
Fixation times in differentiation and evolution in the presence
of bottlenecks, deserts, and oases

Tom Chou a,b,,n, Yu Wang c

a Department of Biomathematics, UCLA, Los Angeles, CA 90095-1766, United States
b Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, United States
c Institute for Information and System Sciences, Xi'an Jiaotong University, Xi'an, China

H I G H L I G H T S

� We calculate first passage times on a proliferating cell network.
� The mode of cell differentiation is important for first passage times.
� If cells symmetrically divide, the position of bottlenecks affects first passage times.
� Mean-field approximations can fail when cells symmetrically divide.
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a b s t r a c t

Cellular differentiation and evolution are stochastic processes that can involve multiple types (or states)
of particles moving on a complex, high-dimensional state-space or “fitness” landscape. Cells of each
specific type can thus be quantified by their population at a corresponding node within a network of
states. Their dynamics across the state-space network involve genotypic or phenotypic transitions that
can occur upon cell division, such as during symmetric or asymmetric cell differentiation, or upon
spontaneous mutation. Here, we use a general multi-type branching processes to study first passage
time statistics for a single cell to appear in a specific state. Our approach readily allows for
nonexponentially distributed waiting times between transitions, reflecting, e.g., the cell cycle. For
simplicity, we restrict most of our detailed analysis to exponentially distributed waiting times (Poisson
processes). We present results for a sequential evolutionary process in which L successive transitions
propel a population from a “wild-type” state to a given “terminally differentiated,” “resistant,” or
“cancerous” state. Analytic and numeric results are also found for first passage times across an
evolutionary chain containing a node with increased death or proliferation rate, representing a desert/
bottleneck or an oasis. Processes involving cell proliferation are shown to be “nonlinear” (even though
mean-field equations for the expected particle numbers are linear) resulting in first passage time
statistics that depend on the position of the bottleneck or oasis. Our results highlight the sensitivity of
stochastic measures to cell division fate and quantify the limitations of using certain approximations
(such as the fixed-population and mean-field assumptions) in evaluating fixation times.

Published by Elsevier Ltd.

1. Introduction

Stochastic models of populations are commonly applied to
biological processes such as stem cell dynamics (Marciniak-
Czochra et al., 2009; Roshan et al., 2014), tumorigenesis
(Sherman and Portier, 1996; Portier et al., 2000; Bellacosa, 2003;
Spencer et al., 2006; Attolini et al., 2010; Antal and Krapivsky,
2011), cellular aging (Frank, 2005), and organismal evolution

(Allen, 2003; Antal and Krapivsky, 2010). In such applications,
one is often interested in the statistics of the time it takes for
members of a population to first arrive at a specific “absorbing”
state. Such a state may represent, for example, a high fitness
phenotype that eventually takes over the entire population.

A classic biomedical application of first passage times of a
single conserved entity arises in models of cancer progression that
attempt to describe the survival probability of patients as a
function of time after initial diagnosis or treatment. In the
Knudsen hypothesis of cancer progression (illustrated in Fig. 1)
(Armitage and Doll, 2004; Moolgavkar and Knudsen, 1981), an
individual acquires a certain number of sequential mutations or
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“hits” before acquiring cancer (Knudsen, 1971; Fitzgerald et al.,
1983; Bellacosa, 2003). If multiple rare transitions are required
before onset of disease, we can define the probability of transition
from state ℓ to state ℓþ1 in time dt as wℓðtÞ dt. The overall
waiting-time distribution W(t) to first arrive at the diseased state
ℓ¼ Lþ1 is a convolution of all the wℓðtÞ and can be easily
expressed using Laplace transforms: ~W ðsÞ ¼∏L

ℓ ¼ 1 ~wiðsÞ. Since each
mutation is considered rare, the event times of each mutation are
exponentially distributed. If all transitions occur at the same rate,
k0 ¼ k1 ¼⋯¼ k, wℓðtÞ ¼ ke�kt , and ~W ðsÞ ¼ kL=ðsþkÞL. The inverse
Laplace transform then gives (Floyd et al., 2010)

WðtÞ dt ¼ k
ðktÞL�1e�kt

ðL�1Þ! dt: ð1Þ

This expression assumes that all the transition rates are equally
rate-limiting. If kt{1, the survival probability against disease
onset is approximately

SðtÞ ¼ 1�
Z t

0
Wðt0Þ dt0 ¼ΓðL; ktÞ

ðL�1Þ! � 1�ðktÞL
L!

: ð2Þ

If sufficiently accurate fitting of this expression to measured S(t)
can be performed, the number of mutations, or “hits” L before
onset of cancer can be inferred. Using this Knudsen (1971)
hypothesis, typical cancers have yielded L� 4–15 or higher
(Rieker et al., 2000; Beerenwinkel et al., 2007).

Such studies implicitly assume a “single-particle” picture of a
conserved random walker that eventually reaches a target. On a
cellular level this picture is appropriate for a single immortal and
nonproliferating cell that successively acquires different muta-
tions. Estimates and scaling relationships of first passage times of
conserved particles on complex networks have been developed in
more general contexts (Hwang et al., 2012; Agliari, 2008). Similar
results have been developed for a fixed multiple number of
noninteracting particles (Lindenberg et al., 1980). Inverse problems
(similar to the inference of the number of mutations in Knudsen's
hypothesis) have also been recently explored. Li et al. (2014)
considered how first passage times of a conserved random walker
can be used to estimate the shortest paths to the absorbing site,
even for nonexponentially distributed waiting times between
jumps within the network. First passage times of Brownian motion
and random walks have also been used to infer properties of
continuous energy landscapes (Bal and Chou, 2003; Fok and Chou,
2010).

If a network is finite, and all nodes are connected, conserved
particles will always arrive at an absorbing state and the survival
probability Sðt-1Þ-0. However, in the presence of other path-
ways for particle annihilation, the absorbing site may never be
reached. Additional particles need to be continuously injected into
the network in order for one of them to eventually arrive with
certainty at a specific absorbing state (Chou and D'Orsogna, 2014).
Alternative annihilation pathways and immigration lift the fixed
population constraint and is an essential feature in cell and
population biology.

