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Abstract
We analyze the Wasserstein distance (W-distance) between two probability distributions associated
with two multidimensional jump-diffusion processes. Specifically, we analyze a temporally
decoupled squaredW2-distance, which provides both upper and lower bounds associated with the
discrepancies in the drift, diffusion, and jump amplitude functions between the two
jump-diffusion processes. Then, we propose a temporally decoupled squaredW2-distance method
for efficiently reconstructing unknown jump-diffusion processes from data using parameterized
neural networks. We further show its performance can be enhanced by utilizing prior information
on the drift function of the jump-diffusion process. The effectiveness of our proposed
reconstruction method is demonstrated across several examples and applications.

1. Introduction

Jump-diffusion processes are widely used across many disciplines such as finance [1–3], biology [4],
epidemiology [5], and so on. A d-dimensional jump-diffusion process may be written in the following
form [6]:

dX(t) = f(X(t) , t)dt+σ (X(t) , t)dBt +

ˆ
U
β (X(t) , ξ, t) Ñ(dt,ν (dξ)) . (1)

Here, X(t) ∈ Rd is a d-dimensional jump-diffusion process and Bt := (B1,t, . . .,Bm,t) is a standard
m-dimensional white noise; Ñ is a compensated Poisson process of intensity ν(dξ)dt independent of Bt :

Ñ(dt,ν (dξ)) := N(dt,ν (dξ))− ν (dξ)dt, (2)

where N(dt,ν(dξ)) is a Poisson process with intensity ν(dξ)dt and ν(dξ) is a measure defined on U⊆ R, the
measure space of the Poisson process. N(A,B) and N(C,D) are independent if (A×B)∩ (C×D) = ∅,A,C
⊆ B(U) and B,D⊆ B([0,T]). B(U) and B([0,T]) denote the Borel σ-algebra associated with U and [0,T],
respectively. The drift, diffusion, and jump functions are defined by

f :=( f1 (X, t) , . . ., fd (X, t)) ∈ C
(
Rd × [0,T] ,Rd

)
,

σ :=
(
σi,j (X, t)

)
∈ C

(
Rd × [0,T] ,Rd×m

)
,

β :=(βi (X, ξ, t)) ∈ C
(
Rd ×U× [0,T] ,Rd

)
,

(3)

respectively. Specifically, if U= {1, . . .,n}, then equation (1) becomes

dXi (t) = fi (X(t) , t)dt+
m∑
j=1

σi,j (X(t) , t)dBj,t +
n∑

s=1

βi,s (X(t) , s, t) Ñs (dt,ν (s)) (4)
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for i = 1, ..,d. Here, each Ñs is a compensated Poisson process with intensity ν(s)dt. Ñs1 and Ñs2 are
independent if s1 ̸= s2. When β ≡ 0, equation (1) reduces to the pure diffusion process.

In this paper, we study the problem of reconstructing a jump-diffusion process equation (1) or
equation (4) from observed data X(t) at different time points by using a different jump-diffusion process

dX̂(t) = f̂(X(t) , t)dt+ σ̂
(
X̂(t) , t

)
dB̂t +

ˆ
U
β̂
(
X̂(t) , ξ, t

)
N̂(dt,ν (dξ)) (5)

to approximate equation (1). In equation (5), B̂t is am-dimensional standard Brownian motion that is
independent of Bt and Ñ in equation (1); N̂(dt,ν(dξ)) is a compensated Poisson process of intensity dν(ξ)dt
and independent of Bt , Ñ in equation (1) as well as B̂t. Specifically, we are interested in reconstructing the
jump-diffusion process equation (1) with little or no prior information on the drift, diffusion, and jump
functions f,σ, and β. To reconstruct or approximate equation (1) using equation (5), we wish to find small
errors in the drift, diffusion, and jump functions, i.e. to find f̂, σ̂, and β̂ such that f− f̂, σ− σ̂, and β− β̂ are
small.

Thus far, most studies related to jump-diffusion processes have focused on the forward-type problem of
efficient simulation of a jump-diffusion process given coefficients [7, 8]. There are also several studies on the
statistical properties of jump-diffusion processes such as their first passage times [9, 10]. While there has
been some research into the inverse problem of reconstructing a general pure diffusion process, there has
been little work on reconstructing unknown jump-diffusion processes from sample trajectories. However,
reconstructing jump-diffusion processes is important for understanding stochastic dynamics in complex
systems arising in physics, biology, finance, and other disciplines, especially those characterized by
discontinuities and intrinsic noise. Examples include the Boltzmann equation for particle interactions [11],
material science such as supercooled water [12], quantum dynamics as represented by the Lindblad equation
[13], and muscle contraction modeling in cellular biophysics [14]. These applications underscore the critical
role of jump-diffusion process reconstruction in advancing knowledge across physical, engineering, and
biomedical domains.

So far, two main strategies for reconstruction have been proposed. First, regression methods are applied
to determine unknown parameters if the forms of drift, diffusion, and jump functions (f , σ and β in
equation (1)) are known. Unknown parameters in these functions can then be determined from data [15,
16]. Another strategy for reconstructing a jump-diffusion process is to calculate the empirical probability
density function p(X, t) from observation data X(t) and then reconstruct the integrodifferential equation
satisfied by p(X, t) [17]. Yet, this method requires a large number of observations at different time points to
obtain a good empirical approximation of the density function p(X, t). Recently, a Wasserstein-generative-
adversarial-network(WGAN)-based method was proposed for reconstructing the jump-diffusion process
equation (1) [4]. However, training a WGAN can be intricate and computationally expensive.

Recent advancements in machine learning make it possible to use parameterized neural networks (NNs)
for representing f̂, σ̂, and β̂ in equation (5) which approximate f,σ, and β in equation (1). For example, a
recent torchsde package in Python [18] models pure diffusion processes (SDEs with Brownian noise) by
using parameterized neural networks. These methods have been used in the reconstruction of diffusion
processes. For example, in [19], a deep Gaussian latent model has been applied for reconstructing a pure
diffusion process; [20] uses the neural SDE model to reconstruct a stochastic differential equation with
Brownian noise by minimizing a KL-divergence-based loss function. In [21, 22], generative adversarial
networks were used to reconstruct general stochastic differential equations including a Brownian motion
noise term without requiring prior knowledge of the specific forms of the drift or diffusion functions.

A key challenge in reconstructing jump-diffusion processes is to properly quantify the discrepancies
between the distributions generated by the true jump-diffusion process equation (1) and the approximate
jump-diffusion process equation (5) using only sample trajectories. Although loglikelihood-based methods
such as KL divergence are often used in the probabilistic modeling, they are not suitable for evaluating the
distance between empirical distributions over the space of functions. This is because the likelihood of
unobserved trajectories in the empirical distribution is 0 and its log-likelihood is undefined. For finite
dimensional data, one can use Gaussian distribution to smoothen the empirical distribution and then
calculate the smoothened log-likelihood. However, this method is not suitable for infinite dimensional data
such as the trajectories of jump-diffusion processes. By contrast, the Wasserstein distance can effectively
measure discrepancies between probability measures defined over a metric space and is readily differentiable
with respect to the parameters of the neural networks [23, 24]. Consequently, an efficient squared-
Wasserstein-distance-based method for reconstructing pure diffusion processes from data, without the need
to specify forms for the drift and diffusion, was recently proposed [25]. General jump-diffusion processes are
distinct from pure diffusion processes because the trajectories of jump-diffusion processes are discontinuous.
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Although some recent work analyzes a smooth Wasserstein distance between two distributions associated
with two 1D jump-diffusion processes at a given time [26], it remains unclear whether the Wasserstein
distance can also be employed in the reconstruction of an unknown jump-diffusion process from data.

1.1. Contribution
In this paper, we analyze theW-distance between two probability distributions associated with two
multidimensional jump-diffusion processes equations (1) and (5). We then show that a temporally
decoupled squared Wasserstein distance can serve as effective upper and lower error bounds on the errors in
the drift, diffusion, and jump functions f− f̂, σ− σ̂, and β− β̂ in equations (1) and (5), respectively. This
temporally decoupled squared Wasserstein distance can be effectively evaluated using finite-sample
observations at discrete time points. Thus, we propose using this temporally decoupled squaredW2-distance
in the reconstruction of general jump-diffusion processes with the help of parameterized neural networks.
Our method directly solves the inverse-type problem of reconstructing jump-diffusion processes from
time-series data. Furthermore, we explore how prior information on the drift function enhances the
performance of our temporally decoupled squared Wasserstein distance method. Our results greatly extend
the results in [25] (reconstructing 1D pure diffusion processes) to allow for the reconstruction of
multidimensional jump-diffusion processes. Specifically, we

• prove that the W-distance is a lower bound for the errors f− f̂,σ− σ̂, and β− β̂. Thus, minimizing the
W-distance is necessary for reconstructing the multidimensional jump-diffusion process equation (1).

• analyze a temporally decoupled squared W-distance defined in [25] and show that it can be efficiently
evaluated by finite-sample empirical distributions. Thus, it is suitable as a loss function for reconstructing
equation (1) using parameterized neural networks.

• conduct numerical experiments to demonstrate the efficacy of using the temporally decoupled squared
Wasserstein distance in the reconstruction of jump-diffusion processes.

The advantages of our proposed temporally decoupled squaredW2-distance-based reconstruction method
for jump-diffusion processes include:

1. It can directly reconstruct jump-diffusion processes such as equation (1) from observed temporal
trajectories by using parameterized neural networks to approximate the drift, diffusion, and jump
functions f,σ, and β, respectively. These parameterized neural networks are straightforwardly trained by
minimization of a simple temporally decoupled squaredW2-distance loss function, which can be directly
evaluated using the POT package [27]

2. Our temporally decoupled squared Wasserstein method outperforms several other benchmark methods,
such as the minimization of other commonly used loss functions in UQ, e.g.
maximum-mean-discrepancy, mean square error, mean2+var as well as a WGANmethod.

3. Based on our empirical results, prior information on the drift function can further increase accuracy in
the reconstruction of the diffusion and jump functions in equation (1). Such prior information enables
one to accurately reconstruct a jump-diffusion process with only several hundred observed trajectories.

1.2. Organization
In section 2, we analyze how theW-distance between the probability measures associated with solutions to
two jump-diffusion processes equations (1) and (5) can be a lower bound of the errors in the reconstructed
drift, diffusion, and jump functions f− f̂, σ− σ̂, and β− β̂. In section 3, we analyze a temporally decoupled
squaredW2-distance and show how it can be more effectively evaluated than the squaredW2 distance.
Specifically, the temporally decoupled squaredW2 distance is smaller than theW2 distance analyzed in
section 2 while providing an upper bound of the errors in the reconstructed drift, diffusion, and jump
functions. Thus, sections 2 and 3 together show that our temporally decoupled squaredW2 distance
provides both upper and lower error bounds. In section 4, numerical experiments are carried out to compare
our proposed jump-diffusion process reconstruction methods with other methods for reconstructing
different jump-diffusion processes. Additionally, we show how prior information on the drift function of the
ground truth jump-diffusion process equation (1) improves the reconstruction of the diffusion and jump
functions in equation (1). In section 5, we summarize our proposed jump-diffusion process reconstruction
approach and suggest potential future directions.
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2. TheW-distance between the probability measures associated with the
jump-diffusion processes in equations (1) and (5)

In this section, we shall show how theW-distance between the probability measures associated with the two
jump-diffusion processes equations (1) and (5) can serve as a lower bound for the errors f− f̂, σ− σ̂, and
β− β̂. First, we specify the assumptions on the jump-diffusion processes in equations (1) and (5).

Assumption 2.1. We assume that the jump-diffusion processes defined in equation (1) satisfy the following
conditions:

(i) For each non-increasing sequence Ai ∈ B(U) converging to the empty set ∅, E
[
|Ñ(t,A)|2

]
→ 0,∀t⩾ 0.

(ii) Ñ(t,A) is a càdlàg martingale for all A ∈ B(U), t> 0, and E[|Ñ(t,U)|2]<∞.
(iii) Ñ

(
dt,ν(dξ)

)
is an orthogonal martingale measure with intensity dt · ν(dξ), i.e. for any A,B ∈ B(U)

and t1 ⩽ t2, t3 ⩽ t4 and any β1(ξ, t),β2(ξ, t) ∈ L2([0,T]×U) (the measure on U is ν), we have

E
[̂ t2

t1

ˆ
A
β1 (ξ, t) Ñ(dt,ν (dξ)) ·

ˆ t4

t3

ˆ
B
β2 (ξ, t) Ñ(dt,ν (dξ))

]
=

ˆ

[t1,t2]∩[t3,t4]

ˆ
A∩B

β1 (ξ, t)β2 (ξ, t)ν (dξ)dt.

(6)

(iv) Trajectories generated from both jump-diffusion processes, equations (1) and (5), reside in the space
L2([0,T],Rd).

