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ABSTRACT
We construct and analyze monomeric and multimeric models of the stochastic disassembly of a single nucleosome. Our monomeric model
predicts the time needed for a number of histone–DNA contacts to spontaneously break, leading to dissociation of a non-fragmented
histone from DNA. The dissociation process can be facilitated by DNA binding proteins or processing molecular motors that compete
with histones for histone–DNA contact sites. Eigenvalue analysis of the corresponding master equation allows us to evaluate histone
detachment times under both spontaneous detachment and protein-facilitated processes. We find that competitive DNA binding of remod-
eling proteins can significantly reduce the typical detachment time but only if these remodelers have DNA-binding affinities comparable
to those of histone–DNA contact sites. In the presence of processive motors, the histone detachment rate is shown to be proportional
to the product of the histone single-bond dissociation constant and the speed of motor protein procession. Our simple intact-histone
model is then extended to allow for multimeric nucleosome kinetics that reveal additional pathways of disassembly. In addition to a
dependence of complete disassembly times on subunit–DNA contact energies, we show how histone subunit concentrations in bulk solu-
tions can mediate the disassembly process by rescuing partially disassembled nucleosomes. Moreover, our kinetic model predicts that
remodeler binding can also bias certain pathways of nucleosome disassembly, with higher remodeler binding rates favoring intact-histone
detachment.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0165136

I. INTRODUCTION

In eukaryotic cells, 147 base pairs of DNA wrap around each
histone octamer. DNA binds to the histone octamer at ∼14 sites
to form a nucleosome core particle. Nucleosomes, in turn, help
compact meters of DNA inside the nucleus,1,2 protecting DNA
from other proteins and unwanted enzymatic activity.3,4 On occa-
sion, however, nucleosomes have to partially or completely release
the substrate DNA to allow access by DNA-processing enzymes.
Histones thus have to simultaneously perform two contradictory
functions.3 While there is consensus that histone modification and
chromatin remodeling are critical in epigenetic regulation,5 the
details of how nucleosomes dynamically perform different tasks are
not yet fully understood.6 Therefore, it is essential to first under-
stand the molecular mechanics and dynamics of histone–DNA
interactions.

DNA at both nucleosome ends is transiently accessible due to
spontaneous bond breaking. This nucleosome “breathing” has been

identified using single-molecular biophysics techniques.7–10 Based
on these observations, a Markov model of nucleosomes was pro-
posed and computationally explored to characterize the mechanical
response to external tensions,10–13 sequence dependence and posi-
tioning of nucleosomes,14,15 and salt dependence.16 Recently, similar
discrete stochastic binding and unbinding models have been used to
describe target search by pioneer transcription factors.17–20

In molecular dynamics studies, coarse-grained models and
even all-atom molecular models of nucleosome unraveling have
also been discussed recently, characterizing the free energy land-
scapes of nucleosomes and capturing the finer details during the
process of unwrapping.21–24 Despite these mechanistic studies and
modeling efforts, quantification of histone unwrapping using the
above approaches is computationally expensive. In particular, these
simulation approaches make it difficult to study the following:

(i) rare but decisive events, such as complete spontaneous
unwrapping, and
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(ii) indirect interactions with other DNA binding proteins via
transient nucleosome breathing.

Thus, simple analytic descriptions of the dynamics of
histone–DNA and nucleosome–protein interactions can provide a
useful tool for estimating and efficiently testing molecular hypothe-
ses of nucleosome-mediated chromatin remodeling. In this paper,
we develop discrete stochastic Markov models that relate dif-
ferent elements of histone–DNA interactions to overall rates of
nucleosome disassembly.

In Sec. II, we formulate two classes of models, one in which
histones remain as an intact single molecule and another in which
they are composed of three major subunits that can successively
dissociate from DNA. The first abstraction describes DNA as lin-
early unspooling from a contiguous footprint defined by the histone
particle and extends earlier work.11,25 The state-space structure of
this simple model is then nested to describe the state space of
more molecularly realistic models of histone fragmentation. Finally,
catalysis of nucleosome disassembly can be mediated by remodel-
ing factors, such as transcription factors.26,27 We will also model
such cofactor-facilitated histone removal by incorporating com-
petitive DNA–protein binding within each of these two classes
(intact-histone and fragmenting histone) of models.

Our primary goal is to provide a quantitative characterization
of the first passage time (FPT) from an initial configuration to a
totally dissociated state. We aim to provide a closed form expres-
sion or numerical procedure for evaluating these timescales under
specific biophysical conditions.

II. MATHEMATICAL MODELS AND RESULTS
The approach we will take for all of our following models is to

analyze a discrete state Markov model describing the time-evolution
of a probability vector P of molecular configurations, which obeys
∂tP = W̃P, where W̃ is a model-dependent transition matrix. The
state space and the transition matrix W̃ will be appropriately defined

for each type of model, including variants that incorporate protein-
catalyzed nucleosome disassembly. By analyzing the specific subsets
of the state space and the eigenvalues of the associated transi-
tion matrices W̃, we derive results that predict the distribution of
configurations and the statistics of disassembly times.

The complete state space in our models, Ω ∪Ω∗, consists of the
set of bound states Ω and the set of detached states Ω∗. In general,
the transition matrix coupling all states is W̃. However, since tran-
sitions into Ω∗ from Ω are typically irreversible in our analyses, we
define W̃ to operate only on states within Ω. Henceforth, we describe
the eigenvalues of W̃, {λ̃ j} j≥0, in descending order of their real
parts. The principle eigenvalue λ̃0 of W̃ will be that with the largest
real part. When transitions to Ω∗ are assumed to be irreversible,
W̃ defined on Ω represents a sub-matrix with all eigenvalues hav-
ing negative real parts. Using this nomenclature, the inverse of the
eigenvalues describes the timescales associated with the stochas-
tic dynamics of sets of configurations (described by eigenvectors)
within the state space. For example, −1/λ̃0 is the slowest timescale
of decay to Ω∗ in the stochastic dynamics.

Quantities such as W̃ carry a physical dimension of rate
(1/time). To make our mathematical analysis notationally simpler,
we will normalize W̃ by the fastest rate in the model to make it
dimensionless. In the rest of this paper, the dimensionless transition
matrix and its associated dimensionless eigenvalues are denoted as
W and λ0, respectively. Mathematical symbols and nomenclature for
quantities specific to each model are organized and summarized in
Tables I-III.

A. Linear peeling, simple histone model
Here, we first consider the stochastic dynamics of how a sin-

gle histone particle peels from the DNA wrapping it. This approach
is similar to that taken by Kim et al.,26 but we track simultaneous
peeling from both ends of the histone particle and assume uniform
binding and unbinding rates along the DNA substrate. Parameters
and variables used in this model are listed in Table I.

TABLE I. Parameters and variables used in linear peeling, intact-histone models. The distances between the inner-most bound contact and the inner-most remodeler-bound
sites on the left and right are defined as n1 and n2, respectively. The distances from the inner-most remodeler-bound sites to the left and right ends of the N-total length contact
segment are denoted as m1 and m2, respectively, as shown in Fig. 1. In all subsequent analyses, we will measure all energies in units of kBT . Since kon is the fastest rate in this
system, our models and analyses will typically be presented in a dimensionless form with rates measured in units of kon and dimensionless parameters ε ≡ koff/kon ≪ 1 and
s = kd/kon ≪ 1.

Parameter/variable Symbol Typical value

Total number of DNA–histone contact sites N 14
No. of open contacts right of the right-most protein-bound site on the left n1 ⋅ ⋅ ⋅
No. of open contacts left of the left-most protein-bound site on the right n2 ⋅ ⋅ ⋅
Position of right-most protein-bound contact on the left m1 ⋅ ⋅ ⋅
Position of left-most protein-bound contact on the right m2 ⋅ ⋅ ⋅
DNA–histone contact site attachment rate kon 20–90 s−1

DNA–histone contact site detachment rate koff ∼4 s−1

Detachment rate of the final contact site kd ∼ koff
Contact site binding free energy Ec = log(koff/kon) −2
Remodeler protein–DNA binding rate pa ⋅ ⋅ ⋅
Remodeler protein–DNA unbinding rate pd ⋅ ⋅ ⋅
Remodeler protein–DNA binding free energy Ep = log(pd/pa) ⋅ ⋅ ⋅
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TABLE II. Mathematical definitions and variables used throughout this paper and in the Appendices.

Object Symbol Examples

Matrices and vectors Bold letters W, P(t), x, n . . .
Scalars, components of matrices and vectors Normal letters W ij, P(n1, n2, t), xi, n1, n2
Eigenvalues and eigenvectors sorted by real parts in descending order λi, vi λ0, v0, λ1, v1, . . .
The state space for the undissociated histone Ω ⋅ ⋅ ⋅
A state in the state space x ⋅ ⋅ ⋅
The state of the dissociated histone Ω∗ ⋅ ⋅ ⋅
Vectors with all entries equal to a number Bold numbers 1,0
Fully histone–DNA bound state with all contact sites closed 1 1
Euclidean inner product of two vectors ⟨⋅, ⋅⟩ ⟨x, y⟩
Transpose of a vector or matrix ⋅⊺ x⊺, W⊺

Dimensionless first passage time (FPT) starting from x ∈ Ω to detached state Ω∗ T(x) T(1)
Estimates for a quantity Hat over the symbol λ̂0, Ê[T(1)]
Vectors with first row removed, or matrices with first row and column removed ⋅ v, W
Quantities relevant to remodeler-facilitated models Subscript “p” λ̂0,p, Ep

Quantities relevant to multimeric histone models Subscript “q” Eq, λ̂0,q, λ̂0,p,q

1. Spontaneous histone–DNA detachment
Histone–DNA interactions typically consist of N ≈ 14 possible

contact sites. Each contact site on the DNA lattice may be in a bound
(1) or unbound (0) configuration. If all contact sites are unbound
at a specific time, the histone can be considered to be completely
dissociated from the DNA at that time. Due to steric constraints,
unbinding of the contacts will be assumed to occur sequentially
from either end, as depicted in Fig. 1. Thus, the only way an inte-
rior site can be open is if all sites to the left or right of it are in
an unbound state. In other words, histones can be peeled off only
from the ends of their contact footprint. Under this assumption,
the full configuration space {0, 1}N can be reduced to a bound-
histone state space Ω = {(n1, n2) : n1 + n2 < N} and a detached state
Ω∗ = {(n1, n2) : n1 + n2 = N}, where n1 and n2 denote the num-
ber of detached histone–DNA bonds at the two ends of the
histone–DNA contact footprint. In order to characterize the
timescale associated with complete disassembly, we assume that the
histone leaves the system once all contacts break. This defines a FPT
problem to an “absorbing” detached state Ω∗.

The state space and the transitions within it can be visualized by
random walks along the points in the triangular array along the n1
and n2 axes shown in Fig. 2(a). The transitions are driven by spon-
taneous detachment and attachment of single histone–DNA bonds
with possibly sequence- and position-dependent rates koff and kon,
respectively. We allow the dissociation rate kd of the final contact
to be different from koff since no other DNA–histone contact holds
the histone in place. We expect this final-contact detachment rate
to have magnitude kd ∼ koff. In bulk genomic DNA, most sequences
have similar binding energies with the histone octamer.28,29

Thus, we first assume homogeneity in histone–DNA contact site
binding energies and uniform association and dissociation rates
kon and koff.

We define a dimensionless transition matrix by dividing the
master equation by kon, which we assume to be the fastest kinetic
rate in our model. As detailed in Appendix A 1, the dimensionless
transition matrix W = W̃/kon can be further decomposed as

W(s) ∶= A + εB + sC, (1)

where A represents the transitions in which one extra bond is formed
(n1 + n2 decreases by one); B describes the transitions of one bond
being broken without leading to the detached state; and C indicates
the transitions involving the breaking of the last contact, leading
to the detached state. Matrices involving detachment, B and C, are
multiplied by the Boltzmann factor ε ≡ koff/kon ≡ eEc and s ≡ kd/kon,
respectively. Here, Ec represents the change in free energy of form-
ing contact site bond. For strong-binding contacts, Ec ≪ −1 and
ε, s≪ 1. Physicochemical considerations suggest s ∼ ε, but in our
subsequent analysis, we allow s to vary independently of ε.

We separate different detachment processes by B and C because
A + εB is the transition matrix of a reversible Markov process,
while the sC process describes full detachment into an absorbing
state and disrupts reversibility. A represents the binding reactions
and is upper triangular with eigenvalues {0,−1, . . . ,−1,−2, . . . ,−2};
hence, the dimensionless eigenvalues of W(0) ≡ A + εB fall into
three groups as follows:

● {λ : λ ∼ O(ε) ≲ 0}, unique;
● {λ : λ ∼ −1 +O(ε)}, degeneracy 2(N − 1); and
● {λ : λ ∼ −2 +O(ε)}, degeneracy (N−2)(N−1)

2 .

These groups of values are mainly controlled by the “on-rate” tran-
sition matrix A and control the pattern of the eigenvalues of the full
matrix W(s) = A + εB + sC. Figure 3 shows numerically computed
eigenvalues of W for different values of s = ε. For sufficiently small ε,
they fall into the three clusters governed by A.

The principle eigenvalue of W, λ0, can be computed using a
two-step perturbation analysis. Adding εB to A yields the matrix
W(0) ≡ A + εB, which represents the internal transitions of the
bound states Ω, and, as such, has unique eigenvalue 0 and an asso-
ciated equilibrium distribution v0 as its eigenvector. Such internal
transitions make the system an irreducible and reversible Markov
process. Therefore, the equilibrium distribution v0 can be found as
v0(n1, n2)∝ εn1+n2 , with v0(n1, n2) indicating the component of v0
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FIG. 1. A schematic of simple, intact-histone detachment. The unfacilitated and
remodeler-facilitated pathways are shown on the left and right, respectively.
The top image shows en face and sagittal views of a histone–DNA complex.
Histone–DNA attachment points are described by discrete sites on a one-
dimensional lattice. In this example, we illustrate N = 14 contact sites, evenly
spaced by ∼10 DNA base pairs, that each unbinds and rebinds with rates koff and
kon, respectively. Proteins or “remodelers” (yellow) can bind the DNA, occluding
certain contact sites and preventing them from rebinding DNA. Thus, remod-
elers generate a ratchet mechanism accelerating nucleosome dissociation. In
the remodeler-assisted model, m1 and m2 represent the number of cofactor-
occluded contact sites on the left and right, respectively, and n1 and n2 now
represent the number of open contacts further to the right and left of m1 and
m2, respectively. Detachment of the final contact occurs at rate kd, which may be
comparable to koff.

on the element (n1, n2) ∈ Ω. This scaling relation indicates that for
small ε, the most probable states are those with small n1 + n2 (fully
wrapped histones).

Applying perturbation theory to calculate the principle eigen-
vector v0 as a function of s, v0(s), under the small change
W(0)→W(0) + sC, one can see that each component of v0(s) is
approximately v0(n1, n2; s) = (1 +O(s))v0(n1, n2; 0), as shown by
Eq. (A20) in Appendix A 2. Consequently, the eigenvalue struc-
ture of the perturbed matrix W(0) + sC is preserved not only for
s≪ ε but also for s ∼ ε. Hence, we can use the principle eigenvec-
tor v0(0) at equilibrium to approximate the principle eigenvector

under the perturbation sC. This procedure of switching on an
absorbing boundary on an otherwise equilibrium system is com-
monly used to evaluate FPTs of rare events, usually known as the
absorbing boundary method or generalized Fermi’s Golden rule.30

In the ε, s→ 0+ limit, we find [see Eq. (A18) in Appendix A 2] the
dimensionless principle (largest) eigenvalue of the perturbed matrix
W(s) =W(0) + sC to be approximately

λ0(s) = −NsεN−1[1 +O(s)]. (2)

FIG. 2. (a) Schematic of a hypothetical attached-histone state space Ω for N = 7
(seven contact sites). Since there are N(N + 1)/2 = 28 bound states, the transi-
tion matrix W̃ is 28 × 28. Histone–DNA contacts increase and decrease by one
with rate kon and koff, respectively, except the last contact which breaks with rate
kd. The completely detached absorbing state is indicated by Ω∗. (b) For a strongly
binding system confined to Ω, ε ≡ koff/kon ≪ 1, and a quasi-steady state distri-
bution arises in which state probabilities ∼ εn1+n2 . The most probable states are
those with small n1 + n2, corresponding to a tightly wrapped histone.

