)/Nc(t). We
show examples of CFR curves (orange), which typ-
ically vary significantly both by region and in time,
in figure 1 and in the results and discussion section.
During the severe acute respiratory syndrome (SARS)
outbreak in Hong Kong in 2003, the World Health
Organization (WHO) also used the aforementioned
estimate to obtain an initial CFR ∼3% while the
final values, after resolution of infections, approached
17.0% [18, 19] (see figure 1(a)).

Another population-based mortality ratio is
Mp(t) = D(t)/(D(t) + R(t)), the number of deaths
divided by the sum of death and recovered cases
(the number of resolved cases), up to time t is shown
in blue in figures 1(a) and (b). In principle, Mp(t)
should be a better measure of the likelihood of death,
but it is underestimated by the CFR = D(t)/Nc(t).
For example, on April 25, 2020, the worldwide
Mp(t) was 203164/(203164+836612) ≈ 20%, signifi-
cantly higher than the April 25, 2020 CFR(t) =
D(t)/Nc(t) = 203 164/2919 404 ≈ 7% [22]. Despite
this underestimation, the CFR is still commonly used
by the WHO and other health officials, such as in the
ongoing SARS-CoV-2 outbreaks [1, 12, 13, 15, 17]
(see table 1). As shown in figure 1(c), the CFR would
correspond to the mortality ratio only if all tested

Table 1. Different CFR estimates of COVID-19.

Reference CFR

Xu et al [5, 25] and Mahase [26] 2%
Wu and McGoogan [6] 0.1–1% (outside Wuhan)
World Health Organization [27, 28] 2–4%
Porcheddu et al [29] 2.3% (Italy and China)
Peeri et al [30] 2%

infected individuals recover. Such underestimations
by CFRs may lead to insufficient countermeasures
and a more severe epidemic [23, 24].

Since meaningful and accurate mortality metrics
are critical for assessing the risks associated with epi-
demic outbreaks, we first unambiguously define the
probability M1(t) that a single, newly infected indi-
vidual will die of the disease by a given time. This
probability has also been called the case fatality risk,
but without specifying its dependence on time after
infection [10]. This intrinsic mortality or probabil-
ity of death, can be identified as one minus the
survival probability of a single infected individual.
It should be an intrinsic property of the virus and the
infected individual, depending on age, health, access
to health care, etc, and not directly on the population-
level dynamics of infected and recovered individu-
als. Whether this individual infects others does not
directly affect his probability of eventually dying [31].

In the next section, we derive a survival prob-
ability model for M1(t) similar to that in Ghani
et al [32]. Importantly, our individual survival model
incorporates the duration of infection (including an
incubation period) before a patient tests positive at
time t = 0. However, the CFR and other mortal-
ity measures are typically reported based on pop-
ulation data. Do these population-based measures,
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including CFR, provide reasonable measures of the
probability of death of an individual? To address
these and related issues, we develop an analogous
population-based mortality metric based on a disease
duration-structured SIR model. While population-
based estimates of CFR are typically not a meaning-
ful measure of individual mortality, under simplifying
assumptions, the population-based mortality ratio
Mp(t) is more closely related to the true probability
of death M1(t) [32].

We will use the same rate parameters in our indi-
vidual and population models to compute and com-
pare the different mortality measures. By critically
analyzing and comparing these estimates, the CFR,
and a ‘delayed’ case fatality ratio CFRd, we illus-
trate and interpret the differences among these mea-
sures and discuss how changes or uncertainty in
the data affect them. In the results and discussion
section, we identify a correction factor to transform
population-level mortality estimates into individual
mortality probabilities, and discuss the effects of other
possible confounding factors such as heterogeneous
populations and undertesting (unconfirmed cases).

2. Mortality measures

In this section, we present different mortality mea-
sures for confirmed cases and outline their underlying
mathematical models.

2.1. Intrinsic individual mortality rate
Consider an individual that, at the time of positive
testing (t = 0), had been infected for a duration τ 1.
A ‘survival’ probability density can be defined such
that P(τ , t|τ 1)dτ is the probability that the patient is
still alive and infected (not recovered) at time t > 0
and has been infected for a duration between τ and
τ + dτ . Since τ 1 is unknown, it must be estimated
or averaged over some distribution. The individual
survival probability evolves according to [33].

∂P(τ , t|τ1)

∂t
+

∂P(τ , t|τ1)

∂τ

= −(μ(τ , t|τ1) + γ(τ , t|τ1))P(τ , t|τ1), (1)

where the death and recovery rates, μ(τ , t|τ 1) and
γ(τ , t|τ 1), depend explicitly on the duration of
infection at time t and can be further implicitly
stratified according to patient age, gender, health
condition, etc [1, 34]. They may also depend
explicitly on time t to reflect changes in clinical pol-
icy or available health care. For example, enhanced
medical care may decrease the death rate μ, giving the
individual’s intrinsic physiological processes a chance
to cure the patient.

If we assume an initial condition of one individ-
ual having been infected for time τ 1 at the time of
confirmation, equation (1) can be solved using the
method of characteristics shown in the appendix A.

From the solution P(τ = t + τ 1, t|τ 1), one can derive
the probabilities of death and recovery by time t as

Pd(t|τ1) =

∫ t

0
dsμ(τ1 + s, s)P(τ1 + s, t|τ1),

Pr(t|τ1) =

∫ t

0
ds γ(τ1 + s, s)P(τ1 + s, t|τ1). (2)

The probability that an individual died before
time t, conditioned on resolution (either death or
recovery), is then defined as

M1(t|τ1) =
Pd(t|τ1)

Pd(t|τ1) + Pr(t|τ1)
. (3)

Equations (2) and (3) also depend on all other rel-
evant patient attributes such as age, accessibility to
health care, etc. In the long-time limit, when res-
olution has occurred (Pd(∞|τ 1) + Pr(∞|τ 1) = 1),
the individual mortality ratio is simply M1(∞|τ 1) =
Pd(∞|τ 1). In order to capture the dependence of
death and recovery rates on the time an individual has
been infected, we propose a constant recovery rate γ

and a piecewise constant death rate μ(τ |τ 1) that is not
explicitly a function of time t:

γ(τ , t|τ1) = γ, μ(τ |τ1) =

⎧⎨
⎩

0 τ � τinc

μ1 τ > τinc

. (4)

The parameter τ inc is the incubation time during
which the patient is asymptomatic, has negligible
chance of dying, but can recover by clearing the virus.
In other words, some patients fully recover without
ever developing serious symptoms.