(v) The drift, diffusion, and jump functions are all uniformly Lipschitz continuous, i.e., there exists three
positive constants f,σ,β <∞ such that ∀X 1 = (X1

1, . . .,X
1
d), ∀X

2 = (X2
1, . . .,X

2
d) ∈ Rd,

∣∣fi (X 1, t
)
− fi
(
X 2, t

)∣∣⩽ f

d

d∑
i=1

∣∣X1
i −X2

i

∣∣, ∀i = 1, . . .,d

∣∣σi,j

(
X 1, t

)
−σi,j

(
X 2, t

)∣∣⩽ σ

d

d∑
i=1

∣∣X1
i −X2

i

∣∣, ∀i = 1, . . .,d, ∀j = 1, . . .,m,

∣∣βi

(
X 1, ξ, t

)
−βi

(
X 2, ξ, t

)∣∣⩽ β

d

d∑
i=1

∣∣X1
i −X2

i

∣∣, ∀i = 1, . . .,d.

(7)

Furthermore, we assume that conditions (i)–(iv) also hold for the compensated Poisson process N̂ in
equation (5), and that condition (v) holds for the drift, diffusion, and jump functions in equation (5).

Now consider theW-distance between the distributions associated with solutions generated from the
target jump-diffusion process equation (1) and the approximate jump-diffusion process equation (5), as
defined below.

Definition 2.1. For two d-dimensional jump-diffusion processes

X(t) =
(
X1 (t) , . . .,Xd (t)

)
, X̂(t) =

(
X̂1 (t) , . . ., X̂d (t)

)
, t ∈ [0,T] , (8)

in the separable space
(
L2([0,T];Rd),∥ · ∥

)
with two associated probability distributions µ,µ̂, respectively, the

Wp-distanceWp(µ,µ̂) for 1⩽ p⩽ 2 is defined as

Wp (µ,µ̂) := inf
π(µ,µ̂)

E(X,X̂)∼π(µ,µ̂)

[
∥X− X̂∥p

] 1
p . (9)

In equation (9), the norm ∥ · ∥ is defined as ∥X∥ :=
(´ T

0

∑d
i=1 |Xi(t)|2dt

) 1
2
and π(µ,µ̂) iterates over all coupled

distributions of X(t), X̂(t), defined by the condition{
Pπ(µ,µ̂)

(
A× L2

(
[0,T] ;Rd

))
= Pµ (A) ,

Pπ(µ,µ̂)

(
L2
(
[0,T] ;Rd

)
×A
)
= Pµ̂ (A) ,

∀A ∈ B
(
L2
(
[0,T] ;Rd

))
, (10)

where B(L2([0,T];Rd)) denotes the Borel σ-algebra associated with the space of d-dimensional functions in
L2([0,T];Rd).

To prove thatWp(µ,µ̂) defined in equation (9) is a lower bound for the errors in the drift, diffusion, and

jump functions f− f̂, σ− σ̂, and β− β̂, we first prove the following theorem.
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Theorem 2.1. Suppose X(t) and X̂(t) are two d-dimensional jump-diffusion processes that are determined by
equations (1) and (5). We denote

dX̃(t) = f̂
(
X̃(t) , t

)
+ σ̂

(
X̃(t) , t

)
dBt +

ˆ
U
β̂
(
X̃(t) , ξ, t

)
Ñ(dt,ν (dξ)) (11)

and assume that
ˆ t

0

(
Xi

(
s−
)
− X̃i

(
s−
))(

σi,j − σ̂i,j

)
dBj,t,

ˆ t

0

ˆ
U

(
Xi

(
s−
)
− X̃i

(
s−
))(

βi − β̂i

)
Ñ(dt,ν (dξ)) , (12)

are martingales for all i, j. Then, the following inequality holds:

E
[∣∣X(t)− X̃(t)

∣∣2
2

]
⩽ E [H(T) |X(0)]exp

([
2f+ 1+(2σ+ 1)m+(2β+ 1)ν (U)

]
T
)
, (13)

where | · |2 denotes the 2-norm of a d-dimensional vector, X(0) is the initial condition, and H(t) is defined as

H(t) : = E

[
d∑

i=1

ˆ t

0

(
fi
(
X
(
s−
)
, s−
)
− f̂i
(
X
(
s−
)
, s−
))2

ds

]

+E

 d∑
i=1

ˆ t

0

m∑
j=1

(
σi,j

(
X
(
s−
)
, s−
)
− σ̂i,j

(
X
(
s−
)
, s−
))2

ds


+E

[
d∑

i=1

ˆ t

0

ˆ
U

(
βi

(
X
(
s−
)
, ξ, s−

)
− β̂i

(
X
(
s−
)
, ξ, s−

))2
ν (dξ)ds

]
.

(14)

The proof to theorem 2.1 is similar to the proof of the stochastic Gronwall lemma (theorem 2.2 in [6])
and is given in appendix A. Theorem 2.1 greatly generalizes the results of theorem 1 in [25], which was
developed for analyzing theW2-distance between two one-dimensional pure diffusion processes. Now, with
theorem 2.1, we can analyze theW-distance between two multi-dimensional jump-diffusion processes.

The following corollary establishes the upper bound of theW-distanceWp(µ,µ̂),1⩽ p⩽ 2 between µ
and µ̂, the two probability distributions associated with jump-diffusion processes equations (1) and (5).

Corollary 2.1. (Upper error bound for the W-distance) The following bound holds for Wp(µ,µ̂), where µ
and µ̂ are the two probability distributions associated with jump-diffusion processes equations (1) and (5)

Wp (µ, µ̂)⩽
√

TE
[
H(T)

∣∣X(0)
]
exp
([

f+ 1
2 +
(
σ+ 1

2

)
m+

(
β+ 1

2

)
ν (U)

]
T
)
, (15)

where H(T) is defined in equation (14).

Proof. The proof of corollary 2.1 is a direct application of theorem 2.1. We denote µ̃ to be the distribution of
X̃ defined in equation (11). Since X̃ has the same distribution as X̂, we have, by the Hölder’s inequality

W p
p (µ, µ̂) =W p

p (µ,µ̃)⩽ E

[̂
T

0

∣∣X(s)− X̃(s)
∣∣2
2
ds
∣∣∣X(0)

] p
2

, 1⩽ p⩽ 2. (16)

Using equation (13) and the fact that H(t) is non-decreasing w.r.t. t, we have

Wp (µ,µ̂)⩽
√

TE
[
H(T)

∣∣X(0)
]
exp
([(

f+ 1
2

)
+
(
σ+ 1

2

)
m+

(
β+ 1

2

)
ν (U)

]
T
)
, 1⩽ p⩽ 2. (17)

which proves equation (15).

From corollary 2.1, it is necessary to have a smallWp(µ,µ̂) in equation (15) such that the errors in the

drift, diffusion, and jump functions f− f̂, σ− σ̂, and β− β̂ can be small. Note that corollary 2.1 analyzes the
classicWp-distanceWp(µ, µ̂), which is different from the smooth Wasserstein distance in [26] (the classical
Wasserstein distance is an upper bound for the smooth Wasserstein distance used in [28]).

Wp(µ,µ̂),1⩽ p⩽ 2 cannot be directly used as a loss function to minimize as we cannot directly evaluate

∥X− X̂∥p in equation (9) since this term requires evaluation of the integral
´ T
0

∑d
i=1 |Xi(t)− X̂i(t)|2dt.

However, when p= 2 (W2(µ, µ̂)), we shall show that we can efficiently estimateW2(µ,µ̂) by using finite-
time-point observations of the two jump-diffusion processes X(t) and X̂(t).

5
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Let 0= t0 < t1 < .. . < tN = T to be a mesh grid in the time interval [0,T], and we define the following
projection operator IN

XN(t) := INX(t) =

{
X(ti), t ∈ [ti, ti+1), i < N− 1,

X(ti), t ∈ [ti, ti+1], i = N− 1.
(18)

The projected XN(t) in equation (18) is piecewise constant and is thus in the space L2([0,T]). We denote the
distributions of XN(t) and X̂N(t) := INX̂N in equation (18) by µN and µ̂N, respectively. We will prove the
following theorem for bounding the error |W2(µ,µ̂)−W2 (µN, µ̂N) |.

Theorem 2.2. (finite-time-point approximation for W2 distance). The following triangular inequality for
W2(µ,µ̂) holds:

W2 (µN, µ̂N)−W2 (µ,µN)−W2 (µ̂, µ̂N)⩽W2 (µ,µ̂)⩽W2 (µN, µ̂N)+W2 (µ,µN)+W2 (µ̂, µ̂N) . (19)

In equation (19), µN, µ̂N are the probability distributions associated with XN and X̂N defined in equation (18),
respectively. Furthermore, we assume that

F : = E

[ˆ T

0

∑d

i=1
f 2i
(
X(t−), t−

)
dt

]
<∞, F̂ := E

[ˆ T

0

d∑
i=1

f̂ 2i
(
X̂(t−), t−

)
dt

]
<∞

Σ : = E

ˆ T

0

d∑
ℓ=1

m∑
j=1

σ2
i,j

(
X(t−), t−

)
dt

<∞, Σ̂ := E

ˆ T

0

d∑
ℓ=1

m∑
j=1

σ̂2
i,j

(
X̂(t−), t−

)
dt

<∞,

B : = E

[ˆ T

0

d∑
ℓ=1

ˆ
U
β2
i

(
X(t−), ξ, t−

)
ν (dξ)dt

]
<∞, B̂ := E

[ˆ T

0

d∑
ℓ=1

ˆ
U
β̂2
i

(
X̂(t−), ξ, t−

)
ν (dξ)dt

]
<∞,

(20)

where X(t) and ˆX(t) solve equations (1) and (5), respectively. Then, we have the following bound

∣∣W2 (µN, µ̂N)−W2 (µ,µ̂)
∣∣⩽√

∆t

(√
F∆t+Σ+B+

√
F̂∆t+Σ̂+ B̂

)
. (21)

where∆t :=maxi=0,...,N−1 |ti+1 − ti|.

The proof to theorem 2.2, given in appendix B, uses the Itô isometry as well as the orthogonal
assumption of the compensated Poisson process in assumption 2.1. Theorem 2.2 indicates thatW2(µ,µ̂) can
be approximated by the finite-time-point projections XN and X̂N. Specifically, theorem 2.2 is a generalization
to theorem 2 in [25], developed for the pure diffusion. Note that equation (21) holds for |W2(µ,µ̂)−
W2(µN, µ̂N)| but equation (21) might not hold for |Wp(µ,µ̂)−Wp(µN, µ̂N)|, 1⩽ p< 2 as we cannot directly
apply the Itô isometry to the compensated Poisson process for 1⩽ p< 2.

It has been shown in [25] that when reconstructing pure diffusion processes, minimizing a temporally
decoupled squaredW2 distance can yield more accurate reconstructions of the drift and diffusion functions
than direct minimization of the squaredW2 distanceW

2
2(µ,µ̂) defined in equation (9). Additionally, the

squaredW2 distanceW2(µ, µ̂) is an upper bound of the temporally decoupled squaredW2 distance that will
be discussed in section 3. Thus, corollary 2.1 also applies to the temporally decoupled squaredW2 distance.

3. A temporally decoupled squaredW2 distance

In this section, we propose and analyze a temporally decoupled squaredW2 distance, which could help
effectively approximate the jump-diffusion process equation (1) by the reconstructed jump-diffusion process
equation (5). Specifically, we show why this temporally decoupled squaredW2 distance can be more
effectively evaluated using empirical distributions, making it a more appealing choice than the squaredW2

distanceW 2
2(µ,µ̂) discussed in section 2. The temporally decoupled squaredW2 distance is defined as

W̃
2
2 (µ, µ̂) :=

ˆ T

0
W 2

2 (µ(t) , µ̂(t))dt, (22)

where µ(t), µ̂(t) are the distributions of d-dimensional random variables X(t) and X(t) at time t, respectively:

W 2
2 (µ(t) , µ̂(t)) := inf

π(µ(t),µ̂(t))
E(X(t), ˆX(t))∼π(µ,µ̂)

[
|X(t)− X̂(t) |22

]
, (23)

6
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where the joint distribution π(µ(t), µ̂(t)) satisfies

π (µ(t) , µ̂(t))
(
A,Rd

)
= µ(t)(A) , π (µ(t) , µ̂(t))

(
Rd,B

)
= µ̂(t)(B) , ∀A,B ∈ B

(
Rd
)
. (24)

The integration on the RHS of equation (22) is defined as the limit

ˆ T

0
W 2

2

(
µ(t) , µ̂(t)

)
dt= lim

maxi (ti+1−ti)→0

N−1∑
i=0

W 2
2

(
µ(ti) , µ̂(ti)

)
∆ti, (25)

where 0= t0 < t1 < .. . < tN = T is a grid mesh on the time interval [0,T] and∆ti := ti+1 − ti in the

following. Here, we shall prove that the temporally decoupled squaredW2 distance W̃
2
2(µ,µ̂) is well defined

and can be a more effective loss function when seeking to reconstruct multidimensional jump-diffusion
processes than the original squaredW 2

2(µN, µ̂N). Two features make this so: i) numerically evaluating the
temporally decoupled squaredW2 distance equation (22) using finite-sample empirical distributions can be
more accurate than evaluating the original squaredW2 distanceW

2
2(µ,µ̂) when the number of training

samples becomes larger, and ii) the temporally decoupled squaredW2 distance equation (22) provides upper
error bounds for f− f̂,σ− σ̂, and β− β̂ when reconstructing jump-diffusion processes.