Going beyond single-particle picture, the classic Wright-Fisher
and Moran models of evolution consider a population of organ-
isms distributed between two states (Allen, 2003). Evolution
across multiple states or fitness levels have also been explored in
models of stochastic tunneling (Isawa et al., 2004; Weinreich and
Chao, 2009; Weissman et al., 2009). Many of these models impose

a fixed mean population and do not resolve the possible micro-
scopic transitions an organism can take during the evolution
process. These differences in the “microscopic” mechanisms of
evolution are especially distinguishable in cell biology, in which
changes in genotype or phenotype can arise spontaneously in an
individual cell, or from symmetric or asymmetric replication.
Different cell fates are clearly important in the context of stem
cell differentiation and cancer (Antal and Krapivsky, 2010, 2011;
Roshan et al., 2014; McHale and Lander, 2014). Moreover, due to
cell death, cell populations typically have high turnover within the
timescale of their evolution. Therefore, the total instantaneous
population need not be fixed, even if the ensemble-averaged
population remains constant. We shall see that the different
transitions inherent in cellular differentiation and evolution, as
well as fluctuations in population, can qualitatively affect
fixation times.

We begin by considering a whole population of cells or
“particles” in a network. Fixation in this context will be defined
by a single cell or particle first arriving at an absorbing node.
Absorbing nodes can represent, for example, terminally differen-
tiated, fully drug-resistant, or highly fit, fully cancerous states. We
first treat only a noninteracting population and temporarily
neglect any regulation or population constraint such as carrying
capacity. The analysis is simplified when the total population is
unconstrained; however, we will extend mathematical framework
in order to resolve the effects of different types of allowed
transitions. To describe the evolution of a whole population of
cells and their arrival times to the absorbing nodes, we exploit a
multi-type Bellman–Harris branching process that allows for
general distributions of waiting times between transition events
(Athreya and Ney, 1972; Allen, 2003; Fok and Chou, 2013). Our
approach is related to the analysis of Portier et al. (2000) and the
simulations of Sherman and Portier (1996), but we provide
numerical, asymptotic, and exact mean-field results to illustrate
the effects of microscopic transformations and the different
ordering of their rates. New approximations for analyzing pro-
cesses constrained by carrying capacity are also developed.

In the next section, for completeness, we present the
continuous-time semi-Markov multi-type branching formalism
and derive the equations obeyed by the probability generating
functions for particle numbers at each node in the network. The
corresponding equations for the survival probabilities are then
derived. By further assuming exponentially distributed waiting
times and a sequential evolution model, we explicitly derive the
matrix Riccati equation governing the evolution of survival prob-
abilities in the presence of immigration. In the Results, we present
analytic, asymptotic, and numerical results for survival probabil-
ities and mean first passage times. Effects of the probabilities of
the different cellular transitions on our results are explored. A
breakdown of mean-field theories of survival probabilities (even
when particles are noninteracting) is described. Effects of hetero-
geneity in the transition rates are discussed in the context of
evolutionary oases and bottlenecks. The conditions under which
the order of the transition rates along the evolutionary chain can
affect the survival probabilities and first passage times are inves-
tigated. Finally, we summarize our results, discuss related biolo-
gical applications, and describe extensions and future directions.

2. Mathematical model

Here, we describe in detail a stochastic multi-type population
in the presence of immigration. The general framework is pre-
sented before restricting ourselves to exponentially distributed
inter-transition times and sequential evolution for a more detailed
analysis.

k2k1 k31 2 . . . 3 (L+1) (diseased state)

Fig. 1. Multistage model in disease progression. When multiple steps are before
the system reaches diseased state Lþ1, an L-fold convolution of the state-
dependent individual waiting time distributions provides the overall waiting time
distribution and the survival probability against disease.
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2.1. Multitype branching process

Our analysis of the problem is most efficiently performed using
an age-dependent multi-type branching process where a parent
cell of type k waits a time τ before dividing into a number of cells
of possibly different types. Cells with different numbers of muta-
tions, or at different stages of differentiation, can have different
distributions of waiting times before proliferation. Moreover, each
cell type, upon proliferation, can yield different numbers of new
cells. In the analysis of this multi-type branching process, we
employ the probability generating function (pgf):

Fkðz; tÞ ¼
X1
n1 ¼ 0

⋯
X1

nLþ 1 ¼ 0

Pkðn; tÞzn11 ⋯znLþ 1
Lþ1 ; ð3Þ

in which z¼ ðz1; z2;…; zL; zLþ1Þ and n¼ ðn1;n2;…;nL;nLþ1Þ. Pkðn; tÞ
is the probability at time t the entire population contains nj cells of
type j, given that the system started at t¼0 with a single cell of
type k. We assume that all daughter cells proliferate indepen-
dently and that each branching event of a single cell of type k
yields m1;m2;…;mLþ1 cells of type 1;2;…; Lþ1 with probability
aðkÞðm1;m2;…;mLþ1Þ � aðkÞðmÞ.

What equation of evolution does Fkðz; tÞ obey? For notational
simplicity, it is easiest to first consider a single-species branching
process described by the simple pgf Fðz; tÞ that corresponds to
Pðn; tj1;0Þ, the probability of n particles at time t, given a single
parent particle at t¼0. If we now define Fðz; tjτÞ as the generating
function of the process conditioned on the original parent particle
having first “branched” between τ and τþdτ, we write the
recursion (Allen, 2003; Athreya and Ney, 1972; Harris, 1989):

Fðz; tjτÞ ¼
z; toτ
A½Fðz; t�τÞ�; tZτ;

(
ð4Þ

where

A½z� ¼
X1
m ¼ 0

aðmÞzm ð5Þ

defines the probability a(m) that a particle splits into m identical
particles upon branching. Since this overall process is semi-
Markov (Wang and Qian, 2007), each daughter behaves as a new
parent that issues its own progeny in a statistically equivalent
manner to the original parent, giving rise to the compositional
form in Eq. (4). We now average Eq. (4) over the distribution of
waiting times between branching events, gðτÞ, to find

Fðz; tÞ �
Z 1

0
Fðz; tjτÞgðτÞ dτ

¼ z
Z 1

t
gðτÞ dτþ

Z t

0
A½Fðz; t�τÞ�gðτÞ dτ: ð6Þ

This Bellman–Harris branching process (Athreya and Ney, 1972;
Fok and Chou, 2013) is defined by two parameter functions, a(m),
the vector of progeny number probabilities, and gðτÞ, the prob-
ability density function (pdf) for waiting times between branching
events for each particle. Given a single-particle initial condition,
Fðz;0Þ ¼ z and Eq. (6) can be solved to find a Fðz; tÞ, from which
Pðn; tj1;0Þ can be generated.

