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ABSTRACT
Antibodies are important biomolecules that are often designed to recognize target antigens. However, they are expensive to produce and their
relatively large size prevents their transport across lipid membranes. An alternative to antibodies is aptamers, short (∼15 − 60 bp) oligonu-
cleotides (and amino acid sequences) with specific secondary and tertiary structures that govern their affinity to specific target molecules.
Aptamers are typically generated via solid phase oligonucleotide synthesis before selection and amplification through Systematic Evolution of
Ligands by EXponential enrichment (SELEX), a process based on competitive binding that enriches the population of certain strands while
removing unwanted sequences, yielding aptamers with high specificity and affinity to a target molecule. Mathematical analyses of SELEX
have been formulated in the mass action limit, which assumes large system sizes and/or high aptamer and target molecule concentrations.
In this paper, we develop a fully discrete stochastic model of SELEX. While converging to a mass-action model in the large system-size limit,
our stochastic model allows us to study statistical quantities when the system size is small, such as the probability of losing the best-binding
aptamer during each round of selection. Specifically, we find that optimal SELEX protocols in the stochastic model differ from those predicted
by a deterministic model.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0094307

I. INTRODUCTION

A common goal in biophysics is precise targeting and isolation
of biological molecules. In mammalian immune systems, antibodies
are produced with variable regions in their peptide chain sequences
to allow for a subset of them to strongly binding to a specific epitope,
a binding site expressed on antigens or pathogenic molecules.1–3

This feature of antibodies allows them to be used to deliver drugs
to specific cancer cells, to mark the presence of certain proteins with
immunofluorescence, or to inhibit viral entry of HIV-1 into their
host cells.4–6 The rapid increase of infectious diseases and viral out-
breaks in recent years, such as Ebola, Zika, and coronavirus, has also
led to high demand for laboratory-made monoclonal antibodies to
be used in diagnostic/therapeutic contexts. However, monoclonal
antibodies are costly to produce and the protocols involved are
time-consuming.7–9

A more modern alternative to molecular targeting using
antibodies is based on the use of aptamers, short DNA or RNA

oligonucleotides, usually about 15–60 bases in length.10 More recent
approaches have also combined nucleotide bases with polypep-
tides. Aptamers may fold into a sequence-dependent conformation
that can result in them performing specific enzymatic functions or
exhibiting binding affinities to certain epitopes. The specific bind-
ing affinities to targets can be comparable to those of antibodies,
though the smaller aptamer sizes allow for easier transport through
lipid membranes for intracellular marking. More importantly, the
synthesis of aptamers can be much simpler than that of antibodies
since the nucleotide sequences are chemically synthesized. Since ab
initio oligonucleotide design is difficult, the different oligonucleotide
sequences are usually combined to form a library of aptamers. The
desired sequence is then isolated and amplified by a selection process
known as systematic evolution of ligands by exponential enrichment
(SELEX).10–12

The goal of a SELEX protocol is to identify and isolate the
aptamer sequence that binds a specified target molecule with the
highest affinity. The process of SELEX begins with a solution
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(library) containing many different aptamer sequences. The aptamer
library may contain structurally close sequences that bind the tar-
get almost as well as the strongest binder. In order to filter out
the weaker-binding aptamers and obtain a solution of only the
desired strongly binding aptamers, a solution of target molecules is
added to the entire aptamer solution. After mixing and equilibration,
unbound aptamers are removed and the remaining aptamer-target
complexes are isolated. These complexes are then dissociated in
solution, and the corresponding aptamers are amplified via the
polymerase chain reaction (PCR). After one cycle of SELEX, these
aptamers are then exposed to the same target again to successively
prune weaker binders and isolate the strongest ones. Komarova
and Kuznetsov13 provide more detailed, biochemical descriptions of
SELEX and discuss, qualitatively, factors to consider in optimizing
specific stages.

One expects that after each round of target exposure and PCR,
the multi-sequence aptamer solution becomes more concentrated in
those aptamers with a stronger affinity to the target. However, in
the early rounds, when there might be a large number of different
aptamers in the solution, the number of strongest binders may be
small, necessitating a statistical/stochastic description. From round
to round, one can use different numbers of target molecules, but the
relative abundances of different aptamer types are fixed by the pre-
vious round. Target and aptamer concentrations can determine the
abundance and likelihood of capturing the highest affinity aptamer.
A SELEX protocol or “policy” describes how to assign such con-
centrations in each round.14 Different policies are expected to lead
to different relative abundances of different aptamer types as they
evolve over multiple rounds of SELEX.

Previous mathematical models have been developed to quan-
tify SELEX. Most of the models assume that the number of targets
and aptamers is large enough so that the law of mass action applies
and the binding/unbinding kinetics are deterministic.11,12,15,16 Wang
et al. concluded that within the mass-action limit, low concentra-
tions of the target are ideal for capturing the best-binding aptamer
with the fewest rounds of SELEX.11 However, at low target con-
centrations, competition among the aptamer species for limited
binding sites will increase the probability that not even a single tar-
get molecule captures the strongest binding aptamer, forever losing
the desired aptamer. Thus, the statistics of the pattern of aptamers
captured in each round of SELEX will depend on the distribution
of binding rates and energies associated with the aptamer library,
as well as the abundances of aptamers and targets. Low abun-
dances lead to larger relative number fluctuations that affect aptamer
abundances for subsequent rounds.

Kinetic descriptions based on the mass-action law have been
adapted to incorporate stochastic small number effects.14,17 Aita
et al.17 first developed a hybrid model and assumed Gaussian distri-
bution of binding energies, while Spill et al.14 merged mass-action
descriptions with approximate stochastic descriptions and Monte
Carlo simulations to show how low copy number high affinity
aptamers contribute to uncertainty in selection outcomes.

Here, we formally develop a fully stochastic model of SELEX
that considers discrete numbers of all molecules, including all
aptamer types. To focus statistical properties of one specific aptamer
type (e.g., the best binder), we self-consistently lump all other
aptamer types into one effective pool. Then, we determine the
upper and lower bounds for the proportion of the best aptamer

after one round of SELEX. Our results suggest optimal policies
that maximize the expected proportion of the strongest binding
aptamer after multiple rounds of SELEX, as well as the probability
of loss of the strongest binder. We find distinctly different optimal
policies depending on whether mass-action kinetics or a discrete
stochastic/combinatorial model was used.

II. BACKGROUND AND SETUP
A. Markov chain

One way to formulate a discrete-state stochastic model is to
start from a continuous-time Markov chain connecting system con-
figurations, or states.14 At any specific time, each of these states can
represent a system with specific numbers of bound and unbound
aptamers. Transitions from state i to state j occur with non-negative
transition rates ri→j ≥ 0. We will always assume this Markov chain is
commutative, meaning that starting from any state i, we can jump
to any state j in a finite number of steps. Then, as time t →∞, the
probability that the process X is in state i, P(X = i), converges to the
unique stationary probability distribution Pi, which only depends on
the transition rates.

Now, further consider a cycle of events in this Markov chain,
described by the sequence of states i→ j→ k→ i. If we have
ri→jrj→krk→i = rj→irk→jri→k, then we call this cycle “symmetric.” If
all cycles in this Markov chain are symmetric, then this Markov
chain satisfies detailed balance.18 In fact, we need not check that all
cycles are symmetric, but only the “elementary” ones19 since more
complicated cycles can be decomposed into combinations of ele-
mentary cycles. Specifically, if a Markov chain has no cycle (e.g., a
random walk on all integers Z), then it naturally satisfies detailed
balance. If the Markov chain satisfies detailed balance, then the
stationary distribution satisfies ri→jPi = rj→iPj. These detailed bal-
ance relationships provide a convenient way to calculate stationary
distributions and is equivalent to using classical statistical mechan-
ical approaches that use free energy differences and the Boltzmann
distribution.

B. Stationary distribution
Since the chemical binding and unbinding events between tar-

get and aptamer molecules are intrinsically stochastic, we build a
continuous-time Markov chain model to describe them and calcu-
late the stationary distribution. Assume we have one type of target
molecule, S, and M types of aptamer molecules, Ai, 1 ≤ i ≤M. Each
type of aptamer can participate in the binding reaction Ai + SÐÐ⇀↽ÐÐAiS.
The activation energy for Ai + S→ AiS is defined as G+i while that for
AiS→ Ai + S is denoted G−i . Different types of aptamers i can have
different activation energies G±i . For each target molecule, we define
a small “dimerization volume” v surrounding itself within which an
aptamer molecule may be present. Only if an aptamer molecule is
within this contact volume can it form a bond with (bind to) the
target molecule.

First consider a system with a single Ai molecule and ST target
molecules within a fixed system volume V . As shown in Fig. 1, this
aptamer molecule can be in one of three states: (i) not within the
dimerization volume of any target, denoted as (1, 0, 0); (ii) within
the dimerization volume of one target (associated), but not bound,
denoted as (0, 1, 0); and (iii) bound to a target, denoted as (0, 0, 1).
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FIG. 1. Multiple targets and a single aptamer type in a system volume V . Each
target is surrounded by an interaction volume v, which is roughly the average of
the target and aptamer molecular volumes. Each target can either be associated
with an aptamer or bound to one (one-to-one stoichiometry, associated, or bound).
Only if the aptamer is within this v volume, it can bind to this target.

The transition between (1, 0, 0) and (0, 1, 0) occurs via free
diffusion. Thus, the transition rates satisfy

r[(1, 0, 0)→ (0, 1, 0)]
r[(0, 1, 0)→ (1, 0, 0)] =

STv

V − STv
, (1)

since the total dimerization volume is STv, and the “free” vol-
ume is V − STv. The transition between (0, 1, 0) and (0, 0, 1) rep-
resents aptamer-target binding (dimerization) and unbinding. If
we define the activation energies by r[(0, 1, 0)→ (0, 0, 1)]∝ e−βG+i

and r[(0, 0, 1)→ (0, 1, 0)]∝ e−βG−i (β = (kBT)−1), with the same
proportionality,

r[(0, 1, 0)→ (0, 0, 1)]
r[(0, 0, 1)→ (0, 1, 0)] = e−βΔGi , (2)

where ΔGi ≡ G+i −G−i . For detailed discussions about binding
probability and thermodynamics, readers may refer to papers by
Atherton et al. and de Jong et al.20,21 This three-state Markov
chain has no cycle [state (1, 0, 0) and (0, 0, 1) are not connected],
meaning that it satisfies detailed balance. Thus, upon impos-
ing the detailed balancing conditions ri→jPi = rj→iPj, we have
for this simple system P(0, 1, 0)/P(1, 0, 0) = STv/(V − STv) and
P(0, 0, 1)/P(0, 1, 0) = e−βΔGi . Normalization P(0, 0, 1) + P(0, 1, 0)
+ P(1, 0, 0) = 1 provides the final condition leading to the solution

P(1, 0, 0) = V − STv

V + STve−βΔGi
,

P(0, 1, 0) = STv

V + STve−βΔGi
,

P(0, 0, 1) = STve−βΔGi

V + STve−βΔGi
.

