
Journal of Statistical Physics (2025) 192:167
https://doi.org/10.1007/s10955-025-03530-w

Martingale Properties of Entropy Production and a
GeneralizedWork Theoremwith Decoupled Forward and
Backward Processes

Xiangting Li1 · Tom Chou1,2

Received: 4 April 2025 / Accepted: 6 October 2025 / Published online: 18 November 2025
© The Author(s) 2025

Abstract
By decoupling forward and backward stochastic trajectories, we construct a family of mar-
tingales and work theorems for both overdamped and underdamped Langevin dynamics. Our
results are made possible by an alternative derivation of work theorems that uses tools from
stochastic calculus instead of path-integration. We further strengthen the equality in work
theorems by evaluating expectations conditioned on an arbitrary initial state value. These
generalizations extend the applicability of work theorems and offer new interpretations of
entropy production in stochastic systems. Lastly, we discuss the violation of work theorems
in far-from-equilibrium systems.

1 Background and Introduction

A fundamental relationship in nonequilibrium physics is the Jarzynski equality [1–3] which
relates the free energy difference between two states of a system to the work required to
force the system from one state to the other. The work done during a nonequilibrium process
is described by the time-integral over λ̇t∂λH , where H = H(λt ) is a λ-dependent Hamil-
tonian and λt is a time-dependent control parameter as depicted in Fig. 1(a). The Jarzynski
equality states that starting the system from an equilibrium distribution, the expectation of
the exponential of the negative work performed on the system is equal to the exponential of
the negative free energy difference between the two states:

E
[
e−βW ] = e−β�F . (1)

Here, Wt = ∫ t
0 ∂λH(zs, λs)λ̇sds is the work performed, �F is the free energy difference,

and β = 1/(kBT ) is the inverse temperature.
Jarzynski also extended the equality to stochastic trajectories. His original result was

then found to be a consequence of a more general fluctuation theorem proposed by Crooks
[4]. In this work, Crooks considers the Markovian dynamics of a system that can be influ-
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enced through a time-dependent control parameter λt and that satisfies the microreversibility
condition P[x+t | λ+t ]

P[x̄−t | λ̄−t ]
= exp

( − βQ[x+t , λ+t ]
)
. (2)

Here,P[x(+t) | λ+t ] is the probability density of the forward trajectory x+t , given the control
parameter λ+t , and P[x̄−t | λ̄−t ] is the probability density of the time-reversed trajectory
x̄−t , given the time-reversed control parameter λ̄−t . Starting from Eq. (2), Crooks found

PF (W )

PR(−W )
= eβ(W−�F), (3)

where PF (W ) and PR(−W ) are the probabilities of observing work W in the forward and
reverse processes, respectively. This result generalizes the Jarzynski equality to a probabil-
ity density over work. As with the Jarzynski equality, derivation of the Crooks fluctuation
theorem seems to require an ensemble of states sampled from equilibrium at the start of the
process. However, from Jarzynski’s work, it was not entirely clear how the usual concepts
of heat, entropy, and free energy in thermodynamics can be defined in a general stochastic
system. In particular, for what kind of system can the microreversibility condition in Eq. (2)
be satisfied?

By introducing the concept of stochastic energetics, Sekimoto [5] developed a framework
connecting thermodynamics to overdamped Langevin dynamics with diffusion subject to the
fluctuation-dissipation relation. Specifically, the heat can be computed according to the first
law of thermodynamics as Q = �U − W , where �U is the change in internal energy.

Later, Seifert [6] showed that microreversibility holds in overdamped Langevin dynamics
obeying the fluctuation-dissipation relation. Most importantly, Seifert observed that Eq. (2)
and Eq. (3) do not require the system to start from equilibrium. Instead, they hold as long
as the initial distribution ρ0 is non-singular, i.e., can be written as an integrable function
on the phase space, excluding the Dirac delta distribution. To achieve this, he explicitly
introduced a trajectory-dependent, information-theoretic formulation of entropy production
for nonequilibrium thermodynamics, which was also used implicitly in [4] and discussed in
[7]. The trajectory-dependent entropy was defined as

S(xt , t) ≡ −kB ln ρ(xt , t), (4)

where ρ(xt , t) is the probability density in state coordinate x evaluated at the value xt of the
stochastic trajectory {xt : t ≥ 0} at time t . In Eq. (4), the probability density is implicitly
defined relative to the uniform density (i.e., the Lebesgue measure) in the phase space such
that the density is dimensionless and the logarithm of probability density is well-defined.
Seifert then considered overdamped Langevin dynamics under the influence of a Hamil-
tonian (potential) U (x, λ) and an external force f (x, λ), both subject to a time-dependent
control parameter λt . In the stochastic differential equation (SDE) formulation, the associated
dynamics obey

dxt = μ
[ − ∂xU (x, λt ) + f (xt , λt )

]
dt + √

2D dBt , (5)

whereμ is themobility, D is the diffusion coefficient, and Bt is aWiener process that generates
Brownian motion. Using the path integral formulation of overdamped Langevin dynamics
[8], Seifert validated Eq. (2) and Eq. (3) for initial distributions ρ0(x) where ln(ρ0(x)) is
well defined over the whole phase space. Eq. (1) was then generalized to the following form:

E
[
e−β(Wt−�Ft )

] = 1. (6)
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Fig. 1 Schematic of standard backward driving protocols and the associated probability densities. (a) The
forward driving protocol λt as a function of forward time t . (b) The backward driving protocol λ̃s is obtained
by counting time backwards from the terminal time t1. (c) Probability densities of the forward (ρ) and the
standard backward (ρ̃) processes described in previous work [9]. With an initial distribution ρ̃(x0, 0) = ρ(t1),
ρ̃(s) indexed by the backward time s evolves under the time-reversed driving protocol λ̃s

Here, and in the rest of the paper, E[Xt ] is the expectation of Xt over all trajectories starting
from a given initial distribution ρ0(x) up to time t . The subscript t indicates the process
sampled at time t . Wt is the cumulative work up to time t and �Ft = Ft − F0 is the free
energy difference between time t and time 0. Note that we have adapted previous notation [6]
to be consistent with the context and derivations in the rest of the paper. In the original paper
[6], the heat exchange between the system and the environment is understood in terms of
entropy change in the environment. Then, considering the total entropy change in the system
and the environment, we have �Stot = (W − �F)/T .

Subsequently, Sagawa and Ueda [10] introduced the concept of feedback control and
measurement into nonequilibrium thermodynamics, generalizing the Jarzynski equality to
account for systems where a feedback controller influences the dynamics. They further gen-
eralized Jarzynski’s equality starting from equilibrium to

E
[
e−β(Wt−�Ft )−It

] = 1, (7)

where It is the (trajectorywise version of) mutual information between the actual sys-
tem state x and the measurement outcome y, defined to be It = I

(
xt , yt , t

) =
− ln

[
(ρ

(
xt , yt , t

)
/(ρ(xt , t)ρ(yt , t))

]
. This is the first result that explicitly connects the

Jarzynski equality to information theory.
More recently,martingale properties of entropy production in stochastic systems have been

explored by Neri [11] and Manzano et al. [9], who extended the Jarzynski equality from a
fixed time t to a stopping time τ ≤ t . Through the use of path probability densities from a path
integral formulation of an overdamped process, they derived the followingmartingale identity
that is associated with expectations of entropy production evaluated over all trajectories of
duration τ after the initial time at which the distribution is ρ0:

E
[
e−β(Wτ −�Fτ )−δτ

] = 1, (8)

where the stochastic distinguishability δτ is defined as

δτ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ln

[
ρeq(xτ , λτ )

ρ̃(xτ , t − τ)

]
(Neri [11])

ln

[
ρ(xτ , τ )

ρ̃(xτ , t − τ)

]
(Manzano [9]).

(9)

Here, ρeq(xτ , λτ ) refers to the equilibrium probability density of the system at xτ with
parameter λτ , ρ(xτ , τ ) is the probability density of the system at x , evaluated at xτ at time
τ , and ρ̃ is the time-reversed probability density under a time-reversed driving protocol as
shown in Fig. 1(b,c). In the setting of Neri [11], the initial condition is set to equilibrium,
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rendering his results equivalent to Jarzynski’s equality at random times. On the other hand,
Manzano et al. works with entropy defined from nonequilibrium distributions, which has
been further generalized by Yang and Ge [12] to decoupled auxiliary processes.