We denote µi and µ̂i to be the distributions for X(t), t ∈ [ti, ti+1) and X̂(t), t ∈ [ti, ti+1), respectively. We
can prove the following theorem that shows the limit on the RHS of equation (25) exists and thus the
temporally decoupled squaredW2 in equation (22) distance is well defined.

Theorem 3.1 (the temporally decoupled squared W2 distance is well-defined).We assume the conditions in
theorem 2.2 hold. Furthermore, we assume that for any 0< t< t ′ < T, as t ′ − t→ 0, the following conditions
are satisfied

E

[ˆ t′

t

d∑
i=1

f 2i
(
X(t), t

)
dt

]
→ 0, E

[ˆ t′

t

d∑
i=1

f̂ 2
i

(
X̂(s−), s−

)
ds

]
→ 0,

E

[ˆ t′

t

d∑
ℓ=1

m∑
j=1

σ2
i,j

(
X(s−), s−

)
ds

]
→ 0, E

[ˆ t′

t

d∑
ℓ=1

m∑
j=1

σ̂2
i,j

(
X̂(s−), s−

)
ds−
]
→ 0,

E

[ˆ t′

t

d∑
ℓ=1

ˆ
U
β2
ℓ

(
X(s−), ξ, s−

)
ν (dξ)ds

]
→ 0, E

[ˆ t′

t

d∑
ℓ=1

ˆ
U
β̂2
ℓ

(
X̂(s−), ξ, s−

)
ν (dξ)ds

]
→ 0.

(26)

Additionally, we assume that there is a uniform upper bound

M := max
t∈[0,T]

W2 (µ(t) , µ̂(t))⩽∞. (27)

Suppose∆t :=max0⩽i⩽N−1∆ti, then

lim
∆t→0

(
N−1∑
i=0

W 2
2

(
µ(ti), µ̂(ti)

)
∆ti −

N−1∑
i=0

W2

(
µi, µ̂i

))
= 0. (28)

Furthermore, the limit

lim
∆t→0

N−1∑
i=0

W 2
2 (µ(ti) , µ̂(ti))∆ti = lim

N→∞

N−1∑
i=0

W 2
2 (µ(ti) , µ̂(ti))∆ti (29)

is simply W̃
2
2(µ,µ̂) defined in equation (22). Denoting πi to be the coupling probability distribution of

(X(ti), X̂(ti)), whose marginal distributions coincide with µ(ti) and µ̂(ti), we have the following bound:

∣∣∣N−1∑
i=0

inf
πi

Eπi

[
|X(ti)− X̂(ti) |22

]
∆ti − W̃

2
2 (µ,µ̂)

∣∣∣⩽ 2MTmax
i

(√
Fi∆t+Σi +Bi +

√
F̂i∆t+Σ̂i + B̂i

)
,

(30)

7
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where

Fi :=E

[ˆ ti+1

ti

d∑
i=1

f 2i
(
X(t−), t−

)
dt

]
, F̂i := E

[ˆ ti+1

ti

d∑
i=1

f̂ 2
i

(
X̂(t−), t−

)
dt

]
,

Σi :=E

ˆ ti+1

ti

d∑
ℓ=1

m∑
j=1

σ2
ℓ,j

(
X(t−), t−

)
dt

 , Σ̂i := E

ˆ ti+1

ti

d∑
ℓ=1

m∑
j=1

σ̂2
ℓ,j

(
X̂(t−), t−

)
dt

 ,
Bi :=E

[ˆ ti+1

ti

d∑
ℓ=1

ˆ
U
β2
ℓ

(
X(t−), ξ, t−

)
ν (dξ)dt

]
, B̂i := E

[ˆ ti+1

ti

d∑
ℓ=1

ˆ
U
β̂2
ℓ

(
X̂(t−), ξ, t−

)
ν (dξ)dt

]
.

(31)

Theorem 3.1 generalizes theorem 3 in [25] from pure diffusion processes to jump-diffusion processes.
The proof to theorem 3.1 is in appendix C. Specifically, from equation (30), if maxi (Fi∆t+Σi +Bi + F̂i∆t+

Σ̂i + B̂i) is of order∆t, then the convergence rate of
∑N−1

i=1 infπi Eπi [|X(ti)− X̂(ti)|22]∆ti to W̃
2
2(µ,µ̂) is

O(
√
∆t). Specifically, we have

∣∣W 2
2 (µ,µ̂)−W 2

2 (µN, µ̂N)
∣∣= ∣∣W2 (µ,µ̂)−W2 (µN, µ̂N)

∣∣ · ∣∣W2 (µ,µ̂)+W2 (µN, µ̂N)
∣∣. (32)

From equation (21), the error bound of |W2(µ, µ̂)−W2(µN, µ̂N)| is O
(√

∆t
)
. Therefore, the upper error

bounds of using the finite-time distributions µN, µ̂N to approximate bothW 2
2(µ,µ̂) or W̃

2
2(µ,µ̂) are both of

order O(
√
∆t).

Next, we shall show that using the finite-sample empirical distribution to estimate

N−1∑
i=0

inf
πi

Eπi

[
|X(ti)− X̂(ti) |22

]
∆ti, (33)

where πi is the coupling distribution of (X(ti), X̂(ti)) such that its marginal distributions are µ(ti) and µ̂(ti),
is more accurate than using the finite-sample empirical distribution to estimateW 2

2(µN, µ̂N) (where µN and
µ̂N are the distributions of XN(t) and X̂N(t) defined in equation (18)).

Theorem 3.2 (finite sample empirical distribution error bound). We assume that

E
[
|X(t) |66

]
⩽∞, E

[
|X̂(t) |66

]
⩽∞, ∀t ∈ [0,T] , (34)

where | · |6 is the l6 norm of a vector in Rd. We denote µeN, µ̂
e
N to be empirical distributions of XN and X̂N,

respectively; we denote µeN(ti), µ̂
e
N(ti) to be the empirical distributions of X(ti) and X̂(ti), i = 0,1, . . .,N− 1.

Suppose Ms is the number of observed trajectories XN(ti) and the number of reconstructed trajectories X̂N(ti). We
find the following error bound for estimating W 2

2(µN, µ̂N) using the empirical distributions:

E
[
|W 2

2

(
µeN, µ̂

e
N

)
−W 2

2 (µN, µ̂N) |
]
⩽ E1 (Ms) , where

E1 (M) := 2
√

C0W2 (µN, µ̂N)h(Ms,Nd)
N−1∑
i=0

(
E
[
|X(ti) |66

] 1
6 +E

[
|X̂(ti) |66

] 1
6

)√
∆ti

+ 2C0h
2 (Ms,Nd)

N−1∑
i=0

(
E
[∣∣X(ti)

∣∣6
6

] 1
3
+E

[∣∣X̂(ti)
∣∣6
6

] 1
3

)
∆ti,

(35)

where C0 is a constant and

h(Ms,n) :=

M
− 1

4
s log(1+Ms)

1
2 , n⩽ 4,

M
− 1

n
s , n> 4

(36)

8
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We also have the empirical error bound for estimating
∑N−1

i=1 W 2
2(µN(ti),µN(ti))∆ti using the empirical

distributions
∑N−1

i=1 W 2
2(µ

e
N(ti),µ

e
N(ti))∆ti:

E

[∣∣N−1∑
i=0

W 2
2

(
µeN (ti) ,µ

e
N (ti)

)
∆ti −W 2

2 (µN (ti) ,µN (ti))∆ti
∣∣]

⩽ E

[
N−1∑
i=0

∣∣W 2
2

(
µeN (ti) ,µ

e
N (ti)

)
−W 2

2 (µN (ti) ,µN (ti))
∣∣∆ti

]
⩽ E2 (Ms) , where

E2 (Ms) := 2
√

C1h(Ms,d)
N−1∑
i=0

(
E
[∣∣X(ti)

∣∣6
6

] 1
6
+E

[∣∣X̂(ti)
∣∣6
6

] 1
6

)
∆tiW2 (µN (ti) , µ̂N (ti))

+ 2C1h
2 (Ms,d)

N−1∑
i=0

(
E
[∣∣X(ti)∣∣66] 1

3
+E

[∣∣X̂(ti)∣∣66] 1
3
)
∆ti,

(37)

where C1 is a constant different from C0. Furthermore, there exists a constant C such that

E1 (Ms)⩾ CE2 (Ms) ·
h(Ms,Nd)

h(Ms,d)
N− 2

3 . (38)

The proof of theorem 3.2 is given in appendix D and utilizes the upper bound of theW-distance between
the ground truth distribution and the empirical distribution in [29]. Specifically, if N⩾ 5, then

h(Ms,Nd) = 2M
− 1

Nd
s , and

h(Ms,Nd)

h(Ms,d)
⩾min

{
M

1
4−

1
Nd

s log(1+Ms) ,M
N−1
Nd

s

}
. (39)

Therefore, theorem 3.2 indicates that as the number of observed trajectories of the jump-diffusion process

Ms increases, the upper bound of E
[∣∣∑N−1

i=0 W 2
2(µ

e
N(ti),µ

e
N(ti))∆ti −

∑N−1
i=0 W 2

2

(
µN(ti),µN(ti)

)
∆ti
∣∣]

converges faster to 0 than the upper bound of E
[∣∣W 2

2(µ
e
N, µ̂

e
N)−W 2

2(µN, µ̂N)
∣∣] does when N⩾ 5. Thus,

N−1∑
i=0

W 2
2 (µN (ti) ,µN (ti))∆ti (40)

can be more accurately evaluated by the finite-sample empirical distributions than the squaredW2 distance
W 2

2(µN, µ̂N) whenMs is large.
For any coupled distribution π(XN, X̂N) such that its marginal distributions are µN and µ̂N, its marginal

distributions w.r.t X(ti) and X̂(ti) are µ(ti) and µ̂(ti), respectively. Thus,

N−1∑
i=0

inf
πi

Eπi

[∣∣X(ti)− X̂(ti)
∣∣2
2

]
∆ti ⩽ inf

π(XN,X̂N)

N−1∑
i=0

Eπ(XN,X̂N)

[∣∣X(ti)− X̂(ti)
∣∣2
2

]
∆ti =W 2

2 (µN, µ̂N) . (41)

Letting N→∞ in equation (41), from theorems 2.2 and 3.1, we conclude that

W̃
2
2 (µ,µ̂)⩽W 2

2 (µ,µ̂) . (42)

Thus, corollary 2.1 also provides an upper error bound for the temporally decoupled W̃
2
2(µ,µ̂). Next, we

show that there is a lower bound for W̃
2
2(µ,µ̂) and this lower bound depends on drift, diffusion, and jump

functions of the ground truth jump-diffusion process equation (1) and the approximate jump-diffusion
process equation (5).

Theorem 3.3 (lower error bound for the temporally decoupled squaredW2-distance). We have the
following lower bound:

W̃
2
2 (µ,µ̂)⩾

ˆ T

0

d∑
i=1

(
E
[̂ t

0

[
fi
(
X(s−), s−

)
− f̂i
(
X̂(s−), s−

)]
ds

])2

dt+

ˆ T

0
Tr
(
St + Ŝt − 2

(
StŜt
) 1

2

)
dt, (43)

9



Mach. Learn.: Sci. Technol. 5 (2024) 045052 M Xia et al

where St, Ŝt are two matrices in Rd×d with their elements defined by

(St)i,j : = E

[
m∑

ℓ=1

ˆ t

0
σi,ℓ

(
X(s−), s−

)
·σj,ℓ

(
X(s−), s−

)
ds

]

+E
[ˆ t

0

ˆ
U
βi

(
X(s−), ξ, s−

)
·βj

(
X(s−), ξ, s−

)
ν (dξ)ds

]
,

(
Ŝt
)
i,j
: = E

[
m∑

ℓ=1

ˆ t

0
σ̂i,ℓ

(
X̂(s−), s−

)
· σ̂j,ℓ

(
X̂(s−), s−

)
ds

]

+E
[ˆ t

0

ˆ
U
βi

(
X(s−), ξ, s−

)
·βj

(
X(s−), ξ, s−

)
ν (dξ)ds

]
.

(44)

The terms (St)
1
2 and (Ŝt)

1
2 indicate the positive square-roots.

Proof. First, we denote

X0 (t) := X(t)−E [X(t)] , X̂0 (t) := X̂(t)−E
[
X̂(t)

]
(45)

and let µ0(t) and µ̂0(t) to be the probability distributions of X0(t) and X̂0(t), respectively. From theorem 1 in
[30], we have

W 2
2 (µ0 (t) , µ̂0 (t))⩾ Tr

(
St + Ŝt − 2

(
StŜt
) 1

2

)
. (46)

Because

W 2
2 (µ(t) , µ̂(t)) =W 2

2 (µ0 (t) , µ̂0 (t))+
d∑

i=1

(
E
[ˆ t

0

(
fi
(
X(s−), s−

)
− f̂i
(
X̂(s−), s−

))
ds

])2

, (47)

equation (43) holds, proving theorem 3.3.