For our multistate model, we simply generalize Eq. (6) to a
multi-type process, where particles at different states constitute
different types. The vector of progeny probabilities a(m) now
becomes a matrix aðkÞðmÞ coupling the birth of different types of
particles from a parent particle of state k. Thus,

Ak½z� �
X1

m1 ¼ 0

⋯
X1

mLþ 1 ¼ 0

aðkÞðmÞzm1
1 ⋯zmLþ 1

Lþ1 ð7Þ

is the pgf of the progeny number distribution matrix associated
with each branching event. The relationship for the multi-type pgf

becomes

Fkðz; tÞ ¼ zk

Z 1

t
gkðτÞ dτþ

Z t

0
Ak Fðz; t�τÞ½ �gkðτÞ dτ; ð8Þ

where gkðτÞ dτ is the probability that a particle of type k branches
between time τ and τþdτ after it was created.

The probability that starting from one parent cell in state k no
cell of type Lþ1 has formed up to time t is simply

P1
n1 ¼ 0 ⋯P1

nL ¼ 0 Pkðn1;…;nL;nLþ1 ¼ 0; tÞ. According to the definition of the
pgf in Eq. (3), we can extract this survival probability using
SkðtÞ ¼ FkðzjaLþ1 ¼ 1; zLþ1-0þ ; tÞ. Setting zjaLþ1 ¼ 1 in Eq. (8),
we find

Sja Lþ1ðtÞ ¼
Z 1

t
gjðτÞ dτþ

Z t

0
Aj Sðt�τÞ½ �gjðτÞ dτ; ð9Þ

where S¼ fSja Lþ1g is the vector of survival probabilities initiated
by a single cell in state j. Since Lþ1 is defined as an absorbing
state, we are interested in the first time a particle first arrives at
node Lþ1. Therefore, by setting ALþ1 ¼ 0, we allow particles to
only accumulate in state Lþ1, and define the survival probability
SLþ1ðtÞ ¼ FLþ1ðzia Lþ1 ¼ 1; zLþ1 ¼ 0Þ ¼ 0. This “boundary condition”
in the starting positions, along with the initial conditions
Sja Lþ1ðt ¼ 0Þ, completely defines the problem for SðtÞ.

Note that our model neglects particle–particle interactions and
that the transition probabilities aðkÞðmÞ do not depend on the
number of particles in the network. Therefore, all initial particles
behave independently and the survival probability associated with
a system initiated with N cells at node i¼1 is simply ΣðtÞ � ½S1ðtÞ�N .
Provided that no particles leave the network other than through
state Lþ1, Skðt-0Þ ¼ oðt�1Þ, the mean first arrival time
T ¼ R1

0 ΣðtÞ dt is well-defined. However, if the particle dynamics
include death, there can be extinction before node Lþ1 is reached,
and the mean arrival time Twill diverge. In this case, a more useful
measure of the speed of evolution would be the mean arrival time
conditioned on arrival at Lþ1 (Chou and D'Orsogna, 2014).

A process that ensures arrival to the final state Lþ1 is injection
of particles from an external source. We can extend the branching
process formulation to include immigration of parent particles
into the system (Jagers, 1968; Shonkwiler, 1980). Suppose that
particles of type i are injected into the system with inter-injection
times distributed according to hiðτÞ. Upon assuming an initially
empty network, the pgf for the total particle numbers resulting
from independently injecting type i particles is thus (Athreya and
Ney, 1972; Jagers, 1968; Shonkwiler, 1980)

Φiðz; tÞ ¼
Z 1

t
hiðτÞ dτþ

Z t

0
Φiðz; t�τÞBi½Fiðz; t�τÞ�hiðτÞ dτ; ð10Þ

where Bi½zi� ¼
P1

ni ¼ 0 biðniÞznii is the pgf constructed from the
probability biðniÞ that ni particles are simultaneously injected into
state i during each immigration event. For example, if particles are
injected only three-at-a-time into node i, biðniÞ ¼ δni ;3. In a cellular
biology setting, immigration into the ith state can arise from
spontaneous mutation or from mutations acquired during replica-
tion of an “external” (not included in the states k) wild-type cell or
primordial stem cell. Therefore, Bi½Fi� ¼ bið1ÞFiþbið2ÞF2i , where
bið1Þ and bið2Þ are the probabilities that during each event, one
and two cells immigrate into state i, respectively. For example,
asymmetric differentiation of a stem cell would produce a single
incrementally differentiated cell (state i) and would be described
by the asymmetric differentiation probability bið1Þ. On the other
hand, symmetric differentiation into state i would simultaneously
inject two cells into state i and occur at a rate proportional to bið2Þ.
Since these are the only allowed mechanisms of cellular immigra-
tion, bið1Þþbið2Þ ¼ 1. In the presence of immigration into all
possible stages, the pgf of the total particle number is thus
Ψ ðz; tÞ ¼∏L

i ¼ 1Φiðz; tÞ.
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Upon using Eqs. (8) and (10) to find Ψ ðz; tÞ, one can construct
quantities such as the expected number of cells of type k,
〈nkðtÞ〉¼ ð∂Ψ ðz; tÞ=∂zkÞj z ¼ 1, and the probability that no cells have
yet reached the fully mutated state i¼ Lþ1: ΣðtÞ ¼Ψ ðzjr L ¼
1; zLþ1-0; tÞ. Without loss of generality, we henceforth restrict
our analysis to immigration only into node i¼1. This limit can be
explicitly constructed by letting the times between consecutive
immigration into stages i41 diverge. For example, if
hia1ðτÞ ¼ limTi-1δðτ�TiÞ, Eq. (10) then yields Φia1-1 and
Ψ ðz; tÞ ¼Φ1ðz; tÞ.