Nearly all previous results have been developed using a path integral formulation [8]
for overdamped Langevin dynamics or quantum systems [9, 13]. While the path integral
formulation is a convenient tool in many areas of physics, gaps in its mathematical rigor may
preclude certain desirable directions of analysis. For example, the path integral integrates
over the space of continuously differentiable functions but solutions to stochastic differential
equations (SDEs) are nowhere differentiable. There have been several efforts to formulate
the path integral in a mathematically rigorous way [14–16]; however, these approaches were
primarily focused on quantum path integrals and typically assigned a different interpretation
of the probability density in the path integral. A mathematically satisfying formulation of the
path integral for classical stochastic systems can arise through Girsanov’s theorem, and was
treated previously in [17]. Even though Girsanov’s theorem is a powerful tool in the theory
of stochastic calculus, dealing with the path integral with both forward and backward paths
is challenging in terms of precise interpretation of the probability density in the forward
and backward paths. Moreover, derivations using path integrals rely on microreversibility,
precluding treatment of far-from-equilibrium systemswheremicroreversibility does not hold.

On the other hand, solving the corresponding Fokker-Planck equation to find the trajecto-
rywise entropy S(xt , t) at sufficient numerical precision requires significant computational
resources. This is especially challenging for high-dimensional systems or systems with com-
plex potentials. While biological systems can often be described as Maxwell’s demons that
convert information into work [18, 19], the aforementioned computational demands limit
application of the generalized work theorem to biological systems. Thus, experimental ver-
ification of the Jarzynski equality has been restricted to relatively simple artificial systems
[20–22].

In this paper, we side-step path integration by providing an alternative mathematical proof
of the martingale property of entropy production. While our method mirrors that described
in a recent treatise on martingale methods for physicists [23], we further show that this
proof reveals a generalization to the work theorem, extending it to a family of equations that
hold for the same stochastic process but using different choices for the backward process.
Our proof also strengthens the equality in Eq. (8) by explicitly evaluating the conditional
expectation of the same exponential given the initial value x0 for any initial distribution
ρ0. In particular, the initial condition can be singular, such as the Dirac delta distribution.
Thus, it is not necessary to average over all trajectories sampled from the initial distribution
ρ(x0, 0).Moreover, our new “forward-backward-decoupled”work theorem can be developed
using underdamped dynamics described by position x and velocity v. Our generalized work
theorem can be applied to high-dimensional out-of-equilibrium systems or systems with
complex potentials with lower computational costs. Specifically, while the initial condition
of the forward process can be arbitrary, we can set the backward process to be the flux
associated with a nonequilibrium steady state. In this way, the only computations needed are
solving for a stationary distribution and forward simulations. The need for solving a PDE in
time is no longer required.

2 Analysis and Results

We formally derive and describe a number of results below.
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2.1 Mathematical Approach

We provide the mathematical intuition behind our approach. Consider a stochastic process
x that evolves according to a stochastic differential equation (SDE) of the form dxt =
btdt + σt · dB. If bt ≡ 0, the process xt is purely driven by diffusion and has no drift bias
in any direction. Once some regularity conditions are satisfied, the mean of the process xt is
the same as that of the initial condition, i.e., E[xt ] = E[x0].

We formalize the intuition developed above by introducing the concept of an exponential
martingale. Consider a predictable process θt adapted to the filtration of a standard Wiener
process Bt . The exponential martingale (Mt )t≥0 associated with ϕ(xt ) is defined by:

Mt ≡ exp
( ∫ t

0
ϕ(xs) · dBs − 1

2

∫ t

0
‖ϕ(xs)‖2 ds

)
, (10)

where
∫ t
0 ϕ(xs) · dBs denotes the stochastic integral with respect to the Wiener process that

drives xt and s is the integrated-over dummy time variable. The term 1
2

∫ t
0 ‖ϕ(xs)‖2 ds is the

compensating drift term, ensuring that Mt has zero mean drift.
To guarantee that

[
Mt

]
t≥0 is indeed a true martingale, a sufficient condition is provided

by the well-known Novikov Condition, which states that if

E

[
exp

( 1

2

∫ t

0
‖ϕ(xs)‖2 ds

)]
< ∞ ∀ t > 0, (11)

holds then the process Mt defined in (10) is a true martingale. Throughout this paper, we
will use Itô calculus rules for stochastic integrals. Here, the terms “predictable process” and
“filtration” are mathematical definitions necessary for the Itô integral to be defined. In the
usual context of stochastic thermodynamics, they can be thought of as being automatically
satisfied when the processes of interest are functions of some “fundamental” processes (e.g.,
coordinates of the particle) at current time points. For example, the potential H(xt , t) of xt
at time t is predictable with respect to the natural filtration of xt or the underlying Brow-
nian motion Bt . Interested readers can refer to [24] for a comprehensive and pedagogical
formulation of stochastic calculus.

2.2 Overdamped Dynamics

Consider overdamped Langevin dynamics defined by

γ dxt = −∇H(xt , t) dt + f (xt , t) dt +
√

2γ

β
dBt . (12)

Here, x is the state of the system, H(x, t) is the Hamiltonian, f (x, t) is the external force,
and γ is the friction coefficient. The time dependence of H(x, t) and f (x, t) can include that
of the control parameter λt in the original formulation.

The corresponding Fokker-Planck equation is given by

∂tρ(x, t) = 1

γ
∇ · [(∇H(x, t) − f (x, t)

)
ρ(x, t)

] + 1

βγ
�ρ(x, t), (13)

where ρ(x, t) is the probability density of the system at time t , and ∇ and � are the gradient
and Laplacian operators, respectively, with respect to the state variable x .
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Along a given trajectory xs≤t , the work performed on the system up to time t is given by
[7]

Wt =
∫ t

0
f (xs, s) ◦ dxs +

∫ t

0
∂t H(xs, s) ds,

=
∫ t

0
f (xs, s) dxs + 1

γβ

∫ t

0
∇ · f (xs, s) ds +

∫ t

0
∂t H(xs, s) ds,

(14)

where ◦ denotes the Stratonovich integral. The entropy S(xt ) specific to the trajectory xt is
given by Eq. (4).
Our backward process. While the identity in Eq. (6) suggests that exp

[−β(W −�F)
]
is a

martingale, it is actually not if F = H−T S. In the following, wewill define a general version
of entropy, 
(xt , t) = −kB lnψ(xt , t), and show that exp[−β(Wt − �Ft )] is a martingale
when 
 replaces S. Here ψ(x, t) solves a backward Fokker-Planck equation, which can
be interpreted as a probability distribution for a generalized backward process, as detailed
below.

Consider a time-reversed driving protocol described by λ̃s depicted in Fig. 1(b). In our
analysis we will implicitly define forces, Hamiltonians, and densities under the reversed
protocol by reversing the timedirection of theFokker-Planck equation by switching the sign of
the time-derivative term and do not need to explicitly invoke λ̃s . Specifically, the Hamiltonian
and external force are replaced by their time-reversed forms, H̃(x, s) := H(x, t1 − s) and
f̃ (x, t) := f (x, t1 − s) [9]. Here, s = t1 − t represents how far back in time the current
time is compared to the terminal time t1. A new “time-reversed” probability density ρ̃(x, s)
with initial condition ρ̃(x, 0) = ρ(x, t1), depicted in Fig. 1(c), evolves according to the
“backward” Fokker-Planck equation

∂t ρ̃ = 1

γ
∇ · [(∇ H̃(x, t) − f̃ (x, t)

)
ρ̃
] + 1

βγ
�ρ̃. (15)

When the potential H(x, t) and the force f (x, t) are time-asymmetric, i.e., H(x, t) �=
H̃(x, t) and f (x, t) �= f̃ (x, t), the time-reversed process for ρ̃(x, t) is different from the
original process for ρ(x, t) in the sense that ρ̃(x, t) �= ρ(x, t1 − t) for t ∈ (0, t1). Note that
the Fokker-Planck equation is also known as the Kolmogorov forward equation, but here, the
backward Fokker-Planck equation differs from the Kolmogorov backward equation which is
simply the adjoint of the Kolmogorov forward equation [25].

We define our backward process by its probability density ψ(x, t) which obeys a specific
type of backward Fokker-Planck equation

− ∂tψ(x, t) = 1

γ
∇ ·

[(∇H(x, t) − f (x, t)
)
ψ(x, t)

]
+ 1

βγ
�ψ(x, t). (16)

Eq. (16) differs from the Fokker-Planck equation (13) by an extra minus sign in front of the
time derivative. It is straightforward to verify that ψ(x, t) = ρ̃(x, t1 − t) and that ψ(x, t) is
associated with the time-reversed probability ρ̃ used in [9].

