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Nanopores spanning synthetic membranes have been used as key components in proof-of-principle
nanofluidic applications, particularly those involving manipulation of biomolecules or sequencing of
DNA. The only practical way of manipulating charged macromolecules near nanopores is through
a voltage difference applied across the nanopore-spanning membrane. However, recent experiments
have shown that salt concentration gradients applied across nanopores can also dramatically
enhance charged particle capture from a low concentration reservoir of charged molecules at one
end of the nanopore. This puzzling effect has hitherto eluded a physically consistent theoretical
explanation. Here, we propose an electrokinetic mechanism of this enhanced capture that relies on
the electrostatic potential near the pore mouth. For long pores with diameter much greater than the
local screening length, we obtain accurate analytic expressions showing how salt gradients control
the local conductivity which can lead to increased local electrostatic potentials and charged analyte
capture rates. We also find that the attractive electrostatic potential may be balanced by an outward,
repulsive electro-osmotic flow that can in certain cases conspire with the salt gradient to further
enhance the analyte capture rate. © 2009 American Institute of Physics. �DOI: 10.1063/1.3170952�

I. INTRODUCTION

Recent interest in electrokinetic manipulation of charged
macromolecules has been motivated by technological appli-
cations, particularly those involving sorting and sequencing
of nucleic acids. In a typical realization of single molecule
DNA sequencing, an ionic solution is separated by a mem-
brane with a small pore across the membrane, connecting
two otherwise separated bulk reservoirs �cf. Fig. 1�. When an
electric potential is applied across the membrane, ionic cur-
rent flowing through the pore is detected. DNA and protein
molecules placed on one side of the membrane �the right
reservoir in Fig. 1�, even at low concentrations, can occa-
sionally block the pore, reducing the ionic current. A time
trace of the ionic current flowing across the pore therefore
directly measures the statistics of blocking and unblocking
events.

Experimentally, numerous modifications of the basic
configuration have been studied. Biological pores such as
�-hemolysin have also been chemically modified to alter in-
ternal charges, leading to possible enhancements of the cap-
ture frequency and translocation rates of biopolymers
through the pore.3 A number of groups have also recently
fabricated synthetic pores,4–6 typically through SiN mem-
branes, for use in macromolecule capture experiments. Be-
sides pore design, other approaches to better control macro-
molecular analyte �both charged and uncharged� capture and
translocation have been explored. In recent measurements
using synthetic pores, an enhanced capture rate of DNA was
observed in the presence of a salt gradient.7,8 Upon decreas-

ing salt in the analyte reservoir, capture rates were increased
approximately linearly over an intermediate range of salt
ratios.9

Much of the theoretical effort, including molecular simu-
lations, has concentrated on the physics of polymer translo-
cation through the pore.10–12 However, since macromolecular
capture is sensitive to applied voltage, occurs even with un-
charged molecules, and is a stochastic process, the relevant
mechanism will involve the interplay among electrostatics,
fluid flow, and the statistics of capture. Although the electric
potentials and flows inside a nanopore have been presented
in the context of Poisson–Nernst–Planck models,13,14 the dy-
namics of initial particle capture requires a more detailed
analysis of the field configuration in the bulk reservoir, near
the pore opening. Finally, the analyte density in the reservoir
needs to be determined4 in order to solve the problem of
capture of a charged macromolecule to the pore mouth in the
presence of fluid flow and electrokinetic forces that stochas-
tically switch according to pore blockage. The polymer cap-
ture problem has been treated by Wong and Muthukumar,15

who derive capture rates in the presence of electro-osmotic
flow �EOF� induced by an applied voltage bias and surface
charges on the inner pore surface. In this study, as in many
others,12,15,16 the electric field in the reservoir was neglected
and the capture problem was solved only in the fast translo-
cation limit.