When i¼1, Eq. (10) shows that the overall survival probability
ΣðtÞ in the presence of cell immigration obeys

ΣðtÞ ¼
Z 1

t
h1ðτÞ dτþ

Z t

0
Σðt�τÞB1½S1ðt�τÞ�h1ðτÞ dτ; ð11Þ

By solving Eqs. (9) for S1ðtÞ and using the result in Eq. (11), we can
find the overall survival probability of an initially empty network
after cells begin to immigrate into state i¼1. Since cells are not
conserved (in particular, they can die), SjaLþ1ðt-1Þ need not
vanish. However, provided particle injection into state i¼1 per-
sists, the absorbing state will eventually be reached with certainty
and Σðt-1Þ-0. Depending on the immigration frequency and
number of imported particles per injection event, reaching the
terminal state may be rate-limited by either the internal dynamics
defined by aðkÞðmÞ and gðτÞ, or by immigration described by biðniÞ
and hiðτÞ. Finally, the mean first passage time (MFPT) can be
calculated from (Chou and D'Orsogna, 2014; Redner, 2001)

T ¼
Z 1

0
ΣðtÞ dt: ð12Þ

2.2. Exponentially distributed sequential processes

Our results can be simplified if branching and immigration
times are exponentially distributed, gjðτÞ ¼ λje�λjτ and
h1ðτÞ ¼ β1e

�β1τ . After some algebra, Eqs. (9) and (11) become

dSkðtÞ
dt

¼ λkAk½SðtÞ��λkSkðtÞ; ð13Þ

dΣðtÞ
dt

¼ �β1 1�B1½S1ðtÞ�ð ÞΣðtÞ: ð14Þ

Thus, the survival probability can be explicitly expressed as

ΣðtÞ ¼ exp �β1

Z t

0
1�B1½S1ðt0Þ�ð Þ dt0

� �
; ð15Þ

where S1ðtÞ is found from solving Eq. (13).
The analysis can be further simplified by assuming a sequential

evolution processes where each division by a cell can yield only
daughter cells of the same type or of an incrementally more
differentiated (or mutated) type. In other words, when a type k cell
attempts to proliferate, either death occurs, or daughters of only
type k and/or kþ1 are produced. Consequently, aðkÞðmÞ ¼ 0 for any
mj40 when jak; kþ1. Therefore, Fkþ1 in Eq. (8) is coupled to Fk
through the integrand Ak½F1; F2;…; FLþ1�, and one must solve for
all Fj. To be explicit, if the only possible transitions are those
depicted in Fig. 2(a), we find

Ak½z� ¼ aðkÞ00þaðkÞ01zkþ1þaðkÞ11zkzkþ1þaðkÞ20z
2
kþaðkÞ02z

2
kþ1: ð16Þ

In the context of cell biology, the probabilities a00; a01; a02; a11 and
a20 shown in Fig. 2 represent death, somatic mutation, symmetric
differentiation, asymmetric differentiation, and replication after
each attempt at cell division. Note that we have not restricted the
waiting time distributions for the different transitions. However,
for exponentially distributed waiting times, gjðτÞ ¼ λje�λjτ , we can
define rates for the individual processes by μk ¼ λka

ðkÞ
00 ;νk �

λka
ðkÞ
01 ; rk � λka

ðkÞ
20 ; qk � λka

ðkÞ
11, and pk ¼ λka

ðkÞ
02, as shown in Fig. 2(b).

Similarly, we define α1 ¼ β1b1ð1Þ and α2 ¼ β1b1ð2Þ as the rates of
injecting a single particle and double particle into state i¼1,
respectively. The values μk;νk; pk; qk, and rk correspond to rates of
death, somatic mutation, symmetric differentiation, asymmetric
differentiation, and symmetric replication, respectively, of cells in
state k.

A sequential evolution model can thus be constructed by
assigning a set of transition probabilities at each successive cell
state, or node, as shown in Fig. 3. Eq. (13) for Sk(t) and the
associated initial condition thus reduces to

dSkðtÞ
dt

¼ μkþνkSkþ1þrkS
2
kþqkSkSkþ1þpkS

2
kþ1�λkSk ð17Þ

and SkrLð0Þ ¼ 1, SLþ1ðtÞ ¼ 0.

1 0

01

j

j

j+1

j+1

1 0
j j+1

1 0
j j+1

1 0
j j+1

00a 01a

a1102a

20a
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10

00

j

j j+1

j+1

2 0
j j+1

11
j j+1

20
j j+1

. . .
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. . .
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=λ

Fig. 2. (a) The five possible transitions of a single cell at an initial stage (white) and
their probabilities amn. Dividing cells can produce daughters at a more differen-
tiated or mutated stage (red). Since these are the only possible steps,
a00þa01þa11þa20þa02 ¼ 1. (b) When inter-transition times are exponentially
distributed, the rates of each process can be defined in terms of the branching
rate and the branching probabilities aðkÞmn at each node k. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of
this paper.)

Fig. 3. A sequential evolution model. The possible transitions and their rates are
labeled. The rate of single-particle immigration due to e.g., asymmetric differentia-
tion into state k¼1 is defined by α1 ¼ β1b1ð1Þ, while the rate of two-particle
immigration arising from e.g., symmetric differentiation into state k¼1 is defined
by α2 ¼ β1b1ð2Þ. Heterogeneities in the transition rates along the sequence can be
easily incorporated in our computation. Localized heterogeneities (e.g., at site Ln)
can be used to model oases or bottlenecks. Our analysis focusses on the first arrival
time to state Lþ1.
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3. Results

In this section, we present both analytic and numeric results for
Sk(t), ΣðtÞ, and the MFPTs T for sequential, exponentially distrib-
uted processes described by Figs. 2 and 3. We discuss their
properties as functions of transition rates and system size, and
compare these results with those obtained from the simplest
mean-field approximations.

3.1. Linear processes

For “linear” dynamics, defined by pk ¼ qk ¼ rk ¼ 0, Eqs. (17) for
the survival probability in the absence of immigration and for a
single particle initially in state k are linear and can be solved
exactly using Laplace transforms:

~SkðsÞ ¼
1
s

1� ∏
L

i ¼ k

νi
ðsþλiÞ

" #
: ð18Þ

This result explicitly shows that ~S1ðsÞ, and hence ΣðtÞ is invariant
with respect to the order of μiþνi ¼ λi. Therefore, heterogeneity in
the transition rates of this linear Poisson process does not
influence the first passage times to the absorbing state. Similarly,
the survival probability for a sequential process with general
waiting time distribution gkðτÞ can be found from solving Eq. (9)
to find ~S1ðsÞ ¼ s�1½1�∏L

i ¼ 1a
ðiÞ
01
~giðsÞ�, which is also clearly indepen-

dent of the order of the transitions.
Eq. (18) can be inverted to obtain explicit expressions for Sk(t).

S1ðtÞ can be then used in Eq. (15) to obtain the full survival
probability ΣðtÞ, and ultimately the MFPT using Eq. (12). For
uniform λk ¼ λ, Eq. (18) simplifies to

SkðtÞ ¼ 1� ν
λ

� �L�kþ1

1�ΓðL�kþ1; λtÞ
ΓðL�kþ1Þ

� �
; ð19Þ

which is equivalent to the survival probability of a zero-range
process with death (Shargel et al., 2010).