For coronavirus infections, the incubation period
appears to be highly variable with a mean of τ inc ≈
6.4 days [36]. We can estimate μ1 and γ using recent
individual patient data from Singapore where 178
patients (mean age: 46 years) had been tracked from
the date on which their first symptoms occurred until
they recovered [35], on average, after 13.7 days. We
show the recovery-time distribution in figure 2(a).
Compared to other existing datasets, the Singapore
COVID-19 dataset provides complete line lists for
a large number of patients and is being updated
regularly.

We then use the global mortality of all resolved
cases (≈20% [22]) to determine the dependence
between μ1 and γ via μ1/(μ1 + γ) ≈ 1/5 (or γ/μ1 ≈
4). The constant recovery and post incubation death
rates [37] are thus

γ ≈ 1

13.7
/day = 0.073/day and

μ1 ≈ γ/4 = 0.018/day. (5)

Using these numbers, the recovery and death rate
functions γ(τ , t|τ 1) and μ(τ |τ 1) are plotted as func-
tions of τ in figure 2(b). We show the evolution of
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Figure 2. Individual mortality. (a) Recovery time after first symptoms occurred based on individual data of 178 patients [35].
The inset shows the age distribution of these patients. (b) Death- and recovery rates as defined in equation (4). The death rate
μ(τ 1) approaches μ1 for τ 1 > τ inc, where τ inc is the incubation period and τ 1 is the time the patient has been infected before first
being tested positive. (c) The individual mortality ratio M1(t|τ 1) for τ inc = 6.4 days at different values of τ 1. Note that the
individual death probability Pd(t|τ 1) and M1(t|τ 1) are nonzero only after t > τ inc − τ 1. (d) The asymptotic individual mortality
ratio M1(∞) (see equation (3)) as a function of τ 1.

M1(t|τ 1) at different values of τ 1 in figure 2(c). The
corresponding long-time limit M1(∞|τ 1) is readily
apparent in figure 2(d): for τ 1 � τ inc, M1(∞|τ 1) =
μ1/(μ1 + γ) ≈ 0.2, while M1(∞|τ 1) < μ1/(μ1 + γ)
when τ 1 < τ inc. The smaller expected mortality asso-
ciated with early identification of infection arises
from the remaining incubation time during which
the patient has a chance to recover without possibil-
ity of death. When conditioned on testing positive at
or after the incubation period, the patient immedi-
ately experiences a positive death rate, increasing his
M1(∞|τ 1).

In order to infer M1 (and also indirectly μ and
γ) during an outbreak, a number of statistical issues
must be considered. First, if the outbreak is ongo-
ing, there may not be sufficient long-time cohort data.
Second, τ 1 is unknown. Since testing typically occurs
at the onset of symptoms, most positive patients will
have been infected a few days earlier. The uncertainty
in τ 1 can be represented by a probability density ρ(τ 1)
for the individual. The expected mortality can then be
constructed as an average over ρ(τ 1):

M̄1(t) =
P̄d(t)

P̄d(t) + P̄r(t)
, (6)

where P̄d(t) and P̄r(t) are the τ 1-averaged probabili-
ties death and cure probabilities.

Some properties of the distribution ρ(τ 1) can be
inferred from the behavior of patients. Before symp-
toms arise, only very few patients will know they have
been infected, seek medical care, and get their case

confirmed (i.e., ρ(τ 1) ≈ 0 for τ 1 ≈ 0). The major-
ity of patients will seek care when they have been
infected for approximately τ inc. We choose the gamma
distribution

ρ(τ1; n,λ) =
λn

Γ(n)
τn−1

1 e−λτ1 (7)

with shape parameter n = 8 and rate parameter
λ = 1.25/day so that the mean n/λ is equal to
τ inc = 6.4. Note that, independent of the distribu-
tion ρ, the average M̄1(t) is bounded from above by
M1(∞) = μ1/(μ1 + γ) for all times t.

Upon using the rates in equation (4) and averag-
ing over ρ(τ 1), we derived expressions for P̄(t), P̄d(t),
and P̄r(t) which are explicitly given in the appendix
A. Using the values in equation (5) we find an
expected individual mortality ratio M̄1(t) (which are
subsequently plotted in figure 3) and its asymptotic
value M̄1(∞) = P̄d(∞) ≈ 0.19 (slightly less than
M1(∞|τ 1) due to averaging over ρ(τ 1)). Of course,
it is also possible to account for more complex time-
dependent forms of γ and μ1 [38], but we will pri-
marily use equation (4) in our subsequent analyses.
We stress that M1(t) tracks mortality of a cohort of
individuals infected at about the same time, and does
not include mortality of newly infected individuals.
Thus, it can be trivially stratified according to differ-
ent age groups and defined as the mortality M1(t|μ)
of each age subpopulation with death rate μ.

In the next subsection, we define population-
based estimates for mortality ratios, Mp(t), and
explore how they can be computed using SIR-type
models. By comparing M̄1(t) to Mp(t), we gain
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Figure 3. Population-level mortality estimates. Outbreak evolution and mortality ratios without containment measures (a) and
(c) and with quarantine (b) and (d). The curves are based on numerical solutions of equation (10) using the initial condition
I(τ , 0) = ρ(τ ; 8, 1.25) (see equation (7)). The death and recovery rates are defined in equations (4) and (5). We use an infection
rate (equation (16)) defined by β0S0 = 4.64/day, which we estimated from the basic reproduction number of SARS-CoV-2 [36].
To model quarantine effects, we set β0S0 = 0 for t > 50 days. We show the mortality-ratio estimates M0

p(t) and M1
p(t) (see

equation (14)) and CFRd(t, τ res) (see equations (8), (12), and (14)). CFRd(t, τ res = 14 days) behaves very differently from CFR,
initially decreasing for τ res > 0 and significantly overestimating M0

p(t) but providing a reasonable estimate of M̄1(t) = M1
p(t)

without quarantine. Note that under quarantine, CFR(∞), CFRd(∞), and M0
p(∞) approach the same value since they reflect the

mortality ratio of the total cohort at the time of quarantine. On the other hand, M̄1(t) = M1
p(t) reflects the ratio of the initial

cohort at the start of the outbreak and remains unchanged from the no-quarantine case.

insight into whether population-based metrics are
good proxies for individual mortality ratios.