In the setting of Crooks’ fluctuation theorem [4], a specific terminal time t1 was a priori
chosen, andψ(x, t) := ρ̃(x, t1− t) solves Eq. (16) with initial conditionψ(x, t1) = ρ(x, t1).
The specific time-reversed probability density ρ̃(x, s) is used inEq. (9) to define the stochastic
distinguishability δ.ψ(x, t1 − s) = ρ̃(x, s)maps the time-reversed probability density at the
backward time s to the time-reversed probability density at the forward time t = t1 − s, as
illustrated in Figs. 1(c).

To derive the generalized work theorem, ψ(x, t) need only satisfy Eq. (16) regardless
of initial condition. Consequently, choosing different initial conditions results in different
martingales and corresponding identities. Our generalization of the work theorem is based
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Fig. 2 Decoupling of the forward and backward processes. (a) In our derivations, we employ the probability
density ψ(x, t) of a backward process indexed by forward time t . The initial condition is arbitrary so that in
general ψ(x, t1) �= ρ(x, t1). (b) Trajectories of the forward processes xt sampled from the initial distribution
ρ(x0, 0) are shown in grey, while trajectories with a specific initial value x0 are shown in red. The original
work theorem uses averages over the grey trajectories, while our generalized work theorem considers averages
over the red trajectories. See Eqs. (24) and (27)

on the observation that the backward process ψ(x, t) can be defined with an arbitrary initial
condition, not necessarily ρ(x, t1), as shown in Fig. 2(a). Broadly speaking, our approach
does not require specifying a terminal time t1.

Analogous to the entropy S(xt ) defined in Eq. (4), we define the “entropy” of the backward
process along the trajectory xt as


(xt , t) = −kB lnψ(xt , t). (17)

Aswith the trajectorywise entropy,
(xt , t) implicitly requires a reference probability density
ψ(x0, 0). Throughout this work, we use At to denote the trajectory-specific value of A(x, t)
evaluated at x = xt , e.g., 
t ≡ 
(xt , t).
Martingale and generalized work theorem. We now consider the quantity defined by

θt = −βWt + β
(
�H(xt , t) − T�
(xt , t)

)
. (18)

This process represents the nondimensionalized “entropy production” along the trajectory xt
when the entropy S is replaced by that of the backward process 
. Upon using Itô’s formula
to expand terms, the time derivative of θt is given by

dθt = −β f · dxt − 1

γ
∇ · f dt − β∂t H dt + β∇H · dxt + β

2
�H

[
dxt

]2 + β∂t H dt

+ dψ

ψ
− [dψ]2

2ψ2

= β(∇H − f ) · dxt + 1

γ
(�H − ∇ · f ) dt + dψ

ψ
− [dψ]2

2ψ2 .

(19)

Our goal is to express dθt in terms of dBt and dt . To achieve this, we need to evaluate dψ
as dψ(xt , t). Using the chain rule and Eq. (16), we find

dψ = ∂tψ dt + ∇ψ · dxt + 1

2
�ψ [dxt ]2

= − 1

γ
∇ · [

(∇H − f )ψ
]
dt − 1

βγ
�ψ dt + ∇ψ · dxt + 1

2
�ψ[dxt ]2

= −ψ

γ
(�H − ∇ · f ) dt − 1

γ

[
(∇H − f ) · ∇ψ

]
dt + ∇ψ · dxt

(20)
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Consequently, dψ
ψ

and 1
2ψ2 [dψ]2 are given by

1

ψ
dψ = − 1

γ
(�H − ∇ · f ) dt − 1

γ

[
(∇H − f ) · ∇ lnψ

]
dt + ∇ lnψ · dxt

1

2ψ2 [dψ]2 = 1

γβ

‖∇ψ‖2
ψ2 dt .

(21)

Substituting Eqs. (21) into Eq. (19), we find

dθt = − 1

γ
(∇ lnψ) · (∇H − f ) dt − 1

γβ

∥
∥∇ lnψ

∥
∥2 dt + (

β∇H − β f + ∇ lnψ
) · dxt

= − 1

γβ

∥
∥β(∇H − f ) + ∇ lnψ

∥
∥2 dt +

√
2

γβ

[
β(∇H − f ) + ∇ lnψ

]
· dBt .

(22)
The exponential of θt can now be expressed as

deθt = eθt
[
dθt + 1

2
(dθt )

2
]

= eθt

√
2

γβ

[
β(∇H − f ) + ∇ lnψ

]
· dBt .

(23)

Thus, as long as the Novikov condition holds, the process eθt is a martingale with initial value
one.

By the optional stopping theorem for martingales, we have

E

[
e−β(Wτ −�Hτ +T�
τ )

∣∣∣ x0
]

= E
[
eθτ | x0

] = eθ0 = 1, a.s., ∀ bounded stopping time τ.

(24)
Eq. (24) is the main result of this paper; note that Eq. (24) is stronger than E

[
eθτ

] = 1 since
Eq. (24) is an average over trajectories starting from an arbitrary initial value x0, independent
of the initial distribution ρ0(x), while the latter is an average over all trajectories starting from
the initial distribution ρ0(x), shown by the red and grey trajectories in Fig. 2(b), respectively.
Pigolotti et al. [26] first studied a special case, the nonequilibrium stationary system, of
Eq. (23) and then Neri et al. proposed the stationary version of Eq. (24) in [27].

Yang and Ge [12] generalized the fluctuation relation using the path integral method by
introducing another stochastic process yt mutually absolutely continuous with the process of
interest xt and a third process zt driven by the time-reversed protocol of yt with an arbitrary
initial condition. The logarithm of the ratio of the forward path probability under x to the
backward path probability under z plays a similar role to the free energy change �F . When
this functional is compensated by a proper log probability ratio between distributions of z0
and z′t1−t (where t1 is a chosen fixed time point) and exponentiated, a martingale is formally
constructed. Here, z′t is another process derived in the sameway as zt but may have a different
initial condition.

In terms of overdamped dynamics, our result coincides with that in [12], if we restrict our
generalized backward process to the same fixed finite interval [0, t1] and restrict zt and z′t
to be identically distributed as our generalized backward process ψt1−t . However, there are
two important differences. First, while [12] enjoys more degrees of freedom in choosing the
auxiliary processes zt , their construction still requires a fixed time interval to be chosen in
advance, as this interval is intrinsic to the definition of their functional and compensation. By
contrast, our construction does not rely on this fixed time interval and can be extended to the
whole time axis. Second, the path integral or path probability method employed in prior work
formally only requires that xt and yt to be mutually absolutely continuous. This is satisfied
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automatically if yt is chosen to be xt or effectively zt is chosen to be the generalized backward
process, as in our case. Our Itô calculus approach requires an additional regularity condition
to be satisfied in order for the local martingale to be a martingale. In other words, predictions
made by the path integral methods may fail for some unforeseeable singular cases.
Manzano’s result. We now show that Eq. (24) is a generalization of Eq. (8). The key obser-
vation is that in the definition of the backward processψ(x, t), we have the freedom to choose
the initial condition. For different choices of the initial condition, we will arrive at different
forms of the martingale. Specifically, in the setting of [9], the backward process is chosen by
fixing a final time t1, and choosing the “initial condition” of the backward process to be

ψ(x, t1) = ρ(x, t1), ∀x . (25)

Then, ψ(x, t) evolves backward in time according to Eq. (16).
Consider a stopping time τ such that 0 ≤ τ ≤ t1 almost surely. Note that −βT�
(τ) =

lnψ(xτ , τ ) − lnψ(x0, 0) = ln ρ̃(xτ , t1 − τ) − ln ρ̃(x0, t1), while −βT�S = ln ρ(xτ , τ ) −
ln ρ(x0, 0). Recalling the definition of δτ in Eq. (9), we find

E

[
e−β

[
Wτ −�Fτ

]
−δτ

]
= E

[
eθτ

ρ̃(x0, t1)

ρ(x0, 0)

]
=

∫
ρ̃(x0, t1)E

[
eθt | x0

]
dx0 = 1, (26)

which is Eq. (8). Here, the second equality follows from conditioning on x0 and the last
equality follows from Eq. (24). Additionally, by conditioning on x0, we have

E

[
e−β

[
Wτ −�Fτ

]
−δτ

∣∣∣ x0
]

= E

[
eθt

ρ̃(x0, t1)

ρ(x0, 0)

∣∣∣∣ x0

]
= ρ̃(x0, t1)

ρ(x0, 0)
, ∀x0. (27)

Eq. (27) is stronger than Eq. (8) since Eq. (8) only holds for all trajectories sampled according
to the initial distributionρ0(x), while our result holds for trajectories starting froman arbitrary
initial value x0, independent of the initial distribution ρ0(x), as shown in Fig. 2(b).

