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Uniformly accurate nonlinear transmission rate models arising
from disease spread through pair contacts
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We derive and asymptotically analyze mass-action models for disease spread that include transient pair forma-
tion and dissociation. Populations of unpaired susceptible individuals and infected individuals are distinguished
from the population of three types of pairs of individuals: both susceptible, one susceptible and one infected,
and both infected. Disease transmission can occur only within a pair consisting of one susceptible individual and
one infected individual. We use perturbation expansion to formally derive uniformly valid approximations for
the dynamics of the total infected and susceptible populations under different conditions including combinations
of fast association, fast transmission, and fast dissociation limits. The effective equations are derived from the
fundamental mass-action system without implicitly imposing transmission mechanisms, such as those used in
frequency-dependent models. Our results represent submodels that show how effective nonlinear transmission
can arise from pairing dynamics and are juxtaposed with density-based mass-action and frequency-based models.
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I. INTRODUCTION

Ordinary differential equations (ODEs) have been widely
used to model population biology and disease spread in
systems where the agents are spatially homogeneous.
Canonical mass-action theories include the susceptible-
infected-susceptible (SIS), susceptible-infected-recovered
(SIR), susceptible-exposed-infected-recovered (SEIR) or
susceptible-exposed-infected-susceptible (SEIS), and other
models, which have been widely used to provide insight into
the dynamics of infected populations [1,2]. Such models are
simplified, averaged representations of disease spread within
complex, multispecies, and heterogeneous populations. In
this paper, we revisit and analyze transmission models and
consider the effects of pairing dynamics on infectious disease
propagation through a population.

Typically, the transmission rate is assumed to depend on
three factors: (a) the rate at which an infected individual con-
tacts other individuals, (b) the proportion of the contacts with
susceptible individuals, and (c) the probability that a contact
between the infected individual and a susceptible individual
leads to the susceptible individual becoming infected. An
important factor in determining the contact rate is the relative
timescales of the time required for an infected individual to
“find” another individual and the time required for behavior
that is responsible for transmission.

Two widely used models dominate the literature [2–4].
Mass-action transmission models assume that the contact
rate between any one infected individual and susceptible in-
dividuals is proportional to only the density of susceptible
individuals. That is, the transmission rate is given by BmρSρI,
where ρS is the density of susceptible individuals, ρI is the
density of infected individuals, and Bm is a (constant rate)

× area. Such models are appropriate when the number of
contacts per time is not limited by behavior and does not “sat-
urate” at high population densities. In such a limit, the rate of
generating new infected individuals is simply proportional to
the product of susceptible and infected densities and indepen-
dent of any behavior that influences the frequency of contacts.
Mass-action models are expected to be more accurate for
highly contagious diseases such as tuberculosis [5] where
frequent, short interactions that occur at rates proportional to
population density lead to transmission.

Frequency-based transmission models [6] assume that an
infected individual experiences the same number of contacts
in a given time period regardless of the density. Given that the
populations are homogeneous and that the contact mechanism
does not distinguish between susceptible and infected individ-
uals, the proportion of contacts with susceptible individuals
will be ρS/(ρS + ρI ). The transmission rate will therefore be
BfρIρS/(ρS + ρI ), where Bf is a constant rate specific to an in-
dividual’s behavior. Frequency-based models are appropriate
when behavior (frequency of contacts) that leads to disease
transmission is the rate-limiting step. For example, propa-
gation of sexually transmitted diseases is governed through
contact frequencies that are behaviorally or socially controlled
and not simply proportional to density.

In general, data may not match well with either density-
based mass-action or frequency-based models [4]. Although
some systems have been shown to match density or fre-
quency models [7], other data exhibit contact rates that are
not density or frequency dependent, but fall between these
limits as a function of number density [8]. These and many
other varied results likely depend on factors such as group
size and environment. While difficult to distinguish using
data, other authors have devised models in which contact
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or transmission rates scale with density in nontrivial ways
[9–11]. Evolutionary game theoretic models can also be cast
as density or frequency dependent, leading to different pre-
dictions of extinction and coexistence [12]. Other authors
have also proposed models with infection rates of the form
Bf BmρIρS/[Bf + Bm(ρS + ρI )]. Such terms are similar to
Holling’s type II functional response in predator-prey models
and asymptotically reproduce the mass-action transmission
for low densities and the frequency-based transmission for
large densities [13]. While it is unclear what processes give
rise to transmission nonlinearity, general forms for density-
dependent transmission rates have been proposed and applied
to a number of different disease transmission systems [10,14].

It is unclear how these different forms of transmission
are mechanistically or mathematically connected. Whether
a frequency-like Holling type II model can be theoretically
justified or whether an alternative functional response is more
natural are also important theoretical questions. Heuristic
frequency-based and Holling-type models implicitly incorpo-
rate behavior into the dynamics. Qualitatively, one expects
that these dynamics might arise from higher-dimensional
mass-action ODEs that explicitly include intermediate sub-
populations or “reactions” that reflect some behavioral
processes.

Here we ask how such behavior-induced frequency-based
model can be formally derived from the fundamental mass-
action process by considering the simplest mass-action model
in which lone susceptible and infected individuals associate
to form pairs (susceptible-susceptible, susceptible-infected, or
infected-infected) [15–19]. These models are similar to the
class of household structure models in which groups of indi-
viduals form subgroups or communities within which disease
transmission spreads faster [20–24]. Pairs can also dissociate
into their constituent lone individuals. In these pair-formation-
type models, transmission can occur only from an infected
individual to a susceptible individual in a susceptible-infected
pair. We also include the effects of death and immigration
of susceptible individuals, which leads directly to a set of
five differential equations: two ODEs for two types of lone
individuals and three ODEs for the three different types of
pairs. How these five equations can be reduced to effective
equations under certain conditions will be the topic of our
analyses. Previous treatments of the pairing models have been
put forth but do not consider certain parameter limits [16],
are not systematic [6], implicitly force a frequency-dependent
interaction through a “mixing matrix” [6], or only provide
approximations at short times [25].