(3)

Since we only focus on whether or not aptamers are bound, and not
on their locations, we can combine the two unbound states (1, 0, 0)

and (0, 1, 0) into one unbound state to obtain an effective two-state
Markov chain. The ratio of bound to unbound probabilities is thus

P(bound)
P(unbound) =

STv

V
e−βΔGi ≡ STK̄ i, (4)

where we define the dimensionless association coefficient of type i
aptamer K̄ i ≡ (v/V) exp(−βΔGi). Here, STK̄ i is the ratio of tran-
sition rates between two states. Table I lists the variables and
parameters used to construct and analyze our model. Note the
underlying association constant Ki = ve−βΔGi carries units of per
concentration, inverse of a second order dissociation constant.

We now extend the setup described above to include multiple
aptamer types Ai, with Ai of each type in the system volume V . As in
the discussion above, we combine states that differ only by aptamer
location and just consider whether aptamers are bound to targets.
Given the aptamer populations {A1, A2, . . . , AM} and the total num-
ber of target molecules ST, the system state can be described by the
numbers of aptamers bound to target molecules a ≡ (a1, a2, . . . , aM).
If the current state is a, the rate of having one more bound Ai is pro-
portional to s̄āiK̄ i, where s̄ = ST − s is the number of unbound targets
and āi = Ai − ai is the number of unbound Ai aptamers. If the current
state is (a1, . . . , ai + 1, . . . , aM), the dissociation rate into state a is
proportional to ai + 1, the number of bound Ai aptamers. In Subsec-
tion 2 of the Appendix, we show the relationship between transition
rates,

r[a→ (a1, . . . , ai + 1, . . . , aM)]
r[(a1, . . . , ai + 1, . . . , aM)→ a] =

āi s̄
ai + 1

K̄ i. (5)

We can verify that this process satisfies detailed balance so that

P(a1, . . . , ai + 1, . . . , aM)
P(a) = r[a→ (a1, . . . , ai + 1, . . . , aM)]

r[(a1, . . . , ai + 1, . . . , aM)→ a]

= āi s̄
ai + 1

K̄ i. (6)

Thus, the stationary probability distribution satisfies

P(a) = P(0, a2, . . . , aM)
ST!

(ST − a1)!
A1! K̄a1

1
(A1 − a1)! a1!

= P(0, 0, a3, . . . , aM)
ST!

(ST − a1 − a2)!

× A1! K̄a1
1

(A1 − a1)! a1!
A2! K̄a2

2
(A2 − a2)! a2!

⋮

= P(0, . . . , 0) ST!
(ST − as)!

M

∏
i=1

Ai! K̄ai
i

(Ai − ai)! ai!

= P(0, . . . , 0)( ST

ST − as, a1, . . . , aM
)

× [
M

∏
i=1
(Ai

ai
)] × [

M

∏
i=1

ai! ] × [
M

∏
i=1

K̄ai
i ], (7)

where as ≡ ∑M
i=1ai is the total number of bound aptamers. The sec-

ond term in the last line of Eq. (7) is the number of ways ST targets
can be distributed out to the M species and unbound state; the third
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TABLE I. Relevant variables and parameters for our discrete stochastic SELEX model.

Symbol Quantity Relationships Typical values

M Total no. of aptamer types (richness) ⋅ ⋅ ⋅ 103–1014

Ai Total aptamers molecules of type i ⋅ ⋅ ⋅ 1–1010

AT Total no. of aptamers AT = ∑M
i=1Ai 104–1015

ai No. of bound type-i aptamers ⋅ ⋅ ⋅ 1–1010

āi No. of unbound type-i aptamers āi = Ai − ai 1–1010

as Total no. of bound aptamers as = ∑M
i=1ai 102–1013

ST Total no. of target molecules ⋅ ⋅ ⋅ 103–1015

s Total no. of bound targets s = as 102–1013

s̄ Total no. of unbound targets ST = s + s̄ 103–1015

V Total system volume ⋅ ⋅ ⋅ 1–104 μl
v Molecular dimerization volume ⋅ ⋅ ⋅ 10−18 − 10−12 μl
ΔGi Energy of target-aptamer i binding ΔGi = G+i −G−i 1–25kBT
K i Aptamer i per particle association constant Ki = ve−βΔGi 10−8–10−4 μl
K̄ i Aptamer i per volume association coefficient K̄ i = Ki/V 10−12–10−4

term is the number of ways one can choose the ai bound aptamers
from the Ai possible options, for all i species; the fourth term is the
number of ways targets and aptamers of each species fated for bind-
ing can be paired; the last term is the relative probability weight for
bound aptamers. The product of the second, third, and fourth terms
represents the number of configurations that in a system with ST
distinguishable targets, ai targets are chosen to pair with ai aptamers
of type Ai, which themselves are chosen from Ai distinguishable Ai
aptamers.

Then, for the set of states,

S ≡ {(a1, . . . , aM)∣0 ≤ ai ≤ Ai for each i, as ≤ ST},

we use the normalization condition ∑a∈SP(a) = 1 to determine
P(0, . . . , 0) and define the partition function Z ≡ 1/P(0, . . . , 0),

Z =∑
a∈S

ST!
(ST − as)!

M

∏
i=1

Ai! K̄ai
i

(Ai − ai)! ai!
. (8)

The equilibrium probability of being in a state a is then given explic-
itly by Eq. (7), which contains the usual Boltzmann factors over the
binding energies embedded in the K̄ i terms.

III. MASS ACTION LIMIT
The stationary distribution reaches a maximum if

s̄āi

ai + 1
K̄ i =

(s̄/V)(āi/V)
(ai + 1)/V ve−βΔGi = 1 (9)

for each i. For ai ≫ 1, constraint is equivalent to Refs. 11 and 22,

[ai]
[s̄][āi]

= Ki ⇒ [ai] =
[Ai]Ki

Ki + 1/[s̄] , (10)

where [⋅] denotes concentrations. Since K i is the association con-
stant, [s̄] is the concentration of unbound target S, [āi] is the

concentration of unbound aptamer Ai, and [ai] is the concentration
of bound aptamer Ai. Equation (10) is simply the mass action law,
shown explicitly to be the large system size limit of the Markov chain
model.

Assume that we order the labels of the aptamer species in a
way such that here K1 ≥ K2 ≥ . . . ≥ KM , i.e., type A1 is the strongest
binder. A useful quantity is the proportion of all bound aptamers
that are of type A1. In the mass-action limit, if we decrease [ST]
or increase [AT] (keeping the proportions of [Ai]), the fraction of
bound A1 in all bound aptamers increases (proved in Subsection 3
of the Appendix). Therefore, to obtain the largest [a1]/[as], we
should take large [AT] and small [ST], rendering [s̄] small. In this
case, [ai] ≈ [Ai]Ki[s̄], and [a1]/[as] approaches the upper bound
[A1]K1/(∑M

i=1[Ai]Ki). When we take small [AT] and large [ST], [s̄]
is also large. Then, [ai] ≈ [Ai], and the fraction [a1]/[as] approaches
its lower bound [A1]/(∑M

i=1[Ai]). This result has been noted by
Rudzinski et al. in an unpublished report.

IV. APPROXIMATION OF THE DISCRETE MODEL
We have shown using the Markov chain model that the equilib-

rium distribution is

P(a1, . . . , aM) =
ST!

Z(ST − as)!
M

∏
i=1

Ai! K̄ai
i

(Ai − ai)! ai!
. (11)

One reason that this probability distribution is difficult to handle is
because it requires calculation of the partition function Z. In this
section, we consider two limits of Eq. (11), both of which use the
approximation

a!
(a − b)! = a(a − 1)(a − 2) . . . (a − b + 1)

≈ ab[1 +O(b2/a)] (12)

for b2/a≪ 1.
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A. Small ST approximation
If Ai ≫ S2

T for each i, since ai ≤ ST, each Ai!/(Ai − ai)! term can
be approximated by Aai

i to yield

P(a) = ST!
Z(ST − as)!∏M

i=1ai!

M

∏
i=1
(AiK̄ i)ai. (13)

Upon summing Eq. (13) over all a and comparing each term
with the multinomial expansion of (1 +∑M

i=1AiK̄ i)ST , we find
Z = (1 +∑M

i=1AiK̄ i)ST and

P(a) = ST!
(ST − as)!∏M

i=1ai!
pST−as

0

M

∏
i=1

pai
i , (14)

where p0 = 1/(1 +∑M
i=1AiK̄ i) and pi = AiK̄ i/(1 +∑M

i=1AiK̄ i). Under
this approximation, (ST − asa1, . . . , aM) satisfies a multinomial dis-
tribution, and the target molecules are independent. Each target
has probability pi of being bound to an Ai aptamer and probabil-
ity p0 to be unbound. Additional mathematical details are given in
Subsection 4 of the Appendix.

To compute the expected proportion of bound aptamer Aj, we
note that (aj/as)P(a) can be expressed as

aj

as
P(a) = aj

as
(ST

as
)pST−as

0
as!
∏M

i=1ai!

M

∏
i=1

pai
i ,

= (ST

as
)pST−as

0

pj(as − 1)!paj−1
j

(aj − 1)!∏M
i≠j ai!

M

∏
i≠j

pai
i ,

which is a multinomial expansion under a fixed sum ∑M
i ai = as.