This result is particularly helpful when one wants to consider the work theorem for a
system where the initial distribution cannot be written as a density function over the state
space, such as the Dirac delta distribution. In such cases, the trajectorywise entropy at the
initial time S(0) = −kB ln ρ(x0, 0) is not well-defined. Our result provides a way to bypass
this issue by decoupling the initial sample x0 from its initial distribution ρ0. Energy changes
and external work can be evaluated by the conditional work theorem Eq. (27) for trajectories
starting at x0 with an arbitrarily chosen well-behaved initial distribution ρ0.
Stationary Hamiltonian. There are other interesting choices for the backward process. For
example, in the case of time-independent potentials and forces, we can choose ψ(x, 0) =
ρss(x), the stationary distribution of Eq. (13). In this case, ψ(x, t) ≡ ψ(x, 0) = ρss(x) and

E

[
e−β

(
Wτ −�Hτ +T�Sss(τ )

)]
= 1, ∀ bounded stopping time τ, (28)

where Sss(t) := −kB ln ρss(xt ) and the initial distribution ρ0(x) of x0 can be different from
ρss(x).

The stationary case is of interest when f is a dissipative force. Such a system can be
used to model nonequilibrium stochastic chemical reactions commonly found in biological
systems, including kinetic proofreading [28, 29] and chemotaxis [30]. While evaluating
Eq. (8) requires solution to the d+1-dimensional time-dependent PDE for ρ(x, t), computing
Eq. (28) requires only the solution to the d-dimensional time-independent PDE for ρss(x),
leading to an easier computational evaluation. A similar identitywas derived in [23] assuming
that the initial distribution ρ0(x) is the stationary (backward) distribution ρss(x). Our result
relaxes this assumption and shows that the identity holds for any initial distribution ρ0(x).

123



167 Page 10 of 22 X. Li, T. Chou

Fluctuation-dissipation relation. In our formulation of the Langevin dynamics in Eq. (12),
we related the diffusion coefficient D = 1/(βγ ) to the friction coefficient γ as required by
the fluctuation-dissipation theorem. Specifically, a general overdamped process is governed
by

dxt = 1

γ

[ − ∇H(xt , t) + f (xt , t)
]
dt + √

2D dBt . (29)

Eq. (12) is obtained from Eq. (29) by setting D = 1/(βγ ).
Starting from Eq. (29), using the backward process ψ(x, t) associated with the time-

reversed Fokker-Planck equation (29)

− ∂tψ(x, t) = 1

γ
∇ ·

[(∇H(x, t) − f (x, t)
)
ψ(x, t)

]
+ D�ψ(x, t), (30)

and defining 
t , θt through Eqs. (17) and (18), we find (see Appendix A.1 for a detailed
derivation)

deθt = eθt

[(
D − 1

βγ

)(
β2

∥
∥∇H − f

∥
∥2 + 2β

(∇H − f
) · ∇ lnψ + β

(
�H − ∇ · f

))
dt

+ √
2D

(
β
(∇H − f

) + ∇ lnψ
)

· dBt

]
.

(31)
When the assumption D = 1/(βγ ) is violated, deθt carries a non-zero drift and is no longer
a martingale, unless f = ∇H cancelling out the energy gradient everywhere.

2.3 Generalization to underdamped Langevin dynamics

Our method of introducing a backward process is general and can be applied to underdamped
Langevin dynamics that obey

dxt = vt dt

mdvt = [ − γ vt + (−∇xU + f )
]
dt +

√
2γ

β
dBt ,

(32)

where m is an effective mass and γ represents a velocity decay rate, or the decay rate of the
velocity-velocity correlation function under fluctuation-dissipation conditions.

The main differences in the analysis between the underdamped and overdamped cases are
in the definition of the Hamiltonian

H(x, v, t) = 1

2
m‖v‖2 +U (x, t), (33)

and the evaluation of the work performed

Wt =
∫ t

0
f (xs, s) dxs +

∫ t

0
∂tU (xs, s) ds. (34)

Here, because xs is now a continuously differentiable function of s, the Stratonovich integral
with respect to xs is equivalent to the normal Lebesgue-Stieltjes integral. The evolution of
the probability density ρ(x, v, t) is then given by

∂tρ(x, v, t) = −v · ∇xρ − 1

m
∇v ·

[( − γ v − ∇xU + f
)
ρ
]

+ γ

βm2 �vρ. (35)

where we use ∇x and ∇v to denote the gradient with respect to x and v, respectively, and �v

to represent the Laplacian with respect to v. Correspondingly, we define a backward process
ψ(x, v, t) by
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− ∂tψ(x, v, t) = v · ∇xψ − 1

m
∇v ·

[( − γ v + ∇xU − f
)
ψ

]
+ γ

βm2 �vψ. (36)

Eq. (36) is obtained by applying the transformations v → −v, ∇v → −∇v and ∂t → −∂t
to the forward Kramers equation (35). ψ(x, v, t) represents a probability density in the
sense that ρ̃(x, v, t) := ψ(−x, v,−t) is the probability density of the Langevin dynamics
under an inverted and time-reversed potential and force Ũ (x, t) = U (−x,−t) and f̃ (x, t) =
− f (−x,−t). Specifically, we do not impose constraints on the initial condition ofψ(x, v, 0).

The backward process ψ(x, v, t) or ρ̃(−x, v,−t) is a generalization of the previous
“time-reversed” processes discussed in [9] for underdamped Langevin dynamics. To make
the connection clearer, we can choose a specific final time t1 and shift the time argument to
t1 − t in the backward process, i.e., ρ̃(x, v, t) = ψ(−x, v, t1 − t). If we let ρ̃(x, v, 0) =
ψ(−x, v, t1), ρ̃ evolves forward in time under the space- and time-reversed potential Ũ
and force f̃ associated with the time-reversed driving protocol, analogous to that shown in
Fig. 1(b).

Ignoring their dependence on vt , the evolution of distributions for forward and backward
processes is analogous to that of the overdamped case depicted in Fig. 2(a). Note that we
also impose space inversion which is different from the standard backward process in which
only the time and velocity are reversed. In the latter case of velocity inversion, the term
γ (∇v · v)/m carries the opposite sign, rendering the exponential of the “entropy” production
(defined below) no longer a martingale. Moreover, in our generalization of the work theorem,
we do not impose constraints on the initial or final condition ofψ(x, v, t). An arbitrary choice
of the initial condition enables decoupling of the forward and backward processes.

Extending the quantities in Eqs. (17) and (18), we define the entropy production along
trajectories (xt , vt ) as θt = −βWt + βH(xt , vt , t) + lnψ(xt , vt , t). Chain-rule-expanding
all terms, we find

dθt =βv · (∇x H − f )dt + β∇vH · dvt + γ

m2 �vHdt + v · ∇x lnψ dt

+ ∇v lnψ · dvt + γ

βm2

�vψ

ψ
dt + ∂tψ

ψ
dt − γ

βm2

∥∥∇v lnψ
∥∥2dt .

(37)

If U and f are independent of v, substituting ∂tψ from Eq. (36) into Eq. (37), we find

dθt =βv · (∇xU − f )dt + β∇vH · dvt + nγ

m
dt

+ ∇v lnψ · dvt − nγ

m
dt + 1

m
(∇xU − f ) · ∇v lnψ dt − γ

βm2

∥∥∇v lnψ
∥∥2 dt

(38)

Here, n is the physical dimension of vt , the first nγ /m term results from γ�vH
m2 = γ�v‖v‖2

2m ,
and the second nγ /m term derives from the γ (∇v · v)/m term on the RHS of Eq. (36). After
cancelling terms and using Eq. (32) to express dvt in terms of dt and dBt , we find

dθt = −γβ‖v‖2 dt + √
2γβ v · dBt − γ

m
v · ∇v lnψ dt +

√
2γ

βm2 ∇v lnψ dBt − γ

βm2

∥
∥∇v lnψ

∥
∥2 dt

= − 1

2

∥
∥∥
√
2γβv +

√
2γ

βm2 ∇v lnψ

∥
∥∥
2
dt +

[√
2γβv +

√
2γ

βm2 ∇v lnψ
]

· dBt . (39)

In the last equality, we rearrange the terms to show that dθt = at · dBt − 1
2‖at‖2 dt for

some process at (in this case, at ≡ √
2γβvt +

√
2γ

βm2 ∇v lnψt ). As with Eq. (40), this form

immediately implies that exp(θt ) is an exponential martingale:
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deθt = eθt
[
dθt + 1

2

(
dθt

)2]

= eθt
[
at · dBt − 1

2
‖at‖2dt + 1

2
‖at‖2dt

]

= eθt at · dBt .