FIG. 3. Eigenvalues λ of the dimensionless transition matrix W = W̃/kon asso-
ciated with Ω for N = 14 and ε = s = 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, and
0.0001. The principle dimensionless eigenvalues are λ0 ≲ 0, while two other
groups cluster near −1 and −2 as ε→ 0. These eigenvalues cluster in the
three groups because the “on-rate” transition matrix A has a spectrum of
{0,−1, . . . ,−1,−2, . . . ,−2} and controls the pattern of the eigenvalues of full
matrix W as explained in the text. For all values of ε shown, λ0 is indistinguishable
from 0 because it is very small, as is explicitly approximated in Eq. (2).
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After reintroducing the physical rate kon, the eigenvalue λ̃0 = konλ0
associated with W̃ sets the slowest physical timescale representing
the effective rate of detachment from an equilibrium state. Equa-
tion (2) can be motivated by considering the barrier-crossing rate or
probability flux, i.e., the transition rate multiplied by corresponding
equilibrium probability, from an equilibrium state to the detached
state Ω∗. The energy barrier confining the equilibrium state is
(N − 1)Ec, while there are N transition states. Therefore, the prob-
ability flux of disassembly is ∼Nkde(N−1)Ec , which corresponds to a
dimensionless principle eigenvalue of NsεN−1.

The other eigenvalues λi>0 are ordered as λ0 ≫ λ1 ≥ ⋅ ⋅ ⋅ ≥ λ∥Ω∥.
These other eigenvalues reflect the faster timescales associated with
other states (eigenvectors). The difference between the principle
eigenvalue and other eigenvalues, the spectral gap, is an important
indicator of the dynamics of the system. If the system starts in any
initial configuration in Ω, and the spectral gap is very large, it will
quickly (with rate ∼ ∣λi>0∣) reach the near-equilibrium state v0 before
ultimately dissociating with rate ∣λ0∣. As a result, the mean first pas-
sage time (MFPT) from any initial bound state x (such as v0) to the
fully detached state Ω∗ can be approximated by finding the MFPT
that is dominated by the time from v0 to Ω∗. We find the mean
dimensionless nucleosome disassembly time (MFPT)

E[T(x)] ≈ 1
∣λ0∣
≃ 1

Nse(N−1)Ec
≈ 1

NeNEc
, (3)

where the last approximation assumes s ≈ ε. Theoretical justifica-
tion and further discussion of this approximation are provided in
Appendix A 3, where Eq. (3) is proved as Eq. (A26).

In the context of the histone problem, according to Li et al.,8
single histone–DNA binding sites are highly dynamic, with an
opening rate of koff ∼ 4 s−1 and a closing rate of kon ∼ 20–90 s−1.
According to Eq. (2), this leads to an effective mean overall disassem-
bly rate of ∣λ̃0∣ ≈ kon∣λ0∣ ≃ Nkone−NEc ≈ 4.6 × 10−8s−1, corresponding
to a mean nucleosome disassembly time E[T(x)]/kon ∼ 15 years.
Typically, the disassembly rate is defined by the inverse of the MFPT
from the bound state to the detached state. In the case of multiple
bound states, it is not easy to define a simple measure of disassembly
rate, given the complexity of the dynamics. A reasonable choice is to
consider the weighted average of MFPTs from all bound states, with
weights given by the (quasi-)equilibrium distribution of the bound
states, which leads to the strict identity between the disassembly rate
and 1/∣λ0∣. For a proof of this identity, see Eq. (A21). Fortunately, in
the histone disassembly model, as we have argued above, the MFPT
from all bound states to the detached state is similar, and thus, 1/∣λ0∣
is a reasonable measure of the overall disassembly rate.

In light of the above estimate for E[T(x)]/kon, cells need to
dynamically remodel their histone binding patterns during DNA
replication and changes in gene expression, processes that occur
on a much shorter timescale. Fortunately, a variety of intracellu-
lar remodeling factors, such as SWI/SNF-type ATPases,27,31–33 can
catalyze this remodeling process. Next, we will extend our model to
incorporate mechanisms of remodeling cofactors that can compete
for DNA or histone contacts.

2. Remodeler-facilitated linear detachment
Regulation of histone–DNA binding and acceleration of dis-

assembly by other proteins/cofactors can be achieved in two ways:

(i) competitive binding of proteins may block reattachment of his-
tone contact sites to DNA and (ii) cofactors may allosterically inhibit
histone–DNA binding. Recent studies suggest that a number of
DNA-binding proteins interact with the histone–DNA complex by
competing for open contact sites.10,34–36 Here, we model such a
mechanism via ratcheted blocking mechanism whereby nucleosome
remodeler proteins block rebinding of DNA, thereby facilitating dis-
assembly. The second allosteric mechanism can be modeled directly
by modification of site binding and unbinding rates kon and koff.
Therefore, allostery can be subsumed under the spontaneous dis-
assembly model. In the following discussion, we will focus on the
blocking mechanism and refer to the intervening cofactor as a nucle-
osome remodeler. We develop a model that can be applied both to
proteins that slide along DNA and to those that directly bind and
occlude DNA–histone contact sites. While most known nucleosome
remodelers are ATPases that slide along DNA,31–33 our model is also
intended to describe the general interaction between DNA-binding
proteins and the nucleosome and to better understand why other
proteins cannot effectively evict histones from DNA.

Assume nucleosome remodeler proteins compete with histones
on the same DNA binding sites and have binding rates pa and
dissociation rates pd, as illustrated in Fig. 1. Bound contact sites
must detach before cofactors, such as remodeling protein, can bind.
However, if a remodeler first binds to and occludes a DNA or his-
tone contact site, this site is unavailable for histone reattachment or
binding, promoting histone detachment. We describe the state of
DNA–histone–remodelers by a four-integer tuple (m1, m2, n1, n2).
In this enumeration, m1 and m2 are the rightmost and leftmost con-
tact sites occluded by a remodeler protein measured from the left
and right ends of the contact footprint. These remodelers can bind
to the DNA substrate, as shown in Fig. 1. In the presence of bound
remodeler proteins (m1 > 0 and/or m2 > 0), the remaining available
sites for direct DNA–histone interactions will be reduced to N −m1
−m2. The associated state space of (n1, n2) is then reduced corre-
spondingly. In the presence of bound remodelers, n1 and n2 now
measure the unbinding progress of the histone octamer and repre-
sent the additional numbers of opened binding sites inward from the
rightmost and leftmost remodeler binding site. In this notation, the
fully detached state is visited only when m1 + n1 +m2 + n2 = N.

Since (m1, m2) accounts only for the most inwardly occluded
contact sites, the information about remaining remodelers
is not delineated in this state space Ωp ∶= {(m1, m2, n1, n2)
∈ N4 : m1 +m2 + n1 + n2 < N} ∪Ω∗p ∶= {(m1, m2, n1, n2) ∈ N4 : m1
+m2 + n1 + n2 = N}. In the following, we will use subscript “p”
to indicate quantities associated with the remodeler-facilitated
disassembly model. Consequently, the full remodeler adsorption
pattern is not fully captured by m1 and m2. Multiple cofactors
could cooperatively bind (where a DNA-bound cofactor accelerates
binding of another cofactor near it) and compete for open sites
among themselves, leading to complex dynamics of assisted histone
displacement. We can simplify the model by considering, e.g., step-
wise increases of (m1, m2), in which case m1, m2 can only change by
one at a time. This restriction is appropriate for remodelers that are
motor proteins processing along DNA25 and yields an overall upper
bound to remodeler-facilitated disassembly rates. Since molecular
motors, such as SWI/SNF complexes, typically attack nucleosomes
from one side, we explicitly modify our formulas in Appendix B to
account for one-sided peeling.
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Within the undissociated state space Ωp, the transition matrix
H can be constructed from matrices defined in the previous section
on spontaneous histone-DNA detachment, i.e., Sec. II A 1. Because
of occlusion by remodelers, histone detachment can now occur after
spontaneous separation of n ≤ N binding sites. We denote the spon-
taneous transition matrix with n binding sites as Wn and define Wn:m
to be block diagonal with m Wn’s on the diagonal. By arranging the
states (m1, m2, n1, n2) as described in Appendix C, the transition
matrix Wp =WN,p can be written as

WN,p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

WN 0 ⋅ ⋅ ⋅ 0

0 WN−1:2
. . . ⋮

⋮
. . .

. . . 0

0 ⋅ ⋅ ⋅ 0 W1:N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ pa

kon

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MN 0 ⋅ ⋅ ⋅ 0

MN−1,N MN−1
. . . ⋮

⋮
. . .

. . . 0

M1,N ⋅ ⋅ ⋅ M1,2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ pd

kon

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 GN,N−1 ⋅ ⋅ ⋅ GN,1

0 GN−1
. . . ⋮

⋮
. . .

. . . G2,1

0 ⋅ ⋅ ⋅ 0 G1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

In Eq. (4), the states are grouped by the sum of m1 +m2 in ascending
order. The first block entry represents the states with no remod-
eler bound, the second block entry represents the states with one
remodeler bound, and so on. The transition matrices Mm,n and Gm,n
describe changes in state associated with remodeler binding and
unbinding, respectively, and the explicit construction rules of WN,p
are given by Eqs. (C2)–(C4) in Appendix C. We will again employ
perturbation theory to find approximations for the principle eigen-
value. The unperturbed process corresponds to pa = pd = 0. Even
though there are multiple eigenvectors associated with eigenvalue 0
of the matrix WN,p with pa = pd = 0, we are only interested in the
eigenvector that embeds the previous eigenvector v0 of WN . The
embedding is implemented by appending zeros to the end of the
original v0. This new v0 serves as the starting point of our subsequent
perturbation analysis.

We will classify scenarios based on the ability of remodelers
to occlude a binding site, defined by the remodeler–DNA binding
energy Ep = log(pd/pa). Ep > 0 indicates pd > pa and a weakly bind-
ing remodeler; negative Ep < 0 means an attractive remodeler–DNA
interaction and strong remodeler binding. Remodeler proteins com-
pete directly with histones for DNA contact sites; this competition is
quantified by comparing Ep to Ec. If Ep > Ec, histone–DNA bind-
ing is stronger than remodeler binding; if Ep < Ec, histone–DNA
binding is weaker than remodeler binding. The complex state space
and parameters of this problem, however, do not allow for simple
analytical solutions.

Weak remodelers. In the weak remodeler binding limit
(Ep > Ec), the eigenvector corresponding to the largest eigen-
value is only weakly perturbed by the presence of remodelers,
but we can still use the total binding energy E(m1, m2, n1, n2)
= [(m1 +m2)(Ep − Ec) − (n1 + n2)Ec] associated with each state
(m1, m2, n1, n2) to approximate the steady state distribution v0 via
the Boltzmann relation v0(m1, m2, n1, n2)∝ e−E(m1 ,m2 ,n1 ,n2).37 The
principle eigenvalue can be found by via relation

λ0 =
1⊺WN,pv0

1⊺v0
,

≈ ∑(m,n)∑(m′ ,n′)WN,p(m′, n′, m, n)e−E(m,n)

∑(m,n) e−E(m,n) , (5)

where (m, n) represents the tuple (m1, m2, n1, n2) and (m′,n′) rep-
resents the tuple (m′1, m′2, n′1, n′2). W(m′,n′,m,n) represents the
transition rate from state (m,n) to state (m′,n′).

We proceed to simplify the expression in Eq. (5). At
steady state, the most probable configuration is fully bound:
(m1, m2, n1, n2) = (0, 0, 0, 0), and other states are much less
likely. The boundary states with a positive transition rate to
full disassembly are characterized by the condition m1 +m2
+ n1 + n2 = N − 1. States (m,n) away from the boundary satisfy
∑(m′ ,n′)W(m′,n′,m,n) = 0 because of conservation of probability.
States (m,n) on the boundary satisfy ∑(m′ ,n′)W(m′,n′,m,n) = −s.
When Ep > 0, the most probable boundary states are still those
with m1 = m2 = 0 and n1 + n2 = N − 1, whose probability is propor-
tional to e(N−1)Ec . When Ep < 0, the most probable boundary states
become those with m1 +m2 = N − 1 and n1 = n2 = 0, whose prob-
ability is proportional to e(N−1)(Ec−Ep). In both cases, there are N
identical most-probable boundary states because the attack comes
from both ends, forming a triangular state space. Instead of inves-
tigating every state (m,n), we simplify the expression in Eq. (5)
by considering only the state (0, 0, 0, 0) with energy 0 and relative
weight 1 and N boundary states with energy (N − 1)(E−p − Ec) and
weight e(N−1)(E−p −Ec). Here, E−p ∶= min{Ep, 0} to account for differ-
ent most-probable boundary states under different conditions. With
this approximation, we derive a physical estimate of the principle
eigenvalue by summing Eq. (5) over the N + 1 most probable states
in the interior and on the boundary to find

λ0 ≈ λ̂0(Ep > Ec) ∶= −
sNe(N−1)(Ec−E−p )

1 +Ne(N−1)(Ec−E−p )
. (6)

If Ep > 0, Eq. (6) reduces to the spontaneous disassembly rate given
in Eq. (2) (since Ec ≪ −1). A more refined approximation of Eq. (5)
that sums over more states is provided in Eq. (C12).

Strong facilitation limit. In the Ep → −∞ limit, corresponding
to irreversible remodeler binding (pd → 0), the structure of the prin-
ciple eigenvector v0 embedded in Ωp is preserved under small a
perturbation (pa ≪ kon), as shown in Eq. (C8),

v0(pa) = [1 +O(ε) +O( pa

kon
)]v0(0). (7)
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We can then use v0(pa) in the relation v⊺0 WN,pv0 = λ0∥v0∥2
2 to extract

an estimate of the dimensionless principle eigenvalue [see Eq. (C9)]

λ̂0(Ep → −∞, pa ≪ kon)

∶= −
⎡⎢⎢⎢⎢⎣

Nse(N−1)Ec + pa

kon

N−1

∑
j=1
(j + 1)ejEc

⎤⎥⎥⎥⎥⎦
, (8)

valid when pa ≪ kon.
When pa ∼ kon, the most probable state moves to the boundary

since one may consider pd = 0 as a limit of Ep → −∞, in which case
the boundary states carry the lowest energy. Although the probabil-
ity distribution is no longer proportional to e−E, it provides intuition
for the behavior of the system in this limit. The rate-limiting step
is the one-step unbinding with rate kd. Therefore, the perturbed
principle eigenvalue λ0(pa) is given by

λ̂0(Ep → −∞) ∶= max{λ̂0(Ep → −∞, pa ≪ kon),−s}. (9)

Since the most probable state is shifted from those in the interior
to those at the boundary, the principle eigenvalue approximates the
inverse of the MFPT to Ω∗ starting near the boundary. On the other
hand, starting from the fully bound state, the system will first take
an average time (N − 1)/koff to reach the boundary in the pa ≫ kon
limit. Although MFPTs to the disassembled absorbing state differ for
different initial configurations, for Ec ≪ −1 (ε≪ 1), they are all on
the same order of magnitude determined by the unbinding rates koff
and kd.