In this paper, we show that electric fields in the bulk, as
well as a more detailed calculation of the capture problem
are necessary to explain the recently observed salt gradient-
induced enhancement of charged analyte capture rates.7–9 By
using geometrical approximations in the high salt limit, we
find analytic expressions for the local salt concentration anda�Electronic mail: tomchou@ucla.edu.
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electrostatic potential that are accurate for a range of param-
eters relevant to typical experiments. In the presence of an
imposed salt concentration gradient, we show that although
most of the potential drop occurs across thin pores, the elec-
trostatic potential at the pore mouth plays an important role
in the analyte capture rate and cannot be neglected. We also
show how an EOF into the analyte reservoir �which, by it-
self, convects macromolecules away from the pore� can in-
teract nonlinearly with the salt gradient and electrostatic po-
tential to actually increase the capture rate. Finally, we
analyze implicit solutions for mean capture rates using the
full steady-state Debye–Smulochowski capture problem with
a partially absorbing boundary for the analyte concentration
at the pore mouth.

II. ELECTROKINETIC EQUATIONS

A typical experimental setup is depicted in Fig. 1�a�
where two reservoirs containing aqueous solution are sepa-
rated by an electrically insulating membrane containing a
single conducting nanopore through which fluid can flow. A
voltage bias v is applied across electrodes placed far from
the pore, resulting in an ionic current through it.

The full steady-state electrokinetic equations for the lo-
cal electrostatic potential ��r , t�, ion concentration Ci�r , t�,
and local fluid velocity U�r , t�:

� · �� � ��r,t�� = − 4�e�
i

zici�r� , �1�

u�r� · �ci = � · �Di � ci� + ezi
Di

kBT
� · �ci � �� , �2�

and

0 = − �p + ��2u + e � ��
i

zici�r� , �3�

where zi is the valency of solute species i, � is the dielectric
permittivity of the solution, Di is the diffusivity of species i,
� is the dynamic viscosity of the solution, and p�r� is the
local hydrostatic pressure in the fluid.

For simplicity, we henceforth consider a two component
ionic solution with z�= �1 where both ion species have the
same diffusivity D+=D−=Dion. Reactions at the electrodes
will also be symmetric such that no net charge is built up in
the bulk solution. We analyze Eqs. �1�–�3� in the geometry
shown in Fig. 1 where, for mathematical convenience, the
electrodes far from the nanopore are assumed to be hemi-
spherical caps with radius r→�.

The boundary conditions at these far electrodes are
c+=c−=cL, u=0, and �=v in the left reservoir, and c+=c−

=cR, u=0, and �=0 in the right reservoir. To obtain effective
boundary conditions at the membrane and on the inner sur-
face of the pore, we first extract the appropriate physical
limit by defining distance in units of the pore diameter a, and
nondimensionalizing Eqs. �1�–�3� according to

C� =
c�

cR
, � =

e�

kBT
, V =

ev
kBT

,

�4�

U =
a

Dion
u, P =

p

kBTcR
, 	 =

Dion�

kBTcRa2 .

Equation �1�, the sum and difference of the z=+1 and z=
−1 components of Eq. �2�, and Eq. �3� become, respectively,

� · �� � ��r�� + 
RQ�r� = 0, �5�

� · ����r� + Q�r� � ��r� − U�r���r�� = 0, �6�

� · ��Q�r� + ��r� � ��r� − U�r�Q�r�� = 0, �7�

	�2U�r� − �P�r� + Q�r� � ��r� = 0. �8�

Above, we define the ion concentration difference Q�r�
= 1

2 �C+�r�−C−�r��, sum ��r�= 1
2 �C+�r�+C−�r��, and


R �
8�e2cRa2

kBT
� ��Ra�2. �9�

The quantity �R represents the inverse ionic screening length
associated with the ionic solution deep in the right reservoir.
For sufficiently high salt concentrations cR�1−0.1M, the
corresponding screening length �R

−1�0.3–1 nm, while syn-
thetic pores have radii on order of at least a=3–5 nm, ren-
dering 