(40)

Consequently, provided that the Novikov condition holds, we find the martingale property

E

[
e−β(Wt−�Ht+T�
t )

]
= 1. (41)

Extension of Eq. (41) to a bounded stopping time τ follows immediately from the optional
stopping theorem for martingales.
Manzano’s result for underdamped Langevin dynamics. In order to obtain the classical
work theorem, we choose a specific time t1, and setψ(x, v, t1) = ρ(x, v, t1). It can be shown
thatψ(−x, v, t1−t) follows a canonical Fokker-Planck equation; thus

∫
ψ(x, v, t)dxdv = 1.

Similarly, one can derive

E

[
e−β(Wτ −�Fτ )−δτ

]
= 1, ∀ bounded stopping time τ ≤ t1, (42)

where δτ ≡ ln ρ(xτ , vτ , τ ) − lnψ(xτ , vτ , τ ) when ψ is chosen such that ψ(x, v, t1) =
ρ(x, v, t1).
Deterministic limits. Our derivation also carries through in the deterministic limits of zero-
friction (γ → 0) and zero-temperature (T → 0). In the zero-friction limit, the noise term in
Eq. (32) vanishes and the acceleration follows deterministic Hamiltonian dynamics without
friction. We can directly compute the dimensionless entropy production of the system: σt ≡
β(Ht − Wt − T St ) = β(Ht − Wt ) + ln ρ(xt , vt , t). According to Liouville’s theorem,
d
dt ρ(xt , vt , t) = 0 in the deterministic limit. Thus,

dσt = βd(Ht − Wt )

= γ

m

(
n − β‖v‖2)dt + √

2γβ v · dBt ,
(43)

and in the γ → 0 limit, we have σt = σ0, almost surely. In other words, when the entropy is
evaluated by the information entropy of the probability density, there is no entropy production
in the deterministic limit even for a non-autonomous non-conservative Hamiltonian system.

In the zero-temperature limit (β → +∞), there is no contribution from the entropy term
to the free energy difference and we have

d(Ht − Wt ) = − γ

m
‖v‖2dt,

which shows that energy is dissipated into the environment at rate γ ‖v‖2/m.
Fluctuation-dissipation relation – underdamped limit. Similar to the overdamped case,
we can explicitly compute deθt in cases where the fluctuation-dissipation relation is not
assumed. The general underdamped Langevin equation is given by

dxt = vt dt,

m dvt =
[

− γ vt − ∇xU (xt , t) + f (xt , t)
]
dt + γ

√
2D dBt ,

(44)

and the corresponding backward equation for ψ is given by

− ∂tψ(x, v, t) = v · ∇xψ + γ 2D

m2 �vψ − 1

m
∇v ·

[( − γ v + ∇xU − f
)
ψ

]
. (45)
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Following the same procedure as in Eqs. (32)–(40) and detailed in Appendix A.2, we can
find

deθt = eθt

[(
D − 1

βγ

)
γ 2β

m

(
βm‖v‖2 + 2vt · ∇v lnψt + n

)
dt

+ γ
√
2D

(
β v + 1

m
∇v lnψ

)
· dBt

]
.

(46)

When D �= 1/(βγ ), the drift term is typically nonzero as the factor βm‖v‖2 depends
on the current velocity v of the particle. In general, E

[
βm‖v‖2 + 2vt · ∇v lnψt + n

]

measures the deviation of velocity distribution from the Maxwell-Boltzmann distribu-
tion where v ∝ exp(−βm

2 ‖v‖2). When v follows the Maxwell-Boltzmann distribution,
E

[
βm‖v‖2 + 2vt · ∇v lnψt + n

] = 0.

3 Numerical examples

Drift-diffusion process with a singular initial distribution. We first provide a simple but
useful numerical example on which to apply our work theorem. In this case, the initial
distribution of the system is a delta distribution, making the trajectorywise entropy S(x0, 0)
undefined at t = 0 since ln δ(x) is undefined. The classical work theorem is invalid in this
case. Our example is inspired by the continuous-time version of the kinetic proofreading
(KPR) mechanism [28]. The KPR mechanism is a nonequilibrium process typically invoked
in DNA replication or cell signaling that amplifies differences in the unbinding rates of
different ligands in order to increase the specificity of ligand recognition. The original kinetic
proofreading mechanism relies on multiple discrete activation steps on the ligand-receptor
complex. In our previous work [29], we generalized the discrete activation process to a
continuum process in the limit of large number of activation steps. In this continuum limit,
can the work theorem provide a fundamental bound on the energy-information trade-off?
Answering this question can provide additional geometric insight into the speed-energy-
accuracy trade-off in nonequilibrium systems [31].

A simple schematic of a continuum kinetic proofreading process is shown in Fig. 3(a).
Let (x, α) ∈ R × {0, 1} be the state of the receptor. x represents the level of activation or
“reaction coordinate” and α = 1 indicates the presence of ligand. Without ligand (α = 0),
the Hamiltonian H(x) is minimized at x = 0. With bound ligand (α = 1), an external force
f arises such that −∂x H(x) + f > 0. Ligand-receptor binding and unbinding are assumed
independent of the activation level x and follow exponential waiting time distributions, τ+ ∼
Exp(k+) and τ− ∼ Exp(k−), respectively. The complex is considered activated if x > x∗
for some threshold x∗. During the activation process (α = 1), the activation probability
P(x > x∗) is roughly exponentially dependent on the unbinding rate k−, thus enabling
highly selective ligand recognition. The deactivation process (α = 0) can be considered
as erasure of memory (i.e., the activation level is reset to x = 0). Previous application of
the work theorem leads to the Landauer principle, which suggests that erasing one bit of
information requires kBT ln 2 work.

As a proof of concept, we further simplify the dynamics of the continuum proofreading
process to a drift-diffusion process, as shown in Fig. 3(b). In the drift-diffusion process, we
combine the Hamiltonian and force into a constant total force f so that Eq. (12) can be
simplified to

γ dxt = f dt +
√

2γ

β
dBt . (47)
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Fig. 3 (a) Schematic representation of the continuumkinetic proofreading process. The receptor state is defined
by the activation level x and the ligand-binding status α ∈ {0, 1}. When the ligand is absent (α = 0), the
system relaxes to the stable state at x = 0. Ligand binding (α = 1) introduces an external force f that biases
the activation dynamics, enabling transitions to higher activation levels. Binding and unbinding events follow
exponential waiting time distributions, τ+ ∼ Exp(k+) and τ− ∼ Exp(k−), respectively. Activation occurs
when x > x∗, with the probability of activation depending exponentially on the unbinding rate k−, facilitating
high selectivity in ligand recognition. Ligand unbinding (α = 0) resets the activation level to x = 0, analogous
to erasing memory as constrained by Landauer’s principle. (b) A simplified drift-diffusion representation of
the process with bound ligand (α = 1). The dynamics reduce to an overdamped Langevin equation under a

constant force f . Starting from x0 = 0, the system evolves according to γ dxt = f dt +
√

2γ
β
dBt . The work

performed by the force is given by W = f �xτ , where �xτ is the displacement over time τ . This model
captures the fundamental principles of energy expenditure and memory erasure in ligand-receptor systems

Given an initial position (state) x0 = 0, the solution to Eq. (47) is

xt = f

γ
t +

√
2γ

β
Bt . (48)

The backward process ψ(x, t) given by Eq. (16) now becomes

− ∂tψ = − f

γ
∂xψ + 1

βγ
∂2xψ. (49)

Using an initial δ-function distribution at x = 0, we can construct a family of solutions to
Eq. (49) by time-reversing the solution of the corresponding Fokker-Planck equation using
different terminal times t2. Specifically,

p(x, t) =
√

βγ

4π t
exp

[
−

βγ
(
x − x0 − f

γ t
)2

4t

]
,

ψ(x, t | t2) = p(x, t2 − t), for t < t2.