2.2. Relation to infection duration-dependent
SIR model
While individual mortalities can be estimated by
tracking many individuals from infection to recov-
ery or death, often, the available data are not resolved
at the individual level and only total populations are
given. Typically, one only has the total number of
confirmed cases accumulated up to time t, Nc(t), the
number of deaths to date D(t), and the number of
cured/recovered patients to date R(t) (see figure 1).
Note that Nc(t) includes unresolved cases and that
Nc(t) � R(t) + D(t). Resolution (death or recovery)
of all patients, Nc(∞) = R(∞) + D(∞), occurs only
well after the epidemic completely passes.

A variant of the CFR commonly used in the liter-
ature is the delayed CFR [5, 6]

CFRd(t, τres) =
D(t)

Nc(t − τres)
, (8)

which uses an earlier and smaller case number to
compensate for underestimation by the standard CFR

CFR(t) =
D(t)

Nc(t)
≡ CFRd(t, τres = 0). (9)

The delay τ res used is typically the time between the
day symptoms first occurred and the day of death or
recovery. To determine a realistic value of the delay

time τ res (which can be qualitatively interpreted as
a resolution time), we use data on death/recovery
periods of 36 tracked COVID-19 patients [39] and
find that patients recover/die, on average, τ res ≈
2 weeks after first symptoms occurred. The delayed
CFRd(t, τ res > 0) also underestimates the individual
mortality in previous epidemic outbreaks of SARS
[18, 32] and Ebola [40], but is highly sensitive to τ res.
If the delay between the time of infection and time of
resolution were vanishingly small, we can set τ res = 0
and find that the CFRd and CFR are equivalent (see
equation (9)).

Alternatively, a simple and interpretable
population-level mortality is Mp(t) = D(t)/(R(t) +
D(t)), the ratio of infected deaths to all resolved cases
of confirmed infections. To provide a concrete model
for D(t) and R(t), and hence Mp(t), we will use a
variant of the standard infection duration-dependent
susceptible-infected-recovered (SIR)-type model
described by [41, 42]

dS(t)

dt
= −S(t)

∫ ∞

0
dτ ′ β(τ ′, t)I(τ ′, t),

∂I(τ , t)

∂t
+

∂I(τ , t)

∂τ
= −(μ(τ , t) + γ(τ , t))I(τ , t),

(10)

and dR(t)/dt =
∫∞

0 dτγ(τ , t)I(τ , t), where S(t) is the
number of susceptibles, I(τ , t) is density of individu-
als at time t who have been infected for time τ , and
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R(t) is the number of recovered individuals. The rate
at which an individual infected for time τ at time
t infects susceptibles is denoted by β(τ , t)S(t). For
simplicity, we assume only community spread and
neglect immigration of infected individuals, which
could be straightforwardly included [42].

Note that the equation for I(τ , t) is identical to
the equation for the survival probability described
by equation (1). It is also equivalent to McKendrick
age-structured models [43, 44]. In both the indi-
vidual model (equation (1)) and population model
(equation (10)), the death and recovery rates are
insensitive to changes in age a over the � 1 year
epidemic timescale. In this limit, we consider only
infection-duration dependence in the population
dynamics. However, in contrast to the individual sur-
vival probability, new infections of susceptibles are
described by the boundary condition (or renewal
equation)

I(τ = 0, t) = S(t)

∫ ∞

0
dτ ′ β(τ ′, t)I(τ ′, t), (11)

which is similar to that used in age-structured mod-
els to represent birth [43]. The initial time t = 0 is
arbitrary as long as the initial condition I(τ , 0) is
defined. We use an initial condition corresponding
to a single infected with the infection duration den-
sity given by equation (7): I(τ , 0) = ρ(τ ; n = 8,λ =

1.25). Note that equation (11) assumes that all newly
infected individuals are immediately identified; i.e.,
these newly infected individuals start with τ 1 = 0.
After solving for the infected population density, we
find the total number of deaths, recoveries, and total
cases to date,

D0(t) =

∫ t

0
dt′
∫ ∞

0
dτ μ(τ , t′)I(τ , t′),

R0(t) =

∫ t

0
dt′
∫ ∞

0
dτ γ(τ , t′)I(τ , t′),

N0(t) =R0(t) + D0(t) +

∫ ∞

0
dτ I(τ , t), (12)

and use D0(t) and N 0(t) for D(t) and Nc(t) in defi-
nitions of CFR(t) and CFRd(t, τ res) (equation (8)). In
the definitions of D0(t), R0(t), and N0(t), we account
for all possible death and recovery cases to date
(see appendix A) and that newly infected individuals
are immediately identified. We use these case num-
bers as approximations of the reported case numbers
to study the evolution of mortality ratio estimates.
Mortalities based on these numbers underestimate
the actual individual mortality M1 (see the previous
‘intrinsic individual mortality rate’ subsection) since
they involve individuals that have been infected for
different durations τ , particularly recently infected
individuals who have not yet died.

An alternative way to compute populations is to
exclude new infections and consider only an initial

cohort. The corresponding populations in this case
are defined as

D1(t) =

∫ t

0
dt′

∫ ∞

t′
dτ μ(τ , t′)I(τ , t′),

R1(t) =

∫ t

0
dt′

∫ ∞

t′
dτ γ(τ , t′)I(τ , t′). (13)

Since D1(t) and R1(t) do not include infected indi-
viduals with τ < t, they exclude the effect of newly
infected individuals and may yield more meaning-
ful mortalities as they would be based on an ini-
tial cohort of individuals in the distant past. It is
superfluous to define CFR using D1(t)/Nc because the
corresponding Nc of a cohort is a constant. The infec-
tions that occur after t = 0 contribute only to I(τ <
t, t); thus, D1(t) and R1(t) do not depend on the
transmission rate β, possible immigration of infected
individuals, or the number of susceptibles S(t). Note
that all the populations derived above implicitly aver-
age over ρ(τ 1; n, γ) for the first cohort of identified
infected individuals (but not subsequent infections).
Moreover, the population density I(τ � t, t) follows
the same equation as P̄(t|τ1) provided the same
ρ(τ 1; n,λ) is used in their respective calculations.