If there is no immigration nor death (μ¼0 and λ¼ν), the
process is analogous to an irreversible multistep Moran process in
which a parent cell immediately dies after producing one mutated/
evolved/differentiated daughter cell. The conservation of particles
means that eventual arrival to any connected node Lþ1 is certain.
For an initial condition of N particles in node k¼1, the mean time
for a first cell to arrive at the terminal state Lþ1 can be
constructed from the survival probability S1ðtÞ of a single particle
that can only hop forward:

T ¼ ν�1
Z 1

0

ΓðL; yÞ
ΓðLÞ

� �N

dy

� 1
ν

ðL�1ÞΓðLÞ
N�1

� �1=L
;

1
L

ðL�1ÞΓðLÞ
N�1

� �1=L
{1: ð20Þ

The result S1ðtÞ for a asymmetrically hopping particle on a finite
one-dimensional lattice is a special case considered in Pury and
Caceres (2003).

If there is death ðμ40Þ but also immigration (α1 and/or α240),
the explicit expression for the overall survival probability ΣðtÞ can
be found by using Eq. (18) for S1ðtÞ in Eq. (15). In the constant
λ¼ μþν case, we find

ΣðtÞ ¼ exp �α1

Z t

0
ð1�S1ðt0ÞÞ dt0

� �
exp �α2

Z t

0
ð1�S21ðt0ÞÞ dt0

� �

¼ exp �ðα1þ2α2Þ
λ

ν
λ

� �L

λt�L�λt
ΓðL; λtÞ
ΓðLÞ þΓðLþ1; λtÞ

ΓðLÞ

� �" #

�exp �2
α2

λ
ν
λ

� �2L

Lþλt
ΓðL; λtÞ
ΓðLÞ �ΓðLþ1; λtÞ

ΓðLÞ �λt
2

� �" #

�exp α2
ν
λ

� �2L Z t

0

ΓðL; λt0Þ
ΓðLÞ

� �2

dt0
" #

: ð21Þ

When α2 ¼ 0 (no double-particle immigration), the integral
T ¼ R1

0 ΣðtÞ dt can be approximated in the small and large limits
of Ω� ðα1=λÞðν=λÞL by considering the structure of integrand ΣðtÞ
in Eq. (12) (Bender and Orszag, 1999):

T �

L
λ

1þ 1
ΩL

� �
; Ω� α1

λ
ν
λ

� �L

{1

1
λ
Γ

Lþ2
Lþ1

� � ðLþ1Þ!
ΩL

� �1=ðLþ1Þ
;

Ω
L!

{1:

8>>>><
>>>>:

ð22Þ

Fig. 4(a) shows exact survival probabilities of the homogeneous
sequential linear process for different values of chain length L. For
comparison, we plot curves corresponding to different rate para-
meters μ and ν relative to the total uniform transition rate
λ¼ μþν. Fig. 4(b) plots ln λT as a function of chain length L. For
large ΩL, the rate limiting step is immigration and the MFPT is
approximately the inter-immigration time, normalized by the
probability each immigration event eventually leads to fixation
(the Ω{1 limit in Eq. (22)).

3.2. Nonlinear processes

Now, consider cell replication processes where pkþqkþrk40.
When these higher order cellular processes arise, Eq. (17) is
nonlinear for N41, and the evaluation of survival probabilities
and first passage times must be approximated or computed
numerically. From Eq. (15), we can see that for sufficiently small
α1=λ, the survival probability will scale as ΣðtÞ � e�α1ð1� S1Þt . Note
that if μk ¼ 0 for all k, the only steady-state solution to Eq. (17) is
Skðt-1Þ� Sk ¼ 0. Hence, ΣðtÞ � e�α1t , indicating that immigration
is the rate limiting step. In the following we will provide results to
a few specific illustrative cases.

3.2.1. Mean field approximation
The simplest approximation to the survival probability can be

obtained without using Eqs. (13) and (15). The time rate of change
of survival is simply defined as the total probability flux into
absorbing states, conditioned on no particle having yet entered any
absorbing state (Chou and D'Orsogna, 2014). In our problem, the
unconditioned instantaneous particle flux into state Lþ1 is

Fig. 4. (a) Survival probabilities for L¼ 5;10;15 plotted as a function of λt. The set
of three thin red curves decaying at short times correspond to α1 ¼ λ;α2 ¼ 0;μ=λ¼
0:01; ν=λ¼ 0:99, while the three black curves decaying at longer times correspond
to μ=λ¼ ν=λ¼ 0:5. The effects of increased chain length L are more dramatic when
particle decay is faster and length-dependent stochastic tunneling becomes rate-
limiting. (b) Plots of lnðλTÞ as a function of L for α1=λ¼ 1;10;104 with fixed
α2 ¼ 0;μ=λ¼ 0:1, and ν=λ¼ 0:9. The two dashed curves correspond to the asymp-
totic limits in Eq. (22).
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Jmf ðtÞ � ðpLþqLþνLÞ〈nLðtÞ〉, where 〈nLðtÞ〉 is the expected occupation
of state L. If we assume that the mean occupation is uncorrelated
with the probability ΣðtÞ of survival, _Σmf � � Jmf ðtÞΣmf . This
approximation is exact when particles are always independent
and is widely used. The survival probability under this mean-field
assumption is thus

Σmf ðtÞ ¼ exp �ðpLþqLþνLÞ
Z t

0
〈nLðt0Þ〉 dt0

� �
: ð23Þ

The unconditioned occupation 〈nLðt0Þ〉 can be found using mass-
action equations for the particle density at each site. The Laplace-
transformed expected particle number can be written as

〈 ~nLðsÞ〉¼
ðα1þ2α2Þ

aLs
∏
L

i ¼ 1

ai
sþbi

; ð24Þ

where ai � 2piþqiþνi and bi � μiþνiþpi�ri. Like Eq. (18), this
result shows that the mean-field survival probability of a system
injected at the first site is independent of the specific order of the
rates. Moreover, upon comparing Eq. (24) to Eq. (18), we see that
the mean field survival probability Σmf ðtÞ ¼ΣðtÞ is exact if
α2 ¼ pi ¼ qi ¼ ri ¼ 0.