(50)

In general, ψ(x, t | t2) solves Eq. (49) up to time t2.
Now, consider the exponentially distributed stopping time τ− ∼ Exp(k−) for the unbind-

ing process. In order to apply the optional sampling theorem, we bound the stopping time
by the desired terminal time t1: τ = min{τ−, t1}. For concreteness, we choose f = 0.5,
γ = 1, and k− = 1 and numerically evaluate the expectations of normalized “entropy”
production θτ , “entropy” change �
τ , and eθτ at the stopping time τ for different choices
of ψ(x, t | t2 ≥ t1). The results are plotted in Fig. 4 and are consistent with predictions of
our work theorem; the red curve in Fig. 4 shows that E[eθτ ] = 1 for all choices of t2 ≥ t1.
By contrast, E[θτ ] (blue curve) and E[�
τ ] (green curve) vary with t2. It is noteworthy that
this numerical example does not admit a classical work theorem counterpart, as the initial
distribution of x0 is not a density function and its trajectorywise entropy is not well-defined.
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Fig. 4 The quantities E[eθτ ] (red squares), E[θτ ] (blue circles), and E[�
τ ] (green triangles) for different
choices of t2 ≥ t1 = 1, constructed from simulated trajectories obeying Eq. (47), with γ = 1, f = 0.5,
and β = 1. The red line is coincident with unity, consistent with our work theorem. By contrast, E[θτ ] and
E[�
τ ] varywith t2, as indicated by the blue circles and green triangles alongwith the interpolating segments,
respectively. We used a rate k− = 1 to define the exponentially distributed time τ . 105 sample trajectories are
used to evaluate the expectations for each t2

This calculation is helpful for understanding how the “entropy” 
 changes with time
for different choices of the backward process ψ(x, t | t2). In order to better understand the
energy-information trade-off in the continuum proofreading mechanism, we need to relate
the backward-process associated entropy 
(x, τ | t2) to the actual entropy −kB ln ρ(xτ ) at
the stopping time τ . We leave this as future work.
Violation of the fluctuation-dissipation relation in the Ornstein-Uhlenbeck process. We
now consider the Ornstein-Uhlenbeck (OU) process defined by

dxt = − k

γ
xtdt + √

2D dBt , (51)

which is Eq. (29) withU (x) = k
2 x

2 and f (x) = 0. We choose a Gaussian initial distribution

ρ(x, 0) = 1√
2πσ

e− x2

2σ2 with variance σ 2 such that the classical work theorem can be applied

to this scenario.
The probability density ρ(x, t) of the OU process is explicitly given by

ρ(x, t) = 1√
2π σ(t)

e
− x2

2σ2(t) , σ 2(t) = σ 2e−kt/γ + Dγ

k

(
1 − e−kt/γ )

. (52)

To demonstrate the general applicability of our forward-backward-decoupled work theorem,
we choose ψ(x, t) to be the stationary distribution of the OU process:

ψ(x, t) =
√

k

2πDγ
e− kx2

2Dγ . (53)

We again conduct numerical simulations of Eq. (51) with γ = 1, k = 0.5, and varying
diffusion coefficient D up to a fixed time t1 = 2. For each D, we simulate 107 trajectories to
ensure convergence of the expectation. We evaluate both the classical exponentiated entropy
production E

[
eβ(Wt−�Ft )

]
and the generalized exponentiated entropy production E

[
eθt

]
at

time t1. Note that the exact expressions of ρ(x, t) and ψ(x, t) are used to compute the
entropies in the two cases, respectively.

As is shown in Fig. 5, when D = 1/(βγ ) = 1, both E
[
eβ(Wt−�Ft )

]
and E

[
eθt

]
are

equal to unity, consistent with the classical and generalized work theorems, respectively. As
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Fig. 5 The exponentiated entropy production E

[
eβ(Wt−�Ft )

]
(blue circles) and E

[
eθt

]
(red squares)

constructed from simulations of the OU process (Eq. 51) using different diffusion coefficients D. When
D = 1/(βγ ) = 1, both quantities are equal to unity. The stochastic simulations were performed using β = 1,
γ = 1, k = 0.5, and σ 2 = 10 with a terminal time t1 = 2. To ensure convergence, we used 107 trajectories

Table 1 Summary of variants of work theorems. Here, the fluctuation-dissipation relations is denoted FDR
and “terminal time?” indicates whether a terminal time needs to be specified and whether a backward process
has to be defined accordingly. The “identity?” column indicates whether averaging over trajectories up to a
fixed time can lead to a Jarzynski identity. “Stopping time?” indicates whether there is a stopping-time form
of the generalized Jarzynski identity, averaging over trajectories of different time durations

variant initial cond. FDR? terminal time? identity? stopping time?

Jarzynski (Eq. 1) Equilibrium only Yes Yes Yes No

Seifert (Eq. 6) Non-singular Yes Yes Yes No

Sagawa and Ueda (Eq. 7) Equilibrium only Yes Yes Yes No

Manzano, Neri (Eqs. 8-9) Non-singular Yes Yes Yes Yes

Generalized (Eq. 24) Any Yes No Yes Yes

Non-FDR (App. A) – No No No No

D deviates from 1/(βγ ) = 1, E
[
eβ(Wt−�Ft )

]
and E

[
eθt

]
can be either greater or less than

unity, indicating a violation of the work theorem when the fluctuation-dissipation relation is
not satisfied.

4 Discussion and Conclusions

Work theorems are fundamental because they characterize of entropy production in stochas-
tic systems and generalize the second law of thermodynamics to nonequilibrium systems.
In this work, we have shown that the work theorem can be further generalized to a broader
class of stochastic systems by introducing a specific backward process that is essentially a
time-reversed diffusion process with time-reversed Hamiltonian and force. However, unlike
the path-integral formulation of Crooks’ theorem, the backward process does not necessarily
share a common distribution with the original “forward” process at any given time t . Specif-
ically, when the Hamiltonian and force are time-independent, we provide a new equality that
relates the work and energy change of the system to the stationary entropy at steady state. A
comparison of different work theorem variants is provided in Table 1.
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A key insight of our work is that forward and backward processes can be decoupled
as shown in Fig. 2(a). The generalized work theorem also decouples the initial sample x0
from the initial distribution ρ(x, 0), as shown in Fig. 2(b). Specifically, we have shown that
E

[
eθτ | x0

] = 1 for any bounded stopping time τ and any initial sample x0 in Eq. (24). The
usual formulation of the work theorem involves an expectation or integral over the initial
distribution ρ(x, 0), i.e.,

∫
E

[
eβ(Wt−�Ft ) | x0

]
ρ(x0, 0) dx0 = 1. Our analysis provides a

stronger result: the work theorem holds for any initial sample x0 regardless of the initial
distribution. It also suggests new directions of investigation such as the physical interpretation
of the backward process with different “initial” conditions. It is clear that when the backward
process can be interpreted as a time-reversed process (with proper reflection in the case
of underdamped dynamics), its probability distribution coincides with that of the forward
process at a specific time.However, themartingale property andEq. (24) do allow for different
choices of the initial condition of the backward process. The simple stationary form of the
generalizedwork theoremgiven inEq. (28) is also of particular interest. Since the entropy term
is time-independent, we do not need to compute the time evolution of ρ(x, t), allowing easier
analytical or numerical application of the generalized work theorem to complex systems.

We have also extended our methods to underdamped Langevin dynamics which is of
particular interest in view of its natural connection to the deterministic Hamiltonian dynamics
in the limit of vanishing friction. While the underdamped Langevin dynamics is widely
anticipated to follow the same work theorem as the overdamped Langevin dynamics, our
work provides a formal proof of this.

Nonequilibrium thermodynamics laws that are applicable to both underdamped and over-
damped Langevin dynamics have been of recent interest [32, 33]. When measured by the
information entropy of the probability density, the entropy production vanishes in the deter-
ministic limit, even for a non-autonomous non-conservative Hamiltonian system. This result
is expected but highlights the importance of understanding the definition of entropy inmacro-
scopic systems, which may require coarse-graining measurement of the phase space [34].
On the other hand, because of the introduction of velocity in the underdamped dynamics,
it is possible to separate the internal “temperature” of the system (defined by the kinetic
energy of the system) from the external temperature (of the heat bath) [32]. Consequences
of this separation are yet to be explored. Coupled thermal machines operating at different
temperatures [19] is also another promising direction in which to extend work theorems.

Our Itô calculus-based derivation enables us to analyze the work theorem in cases where
the fluctuation-dissipation relation is not satisfied. Our theoretical and numerical results
emphasize that the work theorems require careful adaptation for nonequilibrium systems.
This highlights how violation of the fluctuation-dissipation relation, common in active matter
and biological systems, generates intrinsic entropy production that cannot be reconciled with
equilibrium-based theorems.