The two different ways of partitioning popula-
tions (equations (12) and (13)) lead to two different
population-level mortality ratios

M0
p(t) ≡ D0(t)

D0(t) + R0(t)
and

M1
p(t) ≡ D1(t)

D1(t) + R1(t)
. (14)

Since the populations D0(t) and R0(t), and hence
M0

p(t), depend on disease transmission through

β(τ , t) and S(t), we expect M0
p(t) to carry a different

interpretation from M1(t) and M1
p(t).

In the special case in which μ and γ are constants,
the time-integrated populations

∫ t
0 dt′

∫∞
0 dτ I(τ , t′)

and
∫ t

0 dt′
∫∞

t′ dτ I(τ , t′) factor out of M0
p(t) and

M1
p(t), rendering them time-independent and

M0,1
p =

μ1

μ1 + γ
= M1. (15)

Thus, only in the special time-homogeneous case do
both population-based mortality ratios become inde-
pendent of the population (and transmission β) and
coincide with the individual death probability.

To illustrate, in more general cases, the differences
between M1(t), M0,1

p (t) and CFRd(t, τ res), we use the
simple death and recovery rate functions given by
equation (4) in solving equations (1) and (10). For
β(τ , t) in equation (11), we use a recently inferred
SARS-CoV-2 infectiousness profile [45] which is
described by a gamma distribution

β(τ) = β0ρ(τ ; n,λ) (16)

6
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with a peak that occurs shortly before the onset of
symptoms at time τ inc and coincidentally has n =

8 and λ = 1.25/day as in the testing time distri-
bution ρ(τ 1) from a single infected (equation (7)).
The constant dimensionless prefactor β0 sets the
amplitude of the transmission rate. For the cho-
sen parameters n and λ, the gamma distribution
ρ(τ ; n,λ) reaches a maximum at τ ≈ 5.6 days, about
one day before τ inc = 6.4 days [45]. Assuming that
the susceptible pool is not appreciably depleted,
S(t) ≈ S0 and equation (11) becomes I(τ = 0, t) =
β0S0

∫∞
0 dτ ′ ρ(τ ; n,λ)I(τ ′, t). The amplitude β0S0 can

be found by assuming a single infected for I(τ , t) in
the renewal equation and using the estimated basic
reproduction number. The basic reproduction num-
ber R0 is the average number of secondary infec-
tions that result from any single infected individual
before he dies or recovers [37]. There are two terms
to consider when determining R0: (i) β(τ )dτ is the
probability that an infection occurs in [τ , τ + dτ] and
(ii) exp

[
−
∫ τ

0 (μ(τ ′) + γ)dτ ′
]

is the probability that
a single infected individual has not died or recovered
prior to time τ . If we integrate over the product of
these quantities and multiply by the total susceptible
population S0 (which is equivalent to the boundary
condition (11) applied to a single infected individual),
we obtain the average number of susceptibles infected
by one infected individual, i.e., R0. Thus, upon using
equation (16), β0S0 can be found by solving

S0

∫ ∞

0
β(τ) exp

[
−
∫ τ

0
(μ(τ ′) + γ)dτ ′

]
dτ

= β0S0

∫ ∞

0
ρ(τ ; n,λ) exp

[
−
∫ τ

0
(μ(τ ′)+γ)dτ ′

]
dτ

= R0 ≈ 2.91. (17)

Using the death and recovery rate functions given
by equations (4) and (5), we find β0S0 ≈ 4.64/day.
Using this value, we numerically solve equations (10)
and (11) (see appendix for further details) and
use these solutions to compute D0,1(t), R0,1(t), and
N0,1(t), which are then used in equation (14) and
CFRd(t, τ res).

3. Results and discussion

3.1. Comparison of mortalities
Here, we evaluate and compare the different mortal-
ity metrics and show how some of them qualitatively
resemble the measured mortality estimates shown in
figure 1. In figure 3(a), we show the unbounded sub-
populations I0(t), D0(t), and R0(t) computed using
equations (10)–(12) when the susceptible popula-
tion is assumed constant. Figure 3(b) shows the pop-
ulations when a strict quarantine (S(t > tq) = 0) is
applied after tq = 50 days. The mortalities plotted
in figure 3(c) show that M1

p(t) approaches the indi-
vidual mortality ratio M̄1(∞) ≈ 0.19 given in the

‘intrinsic individual mortality rate’ subsection above.
This occurs because the model for P(τ , t) and I(τ , t)
are equivalent and we assumed the same initial dis-
tribution ρ(τ ; 8, 1.25) for both quantities. However,
the population-level mortality ratios CFRd(t, τ res)
and M0

p(t) also take into account recently infected
individuals who may recover before symptoms. This
difference yields different mortality ratios because
newly infected individuals are implicitly assumed to
be detected immediately and all have τ 1 = 0. Thus,
the underlying infection-time distribution is not the
same as that used to compute M̄1

p(t) (see appendix A

for further details). The mortality ratio M0
p(t) should

not be used to quantify the individual mortality prob-
ability M̄1(t) of individuals who tested positive, while
the accuracy of CFRd(t, τ res) is sensitive to τ res and
quarantining. Moreover, due to evolution of the dis-
ease, D(t), R(t), and N(t) do not change with the same
rates during an outbreak, the population-level mor-
tality measures CFRd(t, τ res) and M0

p(t) reach their
final steady state values only after sufficiently long
times. Figure 3(d) shows the corresponding mortal-
ities with quarantining after tq = 50 days.