For general rates but uniform ai ¼ a and bi ¼ b, the general
mean-field approximation for the survival probability is

Σmf ðtÞ ¼ exp �ðα1þ2α2Þ
b

ðpþqþνÞaL�1

bL

�

bt�L�bt
ΓðL; btÞ
ΓðLÞ þΓðLþ1; btÞ

ΓðLÞ

� ��
; ð25Þ

which has a form analogous to Eq. (21). To explicitly see that
Σmf ðtÞ is not exact when any α2; p; q; r40, consider the single
intermediate state case L¼1. In this case, Eq. (17) can be solved
exactly to yield explicit expressions for S1ðtÞ and ΣðtÞ:

ΣðtÞ ¼ e�α1ð1�S� Þte�α2ð1� S2� Þt ðSþ �S� Þeγt
ðSþ �1Þeγtþð1�S� Þ

� �α1=rþα2λ=r2

�exp �α2

r
ðSþ �1Þð1�S� Þðeγt�1Þ
ðSþ �1Þeγtþð1�S� Þ

� �
; ð26Þ

where

S7 ¼ λ
2r

7
λ
2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4μr=λ2

q
ð27Þ

and

γ ¼ ðSþ �S� Þr¼ λ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4μr=λ2

q
: ð28Þ

Analogous results have been previously considered a general
context (Weissman et al., 2009) and in the context of clonal
expansion in the two-hit cancer progression model (Haeno et al.,
2007).

Fig. 5 explicitly shows the difference between ΣðtÞ and Σmf ðtÞ
(Eq. (25)) for various values of α2; p; q; r40. The discrepancy
between the exact and mean-field results vanishes as
ðα1=bÞða=bÞL=L!{1. In this limit, the numbers of particles derived
from independently immigrated lineages are sufficiently large
such that the effects of correlations among their branching times
are small. The mean-field limit can also be derived by considering
the solution to S1 in the short time limit when it deviates only
slightly from unity. Linearization of Eq. (17) about Sk ¼ 1 results in
a set of equations whose solution also yield the mean-field result
of Eq. (25).

3.2.2. Numerical results
To investigate the effects of nonlinear proliferative processes on

evolution and first passage times in larger systems, we solve Eq.
(17) numerically and use Eqs. (15) and (12) to find survival
probabilities and MFPTs. Since Eq. (17) is nonlinear, we expect

the ordering of the rates and positioning of defects along the chain
to influence first passage times, in contradistinction to linear
processes in which spatial ordering of rates does not play a role.

We first compare proliferative processes with an irreversible-
mutation linear Moran-type process in which asymmetric differ-
entiation occurs followed immediately by death of the parent cell.
This assumption is typically used to enforce fixed population (in
the absence of immigration) and in our framework corresponds to
νk40 and μk ¼ pk ¼ qk ¼ rk ¼ 0. This process is linear and a mean-
field assumption yields exact results. A related nonlinear process
can be defined by qk ¼ μk40 (and νk ¼ pk ¼ rk ¼ 0). This process
will give rise to identical expected populations 〈nkðtÞ〉 if qk are
assigned the same values as νk used in the linear Moran-type
process. Here, asymmetric differentiation and death are balanced
such that the mean occupations are identical to those derived from
the linear process μk ¼ pk ¼ qk ¼ rk ¼ 0. However, in the linear
process, mutation and death of the parent particle are completely
correlated, unlike in the nonlinear process (qk ¼ μk40) in which
they occur independently. The nonlinear process allows fluctua-
tions in the total population to affect FPT statistics. In Fig. 6, ΣðtÞ
and the MFPTs between two processes with uniform intrinsic rate
f, (ν¼ f , p¼ q¼ r¼ μ¼ 0) and (q¼ μ¼ f , ν¼ p¼ r¼ 0), are con-
trasted. The results in Fig. 6 can also be qualitatively understood
from the likelihood of any particle at site k generating one at site
kþ1. If μ¼ q¼ f 40, then any single cell would have a probability
of only one half of generating an advancing daughter cell particle.

Fig. 5. Comparison between exact solutions and mean-field approximations for
L¼1. (a) ΣðtÞ and Σmf ðtÞ for μ¼ 0 and r=λ¼ 0:7 (solid) and r=λ¼ 0:4 (dashed). As
expected, differences are larger for larger values of r=λ, where survival probability
and the mean occupation 〈n1ðtÞ〉 share more correlations. (b) ΣðtÞ (solid) and Σmf ðtÞ
(dashed) for different values of single-particle immigration α1 and fixed
α2 ¼ μ¼ 0; r=λ¼ 0:6, and ðpþqþνÞ=λ¼ 0:4. The difference is largest for smaller α1
where immigration is rate limiting, and the first arrival at the absorbing state k¼2
is more likely from particles that have replicated at k¼1. (c) Relative errors of
MFPTs Δ� ðT�Tmf Þ=T as a function of α1 for the combinations of r=λ; μ=λ indicated.
When rates of nonlinear processes (r in this case) are large, the error is large. In the
limit of vanishing r=λ, mean-field theory becomes exact and Δ vanishes.
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However, in the linear Moran-type process with ν¼ f , all particles
will eventually move forward.

In the small α1=f limit, the MFPT of the nonlinear proliferative
process scales as T � α1ð1�S1Þ

h i�1
. For μ¼ q¼ f , S1 ¼ L=ðLþ1Þ,

and T � ðLþ1Þ=α14Tmf , where Tmf is the exact mean-field result
for the MFPT of the linear Moran-like process, which can be found
from Eq. (22) or by using Eq. (25) in Eq. (12). When α1=f is large,
the number of statistically independent particles in the system is
large and the survival probability of the proliferative process will
approach a common mean-field limit (Eq. (25)). Thus, the relative
difference between the MFPTs of the linear spontaneous mutation
process and the mean-field-equivalent nonlinear process
diminishes at large injection rates α1 (and α2). Nonetheless, cells
in the proliferative process have a nonzero death rate and the
MFPT is bounded above by that of the linear process. Therefore, in
terms of reaching the absorbing state, we observe that the linear
irreversible Moran-type process is always faster.