In this paper, we derive, from mass-action models that in-
clude pair formation, effective ordinary differential equations
for disease spread that are uniformly valid at all times. We
first show that if pair dissociation and within-pair transmission
is fast, to lowest order, the equations simply reduce to two
mass-action-like equations, one for the total infected density
and one for the total susceptible density, but with an effective
transmission coefficient. If pair association and dissociation
are faster than the other processes (death, transmission, and
immigration), the resulting effective equations for the total
infected and susceptible populations involve terms of rational
fractions of polynomials. Such terms represent nonlinearities
in the effective transmission rate and can be thought of as

interpolations between density- and frequency-based models.
These equations further reduce to simpler forms in certain
parameter limits.

On the other hand, if association is asymptotically faster
than the other process (including dissociation), we show that
the leading-order dynamics can only be reduced to three
ODEs that bear a number of similarities to models that include
an exposed subpopulation, such as the susceptible-exposed-
infected (SEI) class of models. This type of model, derived
from the fundamental mass-action pairing model, reflects a
latency period in disease propagation but is still different from
the typical SEI-type model.

II. MODELS

We begin by reviewing the basic mass-action, frequency-
based, and pairing models for disease propagation.

A. Density-based mass-action model

The simplest mass-action description for the dynamics of
the susceptible and infected population densities ρs(t ) and
ρi(t ) is given by the susceptible-infected model with immi-
gration,

dρs(t )

dt
= �̃ − μsρs(t ) − Bmρs(t )ρi(t ),

dρi (t )

dt
= −μiρi(t ) + Bmρs(t )ρi(t ),

(1)

where �̃ represents the rate at which the density of suscep-
tible individuals increases via immigration from outside the
region and where μs and μi are the death rates of susceptible
and infected individuals, respectively. If recovery of infected
individuals back to the susceptible pool is included, Eq. (1)
becomes the standard SIS model when �̃ = μs = μi = 0 and
the total population is conserved. The steady-state solution to
Eqs. (1), (ρ∗

s , ρ∗
i ) = (�̃/μs, 0), exists for all parameters and

is linearly stable if the reproduction number

Rm := Bm�̃

μsμi
< 1 (2)

and linearly unstable if Rm > 1. A second steady state
(ρ∗

s , ρ∗
i ) = (μi/Bm, �̃/μi − μs/Bm ) > 0 exists for Rm > 1

and is linearly stable. For values of Rm > 1, a nonzero in-
fected population can be maintained indefinitely, whereas for
Rm < 1, the infected population will ultimately die out.

B. Frequency-dependent model

A typical frequency-based model takes the form

dρs

dt
= �̃ − μsρs − Bf

ρsρi

ρs + ρi
,

dρi

dt
= −μiρi + Bf

ρsρi

ρs + ρi
,

(3)

which is often used to describe sexually transmitted diseases
in which the pair-formation rate is thought to be intrinsic to the
individual and largely population density independent. The
steady state (ρ∗

s , ρ∗
i ) = (�/μs, 0) exists for all parameters

032306-2



UNIFORMLY ACCURATE NONLINEAR TRANSMISSION … PHYSICAL REVIEW E 103, 032306 (2021)

and is linearly stable if

Rf := Bf

μi
< 1 (4)

and linearly unstable if Rf > 1. A second steady state

(ρ∗
s , ρ∗

i ) =
(

�̃

μs + Bf − μi
,

(Bf − μi )�̃

μi(μs + Bf − μi )

)
> 0 (5)

exists for Rf > 1 and is linearly stable.
An important difference arises between the mass-action

and frequency-based models. In the mass-action representa-
tion, the reproduction number Rm depends on the influx �

of individuals, so reducing the immigration rate will be an
effective strategy in disease control. In the frequency-based
model, the reproduction number Rf is independent of the
influx.

C. Density-based mass-action pairing model

We now consider the simplest mass-action model that ex-
plicitly includes population densities of transient pairs

dρs

dt
= �̃ − μsρs − 2ãssρ

2
s − ãsiρsρi + 2(μss + dss )ρss

+ (μis + dsi )ρsi, (6a)

dρi

dt
= −μiρi − 2ãiiρ

2
i − ãsiρsρi + 2(μii + dii )ρii

+ (μsi + dsi )ρsi, (6b)

dρss

dt
= −(2μss + dss )ρss + ãssρ

2
s , (6c)

dρsi

dt
= −(μis + μsi + dsi + β )ρsi + ãsiρsρi, (6d)

dρii

dt
= −(2μii + dii )ρii + βρsi + ãiiρ

2
i , (6e)

where ρs and ρi are the densities of lone susceptible and
infected individuals, respectively. The quantities ρss, ρsi, and
ρii are the densities of susceptible-susceptible, susceptible-
infected, and infected-infected pairs, respectively. In this
model, transmission can occur only from infected to suscep-
tible individuals who are in a susceptible-infected pair and
happens at rate β. The rate of immigration of density of lone
susceptible individuals is denoted by �̃. In Eqs. (6a)–(6e), μs

and μi represent the death rates of lone susceptible individuals
and lone infected individuals, respectively. The quantities μsi

and μis represent the death rates for a susceptible individual
in a susceptible-infected pair and and an infected individ-
ual in a susceptible-infected pair, respectively. The quantities
μss and μii represent the death rates for each individual in
a susceptible-susceptible pair and an infected-infected pair,
respectively. Similarly, the quantities d (with the appropriate
subscripts) represent the dissociation rates of the indicated
pairs. The quantities ã (with the appropriate subscripts) rep-
resent the association rates per unit density of the indicated
pairs. The association terms represent interactions between
two individuals and involve terms that are quadratic in density.
They therefore have units of rate × area.