The population-level ratios M0
p(t) and CFR(t)

implicitly depend on new infections and the trans-
mission rateβ. Despite this confounding factor, M0

p(t)
and CFRd(t, τ res) approach e−γτincμ1/(μ1 + γ) as t →
∞, where e−γτinc is the probability that no recovery
occurred during the incubation time τ inc. Based on
these results, we can establish the following connec-
tion between the different mortality ratios for ini-
tial infection times with distribution ρ(τ 1; n,λ) and
mean τ̄ = n/λ:

CFRd(∞) = M0
p(∞) ≈ e−γτ̄M1

p(∞)

= e−γτ̄ M̄1(∞). (18)

According to equation (18), population-level mortal-
ity estimates (e.g., CFR and M0

p), can be transformed,
at least approximately, into individual mortality prob-
abilities using the correction factor e−γτ̄ with τ̄ ≈
τinc. Although population-level quarantining does
not directly affect the individual mortality M1(t|τ 1)
or M̄1(t), it can be easily incorporated into the SIR-
type population dynamics equations through changes
in β(τ , t)S(t). For example, we have set S(t > tq) = 0
to represent implementation of a perfect quarantine
after tq = 50 days of the outbreak. After tq = 50 days,
no new infections occur and the estimates CFR(t)
and M0

p(t) start to converge toward their common
larger value (see figure 3(d)). In other words, with-
out quarantining, the infected and recovered pop-
ulations are continuously increasing, keeping CFR
and M0

p(t) low. Since the number of deaths decreases
after the implementation of quarantine measures,
the delayed CFRd(t, τ res = 14 days) is first decreas-
ing until t = tq + τ res = 64 days. For t > 64 days, the
CFRd(t, τ res = 14 days) measures no new cases and is
thus equal to the CFR.

7



Phys. Biol. 17 (2020) 065003 L Böttcher et al

Figure 4. Mortality estimates in different countries. Estimates of mortality ratios (see equations (8) and (14)) of SARS-CoV-2
infections in different countries. The data are derived from reference [21]. The case fatality rate, CFR, corresponds to the number
of deaths to date divided by the total number of cases to date. The ‘delayed’ mortality-ratio estimate CFRd corresponds to the
number of deaths to date divided by total number of cases at time t − τ res is also shown for China. The population-based
mortality ratios Mp(t) are also shown, except for the UK which has reported an inexplicable M0

p(t) ∼ 1.

The overall time-evolution of some of the mor-
talities in figure 3 qualitatively resembles the behav-
ior of the mortality estimates in figure 1. As shown
in figure 1, the CFR is increasing over time whereas
M0

p provides a more stable mortality estimate for
the SARS-CoV outbreak in Hong Kong (2003) and
seems to follow a similar behavior in the current
SARS-CoV-2 outbreak in Italy. In figure 4, we show
additional examples of mortality-ratio estimates for
China, South Korea, Spain, Germany, Switzerland,
and the United Kingdom. After an initial transient,
the CFR, in most cases, increases to a new asymptote
after the epidemic passes. As in figure 1, we observe,
consistent with their definitions, that the population-
based mortality ratio M0

p(t) is larger than the cor-

responding CFR in all cases. M0
p(t) also appears to

be a temporally more stable metric. Differences in
the evolution of mortality ratios in different regions
could result from changing practices in data collection
or from explicitly time-inhomogeneous parameters
μ(τ , t), γ(τ , t), and/or β(τ , t).

In addition to the mathematical differences
between M1(t), and M0

p(t), and CFR, estimating

M0
p(t) and CFR(t) from aggregate populations

implicitly incorporate a number of confounding fac-
tors that contribute to their variability. On April 25,
2020, the value of M0

p(t) in Sweden, Belgium, France,
the US, and Italy are 2194/(2194 + 1005) ≈ 69%,
7094/(7094 + 10 785) ≈ 40%, 22 856/(22 856 +

44 903) ≈ 34%, 54 941/(54 941 + 118 633) ≈ 32%,
and 26 384/(26 384 + 63 120) ≈ 29%, respectively.
These M0

p(t) have slowly decreased (see figure 4)
as patients resolve even if current conditions (e.g.,
treatment methods, age group proportion of infected
individuals, etc) have not changed. By comparison,
on April 25, 2020, M0

p ≈ 5% and 6% in Germany
and China, respectively. These differences result from

delays and inaccuracies in reporting, varied guide-
lines for assigning cause of death, differing medical
treatment strategies, and demographic heterogeneity
among different countries.

3.2. Heterogeneous populations
Differences in demographics can easily be a source of
variability in mortality rates measured across differ-
ent regions. Older patients and those with underlying
medical conditions typically have a higher death rate
μ(τ , t) and/or lower recovery rate γ. Since we focus
on mortality, the different subpopulations within the
confirmed population matter only through their dif-
ferences in μ and/or γ. For the M̄1(t) and M1

p(t)
metrics, no new infections are used in their determi-
nation. Thus, these metrics are associated with the
mean death and recovery rates of the original group
of infected individuals, i.e., the ratios M̄1(t|μ, γ) and
M1

p(t|μ, γ) refer to the mortality ratios of each sub-
population or individual described by μ and γ. The
effective M1

p(t) over the entire confirmed population
can be trivially constructed by population-averaging
D1(t|μ, γ) and R1(t|μ, γ) over μ and γ before con-
structing M1

p(t).