10 large. At distances of least a screening length
away from the membrane or pore surfaces, this separation of
scales allows us to consider only the “outer” solutions asso-
ciated with charge-neutral conducting fluid bulk reservoirs
where boundary layers of charge separation do not reach.
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FIG. 1. Schematic of electrokinetic focusing experiments. �a� Charged ana-
lytes are placed in the right reservoir and a voltage bias is applied. �b� The
structure of the pore, electrostatic potential, and electro-osmotically driven
fluid flow in dimensionless units, with distance measured in units of the pore
radius. For long pores �a /d=w�1�, the concentration and potential fields
are approximated as constant within the small hemispherical regions cap-
ping the pore �denoted by ��. Field and flux continuity conditions are ap-
plied at the hemispherical surfaces. The electro-osmotic flow field in the
right chamber will be approximately spherically symmetric �red� if the
membrane surface is uniformly charged but will be more lobelike �black� if
the membrane flange is uncharged and no-slip boundary conditions are im-
posed �Refs. 1 and 2�.
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In the 
R
−1��→0 limit, Eq. �5� represents a singular

perturbation. The outer solutions to the system of equations
can be found by considering expansions of the form

��r� = �0�r� + ��1�r� + �2�2�r� + ¯ ,

��r� = �0�r� + ��1�r� + �2�2�r� + ¯ ,

Q�r� = Q0�r� + �Q1�r� + �2Q2�r� + ¯ ,

U�r� = U0�r� + �U1�r� + �2U2�r� + ¯ ,

P�r� = P0�r� + �P1�r� + �2P2�r� + ¯ . �10�

Upon using the expansions for ��r� and Q�r� in Poisson’s
equation, �� · �����=Q, we find an outer solution Q0=0, as
expected in the charge-neutral limit of a fluid conductor. To
find solutions accurate to O��0�, we must solve the remain-
ing equations

� · ���0�r� − U0�r��0�r�� = 0, �11�

� · ��0�r� � �0�r�� = 0, �12�

	�2U0�r� − �P0�r� = 0. �13�

Henceforth, we consider only the zeroth order solutions and
drop the subscript �0� notation. Equation �11� simply de-
scribes the steady-state convection-diffusion of the total local
salt concentration ��r�. The ionic conductivity of a locally
neutral electrolyte solution is proportional to this local salt
concentration. Equation �12� is an expression of Ohm’s law
that includes a spatially varying ionic conductivity.

In the relevant limit of small screening length, the near-
field boundary conditions for the concentration and poten-
tials associated with the outer Eqs. �11� and �12� can be
obtained by noting that the inner solution near the membrane
decays exponentially �e.g., as does the solution to the
Poisson–Boltzmann equation�. Matching the outer solutions
to the exponentially decaying inner solutions imposes effec-
tive Neumann boundary conditions for the outer solutions of
� and � near the solution-membrane interface. Such bound-
ary conditions embody the impenetrable nature of the mem-
brane to both the salt and the ionic current, and have been
more formally derived in Ref. 14. The Neumann boundary
conditions allow the use of spherical symmetry of the solu-
tions within each reservoir, rendering Eqs. �11� and �12� one
dimensional in the radial coordinate. The far-field boundary
conditions on the dimensionless quantities are �r�r→��=1,
���r→����L, and ���r→��=V, �r�r→��=0. Although
complicated expressions have been derived to compute the
exact concentration profiles associated with steady-state dif-
fusion through a finite width pore,17 our spherical approxi-
mation dramatically simplifies the analysis of Eqs. �11� and
�12�.

Finally, we must also consider the structure of the flow
field U in Eq. �13�, even if no hydrostatic pressure gradient is
externally applied and P�r→��=0. A nonzero outer velocity
field will arise from boundary charge-induced electro-
osmosis, in which a surface charge on the inner surface of
the pore enhances the concentration of the counterions near

the inner surface the pore. An applied electric then pushes
this slightly charged layer, dragging the bulk fluid with it.
Matching the outer velocity field with the electric field-
driven, inner layer of fluid within a Debye screening length
of the charged inner pore surface results in a pluglike outer
flow velocity profile. The pluglike profile allows us to con-
sider the outer solution for U inside the pore as a constant
Ux̂. The magnitude U of the plug flow velocity is propor-
tional to the “�-potential” at the pore surface and the electric
field applied across the pore.18 Within linearized electrostat-
ics described by the Debye–Hückel equation, the �-potential
is proportional to the surface charge density and the local
screening length of the solution.