Both Eqs. (6a) and (6c) contain the term 2μssρss. The
factor of 2 in this term arises since there are two susceptible

individuals in a susceptible-susceptible pair and the death
rate μss denotes the rate of death for each individual in the
pair. Similarly, Eqs. (6b) and (6e) contain the term 2μiiρii

representing two individuals who can die.
In order to analyze the full model, we nondimensionalize

by multiplying each equation by a reference area A0,
dNs

dt
= � − μsNs − 2assN

2
s − asiNsNi (7a)

+ 2(μss + dss)Nss + (μis + dsi )Nsi,

dNi

dt
= −μiNi − 2aiiN

2
i − asiNsNi (7b)

+ 2(μii + dii )Nii + (μsi + dsi )Nsi,

dNss

dt
= −(2μss + dss)Nss + assN

2
s , (7c)

dNsi

dt
= −(μis + μsi + dsi + β )Nsi + asiNsNi, (7d)

dNii

dt
= −(2μii + dii )Nii + βNsi + aiiN

2
i , (7e)

where N = ρA0 is the total (dimensionless) population within
area A0, a ≡ ã/A0 is the rate of association (with units of
time−1), and � = A0�̃ is the immigration rate (with units of
time−1). The reference area A0 is arbitrary but can be chosen
to scale the magnitudes of N and the relative rates a/μ. Under
any particular scaling, different limits of the magnitudes of N
and a/μ, d/μ can be used to further analyze Eqs. (7a)–(7e).
Note that models using bilinear terms representing absolute
numbers have been denoted pseudo-mass-action [3], but in
the context of this work, the area factor connecting N and ρ is
irrelevant. To incorporate frequency-dependent transmission
into the density-based mass-action model, as has been often
done [6,17], the quadratic pairing terms in Eqs. (6a)–(6e)
would be replaced by, e.g., ãsiρiρs/(ρi + ρs ) = ãsiNiNs/(Ni +
Ns ), where ãsi has units of time−1.

III. ASYMPTOTIC ANALYSES AND DISCUSSION

We now analyze the mass-action pairing model in dif-
ferent limits to reduce the model to simpler forms in order
to illustrate how pairing and dissociation affect the overall
propagation of infection.

A. Fast dissociation and transmission limit

First, consider the simplest case where the dissociation and
transmission rates are large by scaling them according to dss =
d̄ss/ε, dsi = d̄si/ε, dii = d̄ii/ε, and β = β̄/ε, with ε → 0+. In
this limit, we expect the number or density of pairs to be much
smaller than the number of unpaired individuals. Under this
transformation, Eqs. (7a)–(7e) give

dNs

dt
= � − μsNs − 2assN

2
s − asiNsNi

+ 2

(
μss + d̄ss

ε

)
Nss +

(
μis + d̄si

ε

)
Nsi, (8a)

dNi

dt
= −μiNi − 2aiiN

2
i − asiNsNi

+ 2

(
μii + d̄ii

ε

)
Nii +

(
μsi + d̄si

ε

)
Nsi, (8b)

032306-3



JONATHAN WYLIE AND TOM CHOU PHYSICAL REVIEW E 103, 032306 (2021)

dNss

dt
= −

(
2μss + d̄ss

ε

)
Nss + assN

2
s , (8c)

dNsi

dt
= −

(
μis + μsi + d̄si

ε
+ β̄

ε

)
Nsi + asiNsNi, (8d)

dNii

dt
= −

(
2μii + d̄ii

ε

)
Nii + β̄

ε
Nsi + aiiN

2
i . (8e)

We then expand the populations in the form

Ns = N (0)
s + εN (1)

s + · · ·,
Ni = N (0)

i + εN (1)
i + · · ·,

Nss = N (0)
ss + εN (1)

ss + · · ·, (9)

Nsi = N (0)
si + εN (1)

si + · · ·,
Nii = N (0)

ii + εN (1)
ii + · · ·

and substitute them into Eqs. (8a)–(8e) to find, at O(1/ε),

0 = 2d̄ssN
(0)
ss + d̄siN

(0)
si , (10a)

0 = 2d̄iiN
(0)
ii + d̄siN

(0)
si , (10b)

0 = −d̄ssN
(0)
ss , (10c)

0 = −(d̄si + β̄ )N (0)
si , (10d)

0 = −d̄iiN
(0)
ii + β̄N (0)

si . (10e)

Equations (10a)–(10e) can be solved to obtain the leading-
order solution N (0)

ss = N (0)
si = N (0)

ii = 0. Note that at O(ε−1),
the equations do not determine N (0)

s and N (0)
i . To do so, we

must consider Eqs. (8a)–(8e) at O(1):

dN (0)
s

dt
= � − μsN

(0)
s − 2assN

(0)2
s − asiN

(0)
s N (0)

i

+ 2d̄ssN
(1)
ss + d̄siN

(1)
si , (11a)

dN (0)
i

dt
= −μiN

(0)
i − 2aiiN

(0)2
i − asiN

(0)
s N (0)

i

+ 2d̄iiN
(1)
ii + d̄siN

(1)
si , (11b)

0 = −d̄ssN
(1)
ss + assN

(0)2
s , (11c)

0 = −(d̄si + β̄ )N (1)
si + asiN

(0)
s N (0)

i , (11d)

0 = −d̄iiN
(1)
ii + β̄N (1)

si + aiiN
(0)2
i . (11e)

Equations (11c)–(11e) can be solved to yield

N (1)
ss = ass

d̄ss
N (0)2

s ,

N (1)
si = asi

β̄ + d̄si
N (0)

s N (0)
i , (12)

N (1)
ii = β̄

d̄ii
N (1)

si + aii

d̄ii
N (0)2

i .