Theorem 3.3 gives a lower bound for the temporally decoupled W̃(µ,µ̂). Specifically, if d= 1,
equation (43) can be further simplified to

W̃
2
2 (µ,µ̂)⩾

ˆ T

0

(
E
[ˆ t

0
f1
(
X(s−), s−

)
ds

]
−E

[ˆ t

0
f̂1
(
X̂(s−), s−

)
ds

])2

ds

+

ˆ T

0

(
E
[ˆ t

0
σ2
(
X(s−), s−

)
ds+

ˆ
U
β2
(
X(s−), ξ, s−

)
ν (dξ)ds

] 1
2

−E
[ˆ t

0
σ̂2
(
X̂(s−), s−

)
ds+

ˆ
U
β̂2
(
X̂(s−), ξ, s−

)
ν (dξ)ds

] 1
2

)2

dt.

(48)

Thus, if the jump-diffusion process to be reconstructed is one-dimensional (equation (1)), then we conclude

that, as W̃
2
2(µ,µ̂)→ 0,

E
[ˆ t

0
f1
(
X1(s

−), s−
)
ds

]
−E

[ˆ t

0
f̂1
(
X̂(s−), s−

)
ds

]
→ 0, a.s. and

E
[ˆ t

0
σ2
(
X1(s

−), s−
)
ds+

ˆ
U
β2
(
X1(s

−), ξ, s−
)
ν (dξ)ds

] 1
2

−E
[ˆ t

0
σ̂2
(
X̂1(s

−), s−
)
ds+

ˆ
U
β̂2
(
X̂1(s

−), ξ, s−
)
ν (dξ)ds

] 1
2

→ 0, a.s.

(49)

However, equation (49) does not imply that either

E
[ˆ t

0
σ̂2
(
X̂1(s

−), s−
)
ds

]
−E

[ˆ t

0
σ̂2
(
X̂1(s

−), s−
)
ds

]
→ 0 (50)

or

E
[ˆ t

0

ˆ
U
β̂2
(
X1

(
s−
)
, ξ, s−

)
ν (dξ)ds

]
−E

[ˆ t

0

ˆ
U
β̂2
(
X1

(
s−
)
, ξ, s−

)
ν (dξ)ds

]
→ 0. (51)
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A lower bound for the temporally decoupled squaredW2 distance between two jump-diffusion processes
that depends on the expectation of the summation of the error in the jump and the error in the diffusion
functions is worth further investigation. Such an intricate analysis is beyond the scope of this paper but could
imply that minimizing theW2 distance is necessary for a good reconstruction of both the diffusion function
and the jump function. Moreover, when d> 1, it is not easy to make further simplifications to equation (43).
Analysis of the properties of the matrix St + Ŝt − 2(StŜt)

1
2 in equation (43) can be quite difficult.

Nonetheless, we shall show in our numerical examples that our temporally decoupled squaredW2-distance
W̃(µ,µ̂)method can accurately reconstruct both the diffusion and the jump functions in several examples of
one-dimensional and multidimensional jump-diffusion processes especially when the drift function can be
provided as prior information.

4. Numerical experiments

In this section, we implement our methods through numerical examples and investigate the effectiveness of
the temporally decoupled squaredW2-distance method in the reconstruction the jump-diffusion process
equation (1). We also compare our results with those derived from using other commonly used losses in
uncertainty quantification and methods for jump-diffusion process reconstruction. Additionally, we explore
how prior knowledge on the ground truth jump-diffusion process equation (1) helps in its reconstruction.
All experiments are carried out using Python 3.11 on a desktop with a 32-core Intel® i9-13 900KF CPU
(when comparing runtimes, we train each model on just one core).

In all experiments, we use three feed-forward neural networks to parameterize the drift, diffusion, and
jump functions in the approximate jump-diffusion process equation (5), i.e.

f̂ := f̂(X, t;Θ1) , σ̂ := σ̂ (X, t;Θ2) , β̂ := σ̂ (X, ξ, t;Θ3) . (52)

Θ1,Θ2,Θ3 are the parameter sets in the three parameterized neural networks, respectively. We modified the
torchsde Python package in [18] to implement the Euler-Maruyama scheme for generating trajectories of
the two jump-diffusion processes equations (1) and (5). Details of the training settings and hyperparameters
for all examples are given in appendix E. In examples 4.1 and 4.2, the reconstruction errors are the relative L2

errors:

drift error : =

∑N
i=0

∑Ms

j=1

∣∣f(xj (ti) , ti)− f̂
(
xj (ti) , ti

)∣∣∑N
i=0

∑Ms

j=1 |f
(
xj (ti) , ti

)
|

, (53)

diffusion error : =

∑N
i=0

∑Ms

j=1

∣∣|σ (xj (ti) , ti) | − |σ̂
(
xj (ti) , ti

)
|
∣∣∑N

i=0

∑Ms

j=1

∣∣σ (xj (ti) , ti)∣∣ (54)

jump error : =

∑N
i=0

∑Ms

j=1

´
U

∣∣β (xj (ti) , ξ, ti)− β̂
(
xj (ti) , ξ, ti

)∣∣dν (ξ)∑N
i=0

∑Ms

j=1

´
U

∣∣β (xj (ti) , ti)∣∣dν (ξ) , (55)

where N is the number of time steps andMs is the number of training trajectories.

Example 4.1. For our first example, we reconstruct the following 1D jump-diffusion process for describing
the non-defaultable zero-coupon bond pricing [2]:

dXt = (b+ aXt)dt+σ0

√
|Xt|dBt + dCt, a,b,σ0 ∈ R, t ∈ [0,T] (56)

where Ct =
∑Nt

i=1Yi, Yi are independently identically distributed, and Nt obeys the Poisson distribution with
intensity t. We take Yi ≡ y0 so that equation (56) can be rewritten as

dXt = (b+ y0 + aXt)dt+σ0

√
|Xt|dBt + y0dÑt, t ∈ [0,T] , (57)

with Ñt a 1D compensated Poisson process with intensity t. We define ground truth by b= 4,a=−1,σ0 =
0.4,y0 = 1 in equation (57) and take T= 20.2 and initial condition X0 = 2. We reconstruct equation (57) by
minimizing the temporally decoupledW-distance equation (40).

We compare our temporally decoupled squared W2 distance loss function with the WGAN method and
other loss functions (MSE, MMD, mean2+var, W1 distance, and the squared W2 distance W

2
2(µN, µ̂N). The

definitions of the other loss functions are given in appendix F). As shown in figures 1(a)–(f), the trajector-
ies we obtained by minimizing our temporally decoupled squared W2-distance accurately match the ground
truth trajectories generated by equation (57). When using W1(µ,µ̂), W

2
2(µ,µ̂), and MSE loss functions, the

11
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Figure 1. Reconstruction of trajectories and model functions. We define ground truth as b= 4,a=−1,σ0 = 0.4,y0 = 1 in
equation (57), with T= 20.2 and initial condition X0 = 2. (a)–(f) ground truth (black) and reconstructed trajectories (red)
generated from the learned jump-diffusion process by minimizing different loss functions or using different methods. (g) The
reconstruction errors of the drift, diffusion, and jump functions defined in equations (53)–(55). We compare errors from
minimizing our temporally decoupled squaredW2-distance versus those from minimizing the MSE, MMD, mean2+var, the
W1-distanceW1(µ, µ̂), the squaredW2-distanceW 2

2(µN, µ̂N), and the error of results obtained using the WGAN method. The
mean and standard deviation of the error for different methods are obtained by repeating the experiment 10 times. (h) The
reconstruction errors in the drift, diffusion, and jump functions defined in equations (53)–(55) w.r.t. the standard deviation δ of
the initial condition (equation (58)).

reconstructed trajectories deviate qualitatively from those of the ground truth. The solutions of the recon-
structed jump-diffusion process generated by the WGANmethod are also qualitatively incorrect and are thus
not shown here. From figure 1(g), minimizing our temporally decoupled squaredW2-distance gives the smal-
lest reconstruction errors f− f̂,σ− σ̂, and β− β̂. The average errors in the reconstructed drift, diffusion, and
jump are kept below 0.25. Thus, minimizing our temporally decoupled squared W2 distance is found to be
more accurate in reconstructing the jump-diffusion process equation (57) than other benchmark methods.
We also list the average runtime per training iteration as well as the memory usage of different methods in
table 1. The runtime of the WGAN method is significantly longer than that of other methods. Furthermore,
the computational cost of using our temporally decoupled squaredW2 is similar to the cost of using other loss
functions while our temporally decoupled squaredW2 method can accurately reconstruct equation (57).

We also evaluate the numerical performance of different loss functions as we vary the number of train-
ing trajectories sampled from the ground truth jump-diffusion process in equation (56). The reconstruc-
tion accuracy of the drift, diffusion, and jump functions for all methods tends to improve with an increased
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Table 1. The runtime and memory usage of different methods (loss functions) when reconstructing the jump-diffusion process
equation (57).

Method (loss)
temporally

decoupledW 2
2 W 2

2 MMD MSE mean2+var W1 WGAN

Average time/iteration (s) 44.5 48.2 59.4 29.8 48.7 39.2 346.3
Average memory use (Gb) 2.61 3.52 2.59 5.00 2.61 2.60 3.34

number of trajectories for training. Additionally, our proposed temporally decoupled squared W2 method
givesmore accurate reconstructed drift, diffusion, and jump functions thanmost other loss functions ormeth-
ods. Minimizing the MMD loss function can yield an even more accurate reconstructed jump function when
the number of training trajectories is small; however, using the MMD as the loss function gives a less accur-
ate reconstruction of the drift and diffusion functions than our proposed temporally decoupled squared W2

method. Results are given in appendix G.
Additionally, we test the numerical performance of our temporally decoupled squared W2 method when

reconstructing equation (57) under different initial conditions. Instead of using the same initial condition for
all solutions, we sample the initial value from

X0 ∼N
(
2, δ2

)
, (58)

whereN (2, δ2) is the 1D normal distribution of mean 2 and variance δ2. Using the same hyperparameters in
the neural networks and for training (in table appendix E) as in example 4.1, we varied the standard deviation
δ = 0,0.2,0.4,0.6,0.8,1 and implemented the temporally decoupled squared W2 distance as a loss function.
The results shown in figure 1(h) indicate that the reconstruction of equation (57) using the squared W2 loss
function is rather insensitive to ‘noise’, i.e. the standard deviation δ in the distribution of the initial condition.

Finally, we also use different values of the parameters σ0 and y0 in the diffusion and drift functions. The
reconstructed drift functions f̂ remain accurate when σ0 and y0 are varied. When σ0,y0 are small, the corres-
ponding diffusion and jump functions can also be accurately reconstructed; however, when σ0,y0 are large,
the reconstruction of the diffusion function can be less accurate because the trajectories for training are more
sparsely distributed. Details of the results are given in appendix H.

It was shown in [25] that the accuracy of reconstructing a pure-diffusion process (β = 0 in equation (1))
can deteriorate if trajectories for training are too sparsely distributed (too few trajectories/too high noise).
However, we find that prior information on the drift function in equation (1) enables efficient
reconstruction even if the number of training trajectories is limited, when the temporally decoupled squared
W2 method for reconstructing jump-diffusion processes without prior information would otherwise fail. In
the next example, we demonstrate enhanced reconstruction performance after incorporating prior
information on the drift function of equation (1), greatly improving the accuracy of reconstructed diffusion
and jump functions.

Example 4.2. Consider the following 1D jump-diffusion process

dXt = α(Xt, t)dt+σ (Xt, t)dBt +β (Xt, t)dÑt, t ∈ [0,T] , (59)

where Ñt is a 1D compensated Poisson process with intensity t. This model, if we set St ≡ eXt , can describe the
posited stock returns under a deterministic jump ratio [1]. To test the efficiency of our temporally decoupled
squaredW2-distancemethod, we setα≡ r0 = 0.05 (i.e. the drift function to be a constant risk-free interest rate
[31]), the initial conditionX0 = 1, andT= 5.1 and explore different forms of the diffusion and jump functions
σ(X, t) and β(X, t). We then input the drift, diffusion, or the jump functionα,σ, or β in equation (59) as prior
information to test how well our method can reconstruct the other terms.