Summation over all possible a under this constraint gives

∑
a1+⋅⋅⋅aM=as

aj

as
P(a) = (ST

as
)pST−as

0 pj(
M

∑
i=1

pi)
as−1

= pj

1 − p0
(ST

as
)pST−as

0 (1 − p0)as. (15)

If we include only configurations as ≥ 1 in calculating the expected
fraction, we use P(a ∣ as ≥ 1) = P(a)/(1 − pST

0 ) in the final sum over
as ≥ 1 to find

E[ aj

as
∣as ≥ 1] =

ST

∑
as=1

∑
∑M

iai=as

aj

as
P(a∣as ≥ 1)

= pj

1 − p0
= AjK̄ j

∑M
i=1AiK̄ i

. (16)

When AT ≫ S2
T and ST ≫ 1/(1 − p0), the probability P(as = 0)

= pST
0 is negligible. Thus, the expected fraction of all bound aptamers

that are the strongest binder A1 approaches A1K̄1/(∑M
i=1AiK̄ i). We

will show that this is the theoretical upper bound for the dimerized
A1 fraction. In fact, when ST ≫ 1, since different targets are indepen-
dent, and by the law of large numbers, the proportion of bound A1
(not just its expectation) converges to A1K̄1/(∑M

i=1AiK̄ i).

B. Large ST approximation
If ST ≫ A2

T, since as ≤ AT, we can approximate ST!/(ST − as)!
in Eq. (11) by Sas

T . The equilibrium probability distribution takes on
the product form

P(a) = P(0, . . . , 0)
M

∏
i=1

Ai! (K̄ iST)ai

(Ai − ai)! ai!
. (17)

Since the number of targets is much larger than the number of
aptamers, aptamers can bind independently and do not have to
compete for free targets. For each aptamer type,

P(ai) = Pi(0)
Ai! (K̄ iST)ai

(Ai − ai)! ai!
, (18)

where normalization yields Pi(0) = 1/(1 + K̄ iST)Ai . The indepen-
dent distributions are thus binomial,

P(ai) =
Ai!

(Ai − ai)! ai!
( K̄ iST

1 + K̄ iST
)

ai

( 1
1 + K̄ iST

)
Ai−ai

(19)

with E[ai] = AiK̄ iST/(1 + K̄ iST).
Although we cannot find a concise expression for E[aj/as],

we can approximate it using E[aj]/E[as] since it satisfies the same
bounds as E[aj/as] for as ≥ 1. Moreover, in the large ST limit, we
find that E[a1]/E[as] ≲ E[a1/as] is also a lower bound. Specifically,
for the strongest binder A1,

E[a1]
E[ai]

= A1

Ai
⋅ K̄1/(1 + K̄1ST)

K̄ i/(1 + K̄ iST)
≥ A1

Ai
, (20)

E[a1]
E[ai]

= A1K̄1

AiK̄ i
⋅ 1/(1 + K̄1ST)

1/(1 + K̄ iST)
≤ A1K̄1

AiK̄ i
. (21)

Thus, we find

A1

AT
≤ E[a1]
E[as]

≤ A1K̄1

∑M
i=1AiK̄ i

. (22)

When K̄ iST ≫ 1 for each i, E[ai] is approximately Ai, meaning that
almost all Ai aptamer molecules are bound. In this limit, the pro-
portion of aptamer A1 is A1/AT, which is invariant before and after
SELEX. We will show that it is the theoretical lower bound for the
proportion of bound aptamer A1 if we remove configurations in
which no A1 aptamer is bound.

V. EFFECTIVE TWO-SPECIES MODEL
A. Combining weaker aptamers

In this section, we reduce the multispecies model into an effec-
tive two-species model by combining the weaker binding aptamers
A2, . . . , AM into one type effective pool A′2. There are many ways
of self-consistently lumping multiple species by constraining spe-
cific global quantities. Here, since we focus on the approximation
E[aj]/E[as] to the expected bound fraction of A1 proportion after
each round of SELEX, we wish the effective two-species model to
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preserve the upper and lower bounds of E[a1/as∣as ≥ 1]. If we define
the effective association coefficient of the effective pool A′2 by K̄′2, we
require

A1

A1 +∑M
i=2Ai

= A1

A1 + A′2
(23)

and

A1K̄1

A1K̄1 +∑M
i=2AiK̄ i

= A1K̄1

A1K̄1 + A′2K̄′2
. (24)

Therefore, we find the effective population and association coeffi-
cient,

A′2 =
M

∑
i=2

Ai, K̄′2 =
∑M

i=2AiK̄ i

∑M
i=2Ai

. (25)

We henceforth consider this effective two-aptamer model in which
the second species can be thought of as an effective species that
lumps together all aptamer species except the best binder. Thus,
for notational simplicity, we omit the prime symbol, A′2 → A2 and
K̄′2 → K̄2, and assume K̄1 > K̄2.

B. Bound aptamer A1 fraction
We first consider, upon mixing with ST target molecules, the

expected equilibrium fraction of all bound aptamers that are type
A1. The expectation of a1/as is defined only for as = a1 + a2 ≥ 1,

FIG. 2. A density plot of E[a1/as ∣ as ≥ 1] after one round of SELEX that is
initiated with ST and A1. The initial aptamer A2 number is A2 = 10A1 and the asso-
ciation coefficients for A1, A2, K̄1 = 0.002, and K̄2 = 0.001, respectively. Here,
and in subsequent density plots, we use the mass-action law approximation to
compute E[a1/as] for A1 > 200 and ST > 1000. This leads to faster computation
without any discernible difference from the exact result. For even larger K̄1/K̄2
(relatively weaker A2 binding), E[a1/as ∣ as ≥ 1] looks qualitatively similar but
the contours are shifted upward since fewer targets ST are needed to capture
the same fraction of A1.

so we first derive E[a1/as ∣ as ≥ 1]. In Sec. IV, we have shown that
under the large ST approximation, E[a1/as∣as ≥ 1] = A1/(A1 + A2),
while under the small ST approximation, E[a1/as ∣ as ≥ 1] = A1K̄1/
(A1K̄1 + A2K̄2). These expected fractions are lower and upper
bounds, which we state formally:

Theorem 1. If A1K̄1/K̄2 is an integer, then E[a1/as ∣ as ≥ 1]
≤ A1K̄1/(A1K̄1 + A2K̄2).

Theorem 2. E[a1/as ∣ as ≥ 1] ≥ A1/(A1 + A2).

Note that these bounds are equivalent to those obeyed by
E[a1]/E[as] in the large ST limit [Eq. (22)]. Here, and in subsequent
analyses, we use the specific example values A2 = 10A1, K̄1 = 0.002,
and K̄2 = 0.001. In this setting, we calculate quantities like
E[a1/as ∣ as ≥ 1] and plot them in Fig. 2 as functions of ST and A1.
Even though we have provided analytic approximations for P(a)
under different limits, here, and in subsequent plots of E[a1/as], we
use Eq. (11) to exactly evaluate the expected ratios, except in large-
ST, A1 regimes where the mass-action approximation is extremely
accurate. When A1 is small and ST is large, E[a1/as ∣ as ≥ 1]
approaches its lower bound A1/(A1 + A2) = 1/11. When ST = 1,
E[a1/as ∣ as ≥ 1] reaches its upper bound A1K̄1/(A1K̄1 + A2K̄2)
= 1/6. Notice that E[a1/as ∣ as ≥ 1] is decreasing with ST but not
always increasing with A1. This deviation from the predictions using
the mass-action law reveals the challenge in proving Theorems 1 and
2. We sketch the proofs here and leave the details to Subsection 5 of
the Appendix.

FIG. 3. Density plot of P(0, 0) ≡ 1/Z after one round of SELEX that is initiated
with ST and A1 targets and A1 aptamers. The aptamer ratio is set to A2 = 10A1
and the aptamer-target association coefficients are K̄1 = 0.002 and K̄2 = 0.001.
When A1 > 200 and ST > 1000, this probability is smaller than 10−10, and we
approximate it as 0. The probability of loss is non-negligible only in the small A1, ST
corner. As AT or K̄ i increase, the probability of loss of A1 (bottom left triangle)
decreases and shrinks in extent.
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To prove the upper bound E[a1/as ∣ as ≥ 1] ≤ A1K̄1/(A1K̄1
+ A2K̄2), we consider an alternate system that contains A1K̄1/K̄2
molecules of aptamer A′1 with association coefficient K̄2, A2 mole-
cules of aptamer A′2 with association coefficient K̄2, and ST molecu-
les of target. In this system, all aptamers have the same association
coefficient. From symmetry, we have E[a′1/a′s ∣ a′s ≥ 1]= (A1K̄1/K̄2)/
(A1K̄1/K̄2 + A2) = A1K̄1/(A1K̄1 + A2K̄2), and we prove E[a1/as
∣ as ≥ 1] ≤ E[a′1/a′s ∣ a′s ≥ 1].

For the lower boundE[a1/as ∣ as ≥ 1] ≥ A1/(A1 + A2), consider
a third system with A1 molecules of aptamer A′′1 with association
coefficient K̄2, A2 molecules of aptamer A′′2 with association coef-
ficient K̄2, and ST molecules of target. Similarly, E[a′′1 /a′′s ∣ a′′s ≥ 1]
= A1/(A1 + A2), and we prove E[a1/as ∣ as ≥ 1] ≥ E[a′′1 /a′′s ∣ a′′s ≥ 1].

We now consider the state with as = 0. Since we care only
about the strongest binder A1, realizations in which as = a1 + a2 = 0
contribute equivalently to the expectation as the case a1 = 0, a2 ≥ 1.
We thus stipulate that the “fraction” a1/as = 0 when as = 0. Thus,
we really wish to optimize E[a1/as] = E[a1/as ∣ as ≥ 1][1 − P(0, 0)],
which incorporates the total extinction probability P(0, 0).

Figure 3 showsP(0, 0) = P(as = 0) after one round of SELEX as
a function of A1 (and a corresponding A2) and ST. The probability
of no bound aptamer decays toward 0 when either A1 or ST is large.
Now that we have computed P(0, 0), we can evaluate E[a1/as] and
use it to optimize the SELEX strategy.