Next, consider another proliferative process that might be
expected to yield similar FPTs as the linear Moran-like process. If
cells undergo only symmetric differentiation and death with rates
p¼ μ¼ f and q¼ r¼ ν¼ 0, a parent cell can die or beget two
differentiated daughters that each die at the same rate. Even
though the expected populations of this process and of the
irreversible Moran-type process (ν¼ f ) differ, the mean positions
of the lead particle are equal (conditioned on survival). Fig. 7
(a) shows the survival probabilities of the two processes for two
different values of immigration. For small immigration rates α1=f ,
the linear (mean-field) process reaches the absorbing state faster,
while for high immigration rates, the proliferative process is faster.
Fig. 7(b) plots the MFPT of the two processes as a function of
injection rate. For small α1=f , the exact MFPT Tmf of the linear
process can again be found from the first limit in Eq. (22), while
the MFPT of the nonlinear proliferative process scales as
T � α1ð1�S1Þ

h i�1
. In this case, the lineage associated with each

injected cell has a possibility of becoming extinct before fixation,
resulting in a MFPT diverging as 1=α1. For L¼10, S1 � 0:861 and
T � ð0:139α1Þ�14Tmf . When α1=f is large, ΣðtÞ for the nonlinear
proliferative process approaches the mean-field result in Eq. (25).
Moreover, the associated MFPT can be shown to be less than the
MFPT for the linear process. Thus, there is a cross-over at a
particular value of immigration below which the linear process
becomes evolutionarily faster than the proliferative process. For

large α1, immigration is sufficiently fast to allow overall prolifera-
tion to push lead particles to overtake those of the corresponding
linear Moran-type process, leading to a smaller MFPT.

Finally, we illustrate the effects of two types of deserts (or
bottlenecks) and two types of oases in an otherwise uniform
evolutionary chain. Bottlenecks or deserts at site Ln may arise from
an enhanced death rate μn, or from a suppression in νn, pn, and/or
qn. A local oasis can modeled by increased proliferation rates such
as rn or pn. For example, Fig. 3 depicts a sequential process with an
enhanced growth rate at site Ln. Fig. 8 plots the MFPT for a
bottleneck (a), and an oasis (b), at different positions along the
chain. For the parameters used, bottlenecks are most effective at
slowing down fixation when placed near the start the chain;
conversely, an oasis is most effective at speeding up fixation when
placed near the start of the chain.

Fig. 6. Comparison of two mean-field-equivalent processes ν¼ f and μ¼ q¼ f
along a chain of length L¼10. (a) The dashed curves are ΣðtÞ for the linear process
ν¼ f and μ¼ p¼ q¼ r ¼ 0, while the thick solid curves correspond to numerical
solutions of Eq. (17) for the nonlinear process μ¼ q¼ f and ν¼ p¼ r¼ 0. Due to the
independent decay processes, the MFPT of the nonlinear process is always greater
than that of the linear process. (b) MFPTs as functions of lnðα1=f Þ. Despite the
mean-field equivalence, mean-field approximations to the FPTs are qualitatively
inaccurate.

Fig. 7. Comparison of two processes with similar mean lead-particle positions.
(a) This dashed curves are ΣðtÞ (which is equivalent to Σmf ) for the linear process
ν¼ f and μ¼ p¼ q¼ r¼ 0, while the thick solid curves correspond to numerical
solutions of Eqs. (17) and (15) for the nonlinear process μ¼ q¼ f and ν¼ p¼ r ¼ 0.
Due to independent decay process, the MFPT of the nonlinear process is always
greater than that of the linear process. (b) The MFPTs as functions of lnðα1=f Þ for
these two processes also dramatically differ, but a cross-over occurs.

Fig. 8. Spatial dependence of bottlenecks and oases. (a) Dependence of the MFPT
on the position of a bottleneck. In an otherwise uniform chain with q¼ μ¼ f ,
ν¼ p¼ r ¼ 0, cells at site Ln die with increased rates μLn � μn ¼ 5f (red circles) and
μn ¼ 10f (blue squares). Alternatively, this bottleneck site may have a diminished
asymmetric division rate qLn � qn ¼ 0:05f (black triangles). (b) The dependence of
the MFPT on the position of an oasis at a site with no death (μLn ¼ 0), enhanced
growth rates rLn � rn ¼ 2f ;5f , and corresponding immigration rates α1 ¼ f and
α1 ¼ 10f , respectively. In the rest of the chain, there are no proliferative processes
ðp¼ q¼ r¼ 0Þ and cells both spontaneously mutate and die with rate ν¼ μ¼ f . (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

T. Chou, Y. Wang / Journal of Theoretical Biology 372 (2015) 65–73 71



The linear dependence on bottleneck position shown in Fig. 8
(a) can be understood by viewing this scenario as a FPT problem in
the second segment of the chain LnoℓrLþ1. Related sequential
segmentation methods have also been used to self-consistently
compute steady-state transport fluxes across excluding 1D lattices
(Kolomeisky, 1998; Chou and Lakatos, 2004). Here, the bottleneck
reduces the effective immigration rate into the second segment. If
the bottleneck is sufficiently strong (as are the cases shown in
Fig. 8(a)), immigration into the second segment is rate-limiting
and since ν¼ 0, we expect the MFPT to scale as 1=ðL�Lnþ1Þ.

The effect of an oasis site in the presence of an otherwise
uniform process involving death and spontaneous mutation is to
decrease the MFPT, as shown in Fig. 8(b). If the rates at site Ln are
such that rn4μnþνn, there can be unlimited growth and the rate
of immigration into site Lnþ1 will exponentially increase time.
Thus, an oasis near the beginning of the evolutionary chain will
strongly drive immigration into the remaining segment and be
more effective at reducing the MFPT to fixation compared to one
that is hard to get to near the end of the chain.

An oasis with a positive net growth rate leads to an unbounded
population at long times. However, our approach does not allow
for interactions and constraints such as carrying capacity. None-
theless, if the first arrival times to Lþ1 are much smaller than the
time it takes for any site to reach carrying capacity
(K{exp ðrn�μnÞT� �

), our unlimited growth model still provides a
reasonable approximation to the FPT.