Summarizing, (i) we first give no prior information and reconstruct all three functions α,σ, and β; (ii) we
specify the risk-free interest rate α≡ r0 and reconstruct σ, and β; (iii) we provide the diffusion function σ and
reconstruct α and β; (iv) we provide the jump function β and reconstruct f, and σ. In this example, ‘const’
refers to using a constant diffusion or jump function:

σ (X, t)≡ σ0 or β (X, t)≡ β0, (60)

‘linear’ refers to using a linear diffusion or jump function

σ (X, t)≡ σ0X or β (X, t)≡ β0X, (61)
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Figure 2. (a) The trajectories generated by the ground truth (black) jump-diffusion process with σ(X, t)≡ 0.1
√

|X| and
β(X, t)≡ 0.1

√
|X| and given drift function in equation (59), plotted against reconstructed trajectories (red) using the same drift

function prior. (b) and (c) The ground truth diffusion and jump functions σ(X, t)≡ σ0

√
|X| and β(X, t)≡ β0

√
|X|) shown

against the reconstructed functions σ̂(X, t) and β̂(X, t). (with drift function given as prior). The red curves are the mean σ̂(X, t)

and β̂(X, t) while the shaded bands show their standard deviations, calculated over 5 independent experiments). (d)–(k) The
reconstruction errors of the drift, diffusion, and jump functions without prior information on equation (59) or with one of the
drift, diffusion, and jump functions given. When the drift function is given, errors in the reconstructed diffusion and jump
functions are the smallest in all cases (error bars under ‘drift prior.’).

and ‘langevin’ refers to using a diffusion or jump function of the following form

σ (X, t)≡ σ0

√
|X| or β (X, t)≡ β0

√
|X|. (62)

To illustrate the reconstruction, we set σ0 = β0 = 0.1 in equations (60)–(62), and plot in figure 2(a) the
ground truth solutions (black) generated from equation (59) with a given drift function. Using the same drift
function, trajectories of the reconstructed jump-diffusion process are shown in red and exhibit a distribution
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Table 2. Average errors in the reconstructed drift, diffusion, and jump functions when using the temporally decoupled squaredW2

distance to reconstruct equation (59). The error is taken over 9 possible combinations of different forms of diffusion and jump
functions (constant, Langevin, and linear in equations (60)–(62)) in figure 2.

Prior info error of reconstructed f̂ error of reconstructed σ̂ error of reconstructed β̂

No prior 1.412(±1.520) 0.790(±0.714) 0.347(±0.356)
Given α(x, t) 0 0.189(±0.124) 0.150(±0.080)
Given σ(x, t) 0.771(±0.333) 0 0.939(±0.854)
Given β(x, t) 0.769(±0.520) 0.556(±0.393) 0

that matches well with that of the ground truth solutions. Moreover, as shown in figures 2(b) and (c), the dif-
ferences between the learned diffusion and jump functions σ̂(X, t) and β̂(X, t) and the ground truth diffusion
and jump functions σ(X, t) = 0.1

√
|X|,β(X, t) = 0.1

√
|X| are small.

If no prior information on equation (59) is given, the average errors for the reconstructed drift, diffusion,
and jump functions are 1.412, 0.790, and 0.347, respectively. This high error might arise from training set
trajectories that are too noisy or sparsely distributed. However, if the drift function is given, the diffusion
and jump functions can be much more accurately reconstructed, leading to relative errors below 0.2 for all
three forms of σ(Xt, t) and β(Xt, t) used to define the ground truth (see figures 2(d)–(k)). On the other hand,
providing the diffusion or jump function does not improve the accuracy of the reconstruction of the other
unknown functions in equation (59). The average errors of the reconstructed diffusion and jump functions,
when different prior information is given, are listed in table 2.

In appendix I, we carry out an additional numerical experiment by varying the number of trajectories in the
training set. The errors in the reconstructed drift, diffusion, and jump function decrease when the number of
trajectories for training increases without any prior information. This indicates that our temporally decoupled
squaredW2 method has the potential to accurately reconstruct equation (59) even without prior information
provided there are a sufficient number of training trajectories.On the other hand, if the drift function is given as
prior information, the errors of the reconstructed diffusion and jump functions are around 0.2 even when only
100 trajectories are used. Therefore, information on the drift function can significantly boost the performance
of our temporally decoupled squared W2 method, allowing accurate reconstruction of equation (59) even
when the number of observed trajectories is limited.

In real physical systems, the drift function can often be obtained by measurements over a macroscopic
ensemble of trajectories, such asmass-action kinetics if theX(t) in equation (1) denotes somephysical quantity,
e.g. the number density of molecules [32, 33]. Thus, after independently measuring the drift function and
inputting it as a prior knowledge, our temporally decoupled squared W2-distance method can be used to
reconstruct the diffusion and jump functions efficiently.

We carry out an extra numerical experiment reconstructing equation (59) by varying σ0,β0 in
equations (60)–(62). With the drift function provided, our temporally decoupled squared W2-distance
method can accurately reconstruct the diffusion and the jump functions for different values of σ0 and β0

in equations (60)–(62). The results are shown in appendix J.

In our last example, we test whether our temporally decoupled squaredW2-distance can accurately
reconstruct a 2D jump-diffusion process with correlated Brownian-type and compensated-Poisson-type
noise across the two stochastic variables.

Example 4.3. We reconstruct the following 2D jump-diffusion process, which is obtained by superimposing
a 2D compensated Poisson process Ñt := (Ñ1(t), Ñ2(t)) onto the pure diffusion process that describes the
dynamics of a synthetic data set characterizing gene regulatory dynamics in biophysics [4, 34]:

dX(t) =−g(X(t))dt+σ (X(t))dWt +β (X(t))dÑt, X(t= 0) = X0, t ∈ [0,T] . (63)

Ñ1(t) and Ñ2(t) are independent and both have intensity t. Here,X(t) = (X1(t),X2(t)) ∈ R2, g(X) : R2 → R2 is
the drift function, andσ,β : R2 → R2×2 are the diffusion and jump functions, respectively. The drift function
g is given by
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g(X) =

(
1

σ1

N1

N1 +N2
(X1 −µ11)+

1

σ2

N2

N1 +N2
(X1 −µ21) ,

1

σ1

N1

N1 +N2
(X2 −µ21)+

1

σ2

N2

N1 +N2
(X2 −µ22)

)T

,

N1 : = N1 (X) =
1√
2πσ1

exp
(
− (X1−µ11)

2

2σ2
1

− (X2−µ12)
2

2σ2
1

)
,

N2 : = N2 (X) =
1√
2πσ2

exp
(
− (X1−µ21)

2

2σ2
2

− (X2−µ22)
2

2σ2
2

)
.

(64)

The parameters are set as σ1 = 1,σ2 = 0.95,µ11 = 1.6,µ12 = 1.2,µ21 = 1.8,µ22 = 1.0. We set T= 10.2 and an
initial condition X0 = (1.7,1.1). We take the correlated diffusivity as

σ =

[
σ0

√
|X1| c1σ0

√
|X2|

c1σ0

√
|X1| σ0

√
|X2|

]
, (65)

and the jump function of the compensated Poisson process as

β =

[
β0 c2β0
c2β0 β0

]
. (66)

Here, c1 and c2 determine the correlations of Brownian noise and compensated Poisson process across the two
dimensions, respectively. Specifically, when c1 = 0 (or c2 = 0), the Brownian (or compensated Poisson) noise
in each variable is independent of the other; when c1 = 1 (or c2 = 1), the Brownian-type (or compensated-
Poisson-type) noise across the two dimensions are linearly dependent; when c1 =−1 (or c2 =−1), the
Brownian-type (or compensated-Poisson-type) noise across the two dimensions are perfectly negatively
correlated.

From example 4.2, imposing a prior on the drift function can greatly improve the accuracy of the recon-
structed diffusion and jump functions. Thus, we input g(X) defined in equation (64) as prior information.
Since the jump-diffusion process described by equation (63) is two-dimensional, we use the following error
metric to measure the errors in the diffusion and jump functions:

diffusion error=

∑N
i=0

∑Ms

j=1 ∥σσT
(
xj (ti) , ti

)
− σ̂σ̂T (xj (ti) , ti)∥2F∑N

i=0

∑Ms

j=1 ∥σ̂σ̂
T (xj (ti) , ti)∥F 2 ; (67)

jump error=

∑N
i=0

∑Ms

j=1 ∥ββ
T (xj (ti) , ti)− β̂β̂

T (
xj (ti) , ti

)
∥2F∑N

i=0

∑Ms

j=1 ∥β̂β̂
T (

xj (ti) , ti
)
∥F 2

. (68)

Here, ∥ · ∥F denotes the Frobenius norm of a matrix. We set σ0 = 0.1,β0 = 0.1 in equations (65) and (66).
Different values of c1, c2 are used to tune the correlations to explore how they affect the reconstruction of the
jump-diffusion process.

Figures 3(a)–(c) show that solutions generated by our reconstructed jump-diffusion process with the tem-
porally decoupled squared W2 loss function match well with solutions generated by the 2D jump-diffusion
process equation (63) (c1 = c2 =−0.5 in equations (65) and (66)). Figures 3(d)–(e) indicate that when the
drift function g(X(t)) is given, our temporally decoupled squaredW2 method can accurately reconstruct the
diffusion and jump functions for most combinations of c1, c2 The average errors in the diffusion and jump
functions averaged over all combinations of c1, c2 are 0.197 and 0.210, respectively. Also, the final distribution
of the reconstructed X̂(t) aligns well with the ground truth X(t).

In appendix K, we implement our reconstruction method by using different numbers of hidden layers and
different numbers of neurons in each layer for the neural-network-parameterized approximation to the diffu-
sion and jump functions σ and β. We find that with the drift function given as prior information, increasing
the number of neurons per layer can improve the accuracy of the reconstructed diffusion and the jump func-
tion of the 2D jump-diffusion process equation (63). Increasing the number of hidden layers also leads to a
more accurate reconstruction of the diffusion and jump function when the number of hidden layers is smaller
than three; however, after three hidden layers, increasing their number leads to less accuracy of the reconstruc-
ted σ and β. Setting the number of hidden layers to three and the number of neurons per layer to about 400
leads to excellent reconstruction of σ and β. However, larger numbers of hidden layers or neurons per hidden
layer demand more memory usage and lead to longer runtimes. We also found that implementing Dropout
layers [35, 36] did not improve the accuracy of reconstructing the diffusion and jump functions. This could be

16



Mach. Learn.: Sci. Technol. 5 (2024) 045052 M Xia et al

Figure 3. (a) and (b) Solutions generated by the reconstructed jump-diffusion process using our temporally decoupled squared
W2 method versus solutions generated by the ground truth equation (63). (c) The reconstructed X̂(t= 10) versus the ground
truth X(t= 10). In (a)–(c), c1 = c2 =−0.5. (d) The error (equation (67)) between the ground truth diffusion functionσ and the
reconstructed diffusion function σ̂. (e) The error (equation (68)) between the ground truth jump function β and the
reconstructed diffusion function β̂. In (d) and (e), the errors are averaged over 5 independent experiments.

because the Dropout technique, by randomly ignoring neurons in hidden layers during training, introduces
stochasticity to the reconstructed diffusion and jump functions during training on top of the intrinsic noise in
the jump-diffusion process, interfering with the accurate reconstruction of the inherently deterministic diffu-
sion and jump functions. The network architecture required for optimal reconstruction of diffusion and jump
functions warrants further investigation.

5. Summary & conclusions

In this paper, we proposed and showed how to use a temporally decoupled squaredW2-distance W̃
2
2(µ,µ̂)

defined in equation (22) in the reconstruction of jump-diffusion processes. Minimization of this
Wasserstein-distance-based loss function leads to small errors in the drift, diffusion, and jump functions
f− f̂, σ− σ̂, and β− β̂, when approximating a jump-diffusion process (equation (1)) by another
jump-diffusion process (equation (5)). Moreover, the temporally decoupled squaredW2-distance can be
efficiently evaluated using finite-sample finite-time-point observations.

Through several numerical experiments, we showed that minimizing our proposed temporally
decoupled squaredW2-distance loss performs much better than other commonly used loss functions and
methods for jump-diffusion process reconstruction using parameterized neural networks. Furthermore, we
showed that if we impose prior knowledge on the drift function, the diffusion and jump functions can be
more accurately reconstructed.

Our approach can potentially be extended and applied to other reconstruction problems in physics, such
as those involving higher-dimensional dynamical or oscillatory and chaotic systems [37, 38] to investigate
whether observed ‘chaotic’ dynamics result from a chaotic ODE system or the intrinsic stochasticity of a
jump-diffusion process instead. The Wasserstein distance can also be adapted for reconstructing other
stochastic processes such as Lévy walks involving compound Poisson process [39, 40]. Reconstructing such
processes could require inferring the intensity of the Poisson process, which is nontrivial and would require
consideration of differentiation w.r.t. ‘discrete randomness’ [41]. The reconstruction of jump-diffusion
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processes from trajectories of particle motion can be used to detect anomalous superdiffusive or subdiffusive
dynamics, an important paradigm in fields as diverse as astrophysics [42] and materials science [43].