VI. OPTIMAL SELEX POLICIES
By combining Figs. 2 and 3, we first find E[a1/as] associated

with the first round of SELEX. The upper bound of E[a1/as] is
still A1K̄1/(A1K̄1 + A2K̄2), but since P(0, 0) can be close to 1, the
lower bound is very small. Varying the system volume V does not
change the bounds of E[a1/as], since these bounds only depend
on A1/A2 and K̄1/K̄2 = exp[−β(ΔG1 − ΔG2)], both independent of
volume. However, smaller V corresponds to larger K̄1 and K̄2, and
the probability of losing the best binder is smaller.

Figure 4 plots E[a1/as] after the first round as a function of
A1 (and a corresponding A2) and ST. The high-value regions of
E[a1/as] lie in a wide, flat wedge (yellow). The red curve traces the
maximum along this plateau and indicates the optimal ST that max-
imizes E[a1/as] for each value of A1. When ST is too large, E[a1/as]
approaches A1/(A1 + A2). When A1 and ST are too small, the proba-
bility of as = 0 is large, so that E[a1/as] is small. When A1 is large, we
should take ST as small as practically allowed to approach the global
maximum A1K̄1/(A1K̄1 + A2K̄2). Therefore, for a single round of
SELEX, the optimal policy is to use A1 as large as possible and its
associated, small value of ST.23

For the subsequent rounds of SELEX, we can control to some
degree the number of targets ST, the numbers of total aptamer A1, A2
(through different levels of amplification), while keeping the ratio
A1/A2 from the previous round fixed. We now consider feeding in
the A1/(A1 + A2) ratio after the first round, described in terms of
E[a1/as] = E[a1/(a1 + a2)] as input to the second round, and so
forth.

Under fixed association coefficients K̄1, K̄2 and an initial ratio
A1/A2 (used to initiate the first round), a multi-round SELEX policy
is defined by a set of values of ST and AT (with the relative amounts
of aptamers determined by the previous round). In general, we can
classify policies into four types:

FIG. 4. Density plot of E[a1/as] after one round of SELEX that is initiated with ST
and A1. As in Figs. 2 and 3, the ratio is A2 = 10A1 and the association coefficients
are K̄1 = 0.002 and K̄2 = 0.001. The red curve traces values of ST that yield the
locally maximalE[a1/as] for each value of A1. When A2 is increased with fixed A1,
the higher aptamer population makes extinction less likely, and P(0, 0) shrinks.
Similarly, for larger K̄1/K̄2, fewer targets are required to bind the same fraction of
A1 and achieve the same value of E[a1/as]. Thus, when either A2 or K̄1/K̄2 is
increased, the density plot qualitatively translates downward and the maximum-
value curve (red) shifts down to smaller values of ST.

● Policy 1 results in E[a1/as] ≈ A1K̄1/(A1K̄1 + A2K̄2) and
var[a1/as] ≈ 0. One example of policy 1 is Ai ≫ S2

T and ST
≫ 1.

● Policy 2 yields E[a1/as] ≈ A1K̄1/(A1K̄1 + A2K̄2) and
var[a1/as] > 0. One example of policy 2 is Ai ≫ S2

T and
AiK̄ i ≫ 1 but ST ≫/ 1.

● Policy 3 gives E[a1/as] < A1K̄1/(A1K̄1 + A2K̄2) and
var[a1/as] ≈ 0. One example of policy 3 is AT ≈ ST ≫ 1.

● Policy 4 results in E[a1/as] < A1K̄1/(A1K̄1 + A2K̄2) and
var[a1/as] > 0. One example of policy 4 is the large ST
approximation ST ≫ A2

T without STK̄ i ≫ 1.

For certain values of K̄1, K̄2, A1/A2, policy 1 does not
necessarily satisfy Ai ≫ ST. For example, if K̄1 = 2 × 10−18, K̄2
= 10−18, A1/A2 = 1, then a policy with ST = 1015, AT = 2 × 106 is still
classified as policy 1. The reason is that only a very small proportion
of aptamers is bound, so that for A1 and A2, the ratio of their bound
probabilities is approximately K̄1/K̄2.

Although policies 1 and 2 are both optimal if performing only
one round of SELEX, the optimal policies may change in subsequent
rounds. It is important to note that if the ratio A2/A1 (or Ai/∑M

j=1Aj
in the general case) is determined by a previous round, and policy
1 is then applied, the new expectation E[a1/as] = A1K̄1/(A1K̄1
+ A2K̄2) reaches the upper-bound value, which is independent of
total aptamer population AT. Thus, if policy 1 is applied using a
previous-round value of A2/AT, the expected fraction will be inde-
pendent of the amount of PCR amplification after the previous
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round and only the resulting fraction A1/AT determined by the
previous round matters.

If we apply policy 1 with Ai ≫ S2
T and ST ≫ 1, the law of large

numbers implies that a1/as ≈ E[a1/as] = A1K̄1/(A1K̄1 + A2K̄2).
Then, after another round of SELEX using policy 1, we use the ratio
from round one for the A1, A2 in E[a1/as] = A1K̄1/(A1K̄1 + A2K̄2)
to find A1K̄2

1/(A1K̄2
1 + A2K̄2

2) after the second round.
Suppose we had initially applied Ai ≫ S2

T, AiK̄ i ≫ 1 and ST = 1
(policy 2). The first round of SELEX would capture only one aptamer
with E[a1/as] = A1K̄1/(A1K̄1 + A2K̄2) and var[a1/as] > 0. In a sub-
sequent round, since only one aptamer type is left, no further selec-
tion is made, and we still have E[a1/as] = A1K̄1/(A1K̄1 + A2K̄2).
The essential difference between policy 1 and policy 2 lies in their
different variances of a1/as. Policy 1 is highly deterministic so that
var[a1/as] ≈ 0, while var[a1/as] > 0 under policy 2. This difference
in variance leads to different performances when multiple rounds of
SELEX are applied.

In Fig. 5, we plot the expected fraction of bound aptamers that
are A1 after two rounds of SELEX, as a function of the initial values
of A1 and ST used to initiate the first round. Before round 1 we set
A2 = 10A1, or A1/(A1 + A2) = 1/11. After the first round, we apply
policy 1. The resulting expectation E[a1/as] after two rounds is then
plotted. We can see that for two rounds of SELEX, applying policy
1 (see the square symbol in Fig. 5 for an example) in round one is
much better than applying policies 2, 3, or 4 (e.g., the cross, circle,
and triangle symbols in Fig. 5).

After more rounds of SELEX, policy 1 is still better than the
other policies. Figure 6 shows E[a1/as] after three rounds of SELEX

FIG. 5. Density plot of E[a1/as] after two rounds of SELEX, plotted as a function
of ST and A1, the target and best-binder numbers that are used to initiate the first
round. The association coefficients are K̄1 = 0.002 and K̄2 = 0.001, and before
round one, the ratio of the aptamers is set to A2 = 10A1. For round 2, we used
optimal policy 1. The red curve indicates the location of the maximal proportion for
each value of the initial A1. The square, cross, circle, and triangle symbols denote
examples of policies 1–4 applied to round 1, respectively.

FIG. 6. Density plot of E[a1/as] after three rounds of SELEX plotted as a function
of the initial target and best-binder numbers, ST and A1, that are used to initiate the
first round. As before, the association coefficients are K̄1 = 0.002 and K̄2 = 0.001,
and the initial aptamer ratio before round 1 is set to A1/(A1 + A2) = 1/11
(A2 = 10A1). We assumed rounds 2 and 3 both employed optimal policy 1. The
red curve indicates the location of the maximal proportion for each value of the
initial A1. The square, cross, circle, and triangle symbols denote examples of poli-
cies 1–4 applied to round 1. Note that the high-valued plateau (yellow) stays is a
wide wedge (in the initial ST, A1 coordinates) and that applying policy 1 throughout
(square) yields an expected ratio near its maximum possible value.

as a function of the initial target and aptamer numbers ST and
A1 used to initiate the first round. We see that the pattern of
the expected fraction after three rounds is qualitatively similar to
that after two rounds. This arises from performing a recursion on
the maximal expected fraction, as detailed in Subsection 6 of the
Appendix.

In general, a guideline for the optimal policy is

Theorem 3. For N rounds of SELEX, to maximize the final
expected proportion of aptamer A1, the optimal policy is to apply pol-
icy 1 for the first N − 1 round and apply either policy 1 or policy 2 for
round N.

We briefly outline the argument and leave the proof to Sub-
section 6 of the Appendix. For a specific value of binding fraction
r ∈ [0, 1], define f (r) = rK̄1/[rK̄1 + (1 − r)K̄2]. Assume the initial
A1 proportion is r0. After one and two rounds of policy 1, the A1 pro-
portion becomes f (r0) and f ( f (r0)), respectively. After one round
of policy 2, the A1 proportion takes on a random value r1 with E[r1]
= f (r0). After two rounds of policy 1, the A1 proportion becomes
f ( f (r0)). After two rounds of policy 2, the expected A1 propor-
tion becomes f (r1). Since f (r) is concave (downward), by Jensen’s
inequality, E[ f (r1)] ≤ f (E[r1]) = f ( f (r0)). Therefore, introduc-
ing variance to a1/as (e.g., when policy 2 is applied) decreases the
final E[a1/as], and it is better to use additional rounds of SELEX to
compensate for this variance effect.
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VII. EXTINCTION AND PURIFICATION PROBABILITIES
The “optimal” protocols described above rely on the expec-

tation E[a1/as] but does not assign a cost associated with losing
the best binder, or with not achieving complete purification. Dur-
ing early rounds of SELEX, the highest affinity aptamer may be at
very low abundance and there might also be many aptamers that
bind nearly as well, outcompeting the best binder. Thus, there is a
probability that the best binder A1 is permanently lost during some
cycle. For an effective two-species model, Fig. 7 shows the proba-
bility that no A1 is bound after one round of SELEX, as a function
of initial values of A1 and ST. When ST is large enough, P(a1 = 0)
approaches 0. However, if ST is small, P(a1 = 0) cannot approach 0
for any large A1, since the number of competing A2 aptamers also
increases.