In the opposite limit of small carrying capacity
(K{exp ðrn�μnÞT� �

) another approximation to the MFPT can be
obtained. We can model an oasis by assuming that in an otherwise
homogeneous chain along which p¼ q¼ r¼ 0, site Ln carries a
growth process with a carrying capacity K and rn-rnð1�nLn=KÞ.
We also assume that μn ¼ 0 and that rn is greater than all other
rates in the model. Therefore, once the first particle arrives at site
Ln, its population quickly rises to a level � K . These cells then feed
into site Lnþ1 through mutational processes described by ν; p; or
q. By considering two linear processes joined by an oasis at site Ln,
the MFPT to state Lþ1 can be approximated as the mean time to
reach Ln plus the time to reach state Lþ1 given an effective
immigration rate Kν into site Lnþ1. Not only does the MFPT
depend on the spatial structure of the inhomogeneity, but in many
cases, there will be an optimal placement of an oasis which most
effectively reduces the overall MFPT. Such an optimal placement
can be explicitly seen by considering Eq. (22) in the small
immigration limit:

TðL; LnÞ � TðLn�1ÞþTðL�LnÞ

� 1
Ωλ

þ 1
Ωnλ

þL
λ
; ð29Þ

whereΩ� ðα1=λÞðν=λÞL
n �1 andΩn � ðKν=λÞðν=λÞL�Ln . This approx-

imation clearly shows a position-dependent MFPT provided
ν=λo1 (μ40). The position Lnmin which yields the smallest MFPT
in the ΩLn;ΩnðL�LnÞ{1 limit can be approximated by solving
∂TðL; LnÞ=∂Ln ¼ 0:

Lnmin �
ln

α1

Kν

	 

2 ln

λ
ν

� �þLþ1
2

; ð30Þ

which shows that when Kν� α1, the oasis lowers the MFPT the
most when placed near the midpoint of the chain. Eq. (30)
provides good estimates of the optimal oasis position Lnmin and
its dependences on rates.

In Fig. 9(a) we use Eqs. (15) and (12) to compute the MFPT of a
two-segment chain. For the segment before the oasis, we use
TðLn�1Þ ¼ R1

0 Σðt;α1 ¼ f ;μ¼ ν¼ f ; Ln�1Þ dt, while for the second
segment, TðL�LnÞ ¼ R1

0 Σðt;α1 � Kν;μ¼ ν¼ f ; L�LnÞ dt.

Evaluating the total MFPT TðLn�1ÞþTðL�LnÞ clearly shows that
the most effective positioning of an oasis is such that the segment
with rate-limiting immigration is shortest. Since changes in μ only
affect Lnmin logarithmically, small changes in the death rate do not
affect the optimal oasis position. However, when μ increases, as
shown in Fig. 9(b), the MFPTs across each segment increase
exponentially with its length, increasing the sensitivity of the
overall MFPT to Ln.

4. Discussion and conclusions

We have formulated an efficient way to analyze FPTs on a
network containing multiple, mutating, and proliferating particles.
Our model allows one to naturally study stochastic evolutionary
processes and explicitly include cell fate decisions, fluctuations in
total number, and immigration. An analogous generating function
approach to multistage mutation of populations has been studied
(Sherman and Portier, 1996; Portier et al., 2000). Here, a number of
asymptotic limits are explored and comparisons with mean-field
calculations of survival probabilities performed. Kinetic Monte
Carlo simulations were also performed and checked against our
results. Our main findings illustrate the importance of specific
cellular transitions and how mean-field assumptions can be
misleading when used to compute first arrival times. Therefore,
in evolutionary networks on which cells can stochastically parti-
cipate in a number of proliferative processes, care must be taken in
calculating fixation times. Even though expected particle numbers
of a noninteracting particle system can typically be found exactly
using mean-field approximations, our results explicitly show how
survival probabilities and first passage time statistics cannot be
treated using simple mean-field approximations if particles can
proliferate. These discrepancies are prominent in conditions of low
populations, as encountered in stochastic tunneling.

Furthermore, we find in this work that proliferative processes,
including symmetric and asymmetric cell differentiation, render
FPTs dependent on the order of the transition rates along a
sequential evolutionary chain. A related model of first passage
times with immigration into a simple two-path network where
each node presents environments with different fitness (Hermsen
and Hwa, 2010). For a linear network, in many scenarios, we find
that bottlenecks are most evolutionary chain, while an unlimited
oasis reduces the MFPT most effectively at the beginning of the
chain. If the growth rate of an oasis site is faster than any other
time scale, the mean times to the terminal state can be approxi-
mated by the mean time for the first cell to arrive at the oasis, plus

Fig. 9. MFPT in the presence of an oasis with large growth rate rn-1 but a finite
carrying capacity K. (a) ln fT for various carrying capacities K at fixed immigration
rate α1 ¼ 10f and spontaneous mutation and death rate ν¼ μ¼ f . (b) When
α1 ¼ Kν¼ 10f , both effective immigration rates are equal and the MFPT-minimizing
position Ln � L=2 (Eq. (30)).
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the time for the progeny of any cell arising from an oasis to arrive
at the terminal site. In the presence of regulating interactions that
generate e.g., a carrying capacity K, we find intermediate oasis
positions that optimally reduce the MFPT to the final Lþ1-state.
This optimal position is qualitatively determined by the ratio of
the effective immigration rates into each of the segments and
deviates from the halfway point by the log of the ratio of
immigration rates, with the shorter segment associated with the
smaller effective immigration rate.

Collectively, our results suggest that fixation times across a
number of biological systems may be sensitive to the precise
transitions allowed. Examples include stem cell differentiation
(Roshan et al., 2014) and mutation (McHale and Lander, 2014),
where each differentiation or mutational state is represented by
distinct nodes. Our approach is also particularly appropriate for
modeling progression and drug resistance in cancer. Since
mutated or precancerous cells may likely have only a small fitness
advantage (Beerenwinkel et al., 2007), the numbers of cells in
these states may be small, and the effects of proliferative non-
linearity may be important. In such cases, cell states that are drug
resistant will do the most harm when occurring at the beginning,
or in the interior of the mutational sequence, depending on,
respectively, whether a carrying capacity arises or not. We have
investigated only simple, irreversible transitions along a 1D
sequential chain. Extensions to more complex networks and
nonexponentially distributed processes (such as cell-cycle timing)
can be readily investigated by numerically solving Eqs. (9) and
(11). More complex distributions of different transition rates can
also be easily treated numerically.

Finally, note that depending on the specific network structure
and transitions, estimates for MFPTs can be achieved by segment-
ing the chain according to the most rate-limiting stages. However,
if waiting time distributions or transition rates vary slowly across
nodes in a large network, equations for the survival probability
Sk(t) (such as Eq. (17)) can be studied in the continuum “hydro-
dynamic” limit: SkðtÞ-Sðx; tÞ, x¼ k=L (Lakatos et al., 2006).
Although large system size expansions and continuum limits of a
discrete master equation are known to yield inaccurate first
passage times (Doering et al., 2005), continuum limits of Sk(t)
and analysis of the resulting PDEs may provide accurate estimates
of the discrete system.
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