For the other confirmed mortalities M0
p(t) and

CFR(t), new infections are taken into account and
subpopulations with different death and recovery
rates can infect each other. Suppose there are two
subpopulations ‘a’ and ‘b’ (e.g., young and old) with
associated death and recovery rates μa,b and γa,b,
respectively. The equations for each subpopulation
are

∂Ia(τ , t)

∂t
+

∂Ia(τ , t)

∂τ
= −(μa(τ , t) + γa(τ , t))Ia(τ , t),

∂Ib(τ , t)

∂t
+

∂Ib(τ , t)

∂τ
= −(μb(τ , t)+γb(τ , t))Ib(τ , t),

(19)

8
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Figure 5. Population-level mortality estimate for two age groups. The mortality ratio M0
p(t) without containment measures (a)

and under quarantining (b). The curves are based on numerical solutions of equations (19) and (20) assuming constant S(t) ≈ S0

and using the initial condition Ia(τ , 0) = Ib(τ , 0) = ρ(τ ; 8, 1.25)/2 (see equation (7)), where the subscripts ‘a’ and ‘b’ denote the
young and old age group, respectively. The death and recovery rates for the younger age group are defined in equations (4) and
(5). For the older age group, we set μb = 4μa and γb = γa. We use an infection rate (equation (16)) defined by βaaS0 = 4.64/day,
which we estimated from the basic reproduction number of SARS-CoV-2 [36]. The remaining infection rates are defined via
βaa =

√
2βba =

√
2βab = 2βbb. To model quarantine effects, we set β0S0 = 0 for t > 50 days in (b).

indicating that each subpopulation follows their own
dynamics for τ > 0. However, the subpopulations
interact with each other through the coupled bound-
ary conditions

Ia(0, t) = S(t)

∫ ∞

0
dτ ′

[
βaa(τ ′, t)Ia(τ ′, t)

+ βab(τ ′, t)Ib(τ ′, t)
]

Ib(0, t) = S(t)

∫ ∞

0
dτ ′

[
βab(τ ′, t)Ia(τ ′, t)

+ βbb(τ ′, t)Ib(τ ′, t)
]

(20)

that describe cross-infections between the ‘a’ and ‘b’
subpopulations. Thus, the infection levels in each
subpopulation also depend on the transmission rates
βaa, βab, and βbb. To compute the overall confirmed
mortality M0

p(t) or CFR(t) of the entire population,
we must solve equations (19) and (20) for Ia and Ib,
and hence Da(t), Db(t), and D(t) = Da(t) + Db(t).

In figure 5, we show the evolution of M0
p(t) for

two age groups representing young and old individ-
uals with different mortality and infection rates. The
behavior of M0

p(t) for the entire population is qual-
itatively similar to the behavior of the correspond-
ing mortality ratios of both age groups (see figure 3).
Whether the overall mortality is closer to that of the
young or old population depends on the relative pop-
ulations of young and old infecteds, their death and
recovery rates, and their cross transmission rates βab.
For age-stratified case data, the subpopulation model
outlined above, or other approaches such as scal-
ing approximations [46] may be useful for capturing
age-dependent variations in M0

p(t).

3.3. Undertesting and unconfirmed cases
Another important confounding factor is the large
number of untested and often asymptomatic infected
individuals. The mortality rate often quoted in the
literature ranges from < 1–3%, which is much
smaller than the resolved mortality ratios we have
used for illustration. Our estimates of M0,1

p (t) and

CFRd(t, τ res) using I(τ , t) actually describe the mor-
tality of the population conditioned on being tested
positive. Since we used equation (10) to compute
infected populations, we implicitly assumed that
all infected individuals have been tested/confirmed.
However, the total infected population is comprised
of tested and untested individuals, which may or may
not carry different death and recovery rates. Typically,
only a small fraction f of the total number of infected
individuals might be tested and confirmed positive.

Our confirmed mortalities (derived from only
the positively tested population) can be extended to
the entire population, tested or untested. The ‘true’
M0

p and the fatality ratio conditioned on having been
infected (the IFR) would typically be much smaller
than the M0

p and CFR calculated using only confirmed
cases. How the testing fraction f < 1 might qualita-
tively affect the ‘true’ underlying mortality measures
(the mortality conditioned on simply being infected)
is illustrated in figure 6.

Estimates for SARS-CoV-2 show that f is small
(e.g., f ≈ 14% in China before January 23, 2020) [47].
At early times (figure 6(a)) most patients, tested or
untested, have not yet resolved. A reported/tested
fraction f < 1 would not directly affect or alter the
CFRs or mortality ratios if the unreported/untested
population dies and recovers in the same propor-
tion as those tested, as depicted in figure 6(b). That
is, undertesting would still provide a good estimate
of the true mortality if the entire population were
homogeneous in death and recovery rates. How-
ever, if the untested (presumably mildly or asymp-
tomatic infected) are less likely to die than the tested
infected individuals, undertesting would give rise to
M0

p(t) and CFR(t) that overestimate the true mor-

tality M0
p(t) and the IFR. If untested infected indi-

viduals do not die at all, as depicted in figure 6(c),
the true long-time mortality M0,1

p (∞) ≈ f M0,1
p (∞).

In the unlikely scenario in which untested individ-
uals do not receive medical care and hence die at
a faster rate (figure 6(d)), M0,1

p (∞) and CFR based
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Figure 6. Fractional testing. An example of fractional testing in which a fixed fraction f of the real total infected population is
assumed to be tested. The remaining fraction of infected individuals, 1 − f, is untested. Equivalently, if the total tested fraction has
unit population, then the fraction of the population that remains untested is 1/f − 1. (a) At short times after an outbreak, most of
the infected patients, tested and untested, have not yet resolved (red). Only a small number have died (gray) or have recovered
(green). (b) At later times, if the untested population dies at the same rate as the tested population, Mp(t) and CFR remain
accurate estimates for the entire infected population. (c) If the untested population is, say, asymptomatic and rarely dies, the true
mortality M0,1

p (∞) ≈ f M0,1
p (∞) can be significantly overestimated by the tested mortality M0,1

p (t). (d) Finally, in a scenario in
which untested infected individuals die at a higher rate than tested ones, M0,1

p (t) and CFR based on the tested fraction
underestimate the true mortality M0,1

p .

Table 2. Definitions of the main metrics. The superscript ‘0’ and ‘1’ denote quantities that are based on the total population (including
new infections) and a cohort (excluding new infections), respectively. Quantities with subscript ‘c’ and ‘u’ denote confirmed and
untested pools (for example, N0

u(t) is the total number of untested individuals at time t) that must be inferred using other measurements
such as random testing. For the resolved mortalities, ‘w/inf’ indicates quantities that include new infections, while ‘w/o inf ’ indicates
quantities that exclude new infections. We have suppressed the time dependences for notational simplicity.