In the small ST limit, the extinction probability of A1 is
P(a1 = 0) = (1 − p1)ST , while in the large ST limit, the extinction
probability is P(a1 = 0) = (1 + K̄ 1ST)−A1 . Another mixed limit
arises when ST ≪ A2

i for some i. In these cases, we must analyze
P(a1 = 0) starting from Eq. (7). If we are in the low target regime for
the combined number of weak binders A2 ≫ S2

T, but the strongest
binder is few in number A1 ≪ S2

T, we can approximate Eq. (11) by

P(a ∣A, ST) =
ST!

Z(ST − as)!
2

∏
i=1

Ai! K̄ai
i

(Ai − ai)! ai!

≈ ST!
Z(ST − as)!

(A2K̄ 2)a2

a2!
(A1

a1
)K̄a1

1

≈ (ST − a1

a2
)(A2K̄ 2)a2 Sa1

T
Z
(A1

a1
)K̄a1

1 . (26)

FIG. 7. Density plot of the loss probability P(a1 = 0) in a two-species model after
one round of SELEX initiated with ST and A1. The color measures the probability
of no bound aptamer A1 after one round of SELEX. The initial A2 aptamer abun-
dance is set to A2 = 10A1 and the association coefficients are K̄1 = 0.002 and
K̄2 = 0.001. When A1 > 200 and ST > 1000, the loss probability is smaller than
10−10, and we neglect it.

After summing over a2, we find

ST−a1

∑
a2=0

P(a ∣A, ST) =
(1 + A2K̄ 2)ST−a1

Z
(A1

a1
)(STK̄ 1)a1 (27)

and impose∑A1
a1=0∑

ST−a1
a2=0 P(a ∣A, ST) = 1 to find

Z ≈ (1 + A2K̄ 2)ST(1 + STK̄ 1

1 + A2K̄ 2
)

A1

(28)

and

P(a1 ∣A1, A2, ST) ≈
(A1

a1
)( STK̄ 1

1+A2K̄ 2
)

a1

(1 + STK̄ 1
1+A2K̄ 2

)
A1

. (29)

The extinction probability is then

P(a1 = 0 ∣A1, A2, ST) ≈ (1 + STK̄ 1

1 + A2K̄ 2
)
−A1

, (30)

which is a good approximation only in the limit
√

A2 ≫ ST ≫ A2
1.

We can also consider the probability of complete purification
at some late cycle when all weaker-binding aptamers are lost and
only the best binder remains. Figure 8 plots the purification proba-
bilityP(a1 ≥ 1, a2 = 0) as a function of A1 and ST of the current cycle.
Here, we assume that there remains a small A2 impurity A2 = A1/50.
To best achieve purification at this later stage, a small ST and larger

FIG. 8. Density plot of the purification probability P(a1 ≥ 1, a2 = 0) as a function
of ST and A1 = 50A2. Here, K̄1 = 0.002 = 2K̄2 and we are considering a later
round of SELEX in which the aptamer A1 has been well isolated, but with ∼2% A2
impurity. When A2 > 100 and ST > 1000, P(a1 ≥ 1, a2 = 0) < 10−4, which we
approximate as zero.
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aptamer population (even there may be larger total numbers of A2)
is indicated. In the limit

√
A1 ≫ ST ≫ A2

2, we can use the relevant
approximations to find

P(a1 ≥ 1, a2 = 0) ≈ (1 + A1K̄ 1)ST − 1

(1 + A1K̄ 1)ST(1 + STK̄ 2
1+A1K̄ 1

)
A2

. (31)

These loss and purification probabilities add extra dimensions
to SELEX optimization strategy. For example, in addition to round-
wise maximization of the expected fraction of best-binder E[a1/as],
there might be a great cost associated with loss of the best binder,
or great utility gained with complete purification. Thus, one can
imagine that besides E[a1/as], we can develop round-dependent
objective functions that include some combination of E[a1/as],
P(a1 = 0), and/or P(a1 ≥ 1, a2 = 0). Depending on their weighting,
the overall optimal policy may result in a sequence of ST that changes
over different rounds. If we include a penalty for the loss (Fig. 7),
to avoid extinction of A1, the optimal policy will be shifted slightly
upward in ST, while to reward purification (Fig. 8), the optimal ST
will be lowered during later rounds. However, since comparably
large values of E[a1/as] arise over a wide wedge of ST, A1 val-
ues, these considerations are not expected to dramatically change
the optimization policy unless very large loss penalties or high
purification rewards are demanded.

VIII. DISCUSSION AND CONCLUSIONS
The statistical mechanical model that we derived in Sec. II

yields the equilibrium configurations that, in the large system limit,
are consistent with the solutions of the mass action model pro-
posed by Wang et al.11 More importantly, it allows the study of low
target or aptamer concentration scenarios where stochastic effects
cannot be ignored. We then used our results to investigate the opti-
mal policy for maximizing the fraction of the best binder. For one
round of SELEX, the mass action model and the stochastic model
both indicate that ST should be as small as feasibly possible, and
we proved that in this low-target limit, E[a1/as] reaches its upper
bound A1K̄1/(A1K̄1 + A2K̄2). Nevertheless, we argued that the opti-
mal policy is Ai ≫ S2

T and ST ≫ 1, if we want more than one round
of SELEX. In Subsection 1 of the Appendix, we discuss a scenario in
which the binding is irreversible and prove related bounds for the
expected proportion of the best binder.

In our analysis, some quantities were not thoroughly stud-
ied, such as the probability that the proportion of the best binder
exceeds a threshold or the probability that the weighted ΔGi exceeds
a threshold. These quantities might not have explicit expressions,
and calculating them numerically might also be challenging. Note
that our results are based on simple second-order binding and
spontaneous dissociation, parameterized by the association coef-
ficient K̄ i. We also propose that more complex binding schemes
that involve intermediate steps that dissipate free energy and par-
ticipate in kinetic proofreading can be molecularly designed.24

If such intermediate-stage kinetics can be integrated into the
target-aptamer binding process, a level of control on K̄ i can be
imparted, including amplification of the contrast in K̄ i or an effective
reconfiguration of the association coefficients. However, note that
SELEX concerns a population evolution process at equilibrium,

while the kinetic proofreading considers a non-equilibrium pro-
cess for each target-aptamer pair affecting the parameters K̄ i within
SELEX.

While we focused on stationary behavior, more general time-
dependent results can be developed via a continuous-time Markov
process, which might be represented by, e.g., a high-dimensional
master equation. The Markov process describing the mixing of
aptamers and targets would then be stopped at a finite time before
their binding dynamics reach equilibrium. When considering the
full kinetics, not just its stationary distribution, tools such as Kurtz’s
theorem25 and random time-change representation26 may prove
useful. The high-dimensional master equation can also be analyzed
using simulations or semi-analytic approaches such as large system
size expansions27 or large deviation/WKB methods.28 Quantities
that vanish at equilibrium, such as entropy production,18 can also
be studied. Along these lines, we consider a scenario in which the
strongest binder A1 has much faster binding and unbinding rates
than other aptamers. Then, we expect a time window in which
the binding of A1 is close to equilibrium, while other aptamer
types remain mostly unbound. Stopping the reaction within this
time window can greatly increase the proportion of bound A1, to a
degree exceeding even the theoretical upper bound in Theorem 1.
The corresponding “irreversible” binding scenario presented in
Subsection 1 of the Appendix also can be regarded as stopping the
process before reaching equilibrium.

Based on mass action models, many variants of SELEX have
been studied.12,14–17 Stochastic approaches can be extended to these
more complex selection scenarios29 but are much more difficult to
analyze. For example, some protocols call for the addition of another
type of target substrate that binds non-specifically to aptamers.14,17

In this aptamer-target-substrate system, the optimal policy is much
more complicated. Other SELEX scenarios include multiple, simul-
taneous target types.12,15 Since different target molecules prefer
different aptamers, multiple aptamers may be selected after multi-
ple rounds of SELEX. Our mathematical analysis assumed positive
SELEX, where bound aptamers are kept for amplification. If one
wishes to isolate and purify the weakest binding aptamer, we can
apply “negative SELEX,” where the unbound aptamers are kept for
amplification, and the bound aptamers are abandoned. If we con-
sider two target types, S1 and S2, and the goal is to select an aptamer
that binds strongly to S1 but that not binds to S2, we can apply
“alternating SELEX,” where positive SELEX is performed using S1,
followed by negative SELEX using S2. Alternating the positive and
negative SELEX over multiple rounds, one can expect to isolate
the molecule that strongly interacts with one target but is inert to
another. Here, determining the optimal SELEX protocol is more
complicated,16 particularly in the stochastic limit.

Although we formulated our model and results in the context
of molecular SELEX, our results can be straightforwardly adapted
to other evolution problems that involve sequential episodes of
selection. Applications with steps that are analogous to isolating
a strongest binder are cell sorting,30 immune selection,31 or the
selection of drug-resistant or cancer cells from a heterogeneous
population.32,33 For example, an initial heterogeneous population of
cells may carry different resistances to a certain drug. If the goal
is to separate the phenotype with the highest drug resistance, one
can apply a process that is similar to SELEX: add a certain level of
drug, harvest surviving cells, and then cultivate these surviving cells
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to amplify their population size. Higher drug levels correspond to a
smaller target number of ST in SELEX, meaning that fewer cells sur-
vive, and the expected proportion of the most resistant cell type is
higher after each round. However, when the drug level is too high,
it is possible that the most resistant type does not survive. When the
drug level is too low, almost no cells are killed, corresponding to the
large ST approximation in SELEX. In general, the optimal policy is
to set the drug level relatively high, but not too high to extinguish
the most resistant cell type. Finally, the generation of new aptamers
from the intrinsic stochastic error of the PCR process also renders
the SELEX protocol a molecular evolution problem. These applica-
tions and their rich mathematical extensions will be the subject of
future investigation.
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APPENDIX: MATHEMATICAL APPENDICES
1. Irreversible binding regime

Consider the irreversible binding limit when aptamers, once
bound to a target molecule, do not dissociate. The reaction scheme
is, thus, described by

Ai + S⇀ AiS.

Here, we cannot use a detailed balance and then let detachment rates
→ 0+ as this is a singular limit that leads to qualitatively different
results from the strict no-detachment case.34,35 However, we can
still employ Markov chains or solve the high-dimensional master
equations to find probability distributions at finite times.