Effective facilitation. We have characterized the principle eigen-
value in the case of weak facilitation Ep > Ec and strong facilitation
limit Ep → −∞. Of interest is the very typical intermediate case
Ep < Ec as it can effectively contribute to remodeling. However, in
this limit, simple analytic approximations cannot be found, and we
must compute the eigenvalues numerically. By using established
numerical methods for evaluating the eigenvalues in JuliaLang,38

we find that the principle eigenvalue under intermediate Ep < Ec is
larger (smaller magnitude) than that of the strong facilitation limit
Ep → −∞ given by Eq. (9). The strong facilitation limit leads to
shorter nucleosome disassembly times. Moreover, the right-hand
side of Eq. (6) can be identified as approximately the proba-
bility flux intensity j(Ω∗p ∣Ωp) ∶= ∑x∈Ωp ,y ∈Ω∗p Wy,xv0(x)/∑x∈Ω v0(x)
into the detached state Ω∗p from a quasiequilibrium configura-
tion v0 in Ωp. It is well-known that the principle eigenvalue is
always dominated by the flux intensity.39 Consequently, we can
obtain an overall upper bound on the facilitation effect as the
maximum of the two analytic approximations given by Eqs. (6)
and (9),

λ̂0,p ∶= max{λ̂0(Ep > Ec), λ̂0(Ep → −∞)}. (10)

Further mechanistic insights can be gained via a coarse-
grained model shown in Fig. 4, which ignores the fine structure
of histone–DNA interaction by projecting the original undisso-
ciated state space Ωp = {(m1, m2, n1, n2) : m1 +m2 + n1 + n2 < N}
onto Ω̃p ∶= {(m1, m2) : m1 +m2 < N}. Justification of this approx-
imation is provided in Appendix A 3, while Appendix C 4 provides
some physical intuition and discussion. Since we now track the
transition of the states of only the nucleosome remodelers, the

FIG. 4. A simple coarse-grained approximation of the facilitated intact-histone
model. (a) The state space Ω̃p and Ω∗p for the coarse-grained model for
the linear facilitated detachment. Each node represents the DNA occupancy
(m1, m2) of remodeling factors. Red and blue arrows represent effective tran-
sitions corresponding to invading and retreating leading remodelers, respec-
tively. The gray arrows (not all shown) represent the transition from the
coarse-grained state (m1, m2) to the fully dissociated state Ω∗p with rate

(N − m1 − m2)kone(N−m1−m2)Ec , where we have assumed kd = koff. (b) An illus-
tration of the “internal structure” {(n1, n2) : n1 + n2 ≤ 1} within a coarse-grained
state (m1, m2) in which m1 + m2 = N − 2. The internal dynamics are much
faster than the transitions to external states indicated by different arrows in
the schematic. The fast internal state is well characterized by a quasi-steady
state distribution v0(n1 = 0, n2 = 0) ≈ 1, v0(1, 0) ∼ v0(0, 1) ≈ ε = eEc , effec-
tively lumping the state space shown in Fig. 2(b) into one with two binding sites.
The ε-probability states are allowed to transit to Ω∗p with rate koff, and remodelers
may bind to the exposed DNA with rate pa in this case. If the internal states are in
(0,0), the remodeler cannot bind to DNA and no direct transition to Ω∗p is allowed.
In all these states, the bound remodeler may detach with rate pd. Multiplying the
steady state probability of the internal structure and the corresponding transition
rate yields the effective transition rates shown in (a). For example, binding of addi-
tional remodelers to DNA requires exposed DNA. Therefore, transition to higher
(m1, m2) is not allowed when the internal state is (0,0). The probability of at least
one site being exposed is ∼ eEc , resulting in an effective remodeler–DNA binding
rate paeEc . For remodeler unbinding, there is no restriction on the internal state,
and the effective unbinding rate is pd.

structure of this coarse-grained model resembles the original spon-
taneous linear detachment model, as shown in Fig. 4(a), where the
effective rates pd and paeEc can be intuitively explained by con-
sidering the fine structure within a coarse-grained state shown
in Fig. 4(b).

Finally, to capture a crucial structural feature of histone–DNA
interactions, we incorporate into the coarse-grained model an addi-
tional hopping rate from state (m1, m2) to the fully detached state
Ω∗p , given by (N −m1 −m2)kone(N−m1−m2)Ec , assuming kd = koff.
These hopping transitions to Ω∗p are inconvenient to visual-
ize completely in Fig. 4(a), so we indicate only three effective
transitions.

As shown in Fig. 5, we compare the numerical eigenvalues pre-
dicted by the coarse-grained model to those of the full model. The
coarse-grained model approximates the original model well in all
regimes of Ep, provided pd ≪ kon; however, analytic approximations
to the principle eigenvalue are still inaccessible.
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FIG. 5. Values of−λ0 (principle eigenvalue of the transition matrix HN), a surrogate
for the disassembly rate of nucleosome under remodeler facilitation, were numer-
ically computed (symbols, both panels). (a) Numerically computed eigenvalues
−λ0 are compared to the approximation in Eq. (10) (dashed lines) using Ec = −2.
Here, and in all subsequent plots, all rates are normalized with respect to kon.
(b) The same numerically computed values of −λ0 are compared to the numerical
predictions of the coarse-grained model (solid lines), indicating the accuracy of our
coarse-graining.

Summarizing, our simplified model describing processive
motors and nucleosome remodelers that bind strongly and coop-
eratively assumed stepwise transitions of (m1, m2). For remodelers
that bind independently, the values of (m1, m2) can undergo longer-
ranged jumps as multiple cofactors bind. Under quasi-steady state
conditions, the probability of exposing Δm DNA-binding sites for
remodeler binding is proportional to eΔmEc ; thus, the probability of
increasing m1 or m2 by Δm due to remodeler binding is at most pro-
portional to eΔmEc . The probability of decreasing a certain number
of sites depends on the position of the trailing remodelers and hence
on the bulk remodeler concentration.

When remodeler binding is strong (Ep is very negative) or
cooperative, m1 and m2 will seldom make large jumps, so their
dynamics can be treated as stepwise. On the other hand, when
pa ≤ pd, facilitation is minimal since the rate-limiting step is sponta-
neous peeling. Even for independent remodelers with weak binding
energy, the stepwise model predicts the numerically computed full-
model disassembly rate reasonably well despite the possibility of
large jumps to lower (m1, m2) states. Variances in our predic-
tions under randomly distributed histone–DNA contact energies are
considered in Appendix D.

B. Multimeric nucleosome disassembly model
In this section, we construct models of multistep disassem-

bly nucleosomes composed of multicomponent histones. In solu-
tion, free histones exist in the form of (H3–H4)2 tetramers and
H2A–H2B dimers.40 The tetramer is located at the center of the
nucleosome and binds to around 60 base-pairs of nucleosomal
DNA. Two identical H2A–H2B dimers align almost symmetrically
at the two ends of the (H3–H4)2 tetramer, each taking up around
30 base-pairs of nucleosomal DNA. The termini of H3 also attach
to the DNA on both ends, further stabilizing the nucleosome
complex.41

Due to the multicomponent nature of the histone octamer,
interesting questions arise as to whether (i) octamer breakdown
precedes histone–DNA detachment and (ii) whether the former

process facilitates the latter. Studies have consistently shown that
salt-induced disassembly of nucleosomes occurs stepwise, with
H2A–H2B dimers disassembling first, followed by disruption of
the (H3–H4)2 tetramer as a whole.42–45 However, nucleosome dis-
assembly under physiological salt concentrations has yet to be
observed due to the long timescales required.

Here, we propose a kinetic model that captures the multimeric
feature of histone octamers and derive mean times of disassembly.
We also consider the interaction between multimeric histone and
nucleosome remodelers and show that by disrupting the interac-
tion between (H3–H4)2 and H2A–H2B, the detachment process
can be significantly accelerated compared to the spontaneous, intact
histone model. This observation is consistent with previous experi-
mental results.46 Interestingly, we also observe that the acceleration
provided by octamer disassembly and nucleosome remodelers is
sub-additive. By comparing the multimeric nucleosome disassem-
bly model to the linear sequential disassembly model, we can predict
disassembly pathways under various conditions. The multimeric
disassembly process is visualized in Fig. 6.

As discussed in the beginning of this subsection, we simplify
the structure of the histone octamers as a concatenation of two
(H2A–H2B) dimers on both ends of one (H3–H4)2 tetramer in
the center, as shown in Fig. 6(a). To enumerate the presence of
the three different subunits and the links among them, we use the
string (σl, θl, σm, θr, σr) ∈ {0, 1}5 to represent the state of the his-
tone complex. Here, σj ∈ {0, 1}, j ∈ {l, m, r} represents whether the
left, middle, or right part of the histone modules is present in the
complex, while θi ∈ {0, 1}, i ∈ {l, m} indicates the existence of links
between the left and middle subunits and between the middle and
right subunits, respectively. For any θi = 1, both subunits that are
linked together must be present.

Associated with each state of the histone (σl, θl, σm, θr, σr) is
a state space of “microstates” that delineates the underlying states
of DNA–histone bonds. The representation of microstates depends
on the number f = ∑i=l,m,r σi −∑j=l,rθj of independent histone mod-
ules (a single subunit or a bound cluster of subunits) that are
not associated by a linkage. When the linkage is not present,
unbinding of the DNA–histone contact sites can be initiated at the

TABLE III. Parameters and notation used in the multimeric histone disassembly
model. Three histone subunits can occupy the DNA substrate and are arranged
as left (l), middle (m), and right (r). Their presence or absence is enumerated
by σ l, σm, σr ∈ {0, 1}. The presence of the two possible subunit–subunit bonds is
indicated by θl, θr ∈ {0, 1}.

Parameter/variable Symbol Value

Left, middle, right subunit occupation σl, σm, σr {0, 1}
No. of DNA–(H2A–H2B) binding sites N l = Nr 4
No. of DNA–(H3–H4)2 binding sites Nm 6
l–m and m–r subunit bonds θl, θr {0, 1}
(H3–H4)2–(H2A–H2B) association rate qa ⋅ ⋅ ⋅
(H3–H4)2–(H2A–H2B) dissociation rate qd, q∗d 0.01kon

(H3–H4)2–(H2A–H2B) binding energy Eq = log ( qd
qa
) −1

Subunit chemical potential in solution ΔEs 2
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FIG. 6. Schematic of the multimeric nucleosome disassembly model. (a) A
histone octamer is composed of one (H3–H4)2 tetramer surrounded by two
H2A–H2B dimers. The presence or absence of the three subunits is described
by (σ l, σm, σr) ∈ {0, 1}3, while links between them are described by (θl, θr)

∈ {0, 1}2. These are combined into the string σ = (σ l, θl, σm, θr, σr) ∈ {0, 1}5.
Binding between the subunits and DNA is denoted by the vector n describing the
peeling of contact footprints for each linked subunit cluster. (b) An example of the
parameterization (σ, n) of state space. Here, σ = (1, 1, 1, 0, 1) represents the
macrostate where all subdomains of the histone bind to DNA but only one link
exists among them. This leads to two independent linear detachment processes
denoted by the microstate n = ((n(1)

1 , n(1)
2 ), (n

(2)
1 , n(2)

2 )). In this particular

case, breaking of the DNA–histone contacts can be initiated inside the total nucle-
osome footprint, at the interface between the right dimer and the tetramer, as
indicated by the small solid-curve arrows. (c) Schematic representation of tran-
sitions associated with changes in θr, σr, and n. For example, [1, 1, 1, 1, 1, (0, 0)]
represents the state where all subdomains are docked and fully bound to DNA and
where the links between the tetramer and the dimers are intact.

interface between a dimer and a tetramer. Each connected mod-
ule then binds and unbinds independently in the same way as
in the previous intact histone model, but with fewer contact sites
on each module. Hence, each state is represented by a 2 f -tuple
(n(k)1 , n(k)2 )

f
k=1, where n(k)1 and n(k)2 are analogous to that defined

in Fig. 2 and are the number of left- and right-detached con-
tact sites of the kth histone module. For each k, 0 ≤ n(k)1

+ n(k)2 < number of DNA binding sites in the kth module. An exam-
ple of macrostate (σl, θl, σm, θr, σr) = (1, 1, 1, 0, 1) and associated
microstates with f = 2 is shown in Fig. 6(b).

In the multimeric model, we assume that the bonds between
H2A–H2B and (H3–H4)2 can spontaneously break with rate qd and
rebind with rate qa, provided at least one DNA–histone contact is
intact. However, once one of the domains loses all its bonds with
DNA, the subunit is no longer held in place and its link with the
neighboring histone domain may break at a somewhat different
rate q∗d . We also assume that each H2A–H2B carries N l = Nr = 4
DNA binding sites and the central (H3–H4)2 tetramer carries the
remaining Nm = 6 contact sites. We do not distinguish different
DNA binding sites and let them all have the same kon and koff as
in our toy linear delamination model. The DNA–histone contact
energy Ec is defined by Ec = log ( koff

kon
) < 0 as before. An example of

the macrostate transitions is shown in Fig. 6(c). The notation and
parameters used in the multimeric model are given in Table III.

While it may be reasonable to assume q∗d > qd (faster subunit
dissociation if a subunit makes no DNA contacts), for the sake of
simplicity, we will assume q∗d = qd in the following discussion. We
will also define the subunit binding affinity Eq = log (qd/qa) con-
ditioned on the presence of at least one DNA–histone contact for
each of the subunits. Similarly, we also let kd = koff in our subsequent
calculations.

As discussed at the end of Sec. II A 1, the disassembly rate
depends on the choice of the initial state. If the initial state is cho-
sen to be the quasi-steady state v0, then the disassembly rate is given
by the principle eigenvalue −λ0 of the relevant transition matrix.
To numerically compute −λ0, we constructed a computational algo-
rithm to enumerate all the possible states and the associated tran-
sition matrix of the multimeric histone disassembly process. The
principle eigenvalue was computed using the Arnoldi method.47 The
program is written in JuliaLang38 and is available through GitHub
at github.com/hsianktin/histone. We will also numerically compute
the mean first disassembly times E[T(1)] of the multimeric model
starting from the fully bound state 1. For a stochastic transition
matrix W, T ≡ E[T(x)] for all states x ∈ Ω is found from solving
W⊺

ΩT = −(1, . . . , 1)⊺ and then selecting E[T(x = 1)].48 Our subse-
quent results show that values of −λ0 and 1/E[T(1)] are close to
each other because the most probable state v0 in the quasi-steady
state coincides with the fully bound state 1.

If the concentration of free (H3–H4)2 and H2A–H2B sub-
units in solution is negligible, we can treat the detachment of each
subunit as irreversible. If there are appreciable concentrations of his-
tone dimers or tetramers in solution, their rebinding to a partially
disassembled nucleosome must be considered. An additional para-
meter ΔE(subunit)

s ≡ log (kon/q′′(subunit)
a ) describing the free energy

(or chemical potential) difference between specific subunits in solu-
tion and within a nucleosome is thus required; due to entropy,
the higher the histone concentration, the lower this difference. The
irreversible detachment of the subunit corresponds to the ΔEs =∞
limit. A detailed analysis of reversible multimeric disassembly is
given in Appendix E where dimers and tetramers in solutions may
rebind to a partially disassembled nucleosome, but the fully detached
state is still absorbing in the first passage time setting. We will
use subscript “q” to denote quantities relevant to the multimeric
model.
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1. Spontaneous detachment
We first consider the unfacilitated disassembly of a multi-

meric nucleosome and anticipate that subunit–subunit binding and
unbinding rates, qa and qd, are much faster than their unbinding
from DNA, the rate of which can be estimated by considering the
disassembly rate of a simple intact-histone peeling model [Eq. (2)]
but with N l binding sites: konNleNlEc . Additionally, we assume that
a fully linked histone is sufficiently stable so that our initial condi-
tion is an intact octamer. This assumption implicitly requires qa > qd
for self-consistency and allows us to simply track unbinding from
both ends of the octamer while ignoring the unbinding from the
middle. It takes an average dimensionless time τH2A−H2B ≈ e−NlEc for
H2A–H2B on the left to unbind from the DNA, whether or not it is
attached to the tetramer. This estimate is derived in Appendix B and
comes from Eq. (B1) for the one-sided spontaneous linear nucleo-
some disassembly model with N l binding sites. As with the two-sided
spontaneous detachment model in Fig. 3, there is a large spectral gap
between the first and second eigenvalues of the transition matrix.
Therefore, the expected unbinding time starting from any bound
configuration is given by the inverse of the principle eigenvalue
and similar to that of the two-sided model. See Appendix A 3 for
details.