Subpopulation
Metric

Fatality ratios Resolved mortality w/inf Resolved mortality w/o inf Individual risk

Confirmed (tested) CFR = D0
c

N0
c

M0
p = D0

c

D0
c+R0

c
M1

p = D1
c

D1
c+R1

c
M̄1 =

P̄d
P̄d+P̄r

Total (tested + untested) IFR = D0
c+D0

u

N0
c +N0

u
M0

p = D0
c+D0

u

D0
c+D0

u+R0
c+R0

u
M1

p = D1
c+D1

u

D1
c+D1

u+R1
c+R1

u
Not defined

on the tested fraction would underestimate the true
long-time mortality M0,1

p (∞) and IFR, respectively.
To quantitatively estimate the underlying mortal-

ity of the population conditioned simply on being
infected, we have to quantify the number of con-
firmed and untested infected individuals, Ic(τ , t) and
Iu(τ , t), which can be further divided into subpopula-
tions with intrinsically different transmission, death,
and recovery rates. The act of confirmation itself may
change behavior and/or treatment, further changing
transmission, death, and recovery parameters.

By constructing the accumulated deaths and
recoveries associated with Ic(τ , t) and Iu(τ , t), D0,1

c,u(t)
and R0,1

c,u(t), respectively, we can define true, whole
population mortality ratios as listed in table 2. For
example,

D0
c,u(t) =

∫ t

0
dt′

∫ ∞

0
dτ μc,u(τ , t′)Ic,u(τ , t′),

R0
c,u(t) =

∫ t

0
dt′

∫ ∞

0
dτ γc,u(τ , t′)Ic,u(τ , t′), (21)

where μc,u and γc,u are the death and recovery rates
associated with infected individuals who are con-
firmed and untested, respectively. Analogous expres-
sions arise for D1

c,u(t) and R1
c,u(t). If the confirmed

and untested populations are further subdivided, the
μc,uIc,u and γc,uIc,u integrands would be replaced by a
Hadamard (i.e., element-wise) product of two vectors

representing subpopulations and their corresponding
rates. The populations Ic,u themselves can be found
from a specific disease transmission model that also
includes a testing process that converts Iu to Ic.

4. Summary and conclusions

The CFR has been predominantly used but appears
to evolve in qualitatively similar ways as epidemics
evolve. Although CFRd(t, τ res) is based on a delay
reflecting the timescales for recovery, in general, there
is no clear mechanistic interpretation for using the
CFR or IFR as mortality ratios.

Here, we stress that more mechanistically mean-
ingful and interpretable metrics can be readily defined
and just as easily estimated from population data as
CFRs are. Our proposed mortality ratios for viral epi-
demics are defined in terms of (i) individual survival
probabilities and (ii) population ratios using num-
bers of deaths and recovered individuals. Both of these
measures are based on the within-host evolution of
the disease, and in the case of M0,1

p (t), the population-
level transmission dynamics. On a single patient level,
M̄1(t) is the metric of interest. However, to esti-
mate this, one needs accurate cohort data, for which
few exist for coronavirus. Nonetheless, cumulative
population-based mortalities can provide insight.

Among the metrics we describe, M1
p(t) is struc-

turally closest to the individual mortality M̄1(t) in
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that both are independent of disease transmission
since new infections are not counted. Both of these
mortality ratios converge after an incubation time
τ inc to a value smaller than or equal to μ1/(μ1 + γ)
and are best interpreted as approximately the mor-
tality probability conditioned on being tested positive.
The most accurate estimates of M̄1 can be obtained if
we keep track of the fate of cohorts who were con-
firmed within a small time window in the past. By
following only these individuals, one can track how
many of them die as a function of time. As more cases
arise, one should stratify them according to their esti-
mated times since infection to obtain better statistics
for M1(∞). With the further spread of SARS-CoV-2
in different countries, data on more individual cases
of death and recovery can also be more easily strati-
fied according to other central factors in COVID-19
mortality: age, sex, health condition. Population het-
erogeneity and uncertainty in intrinsic disease param-
eters such as the incubation period and the time τ 1

a patient had been infected before confirmation can
affect the mortality measures.

Besides demographic heterogeneity and the highly
variable estimates of COVID-19 mortality due to dif-
ferent clinical protocols for assigning cause of death,
undertesting also confounds accurate estimation of
the true underlying mortality. Infected individuals in
the population at large who are untested comprise an
unknown population Iu which contributes to deaths
and recovery, and need to be factored into the ‘true’
mortalities M0,1

p or the IFR.
These untested/unconfirmed populations can, in

principle, be computed from a multicompartment
mathematical model for disease transmission and
testing. The relevant expressions for M0,1

p are listed
in table 2. Even though Mp(t) typically overestimates
the true mortality, tracking M̄1(t) or M1

p(t) of an ini-
tially confirmed cohort can still provide a reasonable
estimate of the mortality ratio, especially if untested
infected individuals die at the same rate as confirmed
individuals.
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Appendix A

A.1. Numerical scheme
To numerically solve equations (10) and (11),
we use a uniform discretization τ k = kΔτ , k =

Figure A1. Phase plot for P̄(τ > t, t) and I(τ > t, t). The
regions delineate the different forms for the solution
(equation (A6)). Here, we have included an incubation
time τ inc before which no death occurs. The solution for
P̄(τ , t) or I(τ , t) in the τ < t region must be
self-consistently solved using the boundary condition
equation (11). At any fixed time, the integral of I(τ , t) over
t < τ � ∞ captures only the initial population, excludes
newly infected individuals, and is used to compute
D1(t), R1(t), and M1

p(t). To compute D0(t), R0(t), and
M0

p(t), we integrate across all infected individuals (also
including the integral over t > τ � 0 shown in magenta).