We study the distribution of bound aptamers after all possible
irreversible reactions have been fully realized and there are no longer

both free aptamers and free targets. This singular binding-only limit
might not be strictly realistic in the context of aptamer binding
and selection where molecular unbinding, if even extremely slow,
is inevitable. Nonetheless, we expect an intermediate timescale to
arise during which nearly all binding reactions have occurred yet no
unbinding has happened. Therefore, within this timescale, a strictly
irreversible kinetics model is useful but cannot be analyzed using
equilibrium statistical mechanics. Notice that the distribution of
bound aptamers depends on the activation energy G+i of binding but
not the activation energy of unbinding G−i →∞.

We start by defining a kinetic attempt frequency ωi and
the aptamer-target binding rate ri = ωi exp(−βG+i ). We order the
aptamers such that r1 ≥ r2 ≥ . . . ≥ rM , defining A1 as the fastest
binder. The probability that one target molecule binds to aptamer
Ai will, thus, be proportional to ri. Since the binding is irreversible,
we can treat target molecules one by one. If the current numbers of
unbound aptamers are ā1, . . . , āM and∑M

j=1āj > 0, then the probabil-
ity that the just-added target binds to aptamer Ai is āiri/(∑M

j=1ājrj).
If this target binds to aptamer Ai, then the probability that the
next target binds to aptamer Aj is ājrj/[ā1r1 + ⋅ ⋅ ⋅ + (āi − 1)ri + ⋅ ⋅ ⋅
+ āMrM].

Now assume that we start with a single target ST = 1 and that
the total initial number of aptamers is A = (Ai, . . . , AM). The prob-
ability that the target binds to aptamer A1 is, thus, A1r1/(∑M

j=1Ajrj).
In the high target limit ST ≥ ∑M

j=1Aj, all aptamers will eventually be
bound and the expected fraction of targets that are bound to A1 is
simply A1/(∑M

j=1Aj). We shall prove that for any number of targets
ST, these values are the upper and lower bounds for the expected
fraction of A1-bound targets.

Theorem 4. When binding is irreversible, for a given A and
different ST, the expected fraction of target that is bound to A1 falls
between A1/(∑M

j=1Aj) and A1r1/(∑M
j=1Ajrj).

Proof. We add one target molecule into the pool of aptamers.
After this target has bound to an aptamer, we successively add tar-
get molecules, one at a time. Given A = (A1, . . . , AM), denote the
probability that the ith target molecule added binds to aptamer A1
by P(i). We can assume that the total target number ST satisfies
ST ≤ ∑M

j=1Aj and construct the expected fraction of targets bound
to aptamer A1 as E[a1/ST ∣ ST] = S−1

T ∑ST
i=1P(i). If we can prove that

P(i) is non-increasing, then E[a1/ST ∣ ST] is also non-increasing
in ST. Since E[a1/ST ∣ ST = 1] = A1r1/(∑M

j=1Ajrj) and E[a1/ST ∣ ST

= ∑M
j=1Aj] = A1/(∑M

j=1Aj), these values become the desired bounds.
Thus, we need only to prove P(k) ≥ P(k + 1).

Assume that before adding the kth target (k ≥ 1), the numbers
of unbound aptamers are ā ≡ (ā1, . . . , āM). If ā1 = 0, then P(k ∣ a)
= P(k + 1 ∣ a) = 0. For all other ā, we find

P(k∣ā) = ā1r1

∑M
j=1ājrj

,

P(k + 1∣ā) = ā1r1

∑M
j=1ājrj

⋅ (ā1 − 1)r1

(∑M
j=1ājrj) − r1

+
M

∑
i=2

āiri

∑M
j=1ājrj

⋅ ā1r1

(∑M
j=1ājrj) − ri

.

(A1)
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Here, the summation skips index i if āi = 0. Upon taking the
difference and defining R(ā) ≡ ∑M

j=1ājrj, we find

P(k ∣ ā) − P(k + 1 ∣ ā)

= ā1r1

R(ā)[1 −
(ā1 − 1)r1

R(ā) − r1
−

M

∑
i=2

āiri

R(ā) − ri
]

= ā1r1

R(ā)[
R(ā)

R(ā) − r1
− ā1r1

R(ā) − r1
−

M

∑
i=2

āiri

R(ā) − ri
]

= ā1r1

R(ā)[
M

∑
i=1

āiri

R(ā) − r1
−

M

∑
i=1

āiri

R(ā) − ri
]

= ā1r1

R(ā)
M

∑
i=1

āiri

R(ā) − r1
( r1 − ri

R(ā) − ri
) ≥ 0. (A2)

Here, the summation skips index i if āi = 0. This last relation stems
from the definition that r1 ≥ ri and R(ā) > ri, rendering the last term
always non-negative. Thus, we have shown that for all feasible ā
just before the addition of the kth and (k + 1)th targets, P(k ∣ ā) ≥ P
(k + 1 ∣ a), and hence, P(k) is non-increasing in k. The expected
fraction of targets bound to A1 aptamer, thus, decreases monoton-
ically from its maximum value E[a1/ST ∣ ST = 1] = A1r1/(∑M

j=1Ajrj)
to its minimum value E[a1/ST ∣ ST = ∑M

j=1Aj] = A1/(∑M
j=1Aj). As

is with the equilibrium problem described in the main text, the
expected bound A1 fraction under irreversible kinetics exhibits sim-
ilar upper and lower bounds. Since the irreversible scenario is
relatively easy to analyze, this proof is relatively straightforward.

◻

2. Proof of Eq. (5)
Assume that there are Ai molecules of aptamer Ai. First, freeze

the configurations of the aptamers A2, . . . , AM and study the dynam-
ics of aptamer A1. Define s′ as the number of targets that are either
free or bound to A1 aptamers. For the Markov chain of aptamer A1,
the state space {(x, y, z)} describes x A1 aptamer molecules that are
not within the dimerization volume of those s′ targets, y A1 aptamers
that are within the dimerization volume of those s′ targets but not
bound, and z aptamers that are bound. Since A1 aptamers can only
be in one of these three states, x + y + z = A1.

The ratio of the transition rates connecting states (x, y, z) and
(x, y − 1, z + 1) is

r[(x, y, z)→ (x, y − 1, z + 1)]
r[(x, y − 1, z + 1)→ (x, y, z)] =

y(s′ − z)/s′
z + 1

e−βΔG1 , (A3)

where ΔG1 is the activation energy of binding and y(s′ − z)/s′ is
the expected number of A1 aptamer molecules, which are within the
dimerization volume of targets that are not bound (z of s′ targets are
bound to aptamer A1). The ratio of transition rates between (x, y, z)
and (x − 1, y + 1, z) is

r[(x, y, z)→ (x − 1, y + 1, z)]
r[(x − 1, y + 1, z)→ (x, y, z)] =

xs′v
(y + 1)(V − s′v) . (A4)

The transitions in Eq. (A4) arise from diffusion and are proportional
to the available phase space volumes.

We can verify that this Markov chain satisfies detailed balance,
so that the ratio of transition rates is the ratio of stationary proba-
bilities. Using the constraint x + y = A1 − z, we can use Eq. (A4) to
find

P(i, A1 − z − i, z) = P(0, A1 − z, z)(A1 − z
i
)(V − s′v

s′v
)

i

(A5)

so that

P(z) ∶=
A1−z

∑
i=0

P(i, A1 − z − i, z) = P(0, A1 − z, z)( V
s′v
)

A1−z
. (A6)

From Eq. (A3), we find

P(0, A1 − z − 1, z + 1) = P(0, A1 − z, z)(s
′ − z)(A1 − z)

s′(z + 1) e−βΔG1 ,

(A7)
which leads to

P(i, A1 − z − 1 − i, z + 1) = P(0, A1 − z, z)(s
′ − z)(A1 − z)

s′(z + 1)

× e−βΔG1(A1 − z − 1
i

)(V − s′v
s′v

)
i

.

(A8)

Thus, we find

P(z + 1) ∶=
A1−z−1

∑
i=0

P(i, A1 − z − 1 − i, z + 1)

= P(0, A1 − z, z)(s
′ − z)(A1 − z)

s′(z + 1)

× e−βΔG1( V
s′v
)

A1−z−1
(A9)

and, finally,

P(z + 1)
P(z) = (s

′ − z)(A1 − z)
z + 1

v

V
e−βΔG1. (A10)

In this new Markov chain, the transition rates can be clearly inter-
preted. With z bound A1 aptamers, there are s′ − z unbound targets
and A1 − z unbound aptamers that can bind. Each of the z + 1 bound
A1 aptamers can dissociate. These two processes are balanced by the
association coefficient K̄1 = (v/V) exp(−βΔG1).

We can also combine states for the other aptamers. Assume
that there are ai bound Ai aptamers and define as = ∑M

i=1ai. The
ratio of transition rates between (a1, . . . , ai, . . . , aM) and (a1, . . . , ai
+ 1, . . . , aM) is then

r[a→ (a1, . . . , ai + 1, . . . , aM)]
r[(a1, . . . , ai + 1, . . . , aM)→ a] =

(ST − as)(Ai − ai)
ai + 1

K̄ i, (A11)

where K̄ i ∶= (v/V) exp(−βΔGi). We can verify that this Markov
chain on (Z∗)M satisfies detailed balance, so that the stationary
probability becomes that given in Eq. (7).
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3. Proof that [a1]/[as] decreases with [ST]
and increases with [AT]

Lemma 1. Fix [Ai] and increase the concentration of targets
from [ST] to [ST]′. After reaching the new equilibrium, the new value
[s̄]′ > [s̄].

Proof. Assume that at the new equilibrium, [ai] becomes [ai]′,
and [s̄] becomes [s̄]′. Recall Eq. (10),

[ai] =
[Ai]Ki

Ki + 1/[s̄] . (A12)

If [s̄]′ ≤ [s̄], then [ai]′ ≤ [ai] for each i, meaning that [ST]′ = [s̄]′
+∑M

i=1[ai]′ ≤ [s̄] +∑M
i=1[ai] = [ST], thus contradicting the assump-

tion [ST]′ > [ST]. ◻

Lemma 2. Fix [ST] and increase the number of aptamers
from [AT] to [AT]′ while keeping the relative proportions of [Ai]
fixed, i.e., every [Ai] is multiplied by a common factor: [Ai]′
= ([AT]′/[AT]) × [Ai]. At the new equilibrium, the new value [s̄]′
< [s̄].