Upon substitution of the expressions in Eq. (12) into
Eqs. (11a) and (11b), we find the ODEs for the leading-
order approximations of the number of isolated susceptible

individuals and infected individuals

dN (0)
s

dt
= � − μsN

(0)
s −

(
asiβ

β + dsi

)
N (0)

s N (0)
i ,

dN (0)
i

dt
= −μiN

(0)
i +

(
asiβ

β + dsi

)
N (0)

s N (0)
i ,

(13)

wherein an effective transmission rate can be defined as

Beff := asiβ

β + dsi
= asiβ̄

β̄ + d̄si
. (14)

In this limit, the effective equations for infected individuals
and susceptible individuals retain the mass-action form, but
with a modified transmission parameter. The pair-formation
process mediates the disease transmission through the as-
sociation rate asi. For β̄ � d̄si, the rate limiting step is
transmission within a susceptible-infected pair. When intra-
pair transmission is fast, β̄ � d̄si, the overall transmission
rate Beff ≈ asi approaches the association rate itself. In this
limit, the five-dimensional mass-action pairing equations re-
duce to a two-dimensional mass-action model with a modified
transmission rate. Note that if we were to use the frequency-
dependent variant of the pairing model, the form would also
be preserved to lowest order with the corresponding transmis-
sion term BeffN (0)

s N (0)
i /(N (0)

i + N (0)
s ).

B. Fast dissociation and association limit

Now consider the limit where both the association and
dissociation coefficients are significantly larger than the death
and infection rates and define ass = āss/ε, asi = āsi/ε, aii =
āii/ε, dss = d̄ss/ε, dsi = d̄si/ε, and dii = d̄ii/ε, with ε → 0+.
We also perform a linear transformation on Eqs. (7a) and (7b)
so that they describe total susceptible and infected populations
and are independent of ε:

d

dt
(Ns + 2Nss + Nsi ) = � − μsNs − 2μssNss − (μsi + β )Nsi,

d

dt
(Ni + 2Nii + Nsi ) = −μiNi − 2μiiNii − (μis − β )Nsi,

dNss

dt
= −

(
2μss + d̄ss

ε

)
Nss + āss

ε
N2

s ,

dNsi

dt
= −

(
μis+ μsi+ d̄si

ε
+ β

)
Nsi + āsi

ε
NsNi,

dNii

dt
= −

(
2μii + d̄ii

ε

)
Nii + βNsi + āii

ε
N2

i .

(15)

We now substitute the expansion in Eqs. (9) into Eqs. (15) and
keep only the O(1) terms to find

d

dt

(
N (0)

s + 2N (0)
ss + N (0)

si

)
= � − μsN

(0)
s − 2μssN

(0)
ss − (μsi + β )N (0)

si , (16a)

d

dt

(
N (0)

i + 2N (0)
ii + N (0)

si

)
= −μiN

(0)
i − 2μiiN

(0)
ii − (μis − β )N (0)

si , (16b)
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0 = −d̄ssN
(0)
ss + āssN

(0)2
s , (16c)

0 = −d̄siN
(0)
si + āsiN

(0)
s N (0)

i , (16d)

0 = −d̄iiN
(0)
ii + āiiN

(0)2
i . (16e)

By using Eqs. (16c)–(16e) to eliminate N (0)
ss , N (0)

si , and N (0)
ii

from Eqs. (16a) and (16b), we obtain

d

dt

(
N (0)

s + 2κssN
(0)2
s + κsiN

(0)
s N (0)

i

)
= � − μsN

(0)
s − 2μssκssN

(0)2
s − (μsi + β )κsiN

(0)
s N (0)

i ,

d

dt

(
N (0)

i + 2κiiN
(0)2
i + κsiN

(0)
s N (0)

i

)
= −μiN

(0)
i − 2μiiκiiN

(0)2
i − (μis − β )κsiN

(0)
s N (0)

i , (17)

where κss = āss/d̄ss, κsi ≡ κis = āsi/d̄si, and κii = āii/d̄ii.

1. Steady states and stability

The most convenient way to determine the steady states
and/or further analyze Eqs. (17) is to unpack them in terms of
N (0)

i and N (0)
s and write them in the form

d

dt

[
N (0)

s

N (0)
i

]
= M−1

[
� − μsN (0)

s − 2μssκssN (0)2
s − (μsi + β )κsiN (0)

s N (0)
i

−μiN
(0)
i − 2μiiκiiN

(0)2
i − (μis − β )κsiN (0)

s N (0)
i

]
, (18)

where

M =
[

1 + 4κssN (0)
s + κsiN

(0)
i κsiN (0)

s

κsiN
(0)
i 1 + 4κiiN

(0)
i + κsiN (0)

s

]
.

Note that since N (0)
s , N (0)

i , κss, κsi, κii � 0, the eigenvalues of
M can never be zero and M is invertible.

We can readily show that the system of equations always
supports an infection-free steady-state solution

(
N (0)

s , N (0)
i

) =
(−μs + √

μ2
s + 8μssκss�

4μssκss
, 0

)
(19)

and that this solution is linearly stable if

R := κsi(β − μis )
(−μs + √

μ2
s + 8μssκss�

)
4μiμssκss

< 1 (20)

and linearly unstable if R > 1. Another stable solution
with positive N (0)

s and N (0)
i will arise if R > 1. This solu-

tion structure closely mirrors that of the mass-action and
frequency-dependent models.