First, consider the expected time E[T] for the histone octamer
to break down and its subunits to sequentially leave the system
(the multimeric disassembly pathway) when rebinding does not
occur (when the solution contains no free histone subunits and
ΔEs =∞). Upon unbinding of the H2A–H2B dimer from DNA, the
chance that it is linked to the (H3–H4)2 tetramer is qa/(qa + qd).
If the H2A–H2B dimer is not bound to the tetramer (H3–H4)2, it
will immediately leave the system. Otherwise, there is a probabil-
ity kon/(kon + q∗d ) that DNA and the dimer will rebind before the
H2A–H2B dimer unlinks from (H3–H4)2 and leaves the system.
The expected time for the H2A–H2B dimer to leave the system from
a fully bound configuration 1 ≡ (1, 1, 1, 1, 1, (0, 0)) is thus given by

E[TH2A−H2B(1)] ≈
e−NlEc

1 − qa
qa+qd

kon
kon+q∗d

. (11)

Here, 1/(1 − qa
qa+qd

kon
kon+q∗d

) measures the expected number of trials
until the H2A–H2B dimer leaves the system successfully, as illus-
trated in Fig. 7. When an attempt fails, the dimer–DNA contacts
can quickly approach equilibrium because of the spectral gap for
the simple peeling model. Thus, the next dimer removal trial occurs
independently of the last one and the number of trials should fol-
low a geometric distribution with the probability of failure given by

qa
qa+qd

kon
kon+q∗d

. The expected time for both H2A–H2B dimers to leave
the system is on the same order of magnitude as the expected time
for one H2A–H2B to leave the system.

After dissociation of the two equivalent dimers, the (H3–H4)2
tetramer will unbind from the DNA at a rate of konNmeNmEc accord-
ing to Eq. (2) with Nm contact sites. We can then define the
approximate expected time it takes for the entire nucleosome to
detach through the multimeric breakdown pathway as

Ê[T(1)] ∶= αE[TH2A−H2B(1)] +
e−NmEc

Nm
, (12)

FIG. 7. Illustration of the geometric trial process. Dimer–DNA contacts break
after about τH2A–H2B. When this happens, the probability that the dimer–tetramer
link is also broken is qd/(qa + qd). If this is realized, the dimer breaks free
from the system. However, with probability 1 − qd/(qa + qd) = qa/(qa + qd), the
dimer–tetramer link is intact. From this configuration, there are two reactions
competing with each other: the dimer rebinding to DNA with rate kon and the
dimer–tetramer link breaking with rate q∗d , leading to the dimer breaking free from
the system. Thus, the dimer rebinds to DNA with probability kon/(kon + q∗d ) (failing
to disassociate) and breaks free with probability q∗d /(kon + q∗d ).

where 1 < α < 2 is an additional factor determining the expected
MFPT for two independent dimers to detach. For independent,
exponentially distributed waiting times, α = 3/2. In our model, the
dynamics of the dimers on opposite sides of the tetramer are inde-
pendent, but their detachment times are modeled via a multistate
geometric attempt processes and are not exponentially distributed.
Nonetheless, at this level of approximation, α ∼ 1 suffices to provide
reasonable estimates.

The derivation of Eq. (12) implicitly assumes a sequential dis-
assembly pathway where the H2A–H2B dimer disassembles first.
Thus, Eq. (12) is valid only in the regime qa, qd ≫ koneNlEc .

Significant acceleration can be achieved if the links between
the subunits are weak, thereby decreasing the E[TH2A−H2B(1)] term
in Eq. (12). When subunit links are weak [Eq ≪/ −1⇔ qd/(qa + qd)
≁ 0] and/or if unlinking is fast [q∗d ≫ kon ⇔ kon/(kon + q∗d ) ∼ 0], the
factor 1/(1 − qa

qa+qd

kon
kon+q∗d

) ∼ 1 and thus Ê[T(1)] ≈ e−NmEc/Nm.
Next, we relax the assumption that qd and qa are fast and intro-

duce corrections to Eq. (12), obtaining a more general expression
for the expected time for multimeric nucleosome dissociation. When
the affinity between subunits is high (Eq ≪ −1) and link breaking is
slow (qd, q∗d ≪ kon), the mean nucleosome disassembly time of the
system depends on the order of the term 1/(1 − qa

qa+qd

kon
kon+q∗d

)e−NlEc .
If Eq → −∞, to achieve mean nucleosome disassembly times compa-
rable to the linear peeling model, we need q∗d < kone2NlEc , as shown by
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FIG. 8. Dimensionless rates of remodeler-free, multimeric nucleosome disassembly measured by the principle eigenvalue and the inverse of the dimensionless mean
disassembly time 1/E[T(1)]. −λ0 and 1/E[T(1)] provide similar measures of the disassembly rate and agree well with each other as indicated in the plots. In all cases,
we set Ec = −2, kd = koff, and qd = q∗d , and all the rates are normalized by kon. (a) Rates as a function of the dimensionless rate of subunit unlinking q∗d /kon in the zero
bulk histone concentration (ΔEs =∞) limit. Numerical results of the principle eigenvalue −λ0 (open squares) closely match those of 1/E[T(1)] (filled circles), indicating
that starting from the fully DNA-bounded state or from the quasi-steady state yields similar mean dissociation times. All results are well approximated by the approximation
−λ̂0,q(ΔEs =∞) for −λ0 given in Eq. (13) (dashed curves). Other parameters are assigned typical values given in Tables I and III. (b) Comparison of 1/E[T(1)] to the

estimate −λ̂0,q given in Eq. (E9). Here, we set Eq = −1, ΔE(H2A−H2B)
s = ΔE((H3−H4)2)

s and vary ΔEs and qd = q∗d , which is the rate-limiting step as in (a). When qd < NeNEc ,
the disassembly rate is approximately NeNEc . When konNeNEc < qd < kon j(Ω∗ ∣Ω) [given by Eq. (E5)], the disassembly rate is controlled by qd. When qd/kon is large, the
dimensionless disassembly rate is approximated by j(Ω∗∣Ω). (c) Disassembly rates as a function of ΔEs at different values of Eq for large (not rate-limiting) q∗d /kon = 0.01.
Since j(Ω∗ ∣Ω) ∼ NmeNEc+2(ΔEs+Eq), larger ΔEs + Eq leads to faster disassembly. The value of ΔEs at which the disassembly rate saturates can be estimated by the root
to ΔV ≡ 2(Eq + ΔEs + NlEc) = 0. In this example, Nl = 6, Ec = −2, so when Eq = −1, the disassembly rate saturates at ΔEs ≈ 9.

the purple symbols in Fig. 8(a). We assumed fast q∗d in the derivation
of Eq. (12). When q∗d is not fast, the dissociation between histone
subdomains can be a rate-limiting step in the multimeric pathway.
In this case, the total time required for the dimers to detach from
the system is given by E[TH2A−H2B] + kon/q∗d . As indicated by the
yellow and cyan symbols in Fig. 8(a), when q∗d < kon/Ê[T(1)], the
rate of disassembly is proportional to q∗d . When the dimer–tetramer
unbinding rate further decreases to q∗d < konNeNEc , the monomeric
disassembly (simple histone peeling) is faster than multimeric
breakdown and the dimensionless disassembly rate is ≈NeNEc

(for kd = koff).
Combining the above results, we obtain the following refined

estimate for the dimensionless disassembly rate:

− λ̂0,q(ΔEs =∞) ∶= NeNEc + 1
Ê[T(1)] + kon

q∗d

, (13)

where Ê[T(1)] is the expected disassembly time in the qa, qd
≫ koneNlEc limit given in Eq. (12). This formula provides a good
qualitative description of both 1/E[T(1)] and −λ0 in the ΔEs →∞
limit (no subunit rebinding from bulk solution), as shown in
Fig. 8(a). Additionally, we show close agreement between the
numerically obtained principle eigenvalue λ0 and the inverse of the
mean dimensionless disassembly time starting from the fully bound
state 1 = (σ = (1, 1, 1, 1, 1), n = (0, 0)).

When dimers and tetramers can rebind to a partially
unwrapped nucleosome, with the fully detached state still absorbing

in the first passage time problem (finite histone subunit concentra-
tion in bulk, ΔEs <∞), q∗d still serves as a rate-limiting step for the
multimeric breakdown pathway and the disassembly rate for small
q∗d can again be well approximated by the maximum of NeNEc and
q∗d , as shown in Fig. 8(b). If q∗d becomes moderately large, the prob-
lem can again be effectively represented by an irreversible process
that can be analyzed using the absorbing boundary method. Since
the acceleration factor is approximately e2(ΔEs+Eq), disassembly is
sped up only if (ΔEs + Eq) ≥ 0. When ΔV/2 ≡ (ΔEs + Eq) +N lEc
> 0, the acceleration is limited by the rate of (H3–H4)2 detachment,
as shown in Fig. 8(c).

Appendix E 1 [Eq. (E9)] summarizes the above discussion
and provides an estimate for the principle eigenvalue and, thus,
the mean disassembly time of the multimeric reversible (ΔEs <∞)
detachment model. Both multimeric and monomeric disassembly
pathways are allowed in the full “multimeric” model, as illustrated
in Fig. 9. The monomeric disassembly pathway usually occurs at
a rate that is a lower bound to that of the multimeric disassembly
pathway. Multimeric disassembly mediated by two dimer–tetramer
links allows for stagewise dissociation of subunit–DNA contacts,
accelerating the overall process compared to the intact histone dis-
assembly model. Factors that limit the rate of multimeric pathways
include the dissociation rate q∗d and number of trials of dimer disas-
sembly 1/(1 − qa

qa+qd

kon
kon+q∗d

), as described in Eq. (13). As detailed in
Appendix F, the disassembly rate is approximated by a weighted sum
of the rates associated with the monomeric and multimeric path-
ways, as depicted in Fig. 9. This means that disassembly in the full
multimeric model will always be faster than in the simple intact-
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FIG. 9. Schematic of the two general pathways of nucleosome disassembly when
the histone can break up into its subunits and detach separately.

histone model in which only the monomeric disassembly pathway
is present. By contrast, the multimeric disassembly pathway (con-
ditioned on histone fragmentation) refers to the process where one
histone module, dimer or tetramer, leaves the DNA before the whole
histone complex dissociates from the DNA. This conditioned path-
way can exhibit slower dissociation than that of the monomeric
pathway, particularly when q∗d is small.

2. Facilitated multimeric disassembly
We now evaluate the interplay between remodelers and mul-

timeric histones in the disassembly process. Even though interior
octamer–DNA contacts can be transiently exposed for remodeler
binding, for simplicity and tractability, we assume remodelers can
only attack from the ends of the octamer–DNA contact footprint.
This assumption changes the underlying geometry of the state space
and is valid for describing the attack from motor proteins, such as
helicases and RNA polymerases. Since remodelers can attack only
from the one exterior side of each H2A–H2B dimer, previous calcu-
lations of facilitated detachment in the linear peeling model can be
readily adapted to the one-sided peeling model (see Appendix B). As
in our analysis of the unfacilitated, irreversible multimeric model,
the analysis in this section begins with the irreversible scenario
(ΔEs =∞). We first consider a dimer detaching from the system
via a sequence of independent trials, each taking time τH2A–H2B,
followed by detachment of the remaining tetramer. Assuming the
steady state approximation for each subdomain given by Eq. (B2) in
Appendix B, we can estimate the dimensionless typical H2A–H2B
dimer–DNA detachment time with possibility of tethering to the
tetramer

τH2A−H2B ∶=
1 + e(Nl−1)(Ec−E−p )

εe(Nl−1)(Ec−E−p )
(14)

in the weak remodeler regime. Here, Eq. (B2) is the one-sided ver-
sion of Eq. (6) and its inverse results in the estimate for τH2A–H2B
and illustrates how one can apply previous results from the sim-
ple, intact-histone peeling model to the peeling of each of the
histone subunits by modifying the number of contact sites from
N to N l, Nr.

To obtain an estimate for both strong and weak remodeler
regimes, we shall use the one-sided version of Eq. (10) by taking the
maximum of Eqs. (B2) and (B3). Following the arguments made for

non-facilitated multimeric disassembly that led to Eq. (11), the prob-
ability qa/(qa + qd) that the dimer is still attached to the (H3–H4)2
tetramer after its DNA contacts are broken is now modified by the
probability that contacts reform before dimer–tetramer bond break-
ing in the presence of remodeler competition. When there is a strong
facilitation by remodelers, they will block DNA contact sites quickly
after the histone dimer unbinds from these contact sites. Remod-
eler binding at rate pa and dimer dissociation from the (H3–H4)2
tetramer occurring at rate qd thus compete with H2A–H2B–DNA
contact rebinding. Consequently, in the qa, qd ≫ koneNlEc limit, the
expected time for complete H2A–H2B dimer detachment from the
nucleosome can be approximated by

̂E[TH2A−H2B(1)] ∶=
τH2A−H2B

(1 − qa
qa+qd

kon
kon+pa+qd

)
. (15)

The expected dimensionless time for detachment of the
remaining (H3–H4)2 tetramer is given by τ(H3−H4)2

≈ (1 +Nme(Nm−1)(Ec−E−p ))/(εNme(Nm−1)(Ec−E−p )), analogous to

τH2A–H2B given in Eq. (14) and the inverse of λ̂0(Ep > Ec) given in
Eq. (6) for the weak facilitation limit, but with Nm tetramer–DNA
contact sites. In analogy to the expected time for detachment of a
multimeric nucleosome in the absence of remodelers [Eq. (12)],
the expected dissociation time in the presence of remodelers can be
estimated as the sum of the expected time for detachment of both
H2A–H2B dimers and the (H3–H4)2 tetramer,

Ê[T(1)] ∶= α ̂E[TH2A−H2B(1)] + τ(H3−H4)2 , (16)

valid in the qa, qd ≫ koneNlEc limit. Here, α ∈ (1, 2) is a similar factor
to α in Eq. (12), while their values are not necessarily the same.

In the strong facilitation limit, we simply replace the estimate of
the DNA-detachment times τH2A–H2B and τ(H3−H4)2 given in Eq. (16)
by Eqs. (B3) and (10), with N l and Nm numbers of contact sites.

Likewise, we can estimate the principle eigenvalue of the facil-
itated multimeric detachment process by considering the contribu-
tions from the monomeric, simple histone disassembly pathway and
other rate-limiting steps,

− λ̂0,p,q(ΔEs =∞) = −λ̂0,p +
1

Ê[T(1)] + kon
q∗d

, (17)

where λ̂0,p is given by Eq. (10) and provides an estimate of the
rate of monomeric histone dissociation, while Ê[T(1)] is given by
Eq. (16). A comparison between this estimate and numerical results
is shown in Fig. 10(a). Note that the requirement Ec − E−p > 0 for
effective facilitation remains the same as in the simple intact-histone
model. When the remodelers bind weakly, histone fragmentation
provides a strong facilitation to the detachment process. However,
when remodelers bind strongly, histone fragmentation does not
significantly accelerate disassembly.