Proof. If [s̄]′ ≥ [s̄], then [ai]′ > [ai] and [s̄]′ = [ST]
−∑M

i=1[ai]′ < [ST] −∑M
i=1[ai] = [s̄], presenting a contradiction.

◻

Now, consider how [a1]/[as] changes upon decreasing [ST]
and/or increasing [AT]. Since all [Ai] are multiplied by the same
factor when [AT] is increased, this factor cancels in the fraction

[a1]′
[as]′

=
[A1]′K1

K1+1/[s̄ ]′
M
∑
i=1

[Ai]′Ki
Ki+1/[s̄ ]′

=
[A1]K1

K1+1/[s̄ ]′
M
∑
i=1

[Ai]Ki
Ki+1/[s̄ ]′

(A13)

so that the only change in the expression for [a1]/[as] is [s̄]→ [s̄]′.
The expression for [a1]/[as] can also be rewritten in the following
form:

[a1]
[as]

=
[A1]K1

K1+1/[s̄]
M
∑
i=1

[Ai]Ki
Ki+1/[s̄]

=
[A1]K1

K1+1/[s̄ ]′ (
K1+1/[s̄ ]′
K1+1/[s̄] )

M
∑
i=1

[Ai]Ki
Ki+1/[s̄ ]′ (

Ki+1/[s̄ ]′
Ki+1/[s̄] )

≡
[A1]K1

K1+1/[s̄ ]′
M
∑
i=1

[Ai]Ki
Ki+1/[s̄ ]′ γi

, (A14)

where

γi ≡ (
Ki + 1/[s̄]′
Ki + 1/[s̄] )(

K1 + 1/[s̄]
K1 + 1/[s̄]′ ). (A15)

From the last equality in Eq. (A14), we see that [a1]/[as] is pre-
cisely [a1]′/[as]′ if γi = 1. However, since we ordered the aptamers
by decreasing affinity, K1 ≥ K i≥2, and [s̄]′ < [s̄], we have γi < 1.
Thus, the RHS of Eq. (A14), and hence [a1]/[as], is greater than
[a1]′/[as]′.

4. Details of the small ST approximation
In the small ST limit, since

a1P(a) =
p1ST(ST − 1)!

(ST − as)! (a1 − 1)!∏M
i=2ai!

× pST−as
0 pa1−1

1

M

∏
i=2

pai
i , (A16)

we find E[ai] = piST, and since

a1(a1 − 1)P(a) = p2
1ST(ST − 1)(ST − 2)!

(ST − as)! (a1 − 2)!∏M
i=2ai!

× pST−as
0 pa1−2

1

M

∏
i=2

pai
i , (A17)

we find E[ai(ai − 1)] = p2
i ST(ST − 1). Thus, E[a2

i ] = p2
i S2

T + pi(1
− pi)ST and var(ai) = pi(1 − pi)ST. For the correlation coefficient,
since

a1a2P(a) =
p1p2ST(ST − 1)(ST − 2)!

(ST − as)! (a1 − 1)! (a2 − 1)!∏M
i=3ai!

× pST−as
0 pa1−1

1 pa2−1
2

M

∏
i=3

pai
i , (A18)

we find, in general, E[aiaj] = pipjST(ST − 1) and

corr(ai, aj) = −
√

pipj

(1 − pi)(1 − pj)
. (A19)

Specifically, for two aptamer species and p0 ≪ 1, nearly every tar-
get is bound to either aptamer A1 or aptamer A2, so that p1 + p2 ≈ 1,
a1 + a2 ≈ ST, and corr(a1, a2) ≈ −1. Two random variables with a
fixed sum have correlation coefficient −1.

5. Proofs of Theorem 1 and Theorem 2
To prove the upper bound E[a1/as ∣ as ≥ 1] ≤ A1K̄1/(A1K̄1

+ A2K̄2), we compare with another system containing A1K̄1/K̄2
molecules of aptamer A′1 with association coefficient K̄2, A2
molecules of aptamer A′2 with association coefficient K̄2, and ST
molecules of the target. In this comparison system, all aptamers have
the same association coefficient. Due to symmetry, in the new sys-
tem, we apparently have E[a′1/a′s ∣ a′s ≥ 1] = (A1K̄1/K̄2)/(A1K̄1/K̄2
+ A2) = A1K̄1/(A1K̄1 + A2K̄2). What remains is to prove that
E[a1/as ∣ as ≥ 1] ≤ E[a′1/a′s ∣ a′s ≥ 1]. To do so requires the following
three-part lemma:

Lemma 3. (1) Consider the sequences

q0, q1, . . . , qn > 0 and q′0, q′1, . . . , q′n > 0

with∑n
i=0qi = ∑n

i=0q′i = 1. For i = 0, 1, . . . , n − 1, assume

q′i qi+1 ≤ q′i+1qi.

In addition, consider the sequences

c0 ≤ c1 ≤ . . . ≤ cn and c′0 ≤ c′1 ≤ . . . ≤ c′n
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with ci ≤ c′i for i = 0, 1, . . . , n. Then,

n

∑
i=0

qici ≤
n

∑
i=0

q′i c
′
i.

(2) If ci ≥ c′i , c0 ≤ c1 ≤ . . . ≤ cn, c′0 ≤ c′1 ≤ . . . ≤ c′n, and q′i qi+1
≥ q′i+1qi, then∑n

i=0qici ≥ ∑n
i=0q′i c

′
i .

(3) If ci ≤ c′i , c0 ≥ c1 ≥ . . . ≥ cn, c′0 ≥ c′1 ≥ . . . ≥ c′n, and q′i qi+1
≥ q′i+1qi, then∑n

i=0qici ≤ ∑n
i=0q′i c

′
i .

Proof. Since q′i qi+1 ≤ q′i+1qi, if q′i ≥ qi, then q′i+1 ≥ qi+1. Thus,
there is an index k such that q′i ≤ qi for i = 0, 1, . . . , k and qi ≥ qi for
i = k + 1, . . . , n. Set ui = q′i − qi, then ∑n

i=0ui = 0. We have ui ≤ 0 for
i = 0, 1, . . . , k and ui ≥ 0 for i = k + 1, . . . , n. Then,

n

∑
i=0

q′i c
′
i −

n

∑
i=0

qici ≥
n

∑
i=0

q′i ci −
n

∑
i=0

qici =
n

∑
i=0

uici

=
k

∑
i=0

uici +
n

∑
i=k+1

uici

≥
k

∑
i=0

uick +
n

∑
i=k+1

uick = ck

n

∑
i=0

ui = 0. (A20)

The other two parts can be proved in the same way. ◻

Proof of Theorem 1. We will use the first part of Lemma 3
to prove that E[a1/as ∣ as ≥ 1] ≤ E[a′1/a′s ∣ a′s ≥ 1]. Remember that
the original system (a1, a2) is defined on (Z∗)2 with 0 ≤ a1 ≤ A1,
0 ≤ a2 ≤ A2, and a1 + a2 ≤ ST. In the new system, the range is larger:
0 ≤ a′1 ≤ A1K̄1/K̄2, 0 ≤ a′2 ≤ A2, and a′1 + a′2 ≤ ST.

Define

P(x, ⋅) =
min(A2 ,ST−x)
∑
y=0

P(x, y), (A21)

P′(x, ⋅) =
min(A2 ,ST−x)
∑
y=0

P′(x, y). (A22)

For i = 1, . . . , min(A1K̄1/K̄2, ST), set

qi =
P(i, ⋅)

1 − P(0, 0) and q′i =
P′(i, ⋅)

1 − P′(0, 0) . (A23)

If there exists i > min(A1, ST), stipulate that qi = 0. Set

q0 =
P(0, ⋅)/P(0, 0)

1 − P(0, 0) and q′0 =
P′(0, ⋅)/P′(0, 0)

1 − P′(0, 0) . (A24)

For i = 1, . . . , min(A1K̄1/K̄2, ST), set

ci = E[a1/as∣a1 = i] and c′i = E[a′1/a′s∣a′1 = i]. (A25)

If there exists i > min(A1, ST), stipulate that ci = E[a′1/a′s ∣ a′1 = i]
and set

c0 = E[a1/as∣a1 = 0, a2 ≥ 1] = 0, (A26)

c′0 = E[a′1/a′s∣a′1 = 0, a′2 ≥ 1] = 0. (A27)

If the first part of Lemma 3 applies, then we have

E[a1/as ∣ as ≥ 1] = E[a1/as ∣ a1 = 0, a2 ≥ 1]P(0, ⋅) − P(0, 0)
1 − P(0, 0)

+
min(A1 ,ST)
∑
i=1

E[a1/as∣a1 = i] P(i, ⋅)
1 − P(0, 0)

=∑
i

qici ≤∑
i

q′i c
′
i

= E[a′1/a′s∣a′1 = 0, a′2 ≥ 1]P
′(0, ⋅) − P′(0, 0)

1 − P′(0, 0)

+
min(A1K̄1/K̄2 ,ST)

∑
i=1

E[a′1/a′s∣a′1 = i] P′(i, ⋅)
1 − P′(0, 0)

= Ea′1/a′s∣a′s ≥ 1] = A1K̄1

A1K̄1 + A2K̄2
. (A28)

To apply the first part of Lemma 3, we need to prove that (i) ci = c′i ,
(ii) qi+1q′i ≤ qiq′i+1, and (iii) ci (also c′i ) is non-decreasing with i.

(i) Prove cx = c′x. Since the transition rates along y do not
change, we have

P(x, y + 1)
P(x, y) = r[(x, y)→ (x, y + 1)]

r[(x, y + 1)→ (x, y)]

= r′[(x, y)→ (x, y + 1)]
r′[(x, y + 1)→ (x, y)] =

P′(x, y + 1)
P′(x, y) , (A29)

which implies

P(x, y)
P(x, ⋅) =

P′(x, y)
P′(x, ⋅) . (A30)

Thus, for x ≥ 1,

cx =
min{A2 ,ST−x}
∑
y=0

P(x, y)
P(x, ⋅) ⋅

x
x + y

=
min{A2 ,ST−x}
∑
y=0

P′(x, y)
P′(x, ⋅) ⋅

x
x + y

= c′x. (A31)

When x = 0, we have c0 = E[a1/as∣a1 = 0, a2 ≥ 1] = E[a′1/a′s∣a′1 = 0,
a′2 ≥ 1] = c′0 = 0.