Finally, partial prior knowledge may improve the reconstruction of the underlying jump-diffusion
process (equation (1)) and even pure-diffusion processes [44] using physics-informed learning method. For
example, if the symmetry of the drift function in equation (1) is known, the symmetry can be encoded in the
neural network architecture to improve the reconstruction accuracy as in physics-informed neural networks.
Alternatively, if the drift function is known to be a specific function f(x;α) up to an unknown parameter α,
then we can directly incorporate f(x;α) as the drift function into equation (5) rather than a neural network
approximation. The true α can be directly learned by backpropagation and gradient descent. In the context
of physical models, it may be fruitful to explore how partial prior knowledge facilitates the reconstruction of
jump-diffusion processes.
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Appendix A. Proof to theorem 2.1

Here, we provide proof for theorem 2.1. Our strategy is similar to that used in the proof of the stochastic
Gronwall lemma (theorem 2.2 in [6]). First, we apply the Ito’s lemma to

∣∣Xi (t)− X̃i (t)
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Note that
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(A.2)
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Using the Lipschitz conditions on the drift, diffusion, and jump functions f̂, σ̂, and β̂ in assumption 2.1 and
the Cauchy inequality, from equations (A.1) and (A.2), we find
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(A.3)

From assumption 2.1 and the conditions in theorem 2.1, the second, third, and fourth terms on the RHS
of equation (A.3) are adapted and non-decreasing w.r.t. t; the fifth and sixth terms on the RHS of
equation (A.3) are martingales. Thus, by taking the expectation of both sides of equation (A.3), we find
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where H(t) is defined in equation (14). Applying Gronwall’s lemma to u(t) := E
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]
and

noticing that E[H(t)] is non-decreasing w.r.t. t, we conclude that
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(A.5)
which proves equation (13).

Appendix B. Proof to theorem 2.2

Here, we shall provide proof of theorem 2.2, which generalizes theorem 2 in [25] for pure diffusion
processes. Denote

ΩN := {Y(t)|Y(t) = Y(ti) t ∈ [ti, ti+1), i < N− 1; Y(t) = Y(ti), t ∈ [ti, ti+1]} (B.1)

to be the space of piecewise functions. Clearly, it is a subspace of L2([0,T];Rd). Also, the embedding map
from ΩN to L2([0,T];Rd) preserves the ∥ · ∥ norm, which enables us to define the measures on
B(L2([0,T];Rd)) induced by the measures µN, µ̂N. For simplicity, we shall still denote those induced
measures by µN, µ̂N.

Suppose X(t), X̂(t) are generated by two jump-diffusion processes defined by equations (1) and (5). The
inequality equation (19) is a direct result of the triangular inequality for the Wasserstein distance [45]
because X,XN, X̂, X̂N ∈ L2([0,T];Rd).

Next, we prove equation (21). Because XN(t) = INX(t) (defined in equation (18)), we choose a specific
coupling measure, i.e. the coupled distribution, π of µ,µN that is essentially the ‘original’ probability
distribution. To be more specific, for an abstract probability space (Ω,A,p) associated with X, µ and µN can
be characterized by the pushforward of p via X and XN respectively, i.e. µ= X∗p, defined by ∀A ∈ B

(
Ω̃N

)
,

elements in the Borel σ-algebra of Ω̃N,

µ(A) = X∗p(A) := p
(
X−1 (A)

)
, (B.2)
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where X is interpreted as a measurable map from Ω to Ω̃N, and X−1(A) is the preimage of A under X. Then,
the coupling π is defined by

π = (X,XN)∗ p, (B.3)

where (X,XN) are interpreted as a measurable map from Ω to Ω̃N × Ω̃N. One can readily verify that the
marginal distributions of π are µ and µN respectively. Therefore, the squaredW 2

2(µ,µN) can be bounded by`

W 2
2 (µ,µN)⩽

N∑
i=1

ˆ ti

ti−1

E
[∣∣X(t)−XN(t)

∣∣2
2

]
dt=

N∑
i=1

ˆ ti

ti−1

d∑
ℓ=1

E
[(
Xℓ(t)−XN,ℓ(t)

)2]
dt. (B.4)

For each ℓ= 1, . . .,d, by using the Itô’s isometry and the orthogonality condition of the compensated Poisson
process Ñ (in assumption 2.1), we have

N∑
i=1

ˆ ti

ti−1

E
[
(Xℓ (t)−XN,ℓ (t))

2
]
dt⩽

N∑
i=1

ˆ ti

ti−1

E

[(ˆ t

ti

fℓ
(
X
(
r−
)
, r−
)
dr

)2
]
dt

+
N∑

i=1

ˆ ti

ti−1

E


ˆ t

ti

m∑
j=1

σℓ,j

(
X̂(r−), r−

)
dBj,r

2
dt

+
N∑

i=1

ˆ ti

ti−1

E

[(ˆ t

ti

ˆ
U
βℓ

(
X
(
r−
)
, ξ, r−

)
Ñ(dr,ν (dξ))

)2
]
dt

⩽
N∑

i=1

(∆ti−1)
2E

[ˆ ti

ti−1

f2ℓdt

]
+

N∑
i=1

∆ti−1

m∑
j=1

E

[ˆ ti

ti−1

σ2
ℓ,jdt

]

+
N∑

i=1

∆ti−1E

[ˆ ti

ti−1

ˆ
U
β2
ℓν (dξ)dt

]
,

(B.5)

where∆ti−1 := ti − ti−1. Summing over ℓ, we have√√√√ N∑
i=1

ˆ ti

ti−1

E
[∣∣X(t)−XN(t)

∣∣2
2

]
dt⩽

√
F∆t2 +Σ∆t+B∆t, (B.6)

where∆t :=max0⩽i⩽N−1(ti+1 − ti). Similarly, we can show that

W2 (µ̂, µ̂N)⩽
√

F̂∆t2 +Σ̂∆t+ B̂∆t. (B.7)

Plugging equations (B.6) and (B.7) into equation (19), we have proved equation (21).

Appendix C. Proof to theorem 3.1

Here, we provide proof to theorem 3.1. The proof builds upon and generalizes the proof of theorem 3 in [25]
for pure diffusion processes to jump-diffusion processes. First, notice that

E
[∣∣X(t)− X̂(t)

∣∣2
2

]
⩽ 2

(
FT+ F̂T+Σ+Σ̂+B+ B̂

)
<∞, ∀t ∈ [0,T] (C.1)

where F, F̂,Σ, Σ̂,B, B̂ are defined in equation (20). By applying theorem 2.2, for any ti, i = 1,2, . . .,N,
denoting∆ti := ti − ti−1, we have

inf
πi

√
Eπi

[
|X(ti)− X̂(ti) |22

]
∆ti −

√
Fi (∆ti)

2
+Σi∆ti +Bi∆ti −

√
F̂i (∆ti)

2
+Σ̂i∆ti + B̂i∆ti

⩽W2 (µi, µ̂i)

⩽ inf
πi

√
Eπi

[
|X(ti)− X̂(ti) |22

]
∆ti +

√
Fi (∆ti)

2
+Σi∆ti +Bi∆ti

+

√
F̂i (∆ti)

2
+Σ̂i∆ti + B̂i∆ti,

(C.2)
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where µi, µ̂i are the distributions for X(t), t ∈ [ti, ti+1) and X̂(t), t ∈ [ti, ti+1), respectively. Additionally, from
equation (30), we have

N−1∑
i=0

Fi =F<∞,
N−1∑
i=0

Σi =Σ<∞,
N−1∑
i=0

Bi = B<∞

N−1∑
i=0

F̂i =F̂<∞,
N−1∑
i=0

Σ̂i = Σ̂<∞,
N−1∑
i=0

B̂i = B̂<∞.

(C.3)

From the inequality (C.2), we have

W 2
2 (µi, µ̂i)⩽ inf

πi

Eπi

[
|X(ti)− X̂(ti) |22

]
∆ti

+ 2inf
πi

√
Eπi

[
|X(ti)− X̂(ti) |22

]
∆ti

[√
Fi∆ti +Σi +Bi +

√
F̂∆ti +Σ̂i + B̂i

]
+ 2∆ti

(
Fi∆ti +Σi +Bi + F̂i∆ti +Σ̂i + B̂i

)
W 2

2 (µi, µ̂i)⩾ inf
πi

Eπi

[
|X(ti)− X̂(ti) |22

]
∆ti

− 2W2 (µi, µ̂i)∆ti

[√
Fi∆ti +Σi +Bi +

√
F̂∆ti +Σ̂i + B̂i

]
− 2∆ti

(
Fi∆ti +Σi +Bi + F̂i∆ti +Σ̂i + B̂i

)
.

(C.4)

Specifically, from the assumption given in equations (C.1) and (C.2), we conclude that

W2 (µi, µ̂i)⩽
√
∆ti

(
M+

√
F∆ti +Σi +Bi +

√
F̂∆ti +Σ̂i + B̂i

)
:= M̃

√
∆ti, M̃<∞. (C.5)

Summing over i = 1, . . .,N− 1 for both inequalities in equation (C.4) and noting that∆t=maxi |ti+1 − ti|,
we conclude

N−1∑
i=0

W 2
2 (µi, µ̂i)⩽

N−1∑
i=0

inf
πi

Eπi

[∣∣X(ti)− X̂(ti)
∣∣2
2

]
∆ti + 2∆t

(
F∆t+Σ+ F̂∆t+Σ̂+B+ B̂

)
+ 2M

N−1∑
i=1

∆ti

(√
Fi∆ti +Σi +Bi +

√
F̂i∆ti +Σ̂i + B̂i

)
,

⩽
N−1∑
i=0

inf
πi

Eπi

[∣∣X(ti)− X̂(ti)
∣∣2
2

]
∆ti + 2∆t

(
F∆t+Σ+ F̂∆t+Σ̂+B+ B̂

)
+M

√
∆t
((

F+ F̂
)
∆t+Σ+Σ̂+B+ B̂+ 2T

)
(C.6)

and

N−1∑
i=0

W 2
2 (µi, µ̂i)⩾

N−1∑
i=0

inf
πi

Eπi

[∣∣X(ti)− X̂(ti)
∣∣2
2

]
∆ti

− 2M̃
N−1∑
i=0

∆ti

(√
Fi∆ti +Σi +Bi +

√
F̂i∆ti +Σ̂i + B̂i

)
− 2∆t

(
F∆t+Σ+B+ F̂∆t+Σ̂+ B̂

)
,

⩾
N−1∑
i=0

inf
πi

Eπi

[∣∣X(ti)− X̂(ti)
∣∣2
2

]
∆ti − 2∆t

(
F∆t+Σ+B+ F̂∆t+Σ̂+ B̂

)
− M̃

√
∆t
((

F+ F̂
)
∆t+Σ+Σ̂+B+ B̂+ 2T

)
.

(C.7)

Equations (C.6) and (C.7) indicate that as N→∞,

N−1∑
i=0

inf
πi

Eπi

[∣∣X(ti)− X̂(ti)
∣∣2
2

]
∆ti −

N−1∑
i=0

W 2
2 (µi, µ̂i)→ 0, (C.8)
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which proves equation (29).
Now, suppose 0= t10 < t11 < .. . < t1N1

= T; 0= t20 < t21 < .. . < t2N2
= T to be two sets of grids on [0,T]. We

define a third set of grids 0= t30 < .. . < t3N3
= T such that {t10, . . ., t1N1

}∪ {t20, . . ., t2N2
}= {t30, . . ., t3N3

}. Let
δt :=max{maxi(t1i+1 − t1i ),maxj(t2j+1 − t2j ),maxk(t3k+1 − t3k)}. We denote µs

i(t
1
i ) and µ̂s

i(t
1
i ) to be the

probability distribution of X(tsi) and X̂(t
s
i), s= 1,2,3, respectively. We now prove that∣∣∣∣N1−1∑

i=0

W 2
2

(
µ
(
t1i
)
, µ̂
(
t1i
))(

t1i+1 − t1i
)
−

N3−1∑
i=0

W 2
2

(
µ
(
t3i
)
, µ̂
(
t3i
))(

t3i+1 − t3i
)∣∣∣∣→ 0, (C.9)

as∆t→ 0.
First, suppose in the interval (t1i , t

1
i+1), we have t

1
i = t3ℓ < t3ℓ+1 < .. . < t3ℓ+s = t1i+1, s⩾ 1, then for s> 1,

since t1i+1 − t1i =
∑ℓ+s−1

k=ℓ (t3k+1 − t3k), we have∣∣∣∣W 2
2

(
µ
(
t1i
)
, µ̂
(
t1i
))(

t1i+1 − t1i
)
−

ℓ+s−1∑
k=ℓ

W 2
2

(
µ
(
t3k
)
, µ̂
(
t3i
))(

t3k+1 − t3k
)∣∣∣∣

⩽
ℓ+s−1∑
k=ℓ+1

(
W2

(
µ
(
t1i
)
, µ̂
(
t1i
))

+W2

(
µ̂
(
t3i
)
, µ̂
(
t3k
)))

×
(
W2

(
µ
(
t1i
)
, µ̂
(
t1i
))

−W2

(
µ
(
t3k
)
, µ̂
(
t3k
)))(

t3k+1 − t3k
)
.

(C.10)

On the other hand, because we can take a specific coupling π∗ to be the joint distribution of (X(t1i ),X(t
3
k)),

W2

(
µ
(
t1i
)
,µ
(
t3k
))

⩽
√
E
[
|X
(
t3k
)
−X(t1i ) |22

]
⩽ E

ˆ t1i+1

t1i

d∑
i=1

f 2i
(
X
(
t−
)
, t−
)
dt+

ˆ t1i+1

t1i

d∑
ℓ=1

m∑
j=1

σ2
ℓ,j

(
X
(
t−
)
, t−
)
dt

+

ˆ t1i+1

t1i

d∑
ℓ=1

ˆ
U
β2
ℓ

(
X
(
t−
)
, ξ, t−

)
ν (dξ)dt

] 1
2

.