In the absence of ponderomotive body forces on the fluid
outside the pore, the velocity field U, under no-slip boundary
conditions, has been calculated as a series expansion1 and in
terms of integrals over Bessel’s functions.2 The lobelike flow
patterns �cf. Fig. 1�b�� were obtained using no-slip boundary
conditions at the membrane interface and are not spherically
symmetric. However, if the membrane walls are also uni-
formly charged, potential gradients along the wall exterior to
the pore will drive an inner EOF along the wall, giving rise
to an effective slip boundary condition for the outer flow
field U near the wall. We will show that the outer-solution
electric field tangential along the membrane falls off as 1 /r2,
plus logarithmic corrections in the presence of salt gradients.
Therefore, the velocity profile in the reservoirs can be self-
consistently approximated by a radial profile U=Ur̂ /r2 obey-
ing incompressibility. The actual velocity profile will quali-
tatively resemble radial flow, while retaining some features
of a lobed-flow profile. Since we expect our gross results will
be sensitive mostly to the typical magnitude of U, and not to
the details of its angular dependence, we will also assume a
simple radial form for U�r�.

Since we assume radial symmetry in the outer solutions
of all quantities, we apply uniform boundary conditions at
both the near and far boundaries at r→� and r=1, respec-
tively. Upon defining the variables

G � exp�U

2
	 and H � exp�Ud

a
	 � exp�U

w
	 , �14�

where w�a /d�1 is the pore aspect ratio, the total ion con-
centration can be found in terms of the normalized bulk salt
concentration �L far from the pore in the left reservoir. When
the pore is unblocked by analyte, salt freely diffuses across.
Using the general solutions of Eq. �11� in each region �left
and right reservoirs, and pore�, and imposing conservation of
ion flux at the surfaces of the hemispherical caps between
these regions �cf. Fig. 1�b��, 2��r���r=1�+��x�p�x=
−1 / �2w��=0 and 2��r�r�r=1�−��x�p�x=1 / �2w��=0, we
find

���r� =
�LGH − 1

GH − 1
−

��L − 1�
GH − 1

exp� U

2r
	 , �15�

�p�x� =
�LGH − 1

GH − 1
−

��L − 1�
GH

GH − 1
eUx, �16�

and
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�r�r� =
�LGH − 1

GH − 1
−

��L − 1�GH

GH − 1
exp�−

U

2r
	 . �17�

Although exact solutions can be computed,17 for small w
�1, the simple forms given in Eqs. �15�–�17� are accurate to
O�w�.

The salt concentration ��r� determines the local ionic
conductivity as a function of the EOF velocity U and the
experimentally imposed bulk salt ratio �L. We now substitute
the approximate solutions for ��r� into Eq. �12� to find the
electrostatic potential ��r�. Denoting the ion concentration
and electrostatic potential within the hemispheres capping
the pore as �p�1 / �2w��=�r�1���+, �p�1 / �2w��=���1�
��−, and �p�1 / �2w��=�r�1���+, �p�−1 / �2w��=���1�
��−, and applying all far-field boundary conditions, we find

���r� = �V − �−�
�1

r�y2���y��−1dy

�1
��y2���y��−1dy

+ �−

= V

ln����r�
�−


 +
U

2
−

U

2r

ln��L

�−

 +

U

2

+ �−

ln� �L

���r�

 +

U

2r

ln��L

�−

 +

U

2

,

�18�

�p�x� = ��+ − �−�
�−1/�2w�

x �p
−1�y�dy

�−1/�2w�
1/�2w� �p

−1�y�dy
+ �−

= ��+ − �−�
ln� �−

�p�x�

 + Ux +

U

2w

ln��−

�+

 +

U

w

+ �−, �19�

and

�r�r� = �+ − �+
�1

r�y2�r�y��−1dy

�1
��y2�r�y��−1dy

= �+
ln �r�r� + U/�2r�

ln �+ + U/2
.