Different choices of the backward process may shed light on important nonequilibrium
processes. For example, from the original work theorem, one can derive the Landauer princi-
ple by setting �H = 0, which states that the work required to erase one bit of information is
kBT ln 2; this has been experimentally verified and extended to include the effects of erasure
speed [32, 35]. Faster erasure requires more total work. The original work theorem only
provides the original bound of the Landauer principle. It would be worthwhile to investi-
gate whether the generalized work theorem can incorporate the effects of erasure speed and
provide a more accurate bound for the work required to erase information.

Lastly, from both theoretical and applied perspectives, one inconvenient aspect of the
work theorem is that it requires working in unbounded spaces and the Novikov condition to
hold. Additionally, experimentalmeasurementmay introduce discretization of the continuum
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distribution of states. Systems such as stochastic chemical reactions and other biological
processes are more realistically described by bounded and/or discrete spaces. This has been
numerically explored by Manzano et al. [9] using a simple two-state model. However, the
theoretical understanding of the work theorem in general discrete spaces such as chemical
reaction networks [36] remains relatively unexplored.Doing so could require using additional
mathematical tools such as the cycle representation theory ofMarkov chains [37] and invoking
insights such as the generalized Legendre-Frenchel transform and response theory for the
steady state of nonequilibrium Markov chains [38, 38, 39].

Data Availability There were no data generated or analyzed in this study. The script for data generation and
plotting is available at github.com/hsianktin/Jarzynski.
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A Mathematical Appendix

A.1 Overdamped Langevin dynamics with D �= 1/(ˇ�)

In the main text, the derivation of dθt and the martingale property of exp(θt ) relies on the
specific choice of the diffusion coefficient D = 1/(βγ ). Here, we present a more general
derivation that avoids this assumption. Instead, we consider the stochastic dynamics

dxt = 1

γ

[ − ∇H(xt , t) + f (xt , t)
]
dt + √

2D dBt , (A1)

where D is a general diffusion coefficient that is no longer tied to the fluctuation-dissipation
relation D = 1/(βγ ).
Setup We define the backward process by its probability density ψ(x, t) that satisfies

− ∂tψ(x, t) = 1

γ
∇ ·

[(∇H(x, t) − f (x, t)
)
ψ(x, t)

]
+ D�ψ(x, t). (A2)

We also recall the definitions:

Wt =
∫ t

0
f (xs, s) ◦ dxs +

∫ t

0
∂t H(xs, s) ds,

and

(xt , t) = −kB lnψ(xt , t).

and consider Eq. 18
θt = −β

(
Wt + H(xt , t) − T
(xt , t)

)
(A3)

but with ψ(xt , t) in the definition of 
(xt , t) determined by Eq. (A2) in which D is thus far
arbitrary.
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Derivation of dθt First, we compute dH(xt , t) using Itô’s lemma:

dH = ∂t H dt + ∇H · dxt + 1

2
�H(dxt )

2. (A4)

Since (dxt )2 = 2D dt , we find

dH = ∂t H dt + ∇H · dxt + D�H dt . (A5)

Then, from the definition of Wt , we have

dWt = f (xt , t) ◦ dxt + ∂t H(xt , t) dt . (A6)

Converting this Stratonovich integral to an Itô integral, we find

f (xt , t) ◦ dxt = f (xt , t) · dxt + D∇ · f (xt , t) dt (A7)

and
dWt = f · dxt + ∂t H dt + D(∇ · f ) dt . (A8)

Finally, we decompose d
 as

d
 = −kB d lnψ(xt , t) = −kB

(
dψ

ψ
− 1

2

[dψ
ψ

]2)
. (A9)

Upon using Eqs. (A5), (A8), and (A9) in Eq. (A3), we find

dθt = −βdWt + βdH − βd


= −β
(
f · dxt + ∂t H dt + D∇ · f dt

) + β
(
∂t H dt + ∇H · dxt + D�H dt

) + dψ

ψ
− [dψ]2

2ψ2 .

(A10)

We now decompose the dψ/ψ and (dψ/ψ)2 by applying Itô’s lemma to ψ ,

dψ = ∂tψ dt + ∇ψ · dxt + 1

2
�ψ(dxt )

2, (A11)

using Eq. (A2) to eliminate ∂tψ , and substituting (dxt )2 = 2D dt , to find

dψ = − 1

γ
∇ · [

(∇H − f )ψ
]
dt + ∇ψ · dxt . (A12)

Using this to construct dψ/ψ and (dψ/ψ)2, we find

dψ

ψ
= − 1

γ
(�H − ∇ · f ) dt − 1

γ
(∇H − f ) · ∇ lnψ dt + ∇ lnψ · dxt

[dψ]2
2ψ2 = (∇ψ · dxt )2

2ψ2 = D‖∇ lnψ‖2 dt .
(A13)

Substitution of Eqs. (A13) into Eq. (A10) leads to

at =
[(

βD − 1
γ

)(
�H − ∇ · f

) − 1

γ
(∇H − f ) · ∇ lnψ − D

∥∥∇ lnψ
∥∥2

]
dt

+ (
β(∇H − f ) + ∇ lnψ

) · dxt
(A14)
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Since the forward SDE is dxt = − 1
γ
(∇H− f ) dt+√

2D dBt we can replace dxt in Eq. (A14)
to find

dθt =
(
D − 1

βγ

)(
β
(
�H − ∇ · f

) − ∥
∥∇ lnψ

∥
∥2

)
dt − 1

βγ

∥
∥β(∇H − f ) + ∇ lnψ

∥
∥2dt

+ √
2D

(
β(∇H − f ) + ∇ lnψ

)
· dBt .

(A15)
When D = 1/(βγ ), the last term in Eq. (A15) vanishes, rendering it equivalent to Eq. (22).
In general,

deθt = eθt

[(
D − 1

βγ

)(
β2

∥
∥∇H − f

∥
∥2 + 2β(∇H − f ) · ∇ lnψ + β(�H − ∇ · f )

)
dt

+ √
2D

(
β(∇H − f ) + ∇ lnψ

) · dBt

]
,

(A16)
from which it is apparent that deθt is subject to non-zero drift and eθt is not a martingale in
general.

A.2 Underdamped Langevin dynamics with D �= 1/(ˇ�)

We now outline how dynamics that deviate from the fluctuation-dissipation relation modify
the work theorem. Consider an n-dimensional underdamped Langevin system described by

dxt = vt dt,

m dvt =
[

− γ vt − ∇xU (xt , t) + f (xt , t)
]
dt + γ

√
2D dBt ,

(A17)

where xt , vt ∈ R
n , m, γ and D are constants, and Bt is a standard diagonal, n-dimensional

Brownian motion. Let the backward process ψ(x, v, t) be defined by the PDE

− ∂tψ(x, v, t) = v · ∇xψ + γ 2D

m2 �vψ − 1

m
∇v · [

(−γ v + ∇xU − f ) ψ
]
. (A18)

Other quantities are defined in the same way as in the main text.
To compute deθt , first apply Itô’s formula to dHt to obtain

dHt =
[

− γ ‖v‖2 + v · f + ∂tU + γ 2D n

m

]
dt + γ

√
2D v · dBt . (A19)

From the definition of work and dx = vdt , we have

dWt =
[
f (xt , t) · vt + ∂tU (xt , t)

]
dt . (A20)

Similarly, applying Itô’s formula to dψ , inserting the PDE for ψ to eliminate ∂tψ , and
assuming that f and U are v-independent, we obtain

d lnψ =
[
− 2γ

m
v · ∇v lnψ − γ n

m
− γ 2D

m2

∥∥∇v lnψ
∥∥2

]
dt + γ

√
2D

m
∇v lnψ · dBt . (A21)

Given the above results, we now derive the differential of θt = β(�Ht − Wt ) + � lnψt :

dθt =
[
−βγ ‖v‖2 + β

γ 2D n

m
− 2γ

m
v · ∇v lnψ − γ n

m
− γ 2D

m2

∥∥∇v lnψ
∥∥2

]
dt

+γ
√
2D

[
β v + 1

m
∇v lnψ

]
· dBt . (A22)
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After expanding and collecting terms, deθt becomes

deθt = eθt

[(
D − 1

βγ

)
γ 2β

m

(
βm‖v‖2 + 2vt · ∇v lnψt + n

)
dt

+ γ
√
2D

(
β v + 1

m
∇v lnψ

)
· dBt

]
.