(C.11)

Similarly, we have

W2

(
µ̂
(
t1i
)
, µ̂
(
t3k
))

⩽ E

ˆ ti+1

ti

d∑
ℓ=1

f̂ 2ℓ
(
X
(
t−
)
, t−
)
dt+

ˆ t1i+1

t1i

d∑
ℓ=1

m∑
j=1

σ̂2
ℓ,j

(
X
(
t−
)
, t−
)
dt

+

ˆ t1i+1

t1i

d∑
ℓ=1

ˆ
U
β̂2
ℓ

(
X̂
(
t−
)
, ξ, t−

)
ν (dξ)dt

] 1
2

.

(C.12)

Using the triangular inequality of the Wasserstein distance as well as the Cauchy inequality, we have∣∣∣W2

(
µ
(
t1i
)
, µ̂
(
t1i
))

−W2

(
µ
(
t3k
)
, µ̂
(
t3k
))∣∣∣⩽ ∣∣∣W2

(
µ
(
t1i
)
, µ̂
(
t1i
))

−W2

(
µ
(
t3k
)
, µ̂
(
t1k
))∣∣∣

+
∣∣∣W2

(
µ
(
t3i
)
, µ̂
(
t1i
))

−W2

(
µ
(
t3k
)
, µ̂
(
t3k
))∣∣∣

⩽W2

(
µ
(
t1i
)
,µ
(
t3k
))

+W2

(
µ̂
(
t1i
)
, µ̂
(
t3k
))

.

(C.13)

Substituting equations (C.11), (C.12), (C.1) and (C.13) into equation (C.10), we conclude that∣∣∣∣W 2
2

(
µ(t1i ), µ̂(t

1
i )
)
(t1i+1 − t1i )−

ℓ+s−1∑
k=ℓ

W 2
2

(
(µ(t3k), µ̂(t

3
k)
)
(t3k+1 − t3k)

∣∣∣∣
⩽ 2M(t1i+1 − t1i )

(√
Fi∆t+Σi +Bi +

√
F̂i∆t+Σ̂i + B̂i

)
.

(C.14)

Using equation (C.14) in equation (C.9), when the conditions in equation (26) hold true, we have

lim
δt→0

∣∣∣∣N1−1∑
i=0

W 2
2

(
µ
(
t1i
)
, µ̂
(
t1i
))(

t1i+1 − t1i
)
−

N3−1∑
i=0

W 2
2

(
µ
(
t3i
)
, µ̂
(
t3i
))(

t3i+1 − t3i
)∣∣∣∣

⩽ 2MTmax
i

(√
Fi∆t+Σi +Bi +

√
F̂i∆t+Σ̂i + B̂i

)
→ 0.

(C.15)
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Similarly,

lim
δt→0

∣∣∣∣N2−1∑
i=0

W 2
2

(
µ
(
t2i
)
, µ̂
(
t2i
))(

t2i+1 − t2i
)
−

N3−1∑
i=0

W 2
2

(
µ
(
t3i
)
, µ̂
(
t3i
))(

t3i+1 − t3i
)∣∣∣∣

⩽ 2MTmax
i

(√
Fi∆t+Σi +Bi +

√
F̂i∆t+Σ̂i + B̂i

)
→ 0.

(C.16)

Thus, as∆t→ 0,

∣∣∣∣N1−1∑
i=0

W 2
2

(
µ
(
t1i
)
, µ̂
(
t1i
))(

t1i+1 − t1i
)
−

N2−1∑
i=0

W 2
2

(
µ
(
t2i
)
, µ̂
(
t2i
))(

t2i+1 − t2i
)∣∣∣∣→ 0, (C.17)

which implies the limit

lim
N→∞

N−1∑
i=0

inf
πi

Eπi

[∣∣X(t1i )− X̂
(
t1i
)∣∣2

2

](
t1i − t1i−1

)
= lim

N→∞

N−1∑
i=0

W 2
2

(
µ
(
t1i
)
, µ̂
(
t1i
))(

t1i − t1i−1

)
(C.18)

exists. From equation (25), the limit

lim
N→∞

N−1∑
i=1

inf
πi

Eπi

[∣∣X(t1i )− X̂
(
t1i
)∣∣2

2

](
t1i − t1i−1

)
= W̃

2
2 (µ,µ̂) . (C.19)

Specifically, by letting maxn2−1
i=0 (t2i+1 − t2i )→ 0 in equation (C.17), we have

∣∣∣∣N1−1∑
i=0

W 2
2

(
µ
(
t1i
)
, µ̂
(
t1i
))(

t1i+1 − t1i
)
− W̃

2
2 (µ,µ̂)

∣∣∣∣
⩽ 2MTmax

i

(√
Fi∆t+Σi +Bi +

√
F̂i∆t+Σ̂i + B̂i

)
.

(C.20)

This completes the proof of theorem 3.1.

Appendix D. Proof of theorem 3.2

Below, we provide proof for theorem 3.2. First, note that

E
[∣∣W 2

2

(
µeN, µ̂

e
N

)
−W 2

2 (µN, µ̂N)
∣∣]⩽ E

[(
W2

(
µeN, µ̂

e
N

)
−W2 (µN, µ̂N)

)2]
+ 2E

[∣∣W2

(
µeN, µ̂

e
N

)
−W2 (µN, µ̂N)

∣∣]W2 (µN, µ̂N) . (D.1)

Using the triangular inequality for the Wasserstein distance [45], we have

E
[∣∣W2

(
µeN, µ̂

e
N

)
−W2 (µN, µ̂N)

∣∣]⩽ E
[
W2

(
µeN,µN

)]
+E

[
W2

(
µ̂eN, µ̂N

)]
,

E
[(
W2

(
µeN, µ̂

e
N

)
−W2

(
µN, µ̂N

))2]⩽ 2E
[
W 2

2

(
µeN,µN

)
+W 2

2

(
µ̂eN, µ̂N

)]
.

(D.2)

From theorem 1 in [29], there exists a constant C0 depending on the dimensionality Nd such that:

E
[
W 2

2

(
µeN,µN

)]
⩽ C0h

2 (Ms,Nd)E

[
N−1∑
i=0

|X(ti) |66∆t3i

] 1
3

,

E
[
W 2

2

(
µ̂eN, µ̂N

)]
⩽ C0h

2 (Ms,Nd)E

[
N−1∑
i=0

|X̂(ti) |66∆t3i

] 1
3

,

(D.3)
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where the function h is defined in equation (36) and∆ti := (ti+1 − ti), i = 0, . . .,N− 1. Substituting
equations (D.3) and (D.2) into equation (D.1), we conclude that

E
[∣∣W 2

2

(
µeN,µN

)
−W 2

2

(
µ̂eN, µ̂

e
N

)∣∣]
⩽ 2C0h

2 (Ms,Nd)

E

[
N−1∑
i=0

∣∣X(ti)
∣∣6
6
∆t3i

] 1
3

+E

[
N−1∑
i=0

∣∣X̂(ti)
∣∣6
6
∆t3i

] 1
3


+ 2
√

C0W2 (µN, µ̂N)h(Ms,Nd)

E

[
N−1∑
i=0

∣∣X(ti)
∣∣6
6
∆t3i

] 1
6

+E

[
N−1∑
i=0

∣∣X̂(ti)
∣∣6
6
∆t3i

] 1
6


(D.4)

which proves the inequality (35). Similarly, for each i = 0,1, . . .,N− 1, there exists a constant C1 depending
on the dimensionality d such that

E
[∣∣W 2

2

(
µeN (ti) , µ̂

e
N (ti)

)
−W 2

2 (µN (ti) , µ̂N (ti))
∣∣]∆ti

⩽ 2
√

C1h(Ms,d)

(
E
[∣∣X̂(ti)

∣∣6
6

] 1
6
+E

[∣∣X(ti)
∣∣6
6

] 1
6

)
W2 (µ(ti) , µ̂(ti))∆ti

+ 2C1h
2 (Ms,d)

(
E
[∣∣X̂(ti)

∣∣6
6

] 1
3
+E

[∣∣X(ti)
∣∣6
6

] 1
3

)
∆ti.

(D.5)

Summing over i in the inequalities (D.5), we find

E

[∣∣∣N−1∑
i=0

(
W 2

2

(
µeN (ti) , µ̂

e
N (ti)

)
∆ti −W 2

2 (µN (ti) , µ̂N (ti))∆ti
)∣∣∣]

⩽
N−1∑
i=0

E
[∣∣W 2

2

(
µeN (ti) , µ̂

e
N (ti)

)
−W 2

2 (µN (ti) , µ̂N (ti))
∣∣∆ti

]
⩽ 2
√

C1

N−1∑
i=0

((
E
[∣∣X(ti)

∣∣6
6

] 1
6
+E

[∣∣X̂(ti)
∣∣6
6

] 1
6

)
W2 (µN (ti) , µ̂N (ti))∆ti h(Ms,d)

+2C1

(
E
[∣∣X(ti)

∣∣6
6

] 1
3
+E

[∣∣X̂(ti)
∣∣6
6

] 1
3

)
∆ti h

2 (Ms,d)

)
,

(D.6)

which proves the inequality (37). Furthermore, using the Hölder’s inequality, we have

E

[
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] 1
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·E

[
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1
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3

⩾
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∣∣6
6

] 1
3
∆ti (D.7)

and

E

[
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i=0

∣∣X̂(ti)
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6
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] 1
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·E

[
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1

] 2
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⩾
N−1∑
i=0

E
[∣∣X̂(ti)

∣∣6
6

] 1
3
∆ti. (D.8)

Furthermore, for any coupled distribution π(XN, X̂N) whose marginal distributions are µN and µ̂N, we have,
by using the Cauchy inequality,

2
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E
[∣∣X̂(ti)
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6
∆t3i

] 1
6
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] 1
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)
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·
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∣∣2
2
∆ti

] 1
2

.

(D.9)
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Therefore, by taking the infimum over all coupling distributions π(XN, X̂N), we conclude that
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After combining the five inequalities equations (D.7), (D.8), (D.4), (D.6) and (D.10), we conclude that

E1 (Ms)⩾ CE2 (Ms)
h(Ms,Nd)

h(Ms,d)
N− 2

3 , (D.11)

where C := 1√
10
min

{√
C0
C1
, C0
C1

}
⩽min

{√
C0
C1
, C0
C1

}
·minx⩾1

h(x,5)
h(x,4) .

Appendix E. Default training settings

We list the training hyperparameters and gradient descent methods for each example in table E1.

Table E1. Training settings for each example.

Loss Example 4.1 Example 4.2 Example 4.3

Gradient descent method AdamW AdamW AdamW
Learning rate 0.002 0.003 0.002
Weight decay 0.005 0.02 0.005
No. of epochs 1000 500 400
No. of training trajectoriesMs 100 400 300
Hidden layers inΘ1 2 2 \
Hidden layers inΘ2 2 2 3
Hidden layers inΘ3 2 2 3
Activation function ReLu ReLu ReLu
Neurons in each layer inΘ1 150 150 \
Neurons in each layer inΘ2 150 150 400
Neurons in each layer inΘ3 150 150 400
∆t 0.2 0.1 0.2
Number of timesteps N 101 51 51
Initialization torch.nn default torch.nn default 0 for biases

N (0,10−4) for weights
Repeat times 10 5 5

Appendix F. Definitions of different loss metrics

Here, we provide definitions of loss functions used in our numerical examples (the definitions of the MSE,
mean2+var, and the MMD loss functions are the same as appendix E in [25]). Since we are using a uniform
mesh grid (ti+1 − ti =∆t,∀i = 0, . . .,N− 1), for simplicity, we shall omit∆t in the calculation of our loss
functions:

(i) The squared Wasserstein-2 distance

W 2
2 (µN, µ̂N)≈W 2

2 (µ
e
N, µ̂

e
N) ,

where µe
N and µ̂e

N are the empirical distributions of the vector (X(t0), . . .,X(tN−1)) and
(X̂(t0), . . ., X̂(tN−1)), respectively. In numerical examples, we use the following scaled squared
Wasserstein-2 distance:

1

∆t
W 2

2 (µ
e
N, µ̂

e
N)≈ ot.emd2

(
1

Ms
IMs ,

1

Ms
IMs ,C

)
, (F.1)
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where ot.emd2 is the function for solving the earth movers distance problem in the ot package of
Python [27],Ms is the number of ground truth and predicted trajectories, IMs is anMs-dimensional

vector whose elements are all 1, and C ∈ RMs×Ms is a matrix with entries (C)ij = |X i
N − X̂

j
N|22. | · |2 is the

2-norm of a vector. X i
N is the vector of the values of the ith ground truth trajectory at time points

t0, . . ., tN−1, and X̂
j
N is the vector of the values of the jth predicted trajectory at time points t0, . . ., tN−1.