�20�

In order to explicitly determine the potentials ��, we
apply Kirchhoffs law,

2��−�r���r = 1� + ��−�x�p�x = − d/�2a�� = 0,

�21�
2��+�r�r�r = 1� − ��+�x�p�x = d/�2a�� = 0

conserving ionic current across the pore mouths to find

�+ = V
ln �+ + U/2

ln �L + U�1 + 1/w�
�22�

and

�− = V
ln �− + U�1 + 2/w�/2
ln �L + U�1 + 1/w�

. �23�

In the limit of vanishing salt gradient, �L→1, and

�+��L → 1,w,U� �
wV

2�1 + w�
+ O��L − 1� , �24�

while for vanishing electro-osmotic flow, U→0 and

�+��L,w,U → 0� �
V

ln �L
ln�2 + w��L + 1�

2�w + 1� 	 . �25�

In the case �L→�, the negligible resistance offered by the
left reservoir makes �+ slowly �logarithmically� approach V.

III. RESULTS AND ANALYSIS

A. Concentrations and potentials

Figure 2�a� shows the total salt concentration along the
axial coordinate, made up of solutions to ���r�, �p�x�, and
�r�r�. For zero EOF �U=0�, the total salt concentration is
linear in the pore region, but has a decaying structure in the
two reservoirs.

The spatially varying total salt concentration results in a
spatially varying conductivity. Figure 2�b� shows the result-
ing electrostatic potential along the axial coordinate �. For
vanishing salt gradient �L=1, Eq. �20� shows the potential
decays as 1 /r in the analyte reservoir, consistent with our
assumption of a hemispherical EOF profile far from the pore.
In the presence of an imposed salt gradient ��L�1�, addi-
tional logarithmic terms arise in the reservoir potential �r�r�.
These results show that although most of the potential drop
occurs across the membrane-spanning pore, in the presence
of ionic current, the electrostatic potentials in the reservoirs
vary slowly with distance from the pore mouths.

For �L=1 and long pores �w�1�, the potential at the
pore mouth in the grounded analyte reservoir �+�wV may
not be small for sufficiently large applied bias voltage. Fur-
thermore, we will show that the analyte capture rate is sen-
sitive to �+ as it depends on the exponent of �+. For im-
posed salt gradients �L�1, the conductivity in the left
reservoir is relatively higher and more of the voltage drop
occurs across the pore and the analyte �right� reservoir. This
further raises the potential �r�r=1�=�+ felt by the charged
macromolecules at the mouth of the pore in the analyte
chamber. Note that the potential �r�r� depends on the gradi-
ent of conductivity �arising from the salt concentration gra-
dient�, and not on its absolute value. The conductance varia-
tion arising from salt concentration gradients provides a

FIG. 2. Salt concentration and electrostatic potential across an unimpeded
pore of aspect ratio w=a /d=0.1. �a� The salt density ���� as a function of
the axial coordinate for various EOF velocities U and salt ratio �L=3. �b�
The normalized potential ���� /V for various salt ratios �L. The flat seg-
ments in both plots correspond the hemispherical cap regions in which all
quantities are approximated as constant. The errors introduced in the quan-
tities outside the caps with such an approximation are of order w2.
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simple mechanism by which the potential �r�r� can be in-
creased through the salt ratio �L, enhancing in the capture
rate of charged analytes.

B. Effect of electro-osmotic flows

Now consider how the details of the electro-osmotic
flow velocity U may affect the electrostatic potential. For an
EOF with given magnitude U, the potentials �� can be cal-
culated from Eqs. �22� and �23�. However, recall that the
EOF velocity is driven by the potential difference applied
across the pore;18 therefore, U must be self-consistently
solved by finding the root to

U = ��U,�L���+�U,�L� − �−�U,�L�� , �26�

where we have explicitly denoted the dependence of �� on
U and �L. The prefactor ��U ,�L� measures the effective
electro-osmotic permeability, which is inversely proportional
to the pore length and fluid viscosity, and proportional to the
“�-potential.”18 Within the linearized Debye–Hückel theory
for electrolytes, this local �-potential is proportional to the
pore surface charge times the local screening length �−1�x�.
In our problem where the ionic strength is varying in the
axial direction along the pore, the �-potential is also varying
along the pore. Although a nonuniform surface potential,
along with the constraint of fluid incompressibility, can give
rise to nonuniform flow within the pore, it has been shown
that the net fluid flow across a pore can be found by averag-
ing the �-potential �or screening length� along the length of
the pore:19–21

��U,�L� � ��kBT

�de

1

d
�

−d/2

d/2 dx

��x�
� �Rw�

−1/�2w�

1/�2w� dx

�p�x�

,

�27�

where

�R � � �

eacR

 w

	
R
1/2 �28�

is the dimensionless permeability referenced to the salt con-
centration in the right chamber. For a typical SiN membrane
with constant surface charge density ���
�1 microcoulomb /cm2,22 a 5 nm radius, 40 nm length pore
in water gives ��R��0.2.