2. Comparison to mass-action and frequency-based models

In order to compare Eqs. (17) or (18) to the simpler classic
models, it is preferable to rewrite the equations in terms of
the leading-order expressions for the total susceptible and
infected populations

N (0)
S = N (0)

s + 2N (0)
ss + N (0)

si ,

N (0)
I = N (0)

i + 2N (0)
ii + N (0)

si .
(21)

Again using Eqs. (16c)–(16e) to eliminate N (0)
ss , N (0)

si , and N (0)
ii ,

we find

N (0)
S = N (0)

s + 2κssN
(0)2
s + κsiN

(0)
s N (0)

i , (22a)

N (0)
I = N (0)

i + 2κiiN
(0)2
i + κsiN

(0)
s N (0)

i . (22b)

Next we need to express the quantities N (0)
s and N (0)

i in terms
of N (0)

S and N (0)
I . Solving Eq. (22b) for N (0)

i and substitut-
ing the result into Eq. (22a), we find a quartic equation for

N (0)
s ,

2κss
(
4κiiκss − κ2

si

)
N (0)4

s + (
8κiiκss − 2κsiκss − κ2

si

)
N (0)3

s

+ (
κ2

si(N
(0)
S − N (0)

I ) − 8N (0)
S κiiκss + 2κii − κsi

)
N (0)2

s

+ N (0)
S (κsi − 4κii )N

(0)
s + 2N (0)2

S κii = 0. (23)

We can readily show that only one of the four roots gives
values of N (0)

s and N (0)
i that are both positive when N (0)

S and
N (0)

I are positive. Upon using this physical root for N (0)
s as

functions of N (0)
S and N (0)

I in Eq. (22a), we find the unique
physical root for N (0)

i , expressed in terms of N (0)
S and N (0)

I . Ex-
plicit formulas for the solution of a quartic are known, so we
can express N (0)

s ≡ FS(N (0)
S , N (0)

I ) and N (0)
i ≡ FI(N

(0)
S , N (0)

I )
as functions FS and FI that are obtained by the procedure
described above. We can then rewrite

dN (0)
S

dt
= � − μsN

(0)
S + 2(μs − μss )κssF

2
S

+ (μs − μsi − β )κsiFSFI,

dN (0)
I

dt
= −μiN

(0)
I + 2(μi − μii )κiiF

2
I

+ (μi − μis + β )κsiFSFI.

(24)

Although FS(N (0)
S , N (0)

I ) and FI(N
(0)
S , N (0)

I ) are unwieldy func-
tions of N (0)

S and N (0)
I , Eqs. (24) represent a systematic

projection of the original five-dimensional problem to two
closed equations describing the total susceptible and infected
populations N (0)

S and N (0)
I . Note that we retained immigra-

tion and death in our general model, but in the limit where
� = μ = 0, the total population is conserved at all times and
N (0)

S + N (0)
I = const as in the standard SIS model. Equations

(24) can be further simplified in different limits of rate param-
eters as described below.

3. Low-density asymptotics

Consider the solutions to N (0)
s and N (0)

i in the limit
where the populations in the reference area A0 are small,
N (0)

S , N (0)
I � 1. Upon Taylor expansion of the solutions

to Eqs. (22a) and (22b), we find FS(N (0)
S , N (0)

I ) ≈ N (0)
S −

(κsiN
(0)
I + 2κssN

(0)
S )N (0)

S + O(N (0)3
S,I ) and FI(N

(0)
S , N (0)

I ) ≈
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N (0)
I − (κsiN

(0)
S + 2κiiN

(0)
I )N (0)

I + O(N (0)3
S,I ), and Eqs. (24) to

lowest order become

dN (0)
S

dt
≈ � − μsN

(0)
S + 2(μs − μss)κssN

(0)2
S

+ (μs − μsi − β )κsiN
(0)
S N (0)

I ,

dN (0)
I

dt
≈ −μiN

(0)
I + 2(μi − μii )κiiN

(0)2
I

+ (μi − μis + β )κsiN
(0)
S N (0)

I . (25)

The dynamics in this low-density limit are dominated by im-
migration and death but are also qualitatively different from

those of the standard mass-action model in that Eqs. (25) con-
tain N (0)2

S and N (0)2
I terms. These quadratic terms arise from

the difference in death rates between paired and unpaired sus-
ceptible individuals μs − μss and paired and unpaired infected
individuals μi − μii. However, if we assume that the death rate
is independent of the pairing status, i.e., μss = μs, μii = μi,
μsi = μs, and μis = μi, we obtain the standard mass-action
model with Bm ∝ κsiβ.

4. High-density asymptotics

If N (0)
S , N (0)

I � 1, and hence N (0)
s , N (0)

i � 1, the physical
solutions to Eqs. (22a) and (22b) are approximately

FS(N (0)
S , N (0)

I ) ≈

√√√√N (0)
I + (2K − 1)N (0)

S −
√(

N (0)
I − N (0)

S

)2 + 4KN (0)
S N (0)

I

4κss(K − 1)
,

FI(N
(0)
S , N (0)

I ) ≈

√√√√N (0)
S + (2K − 1)N (0)

I −
√(

N (0)
I − N (0)

S

)2 + 4KN (0)
S N (0)

I

4κii(K − 1)
,

(26)

where K ≡ 4κssκii/κ
2
si. Upon substituting Eqs. (26) into

Eqs. (24), we find the effective equations for N (0)
S , N (0)

I � 1.
In this case, even if μss = μs, μii = μi, μsi = μs, and μis =
μi, the effective model differs significantly in form from both
the mass-action and frequency-dependent models. In Fig. 1
we compare the exact solutions of NS(t ) and NI(t ) from
Eqs. (7a)–(7e) to N (0)

S (t ) and N (0)
I (t ) derived from solving

Eqs. (24) using Eqs. (26). There is excellent agreement at all
times.