The case of finite subunit concentrations in solution (finite
ΔEs) is discussed in more detail in Appendix E 2. An estimate of
the disassembly rate is given in Eq. (E12). Analytic approxima-
tions and numerical results are compared in Fig. 10(b) and show
qualitative agreement. Nucleosome remodelers facilitate the disas-
sembly by reducing the energy barrier for each contact site. This
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FIG. 10. Principle eigenvalues—an estimate of 1/E[T(1)]—from the remodeler-
facilitated disassembly model. (a) For the irreversible model (no subunits in
solution), the dimensionless disassembly rate −λ0 is plotted as a function of
remodeler binding rate pa, for fixed Ec = −2, Eq = −1, pd = 0.01, with estimates
given by Eq. (17) (b) The disassembly rate −λ0 for different subunit chemi-
cal potential differences ΔE(H2A−H2B)

s = ΔE(H3−H4)2
s = ΔEs. Estimates given in

Eq. (E12) are plotted as the dashed curves, which agree well with numerical
results. In (a) and (b), qd = q∗d ≡ q(∗)d and all rates are normalized with respect to
kon.

FIG. 11. The fraction of disassembly pathways that lead to dissociation of an intact
histone octamer. This quantity is defined as the probability that the histone is an
intact octamer at the moment of full nucleosome disassembly. (a) The probability
of monomeric nucleosome disassembly is plotted as a function of remodeler bind-
ing pa for different chemical potentials ΔEs. Here, a small subunit unbinding rate
q∗d = 0.001 and a large chemical potential (low subunit concentration in solution)
allow for a sharp transition to a monomeric disassembly pathway as facilitation
is increased through pa. (b) The probability of monomeric disassembly plotted
against pa, but with q∗d = 0.01. The larger unbinding rate increases the proba-
bility of a fragmented-histone disassembly. In (a) and (b), all rates are normalized
by kon.

facilitation acts somewhat independently of histone fragmentation,
so the threshold Ep < Ec for effective facilitation is the same as
that in the linearly peeling model, regardless of different values of
ΔEs and Eq.

As detailed in Appendix F, we also found that remodeler
binding and histone subunit concentration in solution can con-
spire to bias the disassembly from a more fragmented dissoci-
ation pathway to one in which the histone complex dissociates
intact. Figure 11 shows the probability of the histone in an intact
octamer state at the moment of full nucleosome disassembly. In

the weak remodeler facilitation regime, low histone subunit con-
centration typically allows for a faster multimeric disassembly path-
way, while high histone subunit concentration makes the rates
of monomeric and multimeric disassembly comparable. In the
former case, the histone is more likely to dissociate after frag-
mentation. On the other hand, when the remodeler binding is
strong, both pathways have similar rates. In this case, the prob-
ability of the histone dissociating as an intact octamer depends
on the dimer–tetramer unbinding rate q∗d and the dimensionless
mean disassembly time under the multimeric fragmentation path-
way Ê[T(1)]. When q∗d < kon/Ê[T(1)] (but qa, qd ≫ kon eNlEc ), the
histone is more likely to dissociate as an intact octamer, as shown
in Fig. 11(a). When q∗d ≥ kon/Ê[T(1)] (and qa, qd ≫ kone NlEc ), it
is more likely to fragment before complete dissociation, as shown
in Fig. 11(b).

III. SUMMARY AND CONCLUSIONS
In this study, a suite of Markov chain models were developed

to analyze nucleosome stability. We delineated a number of mecha-
nisms that probably contribute to nucleosome stability, including a
model of multimeric histone disassembly.

Linear detachment model. Our first proposed mechanism main-
tains both high accessibility for few energy consuming proteins and
low accessibility for generic DNA binding proteins. For the spon-
taneous detachment problem, the model can be described by a
single parameter, the contact free energy Ec, for which we assume
Ec ≪ −1 to reflect strong histone–DNA binding. The simple-histone
linear peeling mechanism described by our first model applies
not only to the histone detachment problem but also to a fam-
ily of nucleic acid-binding proteins that both protect the nucleic
acid from attack and respond to regulation signals quickly. Exam-
ples include E. coli single-stranded DNA binding proteins (E. coli
SSB) and replication protein A (RPA) that exists in eukaryotic
cells.

In an extended model that incorporates remodeler-facilitated
disassembly, we analyzed the enhancement of dissociation pro-
vided by processive motors moving along DNA, which also serves
as a good estimate of facilitation by generic remodelers binding
from solution. We introduced additional parameters that quan-
tify the remodeler binding rate pa and binding energy Ep. When
the dissociation rate pd = paeEp is not too slow, a quasi-steady
state approximation provides a tight upper bound on the effec-
tive unbinding rate, revealing a high degree of cooperativity and
a gating mechanism sensitive to the energy cost of the proces-
sive motors or remodelers. Efficient acceleration is possible only
if Ec − Ep > 0; this energy difference controls a “gate” that allows
certain proteins, such as polymerases, to access DNA while pre-
venting generic DNA binding proteins from penetrating the nucle-
osome. This simple analysis helps resolve the paradox that histones
must simultaneously bind tightly to DNA yet rapidly release DNA
when accessibility is required, for example, during transcription
or DNA replication. Our prediction is consistent with observa-
tions from previous single-molecule experiments and data-driven
modeling that fast-diffusing remodelers in the absence of ATP con-
sumption do not significantly affect the nucleosome disassembly
rate.10
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Besides nucleosomes are many other biologically important
systems in which protein–DNA binding and unbinding arise.49

Many have been studied in single-molecule experiments that inter-
rogate the collective dynamics of proteins along a single DNA
strand, where facilitated protein detachment was observed under
increased protein concentration in solution.50,51 Our simple-histone
models may provide insights into developing models for these more
general protein–DNA systems.

Multimeric detachment model. We also derived explicit for-
mulas for mean first dissociation times of nucleosomes in which
the histone is comprised of octamer subunits (two dimers and a
tetramer). We first considered the irreversible histone detachment
model in which once a histone subunit (dimer or tetramer) detaches
from the nucleosome complex, it does not rebind. In a sponta-
neous, incremental detachment model, both the binding energy Eq
between histone dimers and tetramers and their dissociation rates
qd are additional relevant parameters. The dimer–tetramer disso-
ciation rate qd can also depend on the state of the DNA–histone
binding sites. We thus allow an additional parameter q∗d to describe
the unbinding rate when at least one of the histone modules is com-
pletely unbound from the DNA. Although binding affinities between
histone subunits have not been experimentally characterized, we
found that the detachment rate can be significantly upregulated
by modulating the binding free energy Eq between the (H3–H4)2
tetramer and the H2A–H2B dimers. This effect comports with the
observation that mutations that reduce the binding affinity between
different modules of histones lead to a much shorter disassembly
time of around 20 min.46,52

The case of reversible binding (exchange of subunits from bulk
solution) is fully discussed in Appendixes A–F, where we intro-
duced additional parameters ΔE(subunit)

s and qa, q′a, q′′a to describe
the free energy difference between histone particles in solution
and those bound to a nucleosome (not counting the associated
subunit–DNA contacts) and rebinding rates. Kinetically, if a histone
dimer fully detaches from DNA but is still linked to the DNA-
bound tetramer, it is held close to the DNA, resulting in a locally
high effective dimer concentration. Since dimers in solution are
much more dilute, the binding rate should be much smaller than
kon. When free histones are present in the solution, the stability
of the nucleosome can be modulated by the concentration of free
histones. For example, a recent experiment reported that the free
histone concentration is a key modulator of different responses of
nucleosomes to the progression of replication fork;53 our model can
potentially be adapted to provide a mechanistic insight into this
observation.

Histones can disassemble from DNA either as a whole or in a
piecewise fashion. Our two classes of models represent two parallel
pathways of nucleosome disassembly. The first pathway is defined
by linear intact-histone detachment, while the second pathway
reflects disassembly involving histone fragmentation. Preference of
one pathway over the other depends on the subunit unlinking
and remodeler binding rates. Typically, the multimeric detachment
model disassembles faster than the linear detachment model. How-
ever, strong nucleosome remodelers, high concentrations of free
histones in solution, and strong binding between histone dimers
and tetramers can render the multimeric disassembly pathway
less likely.

TABLE IV. A summary of main analytical approximations developed in this paper.

Model Detachment mechanism ∣λ0∣

Simple histone

Spontaneous Equation (2)
Facilitated Equation (10)

One-sided, spontaneous Equation (B1)
One-sided, facilitated Equation (B4)

Multimeric histone

Irreversible spontaneous Equation (13)
Reversible spontaneous Equation (E9)
Irreversible facilitated Equation (17)
Reversible facilitated Equation (E10)

All of our results are derived assuming uniform binding and
unbinding rates between histone and DNA contacts and are listed
in Table IV. Numerical tests of heterogeneous koff performed in
Appendix D suggest that disassembly of nucleosome that has ran-
dom histone–DNA contact energy profiles (depending on DNA
sequence) can be well characterized by the average binding energy.
However, recent analysis suggests that these rates may exhibit
cooperativity depending on the amount of unwrapped DNA.26

Our model can be extended to capture such effects by allowing
koff(n1, n2) to explicitly depend on the state of the system or by sim-
ply allowing koff to be different constants for the H2A–H2B–DNA
and (H3–H4)2–DNA contacts.

Although our predictions focus on the mean time to disas-
sembly of a single histone, higher moments or distributions of
disassembly times can, in principle, be numerically extracted from
our stochastic model. Our suite of models provide the building
blocks for constructing higher-level models of rearrangement of
interacting nucleosome assemblies54–57 that occur during impor-
tant cellular processes, such as transcription and replication58 and
post-translational modification of histone binding energies.10,59
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APPENDIX A: TRANSITION MATRICES,
EIGENVECTORS, AND EIGENVALUES
FOR THE INTACT-HISTONE, SPONTANEOUS
DETACHMENT MODEL
1. Transition matrix for the intact-histone,
spontaneous detachment model

To simplify our mathematical analysis, we normalize all rates
by kon so that koff/kon = ε, kd/kon = s, and λi are dimensionless. It
is straightforward to reconstruct physical rates and times by mul-
tiplying or dividing by kon. We allow the total number of contact
sites N to be a variable and relabel the transition matrix W as
WN ≡ AN + εBN + sCN , which can be generated recursively.

The exact form of transition matrix depends on how the differ-
ent states (n1, n2) of Ω are enumerated. We choose to order states by
first grouping ones with the same n1 + n2 together and then ordering
the others by ascending order in n1 + n2. Finally, states in the same
group are ordered in ascending n1. For example, the first few states
are (0, 0), (0, 1), (1, 0), (0, 2), (1, 1), . . .. This bookkeeping scheme
allows us to construct the transition matrices via simple recursion.
Setting A1 = 0, An is

An =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 F1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 D1 F2 0 ⋅ ⋅ ⋅ 0

0 0 D2 F3
. . . ⋮

0 ⋮
. . .

. . .
. . . 0

0 ⋮
. . .

. . . Fn−1

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 Dn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A1)

where Fk is a k × (k + 1) matrix, with the two longest diagonals
set to 1 (all other entries are zero), representing the closure of one
open contact site. The matrix Dk = diag{−1,−2,−2, . . . ,−2,−1} is a
(k + 1) × (k + 1) diagonal matrix determined by setting the column
sums of Ak to 0. By construction, AN is a N(N+1)

2 × N(N+1)
2 upper tri-

angular matrix with the diagonal entries {0,−1, . . . ,−1,−2, . . . ,−2}.
Specifically, there is one diagonal entry with value 0, 2(N − 1) diag-
onal entries with value −1, and the remaining (N − 1)(N − 2)/2
diagonal entries with value −2.

Elements in

Bn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D′0 0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

F⊺1 D′1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 F⊺2 D′2
. . . ⋮

0 0
. . .

. . .
. . . ⋮

0 ⋮
. . .

. . . D′n−2 0

0 0 ⋅ ⋅ ⋅ 0 F⊺n−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A2)

represent rates of transitions to higher n1 + n2. A simple way of
defining Bn is to transpose An and change the diagonal terms so that
each column adds up to 0 to conserve total probability. The reason
why we can do this is that for every transition lowering n1 + n2, there
is exactly one opposing transition raising n1 + n2. Since Wij repre-
sents the transition rate from state j to state i, we transpose the matrix
to invert the direction of transition. In Eq. (A2), the matrix F⊺k is the
transpose of Fk and D′k is a (k + 1) × (k + 1) diagonal matrix with
all diagonal entries being −2. The last diagonal entry 0 is an n × n
matrix with all entries being zero.

Finally, the matrix Cn represents the transitions leaving the
state space into the absorbing states. For n ∈ Z+,

Cn =
⎛
⎜
⎝

0 0

0 −In

⎞
⎟
⎠

, (A3)

where Cn is an n(n+1)
2 × n(n+1)

2 matrix and In is the identity matrix
in Rn×n.

To be concrete, the matrices A3, B3, and C3 are explicitly

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 1 0 0 0

0 −1 0 1 1 0

0 0 −1 0 1 1

0 0 0 −1 0 0

0 0 0 0 −2 0

0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

B3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−2 0 0 0 0 0

1 −2 0 0 0 0

1 0 −2 0 0 0

0 1 0 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (A4)

C3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

2. Perturbation analysis of the intact-histone,
spontaneous detachment model

We will develop a series expansion of the eigenvector v0 associ-
ated with the principle eigenvalue λ0 ≡ λ0(s) of W(s) = A + εB + sC
and use it to compute the eigenvalue λ0(s) as a function of s.

We begin with a general observation. Let H be a matrix with
a simple eigenvalue 0. Define H as the submatrix of H obtained
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by deleting the first row and column, and assume in addition that
∣H∣ ≠ 0. Denote the first column of H excluding the first-row element
by h. If v is an eigenvector of H with eigenvalue 0 and is written in

the form v = [1

v
], then Hv = 0v = 0. This implies h +Hv = 0 and the

general relationship

v = −H−1h. (A5)

Principle eigenvector for W(0). Since W(0) = A + εB is a transition
matrix associated with a reversible Markov chain, the eigenvector
associated with the 0-eigenvalue is

v0(s = 0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ε12

⋮
εN−11N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A6)

where 1i ∈ Ri is a vector of all ones.
Series expansion for v0(s). Now, we set H ≡W(s) − λ0(s)I,

denote the associated principle eigenvector by v(s), and express it

in the form v0(s) = [ 1

v0(s)
]. Then, using Eq. (A5),

v0(s) = −[W(0) + sC − λ0(s)I]
−1w

= −[I + sW−1(0)C − λ0(s)W−1(0)]−1
W−1(0)w, (A7)

where h in Eq. (A5) is set to w, which is equivalent to the first column
of W(s), minus the first element, and is independent of s. All terms
that depend on the perturbation s are explicitly indicated. Recall the
Neumann series expansion for (I + T)−1 = ∑∞k=0 Tk, provided that
the operator norm ∥T∥ < 1. In this case, we can write

v0(s) = −[I +
∞
∑
k=1
(λ0(s)W−1(0) − sW−1(0)C)k]W−1(0)w. (A8)

Radius of convergence. We first estimate the values of λ and s for
which series expansion (A8) converges. This amounts to evaluating
the operator norm of the term (λ0(s)W(0)−1 − sW(0)−1C). Since C
is diagonal with entries 0 and −1, ∥C∥ = 1, and we find the bound

∥λ0(s)W−1(0) −W−1(0)sC∥
≤ ∣λ0(s)∣∥W−1(0)∥ + s∥W−1(0)∥∥C∥
≤ (∣λ0(s)∣ + s) ∥W−1(0)∥. (A9)

Estimating the operator norm of W−1(0) is more involved. We
note that Q̂1,1(0) is an N(N + 1)/2 − 1 ×N(N + 1)/2 − 1 matrix. An
upper bound for the operator norm is given by

∥W−1∥ ≤ (N + 2)(N − 1)
2

max
i,j
∣W−1(i, j)∣. (A10)

We now characterize the entries of W−1(0) by applying the same
perturbation formula again to W(0) = A + εB. Note that A and B
are block tridiagonal and A is upper-triangular,

W(0) = A + εB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 F2 0 ⋅ ⋅ ⋅ 0

0 D2 F3
. . . ⋮

⋮
. . .