Figure 3�a� shows the self-consistent EOF velocity U
�obtained by using Eq. �27� and solving Eq. �26�� as a func-
tion of �R, for various salt ratios �L. For �R�0 and U�0,
salt is being swept from the left to right reservoirs. When
�L�1, the pore feels a higher averaged salt concentration,
lowering the �-potential, thereby reducing the EOF response
to �R. Conversely, when �L�1, a higher �-potential and
stronger response arises. Figure 3�b� shows the EOF velocity
U as a function of salt ratio �L for various �R. For �L→�, U
vanishes along with the effective pore �-potential.

The pore mouth potential �+ felt by the charged analyte
is shown in Fig. 4. As a function of pore charge/permeability
�R, the potential �+ exhibits a maximum�minimum� for �L

�1��L�1�. This nonmonotonic dependence arises because
for �L�1 and small U
0, the EOF changes the conduc-
tance structure so that �+ initially increases. In other words,
the largest voltage drop across the analyte �right reservoir�
reservoir occurs at small, positive U. For larger U, high salt
is swept well into the right reservoir reducing the effective
relative conductivity across the pore. Most of the voltage
drop then occurs in regions away from the pore well in the
right reservoir, diminishing �+ to the value wV / �2+2w� ex-
pected in the uniform salt ��L=1� limit. For �L�1, more
voltage drop occurs across the left reservoir, reducing �+

below wV / �2+2w�.
Figure 4�b� shows that as the pore potential �+ increases

with the salt ratio �L. This is consistent with the observed
increase in analyte capture rate with increasing salt in the
analyte-free chamber. Also consistent with Fig. 4�a� is the
slight increase, then decrease in �+ as �R is increased

C. Charged analyte distribution

We now model how both the approximate EOF velocity
r̂U / �2r2� and the electrostatic potentials �Eqs. �18�, �20�, and

FIG. 3. �a� EOF velocity U as a function of effective pore EOF permeability
�R. The response deviates from linear for large and small salt ratios. The
deviations are most pronounced for �R�0 where EOF is into the right
reservoir �U�0�. �b� EOF velocity as a function of salt ratio for various
effective pore surface charge densities. For �R�0, increasing the salt ratio
decreases the effective screening length in the pore, reducing the EOF ve-
locity �cf. Eq. �26��. When �R�0, the salt in the right reservoir is swept into
the left reservoir, keeping the screening length approximately �R

−1 through-
out the pore and very little dependence on �L arises. In both plots V=10 and
w=a /d=0.2.

FIG. 4. �a� The electrostatic potential in the right reservoir �normalized by
the applied potential V�, as a function of salt asymmetry �L for various pore
EOF permeabilities �R. Here the pore aspect ratio was set to w=a /d=0.2.
�b� The magnitude of the potential near the mouth pore as a function of EOF
permeability �R for various salt ratios.
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�19�� affect the capture of charged analytes to the nanopore
as functions of parameters such as the applied salt ratio �L,
applied voltage bias V, and pore surface charge/permeability
�R. When a charged analyte molecule of size of order a
enters the hemispherical cap, it blocks the pore and prevents
ion transport. Such a nonspecifically adsorbed particle can
spontaneously desorb from the mouth of the pore with rate
koff. Alternatively, as in the case of DNA, it may translocate
through the pore to the opposite, receiving reservoir. Al-
though translocation of a polymer involves many stochastic
degrees of freedom, we will lump the process into a single,
effective rate kt, such that kt

−1 represents the typical time for
the macromolecule to fully tunnel across the pore, allowing
ionic current to flow again.