FIG. 1. Fast association and dissociation in the high-density
limit. Comparison of the numerical solution of Eqs. (7a)–(7e) with
the numerical solution of the high-density asymptotic approximation
derived from using Eqs. (26) in Eqs. (24). We plot the total suscep-
tible and infected populations Ns + Nsi + 2Nss and Ni + Nsi + 2Nii,
derived from Eqs. (7a)–(7e) (solid blue and red curves) versus N (0)

S

and N (0)
I from Eqs. (26) and (24) (dashed blue and dashed red curves)

as functions of ln t . (a) The parameters used are ā = d̄ = 1, ε = 0.3,
μs = μss = μsi = 0, μi = μii = μis = 0.01, � = 2, and β = 0.5,
with initial conditions N (0)

s (0) = 100 and N (0)
i (0) = 10. (b) Same

parameters and initial conditions as in (a) but with ε = 0.0003. In
both plots, the decreasing and increasing curves indicate N (0)

S (t )
and N (0)

I (t ), respectively. The asymptotic approximations are quite
accurate even for ε = 0.3.

5. Equal association rates and equal dissociation rates

A further simplification can be made in the special case
in which both the pairing and dissociation rates are equal
to each other for all types of pairs. This implies that the
dissociation coefficients for each of the pairings are the
same dss = dii = dsi. For association, there are three possi-
ble pairings: susceptible-susceptible, infected-infected, and
susceptible-infected. A pair with one infected individual and
one susceptible individual can combinatorially arise in two
ways so asi = 2ass = 2aii. Thus, κsi = 2κss = 2κii ≡ κ and
K = 1. The physical solution to Eqs. (22a) and (22b) then
reduces to

FS
(
N (0)

S , N (0)
I

)
= N (0)

S

4κ
(
N (0)

S + N (0)
I

)(√
8κ

(
N (0)

I + N (0)
S

) + 1 − 1
)
,

FI
(
N (0)

S , N (0)
I

)
= N (0)

I

4κ
(
N (0)

S + N (0)
I

)(√
8κ

(
N (0)

I + N (0)
S

) + 1 − 1
)
. (27)

Using these expressions, Eqs. (24) in the N (0)
S + N (0)

I � 1
limit simplify to

dN (0)
S

dt
= � − μsN

(0)
S + (μs − μss )

N (0)2
S

N (0)
S + N (0)

I

+ (μs − μsi − β )

2

N (0)
S N (0)

I

N (0)
S + N (0)

I

,

dN (0)
I

dt
= −μiN

(0)
I + (μi − μii )

N (0)2
I

N (0)
S + N (0)

I

+ (μi − μis + β )

2

N (0)
S N (0)

I

N (0)
S + N (0)

I

, (28)
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which is similar to a frequency-dependent model with ef-
fective transmission rate Bf = β/2. Thus, we have found a
specific limit where pairing and unpairing dynamics within
a mass-action model reduces it to an effective frequency-
dependent model.

C. Fast association limit

Now consider a different limit in which the fast dissocia-
tion constraint is relaxed and assume only the association rates
are significantly larger than all other (dissociation, death, and
infection) rates. Upon defining ass = āss/ε, asi = āsi/ε, and
aii = āii/ε, with ε → 0+, Eqs. (7a)–(7e) become

dNs

dt
= � − μsNs − 2

āss

ε
N2

s − āsi

ε
NsNi

+ 2(μss + dss )Nss + (μis + dsi )Nsi,

dNi

dt
= −μiNi − 2

āii

ε
N2

i − āsi

ε
NsNi

+ 2(μii + dii )Nii + (μsi + dsi )Nsi,

dNss

dt
= −(2μss + dss)Nss + āss

ε
N2

s ,

dNsi

dt
= −(μis + μsi + dsi + β )Nsi + āsi

ε
NsNi,

dNii

dt
= −(2μii + dii )Nii + βNsi + āii

ε
N2

i .

(29)

Since the fast association ā/ε terms are products of single
populations Ni and Ns, we expect an expansion in powers of√

ε. Substituting the expansion

Ns = N (0)
s + ε1/2N (1)

s + εN (2)
s + · · ·,

Ni = N (0)
i + ε1/2N (1)

i + εN (2)
i + · · ·,

Nss = N (0)
ss + ε1/2N (1)

ss + εN (2)
ss + · · ·,

Nsi = N (0)
si + ε1/2N (1)

si + εN (2)
si + · · ·,

Nii = N (0)
ii + ε1/2N (1)

ii + εN (2)
ii + · · · (30)

into Eqs. (29) and retaining only terms of size O(ε−1), we
find N (0)

s = N (0)
i = 0. Next, collecting terms of size O(1), we

obtain

0 = � − 2āssN
(1)2
s − āsiN

(1)
s N (1)

i (31a)

+ 2(μss + dss)N (0)
ss + (μis + dsi )N

(0)
si ,

0 = −2āiiN
(1)2
i − āsiN

(1)
s N (1)

i (31b)

+ 2(μii + dii )N
(0)
ii + (μsi + dsi )N

(0)
si ,

dN (0)
ss

dt
= −(2μss + dss)N (0)

ss + āssN
(1)2
s , (31c)

dN (0)
si

dt
= −(μis + μsi + dsi + β )N (0)

si + āsiN
(1)
s N (1)

i , (31d)

dN (0)
ii

dt
= −(2μii + dii )N

(0)
ii + βN (0)

si + āiiN
(1)2
i . (31e)

Upon solving Eqs. (31a) and (31b), we find

N (1)
s =

√
Pi + (2 f − 1)Ps −

√
(Pi − Ps)2 + 4 f PiPs

4āss( f − 1)
,

N (1)
i =

√
Ps + (2 f − 1)Pi −

√
(Pi − Ps)2 + 4 f PiPs

4āii ( f − 1)
,

(32)

where f ≡ 4āssāii/ā2
si and

Ps = 2(μss + dss )N (0)
ss + (μis + dsi )N

(0)
si + �

Pi = 2(μii + dii )N
(0)
ii + (μsi + dsi )N

(0)
si .