. . .
. . . 0

⋮
. . .

. . . FN−1

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 DN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ ε

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D′1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

F⊺2 D′2
. . . ⋮

0
. . .

. . .
. . . ⋮

⋮
. . .

. . . D′N−2 0

0 ⋅ ⋅ ⋅ 0 F⊺N−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A11)

in view of the block matrix representations given by Eqs. (A1) and
(A2). Since A is bidiagonal, its inverse is

A−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D−1
1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∗

0 D−1
2

. . .
. . . ⋮

⋮
. . .

. . .
. . . ⋮

⋮
. . .

. . . ⋮
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 D−1

N−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A12)

and we can expand the inverse W−1(0) as

W−1(0) = A−1 +
∞
∑
i=1
(−εA−1B)iA−1

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D−1
1 + o(1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∗

O(ε) D−1
2 + o(1)

. . .
. . . ⋮

⋮
. . .

. . .
. . . ⋮

⋮
. . .

. . . ⋮
O(εN−2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ O(ε) D−1

N−1 + o(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O(1) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ O(1)

O(ε) O(1)
. . .

. . . O(1)

⋮
. . .

. . .
. . . O(1)

⋮
. . .

. . . O(1)
O(εN−2) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ O(ε) O(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A13)

Here, each ∗ denotes a block matrix with entries of order O(1).
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We can show by induction that the maximum entry of A−1 is
less or equal to 1. Therefore, the maximum entry of W−1 is bounded
by 1 +O(ε) and we conclude that the radius of convergence of the
series expansion in Eq. (A8) is

s + ∣λ0(s)∣ ≤
2

(N + 2)(N − 1)(1 +O(ε)) . (A14)

In other words, the series expansion can be valid even if s ≥ ε. The
radius of convergence is principally determined by the operator
norm of A−1.

Perturbations to the eigenvector. We next explicitly evalu-
ate how the eigenvector changes under first-order perturbation.
Expanding Eq. (A8) to first order in s + ∣λ∣, we find

v0(s) = v0(0) +W−1(0)(λ0(s)I − sC)v0(0) +O((s + ∣λ∣)2).
(A15)

Inserting the estimate of W−1 from Eq. (A13), the definition of C,
and v(0) derived from Eq. (A6) into Eq. (A15), we observe that

W−1(0)v0(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O(ε)12

O(ε2)13

⋮
O(εN−1)1N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

W−1(0)Cv0(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O(εN−1)12

O(εN−1)13

⋮
O(εN−1)1N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(A16)

Let 1 be the vector with all entries equal to 1. The eigenvalue
λ0(s) satisfies the equation

λ0(s) =

1⊺W(s)
⎡⎢⎢⎢⎢⎢⎣

1

v0(s)

⎤⎥⎥⎥⎥⎥⎦
1⊺v0

(s)

= 1⊺sCv0(s)
1⊺v0(s)

= s1⊺Cv0(0) + s1⊺CW−1(0)v0(0)λ0(s)
+ s21⊺CW−1(0)Cv0(0)
= −NsεN−1 + sO(εN−1)λ0(s) + s2O(εN−1). (A17)

Therefore, the lowest-order approximation to the eigenvalue is

λ0(s) ≈ −NsεN−1 +O(s2εN−1) = −NsεN−1(1 +O(s)). (A18)

This approximation holds whenever s≪ 1 (even if s≫ ε), which
guarantees the convergence of the series expansion in Eq. (A8).

Substituting Eqs. (A16) and (A18) back into Eq. (A15), we find
the lowest-order approximation to the eigenvector

v0(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

(ε + λ0(s)O(ε) + sO(εN−1))12

(ε2 + λ0(s)O(ε2) + sO(εN−1))13

⋮
(εN−1 + λ0(s)O(εN−1) + sO(εN−1))1N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A19)

Given that λ0(s) = O(sεN−1), for each component v0(n1, n2; s) of
v0(s), we have

v0(n1, n2; s) = (1 +O(s))v0(n1, ns; 0). (A20)

3. Eigenvalues and first passage times
Here, we present some general results on the eigenvalues and

eigenvectors of the transition matrix W(s) and their relation to
FPTs.

First, let λ, v be an eigenvalue and eigenvector of W(s), respec-
tively. If the vector P(t) satisfies dP/dt =WP, and P(0) = v, then
P(t) = eλtv. Next, we will apply this observation to the FPT problem.

In a FPT problem, we set the target state Ω∗ to be absorb-
ing. Restriction of the transition matrix on states other than Ω∗
makes the total probability Ptot(t) = P[X(t) ∉ Ω∗] = ⟨1, P(t)⟩ non-
increasing with time t, where X(t) is used to denote a random
trajectory of the system, and ⟨⋅, ⋅⟩ is the Euclidean inner product, i.e.,
⟨x, y⟩ = ∑(n1 ,n2) ∈Ω x(n1, n2)y(n1, n2).

In other words, Ptot(t) indicates the probability that the system
has not reached the target state Ω∗ by time t and is equivalent to
the survival probability in the context of FPT problems. −dPtot/dt is
the probability density function of the FPT to Ω∗ and is denoted by
f (t).

When P(0) = v, we have P(t) = eλtv and Ptot(t) = ⟨1, P(t)⟩
= eλt⟨1, P(0)⟩. In view of the probabilistic interpretation of Ptot(t),
we may assume that v is normalized, i.e., ⟨1, v⟩ = 1. Therefore, we
have

Ptot(t) = eλt , f (t) = −λeλt. (A21)

Here, f (t) represents the distribution of first passage times to
Ω∗ from a normalized non-negative eigenvector v and follows an
exponential distribution with rate −λ. The MFPT is thus given by
1/(−λ).

Next, consider the case where eigenvalues of W satisfy 0 > λ0
≫ Re(λi),∀i ≥ 1, and the eigenvector v0 associated with λ0 is non-
degenerate, nonnegative, and normalized. For simplicity, we assume
that W is diagonalizable although this can be relaxed by considering
the Jordan canonical form of non-diagonalizable matrices.

Let P(0) = P0 be an arbitrary distribution over the states other
than Ω∗; then, P0 admits a unique decomposition P0 = ∑N−1

i=0 civi,
where vi is the eigenvector of W associated with λi. By linearity of
the equation dP/dt =WP, the solution is given by

P(t) =
N−1

∑
i=0

cieλitvi = eλ0t
N(N+1)/2
∑
i=0

civie(λi−λ0)t. (A22)
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When Re(λi)≪ λ0 < 0, Re(λi − λ0)≪ 0,∀i ≥ 0, and we have

P(t) = c0eλ0tv0 +O(e−Re(λ1−λ0)t),

Ptot(t) = c0eλ0t +O(e−Re(λ1−λ0)t).
(A23)

That is to say, in the long time limit, the probability distribution of
the system is dominated by the eigenvector v0, and the survival prob-
ability Ptot(t) decays exponentially with rate λ0. The MFPT is thus
given by c0/(−λ0).

This analysis applies to a general FPT problem. In our spe-
cific case of nucleosome disassembly and other scenarios where
the absorbing boundary method is applicable, the transition matrix
W can be considered as a perturbed transition matrix of an irre-
ducible Markov chain. In other words, there exists a decomposition
W =W0 + sΔW, where s is a small parameter. We treat the eigen-
vectors and eigenvalues as functions of s, denoted as λi(s) and vi(s),
respectively.

Since W0 is a transition matrix of a continuous time Markov
chain, we have 1⊺W0 = 0, i.e., 1 is a left eigenvector of W0 associated
with eigenvalue 0. Therefore, we have

0 = ⟨1, W0vi(0)⟩ = λi(0)⟨1, vi(0)⟩. (A24)

Irreducibility and the Perron–Frobenius theorem imply λi ≠ 0 for all
i ≥ 1 and thus ⟨1, vi(0)⟩ = 0 for all i ≥ 1. Therefore, under small per-
turbation, we have ⟨1, vi(s)⟩ = ⟨1, vi(0)⟩ +O(s) as s→ 0. We may
in addition require that ⟨1, v0(0)⟩ = 1. Note that ⟨1, P0⟩ = 1 for any
probability vector P0. Therefore,

1 = ⟨1, P0⟩

= ⟨1,∑
i≥0

civi(s)⟩

= c0[1 +O(s)] +∑
i≥1

ciO(s)

= c0[1 +O(s)] +O(s) (A25)

and c0 ∼ 1 +O(s). Combining c0 ∼ 1 +O(s) and Eq. (A22) sug-
gests that Ptot(t) = eλ0t +O(s)eλ0t +O(e−Re(λ1−λ0)t). This allows for
an evaluation of E[T(x)] via ∫ ∞0 Ptot(t)dt. Consequently, in the
intact-histone, unfacilitated disassembly model, the MFPT E[T(x)]
from any initial state x in Ω to the fully detached state Ω∗ is given by

E[T(x)] = 1
−λ0
+O(s). (A26)

Moreover, T(x) is approximately exponentially distributed with rate
−λ0 for any initial state x in Ω so that

P(T(x) ≤ t) = 1 − eλ0t +O(s). (A27)

The asymptotic exponential distribution and fast relaxation
to the steady state properties of this simple system make it possi-
ble to treat the simple model as a single coarse-grained state, with
transition rates Ne−Nε to Ω∗.

When other slower transitions are present, we can separate
the fast internal relaxation to steady state v0(s) and slow dynam-
ics for transitions to external states. The transition rates to external
states can be calculated by averaging over the steady state distribu-
tion v0(s) and provides a good approximation to the full dynamics,
as long as the external transition rates are slower than the relax-
ation rate −Re(λ1) ≈ 1 (measured in units of kon). As an exam-
ple of this fast–slow variable separation, we apply this approach
to the coarse-graining of the intact-histone, remodeler-facilitated
disassembly model in Fig. 4. This coarse-graining yields matched
principle eigenvalues shown in Fig. 5(b).

To formalize the separation of timescales, we consider the
following general form of the perturbed dynamics:

dP(t)
dt

= (W + δM)P(t) + δm(t). (A28)

In Eq. (A28), δ → 0 and M is an additional perturbation to the tran-
sition matrix W =W0 + sΔW. The vector δm(t) is a source term.
In the context of coarse-graining of the intact-histone, remodeler-
facilitated disassembly model in Fig. 4, we restrict the transition
matrix to the microstates within a coarse-grained macrostate. The
vector m(t) represents the transitions from other macrostates to the
given macrostate, while δM represents the transitions from the given
macrostate to other macrostates, and W represents the transitions
within the given macrostate.

We can still apply the diagonalization technique W = VΛV−1,
where Λ is a diagonal matrix with diagonal entries λi and V is a
matrix whose columns are the eigenvectors of W,

dP(t)
dt

= VΛ + δMV[V−1P(t)] + δm(t). (A29)

Left multiply by 1⊺ and recall that as s→ 0, 1⊺V = [1, 0, . . . , 0]
+O(s) and V−1P(t) = [Ptot +O(s), O(s), . . . , O(s)]⊺ for any non-
negative vector P(t). This yields

dPtot(t)
dt

= (λ0 + δ1⊺Mv0)Ptot(t) + δ1⊺m(t) +O(δs) (A30)

as s→ 0. Therefore, the survival probability Ptot(t) corresponding
to a coarse-grained macrostate can be approximated by the fol-
lowing processes: the coarse-grained state moving to the absorbing
state with rate −λ0, moving to other coarse-grained states with rate
−δ1⊺Mv0, and other states contributing to the coarse-grained state
with rate δ1⊺m(t). This approximation holds when s and δ are small
enough, compared to 1, i.e., kon in the context of our models. In
other words, −δ1⊺Mv0 is the rate at which the original steady state
v0 leaves the coarse-grained state and goes to other states under
perturbation of δM, and δ1⊺m(t) is the rate at which other states
contribute to any state inside the coarse-grained state.

As a specific example, in Eqs. (C1) or (4) in the main
text, we may write the probability vector P in the block form:
[pN , pN−1, . . . , p1]

⊺. Consider pN as the coarse-grained state; then,
W =WN , M =MN , m(t) = ∑ j

pd
pa

GN, jpj(t), and δ = pa/kon.
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APPENDIX B: PROCESSIVE MOTOR-ASSISTED
HISTONE DETACHMENT

Processive motors, such as DNA helicases, slide along the DNA,
attacking the nucleosome from only one side of the histone–DNA
footprint. In this case, the histone is peeled off from the DNA in
a one-sided manner. Analogous to the two-sided peeling model,
we can also construct a one-sided peeling model consisting of the
attached state space Ω = {(m, n) : m + n ≤ N − 1}. Here, m records
the position of the motor protein and n records the number of
remaining histones.

When the remodeler is absent, the energy landscape of the
one-sided peeling model is similar to that of the two-sided peeling
model, shown in Fig. 2(b). The main difference lies in the degree
of degeneracy of each energy level. The lowest energy level is NEc,
corresponding to the unique n1 = n2 = 0 state in the two-sided peel-
ing model and n = 0 state in the one-sided peeling model. For other
energy levels (N − j)Ec, there are j + 1 states in the two-sided peeling
model and only one state in the one-sided peeling model.

The contribution of degeneracy to the principle eigenvalue of
the two-sided model is the factor N in Eq. (2), which represents
N degenerate states at the energy level of Ec. In other words, the
associated free energy is given by Ec + log N. By contrast, there is
no degeneracy in the one-sided peeling model, and the principle
eigenvalue is simply given by

λ0(ε) = −sεN−1[1 +O(s)]. (B1)

Estimates of the principle eigenvalue of the two-sided
remodeler-assisted peeling model given in Eqs. (6), (8), and (9)
are built from the simple estimate [Eq. (2)] of the spontaneous
nucleosome disassembly model. The analogous eigenvalues of the
one-sided peeling model are constructed from Eq. (B1) and are

λ̂0(Ep > Ec) ∶= −
se(N−1)(Ec−E−p )

1 + e(N−1)(Ec−E−p )
, (B2)

λ̂0(Ep → −∞) ∶= −min
⎧⎪⎪⎨⎪⎪⎩

se(N−1)Ec + pa

kon

N−1

∑
j=1

e jEc, s
⎫⎪⎪⎬⎪⎪⎭

, (B3)

and

λ̂0,p ∶= max{λ̂0(Ep → −∞), λ̂0(Ep > Ec)}. (B4)

These estimates are very close to those of the two-sided peeling
model as the entropic contribution (log N) is negligible compared
to the enthalpic contribution (NEc), especially for strong contacts
Ec ≪ −1.

APPENDIX C: TRANSITION MATRIX
FOR INTACT-HISTONE MODEL
WITH REMODELING FACTORS

The linear detachment model is generalized to include remod-
eling factors that can bind to DNA or contact sites on the par-

tially delaminated histone particle. The total transition matrix that
connects states in the space Ωp ∶= {(m1, m2, n1, n2) ∈ N4 : m1 +m2
+ n1 + n2 < N} is defined by WN,p, which can be expressed in the
block form as follows:

WN,p =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

WN:1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

0 WN−1:2
. . .

. . . ⋮

⋮ 0
. . .

. . . ⋮

⋮ ⋮
. . .

. . . 0

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 W1:N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ pa

kon

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MN 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

MN−1,N MN−1
. . .

. . . ⋮

⋮
. . .

. . .
. . . ⋮

⋮
. . .