If the hemispherical cap can accommodate at most one
blocking macromolecule, its mean field, steady-state occupa-
tion 0���1 is balanced according to

kon��1��1 − �� = �koff + kt�� , �29�

where ��1�� limr→1+ ��r� is the analyte concentration just
outside the cap region, and kon is its adsorption rate into the
hemisphere. To explicitly determine � we need to relate the
unmeasurable, kinetically determined ��1� with the experi-
mentally imposed macromolecular density �����r→��.
This relationship is obtained by solving the mean field,
steady-state convection-diffusion equation for the density in
the bulk region:

�1 − �� � · �A�r���r�� = �2��r�, r � 1, �30�

where

A�r� = A�r�r̂ = � U

2Dr2 + q
��r�r�

�r
	r̂ �31�

is the normalized drift arising from both a hydrodynamic
flow and an electrostatic potential induced by electro-
osmosis and ionic conduction, respectively. The drift induced
by the electrostatic potential is proportional to the effective
number of electron charges q of the analyte. We assume this
effective charge q is fixed and independent of the local po-
tential and ionic strength. An appreciable variation in q arises
only in the low ionic strength limit not applicable here.23

Finally, the factor �1−�� reflects our assumption that the
EOF flow and ionic current is completely shut off when a
macromolecule occupies the cap ��=1�.

In writing Eqs. �29� and �30�, we have implicitly as-
sumed that the time �eff required to form the effective poten-
tial U / �2Dr�+q�r�r�r� is much less than the typical times
associated with dissociation, association, or translocation:
�eff�koff

−1, kon
−1, kt

−1. The time scale for formation of the elec-
trostatic potential corresponds to the time it takes for ions to
relax a distance comparable to the screening length. In our
system, this is approximately �eff�a2 / �
RD��10−10 s,
which is extremely fast. Typical adsorption and desorption
times are roughly on the order of 10−4–10−7 s, and 10−3 s,
respectively.24,25 Translocation times for short DNA strands
are on the order of microseconds or greater.3,4,6,12 Therefore,
these rates are all slower than the rate of reestablishing the

effective potential, and we can assume that the field and flow
configurations instantaneously follow those corresponding to
whether or not the pore is blocked.

The boundary condition associated with Eq. �30� is ap-
plied just outside the hemispherical cap �r=1+� and is deter-
mined by macromolecular flux balance through the
interface26,27

D�r��r��r=1+ − �1 − ���U

2
+ Dq � �+	��1�

= kon��1��1 − �� − koff� . �32�

Upon solving Eq. �30� for ��r� and using Eq. �29� for ��1�,
we find

��r� = e�1−���1
rA�y�dy� kt�

D
�

1

r

y−2e−�1−���1
yA�y��dy�dy

+
�koff + kt��
kon�1 − �� 	 . �33�

After setting r→� in Eq. �33�, we relate the mean cap oc-
cupation � to the bulk analyte density �� through the physi-
cal solution of the integrotranscendental equation

kt�

D
I��� +

�koff + kt��
kon�1 − ��

e�1−���U/�2D�−q�+� = ��, �34�

where

I��� � �
1

�

e�1−���U/2Dr−q�r�r��r−2dr . �35�

When kt=0, adsorbed macromolecules do not translocate
and can only detach back into the right bulk reservoir. In this
limit, I��� does not arise in Eq. �34� and � depends only on
the value �+ of electrostatic potential at the pore mouth.
Moreover, the dependence on the normalized macromolecule
diffusivity arises only in U / �2D�, the drift due to EOF at the
pore mouth. Although the EOF and ionic conduction in the
fluid arises from nonequilibrium processes, the density pro-
file ��r� in the kt=0 limit is an equilibrium density self-
consistently determined by the effective potential
�1−���U / �2Dr�−q�r�r��. For parameters such that
A�1���U / �2D�−q�+�� ln���kon /koff�,

� � � kon

koff

��e−U/�2D�+q�+ � 1. �36�

This form corresponds to an equilibrium “adsorption iso-
therm” on the single site and depends only on the value of
the potential energy at that site.