(33)

Thus, to lowest order in the fast association limit, the infected
population is N (0)

I ≈ 2N (0)
ii + N (0)

si . In what follows, it will
be useful to define the susceptible individuals who are in
susceptible-infected pairs, N (0)

E ≡ N (0)
si , as an exposed popula-

tion. Analogously, the unexposed susceptible population not
in mixed pairs is dominated by susceptible-susceptible pairs
and is N (0)

S ≈ 2N (0)
ss .

Rewriting Eqs. (31c)–(31e) using Eqs. (32), we find

dN (0)
S

dt
= −(2μss + dss)N (0)

S

+ Pi + (2 f − 1)Ps −
√

(Pi − Ps )2 + 4 f PiPs

2( f − 1)
,

dN (0)
E

dt
= −(μis + μsi + dsi + β )N (0)

E

+
√

(Pi − Ps )2 + 4 f PsPi − (Pi + Ps)

2( f − 1)
,

dN (0)
I

dt
= −μiiN

(0)
I + (μii − μis + β )N (0)

E , (34)

where Ps and Pi can also be expressed as

Ps = (μss + dss )N (0)
S + (μis + dsi )N

(0)
E + �,

Pi = (μii + dii )N
(0)
I + (μsi − μii + dsi − dii )N

(0)
E . (35)

Equations (34) and (35) constitute a self-contained system of
equations for the three subpopulations N (0)

S (t ), N (0)
E (t ), and

N (0)
I (t ).

An alternative formulation is to group all susceptible indi-
viduals and write

d

dt

(
N (0)

S + N (0)
E

) = � − μss
(
N (0)

S + N (0)
E

)
+ (μss − μsi − β )N (0)

E ,

dN (0)
E

dt
= −(μis + μsi + dsi + β )N (0)

E

+
√

(Pi − Ps)2 + 4 f PsPi − (Pi + Ps )

2( f − 1)
,

dN (0)
I

dt
= −μiiN

(0)
I + (μii − μis + β )N (0)

E . (36)

032306-7



JONATHAN WYLIE AND TOM CHOU PHYSICAL REVIEW E 103, 032306 (2021)

-3 -2 -1 0 1 2

ln t

0

50

100

150

200

250

-3 -2 -1 0 1 2

ln t

(a) (b)

FIG. 2. Fast association limit. Comparison of numerical solution
of Eqs. (7a)–(7e) to the numerical solution of the high association
rate approximation [Eqs. (36)]. The exact solutions of Ns + Nsi +
2Nss and Ni + Nsi + 2Nii [from Eqs. (7a)–(7e), solid blue and red,
respectively] are compared with the corresponding quantities NS +
NE and NI found from numerically integrating Eqs. (36). (a) The
parameters used are ā = 1, d = 1, μs = 0.01, μi = μis = μsi =
0.05, μii = μss = 5, � = 50, and β = 100, with initial conditions
Ns(0) = Ni (0) = 0, Nss(0) = 500, Nsi (0) = 100, and Nii = 10. These
parameters correspond to R0 < 1 and an infection that dies out.
The corresponding initial conditions for Eqs. (36) are NS(0) = 1000,
NE(0) = 100, and NI (0) = 120. (a) The approximation is highly ac-
curate even for ε = 1. (b) Same parameters as in (a) but with ε = 0.1,
for which the approximation is indistinguishable, in this plot, from
the full numerical solution.

In the case ā2
si → 4āssāii ( f → 1), we apply l’Hôpital’s rule to

Eqs. (34) to further simplify them to

dN (0)
S

dt
= −(2μss + dss )N (0)

S + P2
s

Ps + Pi
,

dN (0)
E

dt
= −(μis + μsi + dsi + β )N (0)

E + PsPi

Ps + Pi
,

dN (0)
I

dt
= −μiiN

(0)
I + (μii − μis + β )N (0)

E , (37)

which are reminiscent of simple SEI-type models [26–28].
A comparison between NS and NI derived from the exact
equations (7a)–(7e) and those derived from solving Eqs. (37)
is given in Fig. 2. The approximations are accurate for all valid
parameter regimes across all times.

Linearization of Eqs. (34) and (37) about the disease-free
equilibrium point (N∗

S , N∗
E , N∗

I ) = (�/μss, 0, 0) yields [omit-
ting the (0) notation]

dδNS

dt
= −μssδNS + (μii + dii + μis − μsi )δNE

− (μii + dii )δNI,

dδNE

dt
= −(μis + μii + dii + β )δNE + (μii + dii )δNI,

dδNI

dt
= (μii − μis + β )δNE − μiiδNI, (38)

where (δNS, δNE, δNI ) are deviations about (N∗
S , N∗

E , N∗
I ).

Eigenvalues of Eqs. (38) indicate instability whenever

βdii > μis(dii + 2μii ). (39)

Fast association and transmission limit

Finally, within this general fast association limit, we can
also explore the fast transmission limit. Setting both a →
ā/εand β → β̄/ε in Eqs. (7a)–(7e) and using the expan-
sion given in Eqs. (30), we find, to O(ε−1), N (0)

s = N (0)
i =

N (0)
si = 0. To O(ε1/2), we find N (1)

si = 0, while to order O(1),
Eqs. (7a)–(7e) become

0 = � − 2āssN
(1)2
s − āsiN

(1)
s N (1)

i + 2(μss + dss)N (0)
ss ,

(40a)

0 = −2āiiN
(1)2
i − āsiN

(1)
s N (1)

i + 2(μii + dii )N
(0)
ii , (40b)

dN (0)
ss

dt
= −(2μss + dss)N (0)

ss + āssN
(1)2
s , (40c)