. . . 0

M1,N ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ M1,2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ pd

kon
G. (C1)

Here, Wn is the n(n+1)
2 × n(n+1)

2 matrix, as defined in Appendix
A 1 and Sec. II A 1, and Wn:m is the mn(n+1)

2 × mn(n+1)
2 matrix

constructed by placing mWn matrices along the diagonal blocks.
The matrix Mi,j describes the connectivity of transitions induced
by remodeler binding, while G describes the connectivity of tran-
sitions induced by remodeler unbinding. M and G depend on the
specific transition mechanism. In the case of processive motor pro-
teins that peel histones from DNA, m1 and m2 only increase or
decrease by 1 as the motor moves forward or backward by one
step. For proteins that directly bind to DNA, m1 and m2 can
change by larger distances depending on the numbers and posi-
tions of the collection of bound proteins. For example, when two
DNA–histone contact sites are exposed, the protein can bind to
either site, and binding to the more interior site results in m
increased by 2. On the other hand, when the protein unbinds,
since m only tracks the position of inward-most proteins, the next
value of m depends on the position of the second most inward
protein.

The construction of HN depends on how the states are
enumerated. We provide a possible enumeration scheme below.

● For the states (m1, m2, n1, n2), we first group the states
by the value of m1 +m2 in an ascending order. The first
N(N + 1)/2 entries correspond to the value of (m1 +m2)
= 0; the next block represents entries satisfying (m1 +m2)
= 1, where there are 2 × (N − 1)N/2 of them; and so on.

● Within each block, we further group the states by the value
of m1 in ascending order and then by values of n1 + n2, n1
accordingly in ascending order.

● For fixed (m1, m2), note that possible (n1, n2) states are
grouped in the same order as in the previous non-
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facilitated model. Therefore, the internal transition matrix
restricted to those states can be described by the same
WN−(m1+m2).

● To obtain the whole block with m1 +m2 fixed to a cer-
tain value, we just collect the corresponding submatrices
WN−(m1+m2) and put them in the diagonal entries, giving rise

to the notation Wn:2 = [Wn 0

0 Wn
] and so on.

For transitions represented by M and G, we have detailed their
construction in Eqs. (C2)–(C4).

1. Examples of M and G for motor proteins
Instead of giving the explicit matrix forms of M and G,

we characterize them by considering the transitions of m1, m2
allowed in the model, i.e., the positive entries in M and G. For
processive motor proteins, transition of the form (m1 → m1 +
1) is allowed only if n1 ≥ 1. The transition matrices are then
given by

M[(m1 + 1, m2, n1 − 1, n2), (m1, m2, n1, n2)] = 1, ∀n1 ≥ 1,
M[(m1, m2 + 1, n1, n2 − 1), (m1, m2, n1, n2)] = 1, ∀n2 ≥ 1,
G[(m1 − 1, m2, n1 + 1, n2), (m1, m2, n1, n2)] = 1, ∀m1 ≥ 1,
G[(m1, m2 − 1, n1, n2 + 1), (m1, m2, n1, n2)] = 1, ∀m2 ≥ 1,

(C2)

where M[ j, i] indicates the i→ j transition. The remaining off-
diagonal entries in M and G are 0. The diagonal entries are deter-
mined by the normalization condition that the column sum of M
and G vanishes from conservation of probability.

One special property of M and G for motor proteins is that they
are block-tridiagonal matrices. In the block matrix representation
shown in Eq. (C1), each block of rows and columns corresponds
to a collection of states with the same sum m1 +m2. For example,
WN represent transitions within the states with m1 +m2 = 0, while
MN−1,N represents transitions from the states with m1 +m2 = 0 to
the states with m1 +m2 = 1.

2. Examples of M and G for binding proteins
For proteins that bind to DNA directly, the transitions of

the form (m1 → m1 + k) are allowed if n1 ≥ k. For the matrix M,
we have

M[(m1 + k, m2, n1 − k, n2), (m1, m2, n1, n2)] = 1, ∀n1 ≥ k,
M[(m1, m2 + k, n1, n2 − k), (m1, m2, n1, n2)] = 1, ∀n2 ≥ k.

(C3)

This constraint on n1 and n2 arises naturally from the require-
ment that the target state (m′1, m′2, n′1, n′2) must fall into the state
space Ωp.

For the matrix G, in order to incorporate the different pos-
sibilities in the target state when m decreases, we consider two
limiting scenarios. In the “high remodeler density” limit, the matrix
Ghi is identical to that of the motor proteins, where m→ m
− 1 when the inner-most remodeler unbinds. In the “low remod-
eler density” limit, the matrix Glow represents transitions of the
form m→ 0 since only at most one remodeler is bound per
end,

Glow[(0, m2, n1 +m1, n2), (m1, m2, n1, n2)] = 1, ∀m1 ≥ 1,
Glow[(m1, 0, n1, n2 +m2), (m1, m2, n1, n2)] = 1, ∀m2 ≥ 1,

Ghi[(m1 − 1, m2, n1 + 1, n2), (m1, m2, n1, n2)] = 1, ∀m1 ≥ 1,
Ghi[(m1, m2 − 1, n1, n2 + 1), (m1, m2, n1, n2)] = 1, ∀m2 ≥ 1.

(C4)
The choices of different M and G will not significantly affect

the overall histone disassembly rate. For M associated with remod-
eler binding and motor proteins, respectively, the effective disso-
ciation rates differ only by O(ε). Moreover, Ghi and Glow yield
qualitatively similar outcomes. When pa ≲ pd, the facilitated states
are unlikely and do not contribute to the histone unbinding.
When pa ≫ pd, unbinding itself is unlikely and their differences are
negligible.

3. Irreversible remodeler binding
In this subsection, we assume that pd = 0 and pa ≪ kon. Then,

Eq. (C1) becomes

WN,p(pa) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

WN:1 +
pa

kon
MN 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

pa

kon
MN−1,N WN−1:2 +

pa

kon
MN−1

. . .
. . . ⋮

⋮
. . .

. . .
. . . ⋮

⋮
. . .

. . . 0
pa

kon
M1,N ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ pa

kon
M1,2 W1:N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C5)
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Corresponding to the block matrix representation of WN,p(pa)
above, we can write the ith eigenvector vi in the form of
vi = (vi∣N , . . . , vi∣1)⊺. Here, vi∣N ∈ RN(N+1)/2 corresponds to the
states with m1 = m2 = 0. If λ is the eigenvalue of this eigenvector,
then

λ(s, pa)vi∣N(s, pa) = (WN +
pa

kon
MN)vi∣N(s, pa)

= (WN(0) + sCN +
pa

kon
MN)vi∣N(s, pa), (C6)

where we have explicitly indicated the dependency on s and pa. If
v is an eigenvector of WN,p with nonvanishing vi∣N terms, then vi∣N

is an eigenvector of the matrix WN(s) + pa/konMN . In the follow-
ing, we will find an estimate for the eigenvalue by using perturbation
theory for the matrix WN(s) + pa/konMN based on the initial state
s = pa = 0.

First, we will find a proper initial eigenvector to start
the perturbation analysis. When pa = 0, define v(s, pa = 0)
= (v⊺i∣N(s, 0), 0, . . . , 0)⊺, where vi∣N(s, pa = 0) is the principle
eigenvector of the matrix WN(s) associated with the eigenvalue
Nsε(N−1)[1 +O(ε)]. Then, v(s, 0) is an eigenvector of the whole
matrix WN,p(pa) with eigenvalue 0 for all s.

We next perturb the initial eigenvector vi∣N(0, 0) by applying
the same analysis used to obtain Eq. (A8). We find

vi∣N(s, pa, λ) = vi∣N(0, 0, 0) +
⎡⎢⎢⎢⎢⎢⎣

0

−(∑∞i=1 [−W−1
N (0)(sC N + pa/konMN − λI)]i)vi∣N(0, 0, 0)

⎤⎥⎥⎥⎥⎥⎦
, (C7)

where λ here is treated as an independent variable. vi∣N(0, 0, 0)

denotes vi∣N(0, 0, 0) excluding the first row, and WN(0) is the
matrix WN(0) = AN + εBN with the first row and column deleted,
as defined earlier.

By applying the same estimate over the deviation, we obtain a
formula analogous to Eq. (A15),

vi∣N(s, pa, λ) = vi∣N(0, 0, 0)[1 +O(s + ∣λ∣ + pa

kon
)], (C8)

and calculate the corresponding eigenvalue by the relation
λ = ⟨1, Wv⟩/⟨1, v⟩ for the eigenpair (λ, v). In particular, we consider
the principle eigenvalue λ0(s, pa) and the corresponding eigenvector
v0(s, pa) with its first block component v0∣N ,

λ(s, pa) ≈ ⟨1N(N+1)/2, [WN(s) +
pa

kon
MN]xN(0, 0)⟩

× [1 +O(s + pa

kon
)]

≈ −(NsεN−1 + pa

kon

N−1

∑
i=1
(i + 1)εi)[1 +O(s + pa

kon
)]. (C9)

Equation (C8) provides a justification for Eq. (7) in the main text,
while Eq. (C9) provides a justification for Eq. (8) in the main text.

Determining the eigenvalue when pa ≫ kon is beyond the scope
of this perturbation method because the radius of convergence of
the series expansion is around pa ∼ kon. Nonetheless, the simple
interpolation formula

λ(s, pa) = max{−[NsεN−1 + pa

kon

N−1

∑
i=1
(i + 1)εi],−s} (C10)

matches numerical calculations quite well when s = ε.

4. Reversible attachment of remodelers
We have not found a succinct analytic description of the pre-

dictions of this model; therefore, we adopt a physical approximation
by considering the “stability” of vi∣N in order to reduce the block
matrix WN,p into a N(N+1)

2 × N(N+1)
2 matrix connected to (m1, m2).

The approximation, or coarse-graining, is shown in Fig. 4 and is
motivated by a steady state assumption under a fast–slow timescale
separation as demonstrated and formalized earlier in Appendix A 3.
Assuming that pa, pd ≪ kon, we note that the relaxation time of
states (n1, n2) given fixed m1, m2 is on the order of kon. Before
any remodeler binding and unbinding transition occurs, it is very
likely that the probability distribution of (n1, n2) conditioned on
(m1, m2) has reached a quasi-equilibrium state close to v0 with
N −m1 −m2 numbers of contact sites. In such a quasi-equilibrium
state, the mean rate of remodeler dissociation will be pd and the
mean rate of another remodeler binding at a distance k position from
a free end will be paεk for binding proteins. The overall approxi-
mation approach seeks to ignore the fine details of (n1, n2) given
(m1, m2) and approximates the transitions (m1, m2)→ (m′1, m′2) as
Markovian.

For convenience, we further ignore transitions with rate paεk for
k ≥ 2. This truncation allows for a simple solution for the eigenvec-
tor corresponding to the greatest eigenvalue. In the “high remodeler
density” limit (stepwise remodeler movement), the simplified tran-
sition matrix H′N , defined on Ω′p ∶= {(m1, m2) : m1 +m2 < N}, can
be expressed as

W′
N,p(pa, pd) = diag{−NsεN−1,−(N − 1)sεN−2, . . . ,−s}

+ pd

kon
AN +

pa

kon
εBN. (C11)

The first term describes transitions directly to the detached states
Ω∗p and other terms describe binding and unbinding of a remodeler.
Analogy of this simplified scenario to the unfacilitated unbind-
ing model is shown in Fig. 4(a). The approximation showed
numerical agreement with the full model in the main text. In
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the following, we employ additional approximation techniques to
derive an analytical expression for the principle eigenvalue when
pa + pd ≫ koff.

We can analytically approximate the principle eigenvalue of
W′

N,p(pa, pd) defined in Eq. (C11) only when ε≪ pa + pd, where

detailed balance approximately holds. In this case, we still assume
that the structure v0(m1, m2)∝ ( pa

pd
)k is stable under the small per-

turbation determined by ε, providing the estimate by considering
the normalized flux from the bound states Ω′p to the fully open
states Ω′∗p ,

λ0(pa, pd, ε) ≈ ⟨1N(N+1)/2, (H′(pa, pd, 0) − diag{NsεN−1,−(N − 1)sεN−2, . . . , s})v0⟩
⟨1N(N+1)/2, v0⟩

= εN∑N−1
k=0 (k + 1)(N − k)Kk

A

∑N−1
k=0 (k + 1)(εKA)k , (C12)

where KA ≡ pa
pd
= e−Ep . Equation (C12) can be further simpli-

fied to Eq. (6) by considering only the first term (k = 0) in
the numerator and the first and last term (k = 0, N − 1) in the
denominator.

The coarse-grained approximation of the right-hand side of
Eq. (C12) coincides with the prediction via the flux intensity
j(Ω′∗p ∣Ω′p). In general, for a continuous time Markov chain with
transition rate matrix W, let A and B be two disjoint sets of states,
and π be the stationary distribution of the Markov chain. Then, the
flux intensity from A to B is defined as

j(A ∣ B) = ∑a∈A∑b∈B Wa,bπb

∑b∈B πb
. (C13)

The flux intensity j(Ω′∗p ∣Ω′p) serves as an upper bound for the
principle eigenvalue λ0, e.g., Eq. (3.69) in the work of Aldous and
Fill.39

The intuition for the relation between flux intensity and the
eigenvalue is as follows: flux intensity is obtained by assuming that
the eigenvector with an absorbing boundary has the same struc-
ture as that with a reflecting boundary. In reality, presence of an
absorbing boundary will decrease the relative weight of states on
the boundary, thus making the associated eigenvalue smaller than
the flux intensity. Note that the flux intensity analysis is similar in
both the full facilitated model and the coarse-grained model, which
provides a further justification of the coarse-graining.

APPENDIX D: HISTONE DETACHMENT
WITH RANDOM LANDSCAPES

Previously, we have assumed that all 14 contact bonds between
the histone core and the DNA are identical with the same binding
and unbinding rates kon and koff. In reality, these can rates vary
depending on local DNA base identity, stiffness, and/or sponta-
neous curvature. It is estimated that the contact free energies vary
between 1.5kbT and 2kbT.7,60,61 To account for this heterogeneity,
we conduct numerical experiments that assume homogeneous bind-
ing rates but random unbinding rates that correspond to iid binding
energies Ec that are drawn from a uniform distribution between
1.5kBT and 2kBT. In this case, as shown in Fig. 12, the variation does
not alter the qualitative behavior of the system. Thus, our model is
well parameterized by just the mean binding energy Ec.

APPENDIX E: REVERSIBLE MULTIMERIC
HISTONE DETACHMENT

Histone dimers, tetramers, and other transient higher-
order complexes in solution may rescue partially disassembled
nucleosomes. They can initiate rescue of partially disassembles
nucleosomes by directly docking to existing nucleosome subunits
(dimers and tetramers) or by associating with the vacant DNA
segments. We assume that these rates q′(subunit)

a (for docking with
another subunit) and q′′(subunit)

a (for direct contact with the DNA)
are scaled properly according to their respective equilibrium bulk
concentration to ensure that the overall Markov process considering
these reactions is reversible. We have defined qa as the docking rate
conditioned on both subunits being attached to the DNA.

The primary quantity of interest is the expected time
E[T(1)] needed to transition from the fully attached state
1 = (σ = (1, 1, 1, 1, 1), n = (0, 0)) ≡ (1, 1, 1, 1, 1, (0, 0)) to the fully
dissociated state Ω∗. Solving for the mean detachment time requires

FIG. 12. Principle eigenvalue of the linear facilitated detachment model with ran-
dom binding energy reflected in variations in koff that lead to a per-site Ec that
is uniformly distributed between 1.5 and 2 (kBT). We set pd = 10−3 (in units of
kon) and plot −λ0 for five randomly sampled configurations of Ec. The dashed line
represents the prediction based on mean the binding energy and Eq. (10).
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inversion of a large matrix over the whole state space, which is ana-
lytically intractable. We therefore consider the probability flux inten-
sity j(Ω∗∣Ω) from the attached states Ω to the fully unattached state
Ω∗ as a useful surrogate. The general relation between j(Ω∗ ∣ Ω)
and λ0 is known and derived in, e.g., Eq. (3.69) in the work of Aldous
and Fill,39 where the inequality j(Ω∗ ∣ Ω) ≥ ∣λ0∣ is given.