0, 1, . . . , K. A backward difference operator
[I(τk, t) − I(τk−1, t)] /(Δτ) is used to approxi-
mate ∂τ I(τ , t) and a predictor-corrector Euler scheme
is used to advance time [48]. Setting the cut-offs
I(−Δτ , t) ≡ 0 and I(KΔτ , t) ≡ 0, the resulting
discretized equations for the full SIR model are

S(t +Δt) = S(t) −ΔtS(t)
K∑

k=0

β(τk, t)I(τk, t)Δτ ,

Ĩ(τk, t) = I(τk, t) −Δt
I(τk, t) − I(τk−1, t)

Δτ

−Δt(γ(τk, t) + μ(τk, t))I(τk, t),

I(τk, t +Δt) = I(τk, t) − Δt

2

[
I(τk, t) − I(τk−1, t)

Δτ

+ (γ(τk, t) + μ(τk, t))I(τk, t)

+
Ĩ(τk, t)−Ĩ(τk−1, t)

Δτ
+(γ(τk, t+Δt)

+ μ(τk, t +Δt)) Ĩ(τk, t)

]

+ δk,0
Δt

Δτ
S(t)

K∑
j=0

β(τj, t)I(τj, t)Δτ ,

(A1)

where Ĩ is the initial predicted guess, and the last
term proportional to δk,0 encodes the bound-
ary condition equation (11). Note that we use∑K

k=0 β(τk, t)I(τk, t)Δτ to indicate the numerical
evaluation of

∫∞
0 dτ ′β(τ ′, t)I(τ ′, t). Quadrature

methods such as Simpson’s rule and the trapezoidal
rule can be used to approximate the integral more
efficiently.

11



Phys. Biol. 17 (2020) 065003 L Böttcher et al

Figure A2. Density plots of I(τ , t) in the t–τ plane. Numerical solutions of the equation for I(τ , t) in equation (10) under the
assumption of a fixed susceptible size and β0S0 = 4.64/day. (a) The density without quarantine monotonically grows with time t
in the region τ < t as an unlimited number of susceptibles continually produces infections. (b) With quarantining after tq = 50
days, we set β0S0 = 0 for t > tq, which shuts off new infections. Both plots were generated using the same initial density ρ(τ 1)
defined in equation (7). In both cases, the density I(τ > t) is identical to P(τ > t) if the same ρ(τ 1) is used and is independent of
disease transmission, susceptible dynamics, etc. (c) and (d) probability-density functions (PDFs) of the number of infected
individuals I(τ , t) for t = 0, 60 days (b) without and (c) with quarantine. The blue solid line corresponds to the initial
distribution ρ(τ ; n = 8,λ = 1.25) (see equation (7)).

The total number of dead, recovered, and infected
individuals at time t are found by

D0(mΔt) =
1

2

m∑
j=0

K∑
k=0

c(kΔτ , jΔt)

×
[
I(kΔτ , jΔt) + Ĩ(kΔτ , jΔt)

]
ΔτΔt,

R0(t) =
1

2

m∑
j=0

K∑
k=0

μ(kΔτ , jΔt)

×
[
I(jΔτ , jΔt) + Ĩ(kΔτ , jΔt)

]
ΔτΔt,

I(mΔt) =
K∑

k=0

I(kΔτ , mΔt)Δτ ,

with analogous expressions for D1(mΔt) and
R1(mΔt). To obtain a stable integration scheme, the
time steps Δt and Δτ have to satisfy Δt/(2Δτ) < 1.
In all of our numerical computations, we thus set
Δt = 0.002,Δτ = 0.02, and K = 104. In the next
section, we show additional plots of the magnitude
of I(τ , t) in the t–τ plane.

A.2. Solutions for τ 1-averaged probabilities
Using the method of characteristics, we find the for-
mal solution to equation (1):

P(τ , t|τ1)

= δ(τ − t − τ1)e−
∫ t

0 (μ(τ−t+s,s|τ1)+γ(τ−t+s,s|τ1))ds,

(A2)

which can be used to construct the death and cure
probabilities

Pd(t|τ1)

=

∫ t

0
dt′ μ(τ1 + t′, t′)e−

∫ t′
0 (μ(τ1+s,s)+γ(τ1+s,s))ds

Pr(t|τ1)

=

∫ t

0
dt′ γ(τ1 + t′, t′)e−

∫ t′
0 (μ(τ1+s,s)+γ(τ1+s,s))ds.

(A3)

If we now invoke the functional forms of μ and γ

given in equation (4), we find explicitly
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Pd(τ , t|τ1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ1

μ1 + γ

(
1 − e−(μ1+γ)t

)
τ > t + τinc

0 τinc � τ > τ1

μ1 e−γ(τinc−τ1)

μ1 + γ

(
1 − e−(μ1+γ)(τ−τinc)

)
τ > τinc � τ1

(A4)

and

Pr(τ , t|τ1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ

μ1 + γ

(
1 − e−(μ1+γ)t

)
τ > t + τinc

1 − e−γt τinc � τ > τ1

1 − e−γ(τinc−τ1) +
γ e−γ(τinc−τ1)

μ1 + γ

(
1 − e−(μ1+γ)(τ−τinc)

)
τ > τinc � τ1.

(A5)

Finally, we can also find the τ 1-averaged probabilities for τ � t by weighting over ρ(τ 1; n,λ). For example,

P̄(τ , t) =

⎧⎪⎪⎨
⎪⎪⎩
ρ(τ − t; n,λ)e−(μ1+γ)t τ � t + τinc

ρ(τ − t; n,λ)e−γt τinc � τ > t

ρ(τ − t; n,λ)e−γt e−μ1(τ−τinc) t + τinc � τ > τinc

. (A6)

These solutions hold for the different regions shown
in the phase plot of figure A1 and are equivalent
to those for I(τ > t, t). Corresponding expressions
for P̄d(t) and P̄r(t) can be found and used to con-
struct M1

p(t). Figure A2(a) shows the magnitude of
I(τ , t) in the t–τ plane when we use equation (16),
set S(t) = S0 constant (so that the first equation in
equation (A1) does not apply) and assign β0S0 =
4.64/day. In this case, the epidemic continues to grow
in time, but the mortality rates M0,1

p (t) nonetheless
converge as t →∞. In figure A2(b), we set β0S0 = 0
for t > tq to model strict quarantining after tq = 50
days. We observe no new infection after the onset of
strict quarantine measures. In both cases (quaran-
tine and no quarantine), we use ρ(τ ; n = 8,λ = 1.25)
(see equation (7) in the main text) to describe the
initial distribution of infection times τ . As time pro-
gresses, more of the distribution of τ moves toward
smaller values until quarantine measures take effect
(see figures A2(c) and (d)).
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