0 = −β̄N (2)
si + āsiN

(1)
s N (1)

i , (40d)

dN (0)
ii

dt
= −(2μii + dii )N

(0)
ii + β̄N (2)

si + āiiN
(1)2
i . (40e)

Upon solving Eqs. (40a), (40b), and (40d), we find the
same solution for N (1)

i and N (1)
s as given in Eqs. (32) as

well as

N (2)
si = āsi

β̄
N (1)

i N (1)
s . (41)

The terms Ps and Pi are given by Eqs. (35) except now N (0)
si =

0, leading to

Ps = 2(μss + dss )N (0)
ss + � = (μss + dss )N (0)

S + �,

Pi = 2(μii + dii )N
(0)
ii = (μii + dii )N

(0)
I . (42)

Since N (0)
E ≡ N (0)

si = 0, substitution of Eqs. (42) into Eqs. (32)
and (41) allows us to write Eqs. (40c) and (40e) as a closed
system of equations for N (0)

I ≈ 2N (0)
ii and N (0)

S ≈ 2N (0)
ss , re-

spectively. The stability of the disease-free equilibrium at
(N∗

S , N∗
I ) = ( �

2μss
, 0) can be analyzed by using Eqs. (42) in

Eqs. (32). Upon Taylor expanding Eqs. (40c) and (40e) about
(N∗

S , N∗
I ), we find

dδNS

dt
= −μssδNS − (μii + dii )δNI,

dδNI

dt
= diiδNI.

(43)

In the fast association and transmission limit, the disease-free
fixed point is always linearly unstable with growth rate dii

representing the rate limiting dissociation step that allows
further disease spread outside of doubly infected pairs.

IV. SUMMARY AND CONCLUSIONS

We have revisited the canonical mass-action susceptible-
infected disease transmission models and systematically
incorporated pairing dynamics. The purpose was to rigorously
find uniformly valid effective equations from mass-action
models with pairing and unpairing steps. After nondimension-
alization of the five fundamental mass-action equations, we
found parameter regimes that allow us to develop uniformly
valid approximations to the total infected and susceptible pop-
ulations. Our results were compared with lower-dimensional
mass-action and frequency-dependent models without pairing.
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First, in the fast transmission and pair dissociation limit,
we found that the mass-action pairing model reduces to a stan-
dard mass-action susceptible-infected (SI) model [Eqs. (13)]
without pairing, but with an effective disease transmission rate
given by Eq. (14).

Next, when pair formation and breakup were assumed to
be fast, we found effective equations for the total susceptible
and infected populations. Although the two resulting ODEs
can be unwieldy, this system differs fundamentally from the
basic SI model. However, if death rates do not depend on
the pairing status, we show that, in the low-density limit,
the simple mass-action response is recovered [Eq. (25)]. In
this low-density limit, the pairing dynamics do not affect the
leading-order form of the functional response. However, in the
high-density limit, a frequency-dependent response is recov-
ered [Eq. (28)] if the association and dissociation rates are the
same for each of the three different types of pairs. Under these
assumptions, we showed that, for finite densities, a Holling
type II response does not arise. Nevertheless, we derived a
simple functional response that contains the same number of
parameters as a model using Holling’s type II response but
with a clear mathematical justification.

Finally, we relaxed the fast dissociation constraint and as-
sumed that only the association rates are large. In this case,
we could reduce the five-dimensional system of mass-action
equations only to a three-dimensional system that includes
susceptible individuals, infected individuals, and an exposed
population describing susceptible individuals in susceptible-
infected pairs [Eqs. (34) or (37)]. These equations share
features with the canonical SEI-type models [26,27,29].

Although the two- or three-dimensional system of equa-
tions we derived are typically more complicated in form,
our formulas allow for straightforward incorporation of the
effects of pair formation and dissociation in a self-consistent
uniformly valid way in a number of limits. We have also
numerically compared our solutions with those from the
full five-dimensional mass-action system and found excellent
agreement in the limits analyzed (Figs. 1 and 2).

Our asymptotic analysis can be straightforwardly extended
to more complex disease models such as SIS- and SIR-type
models that incorporate structured populations, incubation pe-
riods [30,31], and other processes such as birth and aging [32].

For structured models describing, e.g., population densities in
age or time since infection τ , we can similarly assume fast
association or dissociation rates proportional to 1/ε (which
are now functions of τ ) and expand the partial differential
equations describing Nss(t ), Ni (τ, t ), Ns(τ, t ), Nis(τ, t ), and
Nii (τ1, τ2, t ) in powers of ε. It would also be interesting to
combine our asymptotic approaches with models of particle
coagulation and fragmentation [33] to analyze disease dynam-
ics occurring under group interactions or household structures
[20,21,23,34,35]. For example, under epidemic conditions,
one may consider contact subgroups [36] or distributions of
pair contact durations [37], with household structure rep-
resenting slow dissociation and public or casual contacts
representing short-lived pairing [37]. Our reduced effective
equations may also admit accurate closed-form analytic so-
lutions previously derived for the standard SIR model [38].
Pair interactions could also be used to model certain properties
of infections across networks [39,40] and spatial nodes [41],
and our results may also provide insight into how to connect
network models to effective ODE representations.

Our work may extend to other applications such as mass-
action chemical reaction models in which an enzyme and
substrate must first associate before a reaction can occur. A
classic example in which related asymptotic analyses have
been applied is Michaelis-Menten kinetics, in which an inner
and outer solution are pieced together to describe substrate
and product concentrations at short and long times [42]. In
our problem, we have considered only the “outer” solutions,
yet for all cases studied, our lowest-order approximations are
valid at all times. Our analysis also provides possible avenues
for a more detailed reexamination of bimolecular interac-
tions in mass-action chemical kinetics in certain reaction rate
limits.
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