(A23)

Notice that D = 1/(βγ ) is a sufficient condition for the drift term to vanish and our gener-
alized work theorem to hold. The term βm‖v‖2 + 2v · ∇v lnψ + n can be a measure of the
violation of the the equipartition theorem.

If the system is in equilibrium such that ψ(v) ∝ e− βm
2 ‖v‖2 and the equipartition theorem

holds (E[βm‖v‖2] = n), then on average

E
[
βm‖v‖2 + 2v · ∇v lnψ + n

] = n − 2n + n = 0. (A24)

In this case, the generalized work theorem holds for underdamped Langevin dynamics even

when D �= 1/(βγ ) provided ψ(v, t) ∝ e− βm
2 ‖v‖2 for all t .

References

1. Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690–2693
(1997)

2. Jarzynski, C.: Equilibrium free-energy differences from nonequilibrium measurements: A master-
equation approach. Phys. Rev. E 56(5), 5018–5035 (1997)

3. Sevick, E.M., Prabhakar, R., Williams, Stephen R., Searles, Debra J.: Fluctuation theorems. Annual
Review of Physical Chemistry 59(1), 603–633 (2008)

4. Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free
energy differences. Phys. Rev. E 60(3), 2721–2726 (1999)

5. Sekimoto, K.: Langevin equation and thermodynamics. Prog. Theor. Phys. Suppl. 130, 17–27 (1998)
6. Seifert, U.: Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys.

Rev. Lett. 95(4), 040602 (2005)
7. Qian, H.: Mesoscopic nonequilibrium thermodynamics of single macromolecules and dynamic entropy-

energy compensation. Phys. Rev. E 65(1), 016102 (2001)
8. Kurchan, J.: Fluctuation theorem for stochastic dynamics. J. Phys. A: Math. Gen. 31(16), 3719–3729

(1998)
9. Manzano, G., Subero, D., Maillet, O., Fazio, R., Pekola, J.P., Roldán, É.: Thermodynamics of gambling

demons. Phys. Rev. Lett. 126(8), 080603 (2021)
10. Sagawa, T., Ueda, M.: Generalized Jarzynski equality under nonequilibrium feedback control. Phys. Rev.

Lett. 104(9), 090602 (2010)
11. Neri, I.: Second law of thermodynamics at stopping times. Phys. Rev. Lett. 124(4), 040601 (2020)
12. Yang, H., Ge, H.: Fluctuation theorems and thermodynamic inequalities for nonequilibrium processes

stopped at stochastic times. Phys. Rev. E. 108(5), (2023)
13. Hernández-Gómez, S., Poggiali, F., Cappellaro, P., Cataliotti, F. S., Trombettoni, A., Fabbri, N., Gher-

ardini, S.: Energy exchange statistics and fluctuation theorem for non-thermal asymptotic states. arXiv,
quant-ph:2404.05310v1, (2024)

14. Albeverio, S.: Wiener and Feynman-path integrals and their applications. In: Proceedings of Symposia in
Applied Mathematics, volume 52, pages 163–194. American Mathematical Society, (1997)

15. Mazzucchi, S.: Mathematical Feynman path integrals and their applications. World Scientific (2009)
16. Albeverio, S.: Mathematical aspects of Feynman path integrals, divergences, quantum fields and dia-

grams, and some more general reflections. In: When Form Becomes Substance: Power of Gestures,
Diagrammatical Intuition and Phenomenology of Space, pages 267–282. Springer, (2022)

17. Dutta, A., Sarkar, S.: Fluctuation theorem as a special case of Girsanov theorem, (2023)
18. Brown, A.I., Sivak, D.A.: Theory of nonequilibrium free energy transduction by molecular machines.

Chem. Rev. 120(1), 434–459 (2019)
19. Leighton, M.P., Ehrich, J., Sivak, D.A.: Information arbitrage in bipartite heat engines. Phys. Rev. X

14(4), 041038 (2024)

123



167 Page 22 of 22 X. Li, T. Chou

20. Toyabe, S., Sagawa, T., Ueda, M., Muneyuki, E., Sano, M.: Experimental demonstration of information-
to-energy conversion and validation of the generalized Jarzynski equality. Nat. Phys. 6(12), 988–992
(2010)

21. An, S., Zhang, J.-N., Um,M., Lv, D., Yao, L., Zhang, J., Zhang-QiYin, H.T., Quan, Kim,K.: Experimental
test of the quantum Jarzynski equality with a trapped-ion system. Nat. Phys. 11(2), 193–199 (2014)

22. Paneru, G., Dutta, S., Sagawa, T., Tlusty, T., Pak, H.K.: Efficiency fluctuations and noise induced
refrigerator-to-heater transition in information engines. Nat. Commun. 11(1), 1012 (2020)

23. Roldán, É., Neri, I., Chetrite, R., Gupta, S., Pigolotti, S., Jülicher, F., Sekimoto, K.: Martingales for
physicists: a treatise on stochastic thermodynamics and beyond. Adv. Phys. 72(1–2), 1–258 (2023)

24. Karatzas, I., Shreve, S.: Brownian motion and stochastic calculus, vol. 113. Springer (2014)
25. Anderson, Brian D. O.: Reverse-time diffusion equation models. Stoch. Process. Their Appl. 12(3), 313–

326 (1982)
26. Pigolotti, S., Neri, I., Roldán, É., Jülicher, F.: Generic properties of stochastic entropy production. Phys.

Rev. Lett. 119(14), (2017)
27. Neri, I., Roldán, É., Pigolotti, S., Jülicher, F.: Integral fluctuation relations for entropy production at

stopping times. J. Stat. Mech: Theory Exp. 2019(10), 104006 (2019)
28. Hopfield, J.J.: Kinetic proofreading: A new mechanism for reducing errors in biosynthetic processes

requiring high specificity. Proc. Natl. Acad. Sci. 71(10), 4135–4139 (1974)
29. Li, X.., Chou, T..: Reliable ligand discrimination in stochastic multistep: kinetic proofreading: First

passage time vs. product counting strategies. PLoS Computational Biology 20(6), e1012183 (2024)
30. Hathcock, D., Qiwei, Yu., Mello, B.A., Amin, D.N., Hazelbauer, G.L., Yuhai, T.: A nonequilibrium

allosteric model for receptor-kinase complexes: The role of energy dissipation in chemotaxis signaling.
Proc. Natl. Acad. Sci. 120(42), e2303115120 (2023)

31. Klinger, J., Rotskoff, G. M.: Universal energy-speed-accuracy trade-offs in driven nonequilibrium sys-
tems. arXiv, cond-mat.stat-mech:2402.17931v2, (2024)

32. Dago, S.,Bellon,L.:Dynamics of information erasure and extension ofLandauer’s bound to fast processes.
Phys. Rev. Lett. 128(7), 070604 (2022)

33. Lyu, J., Ray, K.J., Crutchfield, J.P.: Learning entropy production from underdampedLangevin trajectories.
Phys. Rev. E 110(6), 064151 (2024)

34. Barkan, C.O.: On the convergence of phase space distributions to microcanonical equilibrium: dynamical
isometry and generalized coarse-graining. J. Phys. A: Math. Gen. 57(47), 475001 (2024)

35. Proesmans,K., Ehrich, J., Bechhoefer, J.: Finite-timeLandauer principle. Phys.Rev. Lett. 125(10), 100602
(2020)

36. Schmiedl, T., Seifert, U.: Stochastic thermodynamics of chemical reaction networks. J. Chem. Phys.
126(4), 044101 (2007)

37. Jiang, Y., Bingjie, W., Jia, C.: Large deviations and fluctuation theorems for cycle currents defined in the
loop-erased and spanning tree manners: A comparative study. Physical Review Research 5(1), 013207
(2023)

38. Yang, Y.-J., Dill, K. A.: Deriving the forces of nonequilibria from two laws. arXiv, cond-mat.stat-
mech:2410.09277v1, (2024)

39. Zheng, J., Lu, Z.: Universal non-equilibrium response theory beyond steady states. arXiv, cond-mat.stat-
mech:2403.10952v4, (2024)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Martingale Properties of Entropy Production and a Generalized Work Theorem with Decoupled Forward and Backward Processes
	Abstract
	1 Background and Introduction
	2 Analysis and Results
	2.1 Mathematical Approach
	2.2 Overdamped Dynamics
	2.3 Generalization to underdamped Langevin dynamics

	3 Numerical examples

	4 Discussion and Conclusions
	A Mathematical Appendix
	A.1 Overdamped Langevin dynamics with D neq1/(βγ)
	A.2 Underdamped Langevin dynamics with D neq1/(βγ)

	References