To obtain a reversible Markov chain, we assume that both
bound and free histones are in equilibrium. With our definition of
q′′(subunit)

a , the corresponding free energy relative to bulk solution
can be expressed as ΔE(subunit)

s = log (kon/q′′(subunit)
a ).

The scaling relations between q′′(subunit)
a and q′(subunit)

a must
follow the equilibrium conditions

q′(H2A−H2B)
a = q∗d exp (−Eq − ΔE(H2A−H2B)

s ),

q′((H3−H4)2)
a = q∗d exp (−Eq − ΔE((H3−H4)2)

s ),

q′(Hexamer)
a = q∗d exp (−2Eq − ΔE((H3−H4)2)

s − ΔE(H2A−H2B)
s ),

q′′(H2A−H2B)
a = kon exp (−ΔE(H2A−H2B)

s ),

q′′((H3−H4)2)
a = kon exp (−ΔE((H3−H4)2)

s ),

q′′(Hexamer)
a = kon exp (−Eq − ΔE(H2A−H2B)

s − ΔE((H3−H4)2)
s ),

q′′(Octamer)
a = kon exp (−2Eq − 2ΔE(H2A−H2B)

s − ΔE((H3−H4)2)
s )

(E1)

to satisfy reversibility. The free energy function associated with each
state (σ, n) ≡ (σl, θl, σm, θr, σr, n) can be expressed as

E(σl, θl, σm, θr, σr, n)

= (σl + σr)ΔE(H2A−H2B)
s + σmΔE((H3−H4)2)

s + (θl + θr)Eq

+
⎛
⎝

Nlσl +Nmσm +Nrσr −
f

∑
j=1

1

∑
k=0

n( j)
k

⎞
⎠

Ec. (E2)

In the following, we will further assume kd = koff, i.e., s = ε, to reduce
the notational complexity.

1. Estimate of the flux intensity j (Ω∗∣Ω) for reversible
spontaneous detachment

Let Σ denote the collection of macrostates σ = (σl, θl, σm, θr, σr)
that is not equal to 0×5. The microstates on the boundary that are
characterized by a single intact DNA–histone contact are defined by
(Nlσl +Nmσm +Nrσr −∑k,j n( j)

k ) = 1 and denoted by ∂Ω.
The equilibrium flow intensity from bound states that can reach

the unbound state in one step can be expressed by enumerating all
possible boundary microstates n associated with each macrostate σ
in Σ, which is given by

j(Ω∗ ∣Ω) = ε
∑(σ,n)∈∂Ω e−E(σ,n)

∑(σ,n)∈Ω e−E(σ,n) , (E3)

where the free energy can be separated into component energies
E(σ, n) ≡ U(n) + V(σ) where

U(n) = −Ec

f

∑
j=1

l

∑
k=0

n( j)
k ,

FIG. 13. A schematic of possible macrostates of (σ l, σm, σr). The states of link-
age, θl, θr, are omitted for simplicity. For different values of Eq and ΔEs, the most
probable states are only chosen from either the fully bound state, shown in the
lower left corner, or the state where only the (H3–H4)2 tetramer is bound, shown
in the upper right corner. Other states are less probable transient states.

V(σ) = (σl + σr)ΔE(H2A−H2B)
s + σmΔE(H3−H4)2

s

+ (θl + θr)Eq +N(σ)Ec,
N(σ) = Nlσl +Nmσm +Nrσr,

(E4)

where U(n) describes the peeling energy cost of the DNA–histone
contacts in the microstate n and V(σ) is the energy of the most
probable microstate n∗σ , given macrostate σ. N(σ) is the number of
available DNA–histone contacts in macrostate σ. The denominator
in Eq. (E3) is the partition function of the equilibrium distribution
on Ω.

We can simplify the expression of Eq. (E3) by grouping degen-
erate states (σ, n) ∈ ∂Ω associated with each macrostate σ (as shown
in Fig. 13) in the numerator and identifying the most probable
microstate n∗σ for each macrostate σ in the denominator. The most
probable microstate n∗σ corresponds to the state with the largest
number N(σ) of DNA–histone contacts. The relative energy of the
boundary microstates nb compared to the most probable microstate
n∗σ for a specified σ is U(nb) = −[N(σ) − 1]Ec. For ε = koff/kon ≪ 1,
j(Ω∗∣Ω) simplifies to

j(Ω∗ ∣Ω) ≈ j(Ec) = ∑σ∈S εN(σ)e−V(σ)+Ec[N(σ)−1]

∑σ∈S e−V(σ)

= ∑σ∈S N(σ)e−V(σ)+Ec[N(σ)]

∑σ∈S e−V(σ) . (E5)

Note that the exponents in the factor ∑σ∈Se−V(σ) include all
possible macrostates, with contributions from both histone–histone
interactions (ΔEs and Eq) and DNA–histone contacts (Ec). Con-
versely, the exponents in ∑σ ∈S N(σ)e−V(σ)+Ec[N(σ)] take into
account only histone–histone interactions.

We further simplify the formula of j(Ω∗∣Ω) by considering the
relative probability of two main macrostates, the fully bound state
σ1 = (1, 1, 1, 1, 1), and the state where only the (H3–H4)2 tetramer is
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bound σm = (0, 0, 1, 0, 0). Assuming that ΔE(H3−H4)2
s = ΔEH2A−H2B

s ,
the energies of the two macrostates are given by V(σ),

V(σ1) = 3ΔEs + 2Eq +NEc,
V(σm) = ΔEs +NmEc. (E6)

By tracking only these two macrostates, we approximate
j(Ω∗∣Ω) in Eq. (E5) by

j(Ω∗ ∣Ω) ≈ NεN e−V(σ1) +NmεNm e−V(σm)

e−V(σ1) + e−V(σm)

= NεN +NmεNm eΔV

1 + eΔV

= NεN 1 + (Nm/N)e2(Eq+ΔEs)

1 + eΔV , (E7)

where

ΔV ≡ V(σ1) − V(σm)
= 2ΔEs + 2Eq + (N −Nm)Ec. (E8)

Given the discussion of irreversible nucleosome disassembly in the
main text, here, we focus on understanding the role of q∗d in nucleo-
some disassembly and how ΔEs affects reversible histone rebinding.
Equation (E7) explicitly shows the roles of ΔEs and Eq in the
reversible multimeric nucleosome disassembly.

Irreversible subunit unbinding arises when ΔEs →∞, which is
equivalent to q′a, q′′a = 0. In this limit, the most probable state is the
(H3–H4)2-bound state, with j(Ω∗ ∣Ω) ∼ NmeNmEc . The transition
point between an effectively irreversible scenario and a reversible
unbinding scenario is when ΔV ≈ 0, above which the fully bound
macrostate σ1 is no longer the most probable state. This transition
point is characterized by (Eq + ΔEs) = (NM −N)Ec/2.

When ΔEs is small but still positive and ΔEs + Eq > 0, the
most probable state is the fully bound state with N DNA–histone
contacts. However, the boundary states can be stabilized by
the absence of one or more histone modules, with j(Ω∗ ∣Ω)
∼ NmeNEc+2(ΔEs+Eq). However, when ΔEs is negative, the absence of
one or more histone subunits cannot stabilize the boundary states.
In this case, j(Ω∗ ∣Ω) ∼ NeNEc , which is close to the linear intact
histone model.

In the context of a FPT problem from the fully attached state,
1 = (σ1, n = (0, 0)) where N histone–DNA contacts must be disso-
ciated to reach Ω∗, which we formally treat as an absorbing state
while still allowing for partial rebinding. The flux intensity j(Ω∗∣Ω)
serves as an estimate of−λ0, the principle eigenvalue of the transition
matrix with absorbing state Ω∗, which, in turn, is inversely related
to the MFPT E[T(1)]. Thus, Eq. (E5) captures the dependence of
E[T(1)] on ΔEs.

We can provide a better estimate of the principle eigenvalue
λ0 of the detachment process under partial histone rebinding by
incorporating the rate-limiting effects of the unlinking step into the
flux intensity j(Ω∗∣Ω) and the contribution from the monomeric
pathway NeNEc ,

λ̂0,q(Ec, q∗d ) = −min{(q∗d /kon ∨NeNEc), j(Ω∗∣Ω)}, (E9)

where (q∗d /kon ∨NeNEc) ∶= max{q∗d /kon, NeNEc}. The results of
numerical calculations of E[T(1)] and its comparison to −λ0 in the
irreversible case, as well as the estimates in Eq. (E9), are shown in
Figs. 8(b) and 8(c). Good agreement between Eq. (E9) and numerical
results is observed.

2. Limits of remodeler facilitation
We now consider the case where the disassembly of nucle-

osomes is facilitated by additional nucleosome remodelers. We
make the following observations in different limits of the remodeler
strength. These observations parallel the corresponding limits in the
linear peeling intact-histone model.

When the binding energy Ep of the remodeler to DNA is
strongly negative and the binding rate pa > NlkoneNlEc , after the dis-
sociation of the histone modules, the remodeler will bind to the
DNA and prevent the reassociation of the histone modules. Con-
sequently, the scenario is equivalent to the irreversible, facilitated
disassembly of nucleosomes as discussed in the main text, where we
have the estimate through Eq. (16), which defines E[T],

− λ̂0,p,q(Ep → −∞) = −λ̂0(Ep → −∞) +
1

E[T] + kon
q∗d

. (E10)

When the binding energy Ep of the remodeler to DNA is weakly
negative and the binding rate pa is fast enough, the remodeler effects
are limited to modifying the effective contact energy between the
histone and DNA in Eq. (E9),

λ̂0,p,q(Ep > Ec) = λ̂0,q(Ec − E−p , q∗d ), (E11)

where E−p ∶= min{Ep, 0}. A general estimate of the disassembly rate
can be obtained by taking the minimum of the two limits, in terms
of absolute values, i.e.,

λ̂0,p,q ∶= max{λ0,p,q(Ep > Ec), λ̂0,p,q(Ep → −∞)}. (E12)

The results of this estimate are shown in Fig. 10(b). In the slow
remodeler binding rate pa limit, the estimate in Eq. (E12) pro-
vides a good approximation to the numerical results. In the large
pa regime, the most probable state on Ω switches to the state on the
boundary ∂Ω. Thus, λ0 should be rate-limited by the DNA–histone
unbinding rate koff from the boundary state to Ω∗, while the
first passage time E[T(1)] starting from the most interior state,
1 = (1, 1, 1, 1, 1, (0, 0)), is approximately N/koff.

APPENDIX F: QUANTIFYING CONTRIBUTIONS FROM
THE MONOMERIC AND MULTIMERIC PATHWAYS

We adapt the facilitated, multimeric model to quantify the rel-
ative contributions of the monomeric and multimeric disassembly
pathways. In the original model, the histone can leave the DNA
either as an intact octamer or by disassembling into dimers and
tetramers. For example, in the high free histone concentration limit
(ΔEs ≲ 0) and low remodeler binding rate limit (pa → 0), as is shown
in Fig. 10(b), the histone is prevented from breaking apart since any
partial loss of histone modules will be immediately replaced by free
histone modules. In this limit, the histone can leave the DNA only
as an intact octamer with the slow rate −λ0 ≈ NeNEc associated with
the unfacilitated simple intact-histone model given by Eq. (2).
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There are different ways to quantify the relative contributions
of the different disassembly pathways. One possibility is to evalu-
ate the flux contribution of the monomeric pathway to the total flux
associated with the principle eigenvector of the transition matrix.
However, in the strong facilitation limit, the principle eigenvector
differs significantly from the fully attached state from which we wish
to quantify the probability flux. To overcome this discrepancy, we
adopt an alternative approach in the FPT formalism. Suppose we
start with the state 1 = (1, 1, 1, 1, 1, (0, 0)) and split the target state
Ω∗ into two parts: Ω∗ = Ω∗1 ∪Ω∗2 .

We define the FPT to Ω∗1 and Ω∗2 as T1 and T2, respectively.
The original first passage time to Ω∗ is thus T = min{T1, T2}. Tran-
sitions into Ω∗1 define histones that leave as an intact octamer,
i.e., Ω∗1 = {(1, 1, 1, 1, 1, (n1 + n2 = N))}. The relative contribution
of the pathway that leads to Ω∗1 can be quantified by the proba-
bility P[T1 < T2] that T1 < T2. To compute P[T1(1) < T2(1)], we
employ the standard approach of first passage time formalism. For
completeness, we briefly describe the general method below where
the symbols used do not necessarily correspond to those previously
used.

Consider a continuous-time Markov chain with a discrete state
space Ω and the transition matrix W defined by d

dt x =Wx. Let A,
B ⊆ Ω and T be the FPT to A ∪ B. We then find P(xT ∈ A ∣ x0 = x)
≡ PA(x).

We first discretize the Markov chain {xt : t ∈ R+} into a
sequence of states {xti : ti ∈ R+}, where ti is the ith time point
at which the ith jump occurs. The sequence {xti ≡ xi : i ≥ 0} is a
discrete-time Markov chain, with the transition probability given by

P(xi+1 = y ∣ xi = x) = Wy,x

−Wx,x
.

Conditioning on the first jump time t1, we derive the recursion
relation for PA(x),

P(xT ∈ A ∣ x0 = x) =∑
y
P(xT ∈ A ∣ x0 = x, x1 = y)P(x1 = y ∣ x0 = x)

=∑
y
P(xT ∈ A ∣ x0 = y)P(x1 = y ∣ x0 = x)

=∑
y

PA(y)P(y ∣ x).

Rearranging, we find

Wx,xPA(x) +∑
y≠x

PA(y)Wy,x = 0.

P⊺AW = 0,

which can be solved with boundary condition

PA(x) =
⎧⎪⎪⎨⎪⎪⎩

1, x ∈ A,

0, x ∈ B.

In order to more efficiently solve the problem, it is helpful to
decompose W and PA according to the decomposition of the state

space Ω = Ω∗ ∪ A ∪ B, where A, B, and Ω∗ are disjoint. We represent
W by

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

WΩ∗ ,Ω∗ WΩ∗ ,A WΩ∗ ,B

WA,Ω∗ WA,A WA,B

WB,Ω∗ WB,A WB,B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

and P⊺A by

P⊺A = [P⊺A∣Ω∗ P⊺A∣A P⊺A∣B] = [P
⊺
A∣Ω∗ 1⊺ 0⊺],

where the second equality arises from the boundary condition.
Solving for P⊺A∣Ω∗ , we find

P⊺A∣Ω∗WΩ∗ ,Ω∗ + 1⊺WA,Ω∗ = 0,

PA∣Ω∗ = −(WΩ∗ ,Ω∗)
−⊺W⊺

A,Ω∗1.

The numerical solution is shown in Fig. 11. In the limit pa → 0, the
multimeric pathway is typically faster than the monomeric pathway,
leading to a smaller probability of the histone leaving as an intact
octamer. When pa →∞, the multimeric pathway is rate-limited
by the histone-module dissociation rate q∗d , while both pathways
are also limited by the histone–DNA dissociation rate koff. When
q∗d ≪ koff, the monomeric pathway is faster than the multimeric
pathway, and the probability of the histone leaving as an intact
octamer is close to 1. If q∗d ≫ koff and pa →∞, the multimeric
pathway and the monomeric pathway carry similar rates and the
probability of the histone leaving as an intact octamer is close to 1/2,
as shown in Fig. 11(b).
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