(ii) Prove qx+1q′x ≤ qxq′x+1. Both systems satisfy detailed balance
so that the ratio of stationary probabilities P(x, y) is the inverse of
the ratio of transition rates r[(x, y)→ (x + 1, y)],

P(x + 1, y)
P(x, y) = r[(x, y)→ (x + 1, y)]

r[(x + 1, y)→ (x, y)]

= (A1 − x)(ST − x − y)
x + 1

K̄1

≤ (A1K̄1/K̄2 − x)(ST − x − y)
x + 1

K̄2

= r′[(x, y)→ (x + 1, y)]
r′[(x + 1, y)→ (x, y)]

= P′(x + 1, y)
P′(x, y) . (A32)
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With P(x, ⋅)/P(x, 0) = P′(x, ⋅)/P′(x, 0), we have

qx+1

qx
= P(x + 1, ⋅)/[1 − P(0, 0)]

P(x, ⋅)/[1 − P(0, 0)]

= P(x + 1, ⋅)/P(x + 1, 0)
P(x, ⋅)/P(x, 0) ⋅ P(x + 1, 0)

P(x, 0)

= P′(x + 1, ⋅)/P′(x + 1, 0)
P′(x, ⋅)/P′(x, 0) ⋅ P(x + 1, 0)

P(x, 0)

≤ P′(x + 1, ⋅)/P′(x + 1, 0)
P′(x, ⋅)/P′(x, 0) ⋅ P

′(x + 1, 0)
P′(x, 0)

= P′(x + 1, ⋅)/[1 − P′(0, 0)]
P′(x, ⋅)/[1 − P′(0, 0)] = q′x+1

q′x
. (A33)

If qx = 0, then qx+1 = 0 and qx+1q′x = qxq′x+1 = 0. In addition,

q1

q0
= P(1, ⋅)/[1 − P(0, 0)]
[P(0, ⋅) − P(0, 0)]/[1 − P(0, 0)]

= P(1, ⋅)/P(1, 0)
P(0, ⋅)/P(0, 0) − 1

⋅ P(1, 0)
P(0, 0)

≤ P′(1, ⋅)/P′(1, 0)
P′(0, ⋅)/P′(0, 0) − 1

⋅ P
′(1, 0)

P′(0, 0)

= P′(1, ⋅)/[1 − P′(0, 0)]
[P′(0, ⋅) − P′(0, 0)]/[1 − P′(0, 0)] =

q′1
q′0

. (A34)

(iii) Prove c′x ≤ c′x+1. For fixed x ≥ 1 and i = 0, 1, . . . , min
(A2, ST − x), set

ri = P′(x, i)/P′(x, ⋅), r′i = P′(x + 1, i)/P′(x + 1, ⋅),

di = x/(x + i), d′i = (x + 1)/(x + 1 + i).

If A2 ≥ ST − x, stipulate r′ST−x = P′(x + 1, ST − x)/P′(x + 1, ⋅) = 0.
If the third part of Lemma 3 applies, then for x ≥ 1,

c′x = E[a′1/a′s∣a′1 = x] =
min(A2 ,ST−x)
∑
i=0

ridi

≤
min(A2 ,ST−x)
∑
i=0

ri′di′ = E[a′1/a′s∣a′1 = x + 1] = c′x+1. (A35)

In addition, c′1 = E[a′1/a′s ∣ a′1 = 1] ≥ E[a′1/a′s ∣ a′1 = 0, a′2 ≥ 1] = c′0 = 0.
To apply the third part of Lemma 3, we can verify that di ≥ di+1,

d′i ≥ d′i+1, di ≤ d′i . To prove ri+1r′i ≥ rir′i+1, note that

ry+1

ry
= P′(x, y + 1)/P′(x, ⋅)

P′(x, y)/P′(x, ⋅) = (A2 − y)(ST − x − y)
y + 1

K̄2

≥ (A2 − y)(ST − x − y − 1)
y + 1

K̄2

= P′(x + 1, y + 1)/P′(x + 1, ⋅)
P′(x + 1, y)/P′(x + 1, ⋅) =

r′y+1

r′y
. (A36)

◻

Proof of Theorem 2. Consider a mixture of A1 molecules of
aptamer A′′1 with association coefficient K̄2, A2 molecules of aptamer
A′′2 with association coefficient K̄2, and ST molecules of the target. In
this mixture, all aptamers have the same association coefficient. Due
to symmetry, we apparently haveE[a′′1 /a′′s ∣ a′′s ≥ 1] = A1/(A1 + A2).
Then, we only need to prove E[a1/as∣as ≥ 1] ≥ E[a′′1 /a′′s ∣ a′′s ≥ 1].

We define qi, q′i , ci, c′i as in the Proof of Theorem 1 and apply
the second part of Lemma 3. The only difference is that

P(x + 1, y)
P(x, y) = (A1 − x)(ST − x − y)

x + 1
K̄1

≥ (A1 − x)(ST − x − y)
x + 1

K̄2 =
P′′(x + 1, y)
P′′(x, y) (A37)

so that qx+1q′x ≥ qxq′x+1. Then, by the second part of Lemma 3,

E[a1/as∣as ≥ 1] =∑
i

qici

≥∑
i

q′i c
′
i = E[a′′1 /a′′s ∣a′′s ≥ 1]. (A38)

◻
Following the Proof of Theorem 1, we can also prove another

result.

Proposition 1. If A1K̄1/K̄2 is an integer and A1 > ST, then

E[a1/as∣as ≥ 1] ≥ A1K̄1

A1K̄1 + A2K̄2
⋅ (1 − S2

T

A1 − ST
). (A39)

This provides a better explanation of the results in Sec. IV A:
Ai ≫ S2

T for each i is enough for E[a1/as ∣ as ≥ 1] to reach its upper
bound.

Proof. When A1 > ST, ci, c′i , qi, q′i as in the Proof of Theorem 1
are all defined for i = 0, 1, . . . , ST. We have q0 ≥ q′0; otherwise, since
qi+1/qi ≤ q′i+1/q′i , we have qi < q′i for all i, which contradicts ∑iqi
= ∑iq

′
i = 1.

For any i ≤ ST, we have

qi

q′i
=

q0∏i−1
j=0 (qj+1/qj)

q′0∏i−1
j=0 (q′j+1/q′j)

≥
i−1

∏
j=0

qj+1/qj

q′j+1/q′j

=
i−1

∏
j=0

A1K̄1 − jK̄1

A1K̄1 − jK̄2
=

i−1

∏
j=0
(1 − jK̄1 − jK̄2

A1K̄1 − jK̄2
)

≥
i−1

∏
j=0
(1 − STK̄1

A1K̄1 − STK̄1
) ≥ (1 − ST

A1 − ST
)

ST

≥ 1 − S2
T

A1 − ST
, (A40)

where the last inequality is from the Taylor expansion with Lagrange
remainder for (1– x)n at x = 0. Then,

E[a1/as ∣ as ≥ 1]
E[a′1/a′s ∣ a′s ≥ 1] =

∑iciqi

∑ic′i q
′
i
≥ 1 − S2

T

A1 − ST
. (A41)

◻
However, Proposition 1 is rather loose, and Ai ≫ S2

T is not
necessary for E[a1/as ∣ as ≥ 1] to be close to its upper bound.
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6. Proof of Theorem 3
For a ratio r ∈ [0, 1], define f (r) = rK̄1/[rK̄1 + (1 − r)K̄2]. If

the current fraction of aptamers that are A1 is r0, then after one
round of policy 1 or policy 2, the expected fraction of A1 aptamers
becomes f (r0). Note that f (r0) is simply the maximum expected
fraction of A1 after one round of SELEX that was initiated with the
ratio A1/(A1 + A2). Denote the kth iteration of f by f (k) (r), which
equals rK̄k

1/[rK̄k
1 + (1 − r)K̄k

2]. We can verify that f (k) (r) is strictly
increasing and concave in r. We now inductively prove that if the A1
proportion after round N − k is r, then after round N, the maximal
expected A1 proportion is f (k) (r).

Assume that a1/as = r(N−1)
0 after round N − 1. For round N,

policies 1 and 2 both reach the upper bound E[a1/as] = f (r(N−1)
0 ).

Therefore, the optimal policy for the last round is either policy 1 or
policy 2. Assume that this statement is valid for k = K. For k = K + 1,
assume a1/as = r(N−K−1)

0 after round N − K − 1. If we apply pol-
icy 1, then after round N − K, a1/as = f (r(N−K−1)

0 ). After round N,
the optimal policy produces E[a1/as] = f (K+1)(r(N−K−1)

0 ). Assume
we apply another policy for round N − K and the distribution of
a1/as after round N − K is P(a1/as = ri) = qi, where i = 1, . . . , L and
∑L

i=1qiri = r′0. After round N, the optimal policy produces E[a1/as]
= ∑L

i=1 f (K)(ri). We have

L

∑
i=1

qi f (K)(ri) ≤ f (K)(
L

∑
i=1

qiri)

= f (K)(r′0)

≤ f (K)( f (r(N−K−1)
0 ))

= f (K+1)(r(N−K−1)
0 ). (A42)

Here, the first relationship arises from Jensen’s inequality, and poli-
cies 2 or 4 cannot make it an equality. The second inequality arises
from r′0 ≤ f (r(N−K−1)

0 ), and policy 3 cannot make it an equality.
Therefore, we have proved the statement for k = K + 1, and policy
1 is the only optimal policy for round N − K.

By induction, starting with A1/(A1 + A2) = r(0)0 , the maximal
proportion of aptamer A1 after N rounds of SELEX is f (N)(r(0)0 )
=A1K̄N

1 /(A1K̄N
1 + A2K̄N

2 ). Since K̄1 > K̄2,this means that 1−E[a1/as]
converges to 0 exponentially fast, as the name SELEX (Systematic
Evolution of Ligands by EXponential enrichment) implies. Policy 1
is the optimal policy for the first N − 1 rounds. For round N, policy
1 and policy 2 are both optimal.
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