(ii) The temporally decoupled squared Wasserstein-2 distance (equation (40)). In numerical examples, we
use the following scaled temporally decoupled squared Wasserstein-2 distance:

1

∆t
W̃

2
2 (µN, µ̂N)≈

N−1∑
i=1

W 2
2 (µ

e (ti) , µ̂
e (ti)) ,

where∆t is the time step andW2 is the Wasserstein-2 distance between two empirical distributions of
X(ti) and X̂(ti), denoted by µe(ti), µ̂e(ti), respectively. These distributions are calculated by the samples
of the trajectories of X(t), X̂(t) at a given time step t= ti, respectively.W2

2(µ
e
N(ti), µ̂

e
N(ti)) is calculated

using the ot.emd2 function, i.e.

W 2
2 (µ

e (ti) , µ̂
e (ti))≈ ot.emd2

(
1

Ms
IMs ,

1

Ms
IMs ,C(ti)

)
, (F.2)

where IMs is anMs-dimensional vector whose elements are all 1, and C ∈ RMs×Ms is a matrix with

entries (C)sj = |Xs(ti)− X̂
j
(ti)|22. Xs(ti) is the vector of values of the sth ground truth trajectory at time ti

and X̂
s
(ti) is the vector of values of the sth trajectory generated by the reconstructed jump-diffusion

process at time ti.
(iii) The Wasserstein-1 distance

W1 (µN, µ̂N)≈W1 (µ
e
N, µ̂

e
N) ,

where µe
N and µ̂e

N are the empirical distributions of the vector (X(t0), . . .,X(tN−1)) and
(X̂(t0), . . ., X̂(tN−1)), respectively. In numerical examples, we use the following scaledW1 distance:

1

∆t
W1 (µ

e
N, µ̂

e
N)≈ ot.emd2

(
1

Ms
IMs ,

1

Ms
IMs ,C

)
, (F.3)

where ot.emd2 is the function for solving the earth movers distance problem in the ot package of
Python,Ms is the number of ground truth and predicted trajectories, IMs is anMs-dimensional vector

whose elements are all 1, and C ∈ RMs×Ms is a matrix with entries (C)ij = |X i
N − X̂

j
N|2. X i

N is the vector

of the values of the ith ground-truth trajectory at time points t0, . . ., tN−1, and X̂
j
N is the vector of the

values of the jth predicted trajectory at time points t0, . . ., tN−1.
(iv) Mean squared error (MSE) between the trajectories, whereMs is the total number of the ground truth

and predicted trajectories. Xi,j and X̂i,j are the values of the jth ground-truth and prediction trajectories
at time ti, respectively:

MSE
(
X, X̂

)
=

1

MsN

N−1∑
i=0

Ms∑
j=1

(
Xi,j − X̂i,j

)2
.

(v) The summation of squared distance between mean trajectories and absolute values of the discrepancies
in variances of trajectories, which is a common practice for estimating the parameters of an SDE. We
shall denote this loss function by

(
mean2+var

)(
X, X̂

)
=

N−1∑
i=0

[( 1

Ms

Ms∑
j=1

(
Xi,j − X̂i,j

))2
+
∣∣var(Xi

)
− var

(
X̂i

)∣∣].
HereMs and Xi,j and X̂i,j have the same meaning as in the MSE definition. var(Xi) and var(X̂i) are the
variances of the empirical distributions of X(ti), X̂(ti), respectively.

(vi) MMD (maximum mean discrepancy) In our numerical examples, we use the following MMD loss
function [46]:

MMD
(
X, X̂

)
=

N−1∑
i=1

(
E
[
K
(
Xi,Xi

)]
− 2E

[
K
(
Xi, X̂i

)]
+E

[
K
(
X̂i, X̂i

)])
,
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where K is the standard radial basis function (or Gaussian kernel) with multiplier 2 and number of
kernels 5. X i and X̂i are the values of the ground truth and predicted trajectories at time ti, respectively.

Appendix G. Changing the number of training trajectories for different loss functions

Here, we consider the reconstruction of the jump-diffusion process given in equation (57) as a function of
the number of trajectories and the loss functions used for training. We generate trajectories from the
ground-truth jump-diffusion process equation (57) with b= 4,a=−1,σ0 = 0.4,y0 = 1,T= 20.2 and the
initial condition X0 = 2. Except for the number of training samplesMs, the training setting and
hyperparameters are the same as those described in table E1 for Example 4.1. The reconstruction accuracy of
the drift, diffusion, and jump functions for all methods tends to improve with an increasing number of
training trajectories. Additionally, we find that our proposed temporally decoupled squaredW2 method
usually gives more accurate reconstructed drift, diffusion, and jump functions compared to using other loss
functions or methods. Using the MMD loss function could yield more accurate reconstructed jump
functions when the number of training samples is small (⩽64). However, the reconstruction of the drift and
diffusion functions when using the MMD loss function is not as good as that of using our temporally
decoupled squaredW2 method. The results are plotted in figure G1.

Figure G1. The error in the reconstructed drift, diffusion, and jump functions of the 1D jump-diffusion process equation (57) for
different loss functions. The number of training trajectories is varied as different loss functions are used.

Appendix H. Varying the coefficients that determine diffusion and jump functions

Here, we consider changing the two parameters σ0,y0 in equation (57) of example 4.1. With larger σ0,y0, the
trajectories generated by equation (57) will be subject to greater fluctuations. We use the temporally squared
W2 distance as the loss function. We vary σ0 to range from 0.2 to 0.4 and vary y0 from 0.5 to 1. We repeat our
experiments 10 times, and we plot the temporally squaredW2 distance as well as the errors of the
reconstructed f̂, σ̂, β̂.

Figure H1. (a) The temporally decoupled squared Wasserstein distance W̃
2
2(µN, µ̂N). (b) the average relative errors in the

reconstructed drift function f̂(x); (c) the average relative errors in the reconstructed diffusion function σ̂(x); (d) the average

relative errors in the reconstructed jump functions β̂(x).
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From figure H1(a), larger σ0,y0 lead to larger W̃
2
2(µN, µ̂N). This could be because larger σ0,y0 lead to

ground truth trajectories with larger fluctuations, rendering the underlying dynamics harder to reconstruct.
Figure H1(b) implies that the drift function can be accurately reconstructed and is insensitive to different
σ0,y0. As seen in Figure H1(c), if σ0 is small, the relative error in the reconstructed diffusion function can be
well controlled around 0.1; when σ0 is larger, it is harder to reconstruct the diffusion function and the
relative error in the reconstructed diffusion function σ̂ will be larger. Figure H1(d) shows that the
reconstruction of the jump function β̂ is not very sensitive to different values of σ0 and y0.

Appendix I. Reconstructing equation (59) in example 4.2 with different numbers of
trajectories in the training set

Here, we carry out an additional numerical experiment of reconstructing equation (59) by changing the
number of trajectories in the training set. We define the ground truth jump-diffusion process by the drift
function α(X, t) := r, and the diffusion function and jump functions σ(X, t) = β(X, t) = 0.1

√
|X|. We

consider four scenarios: i) provide no prior information and reconstruct drift, diffusion, and jump
functions, ii) provide the drift function α(X, t) as prior information and reconstruct the diffusion and jump
functions, iii) provide the diffusion function σ(X, t) as prior information and reconstruct the drift and jump
functions, and iv) provide the jump function β(X, t) as prior information and reconstruct the drift and
diffusion functions.

Figure I1. The reconstruction errors in the drift, diffusion, and jump functions defined in equations (54) and (55) as a function of
the number of trajectoriesMs when different prior information is provided. The results are averaged over 5 independent
experiments. Training hyperparameters are the same as those used in example 4.2 listed in table E1.

As seen in figures I1(b) and (c), providing the drift function as prior information greatly boosts the
efficiency of our temporally decoupled squaredW2 method allowing it to accurately reconstructing the
unknown diffusion and jump functions even with as few as 100 trajectories for training. Also, even with no
prior information, the errors in the reconstructed drift, diffusion, or jump function decrease when the
number of trajectories in the training set increases (figures I1(a)–(c)). This indicates that even without prior
information, our temporally decoupled squaredW2 method can accurately reconstruct equation (59) when
provided a sufficient number of training trajectories.

When the diffusion or jump function is given as prior information, the errors of the reconstructed
unknown functions do not decrease much as the number of trajectories for trainingMs increases. Even with
the correct diffusion or jump function, different realizations of the Brownian motion or the compensated
Poisson process yield very different trajectories so that providing the diffusion or jump function may provide
little information in discriminating trajectories.

Appendix J. Reconstructing equation (59) in example 4.2 with different parameters in
the diffusion and jump functions when providing the drift function

Here, given the drift function α(X, t) := r, we carry out an additional numerical experiment of
reconstructing equation (59) by varying the parameters σ0,β0 that determine the strength of the
Brownian-type and compensated-Poisson-type noise in equations (60)–(62).

Figure J1 shows our temporally decoupled squaredW2-distance loss function can be used to accurately
reconstruct the diffusion function and the jump function σ(X, t),β(X, t) in equation (59), even when
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Figure J1. The reconstruction errors in the diffusion, and jump functions defined in equations (54) and (55) w.r.t. the two
parameters that determine the strength of noise σ0 and β0 in equations (60)–(62). Here, const–const indicates we are using
equation (60) for both the diffusion and jump functions; linear–linear indicates we are using equation (61) for both the diffusion
and jump functions; langevin–langevin indicates we are using equation (62) for both the diffusion and jump functions. The
results are averaged over 5 independent experiments. Training hyperparameters are the same as example 4.2 in table E1.

different forms of σ(X, t),β(X, t) in equations (60)–(62) and different noise strengths σ0,β0 are given. The
average errors (averaged over all choices of σ0,β0) in the reconstructed diffusion function σ̂ are 0.171
(const–const), 0.217 (linear–linear), and 0.176 (langevin–langevin). The average errors (averaged over all
choices of σ0,β0) in the reconstructed jump function σ̂ are 0.173 (const–const), 0.188 (linear–linear), and
0.184 (langevin–langevin).

Appendix K. Neural network architecture

Here, we investigate how the neural network architecture, i.e. the number of hidden layers and the number of
neurons in each layer, influence the accuracy of reconstructing the 2D jump-diffusion process
(equation (63)). We vary only the number of hidden layers and the number of neurons per layer for the
parameterized neural networks that we use to approximate the diffusion and jump functions σ and β in
equation (63). We set the parameters to be c1 =−0.5, c2 =−1 and σ0 = β0 = 0.1 in equations (65) and (66),
and consider 200 trajectories.

From table K1, we see that increasing the number of hidden layers and increasing the number of neurons
per hidden layer can both increase the accuracy of the reconstructed σ̂ and β̂. However, with a fixed number
of neurons per hidden layer (200), when the number of hidden layers in the feed-forward neural network is
greater than 3, the errors in the reconstructed σ and β increase. This behavior may be due to vanishing
gradients during training of deep neural networks [47]; in this case, the ResNet technique [48] can be
considered if deep neural networks are used. On the other hand, using a deeper or wider network requires
more memory usage and longer run times. For reconstructing equation (63), we find an optimal neural
network architecture consisting of about three hidden layers containing∼400 neurons each.

We found that adding Dropout layers did not lead to improved reconstruction accuracy. The underlying
reason could be that the diffusion and jump functions of the jump-diffusion process to be reconstructed
equation (63) are deterministic, while the dropout layer will randomly select neurons in the hidden layers to
ignore. Such randomness for the neural-network-parameterized diffusion and jump function induced by the
Dropout layers is not compatible with the deterministic diffusion and jump functions to be reconstructed
and introduces new stochasticity on top of intrinsic noise in the jump-diffusion process. Therefore, applying
the Dropout technique will not improve the reconstruction accuracy of the diffusion and jump functions.
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Table K1. Reconstructing the jump-diffusion process equation (63) when using neural networks with different numbers of hidden layers

and neurons per layer to parameterize f̂, σ̂. We also applied Dropout with dropout probability p. Other training hyperparameters are the
same as those used in table E1 of example 4.3.

Width Layer Relative Errors in σ̂ Relative Errors in β̂ Nrepeats

25 3 0.6836(±0.5177) 0.5554(±0.4024) 5
50 3 0.8051(±0.4756) 0.7413(±0.3515) 5
100 3 0.6376(±0.3261) 0.5085(±0.2841) 5
200 3 0.6101(±0.2435) 0.5280(±0.2038) 5
400 3 0.2619(±0.1859) 0.2837(±0.1961) 5
200 1 0.7143(±0.8451) 0.6178(±0.2925) 5
200 2 0.6984(±0.4989) 0.6326(±0.4445) 5
200 4 0.7605(±0.3837) 0.6750(±0.2761) 5
400 3 (Dropout p= 0.05) 0.6574(±0.0674) 0.6162(±0.0647) 5
400 3 (Dropout p= 0.1) 0.6083(±0.1240) 0.5324(±0.0728) 5
400 3 (Dropout p= 0.2) 0.6250(±0.1488) 0.5392(±0.0829) 5

How optimal architectures evolve when reconstructing different multidimensional jump-diffusion processes
requires further exploration.
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