Conversely, in the limit of high translocation rates such
that ktkon /D�koff and �U / �2D�−q�+�� ln���kon /kt�, the
first iteration about �=0 to Eq. �34� yields

� �
�kon/kt�D��e−U/�2D�+q�+

konI�0�e−U/�2D�+q�+ + D
. �37�

Here, the surface density ��1��kt� /kon resembles that of an
adsorbing sphere with an attachment rate kon, but modified
by the O�1� term I�0�e−U/�2D�+q�+ resulting from stochasti-
cally switching of the effective drift.

034703-6 Tom Chou J. Chem. Phys. 131, 034703 �2009�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Although the full solution for the pore occupation must
be solved numerically, we see that � is exponentially sensi-
tive to both the magnitude of the EOF velocity U and the
electrostatic potential at the cap �+ through an effective drift
defined by the combination U / �2D�−q�+. Note that both U
and �+ depend linearly on the bias voltage V, but nonlinearly
on the salt ratio �L. The EOF velocity U is a function of �R

through the solution Eq. �26�, while �+ depends indirectly
on �R through the resulting flow velocity U that changes the
local conductivity when �L�1. However, only the electro-
static drift q�+ depends on the effective analyte charge q.

Since many analyte capture experiments exhibit infre-
quent pore blocking, even with bias voltages as high as
+250 mV �V�+10�, we use parameters that yield small nu-
merical values of �. Henceforth, we set the analyte relative
diffusivity D=0.01, the dimensionless analyte density
��=10−7 �corresponding to an analyte concentration of
�1 nM for a�5 nm�, and the effective analyte charge
q=30 �corresponding to that of an approximately 500 bp
strand of dsDNA �Ref. 28��. Figure 5 shows representative
numerical solutions of Eq. �34� as a function of �a� salt ratio
�L, and �b� bias voltage V. Figure 5�a� shows that for larger
�R �larger U�, the repulsive U / �2D� term dominates in keep-
ing � small. However, upon increasing �L, attraction arising
from an increasing q�+ term eventually increases �. Larger
values of �L also attenuate the pore-averaged �-potential,
reducing the repulsive EOF, further increasing �. For fixed V,
we will show that the analyte capture rate is proportional to
�; therefore, Fig. 5�a� predicts the capture rate as a function
of salt ratio. Experimentally, the capture rate increased
roughly linearly upon decreasing the salt concentration in the
right, analyte-containing reservoir.9 Decreasing the salt by a
factor of �5 also increased the capture rate by a factor of
�5. Therefore, we expect that the capture rate will be a
sublinear function of the left-right-reservoir salt ratio �L. As
shown in Fig. 5�a�, this quality is predicted by the model for
small pore surface charge ��R�0–0.1� and negligible EOF.
In addition to being consistent with the salt gradient depen-
dence, we push the analysis to make a number of additional
predictions.

To determine how � depends on the applied voltage, we
use simple assumptions to approximate how the kinetic rates
depend on V,

koff = �offe
−fqV, kon = �on, kt = �tV , �38�

where �off, �on are intrinsic detachment and attachment
rates, and 1 /�t is the typical conditional mean time for ana-
lyte translocation across the nanopore under a v�kBT volt-
age bias �translocation is assumed negligible when V=0
�Ref. 3� but can be approximated for polymer
translocation29,30�. When the macromolecular analyte blocks
the pore and �=1, a fraction f of the q charges may be
exposed to the potential in the pore. When the pore is com-
pletely blocked, this potential is approximately V since there
is no voltage drop across the left reservoir and the pore. For
detachment to occur, an energy barrier fqV must be over-
come, resulting in koff��offe

−fqV.31 In Fig. 5�b�, � is plotted
as a function of voltage V for various fixed salt ratios �L.
The kinetic parameters chosen were f =0.02, �off=�on, and
�off /�t=105. This choice of intrinsic rates corresponds to
approximately 4% of captured analyte being translocated at
V=10, and 96% detaching back into the bulk analyte reser-
voir. For the chosen parameters, increasing a small voltage V
raises � exponentially if there is an appreciable ratio �L that
enhances the positive EOF velocity U to increase �+ beyond
the repulsion caused by the positive flow U. At larger V, the
larger EOF velocity not only pushes the analyte faster from
the pore, but also contributes to reduction in the potential �+,
resulting in a slower increase in occupation.

D. Analyte capture rates

We now define the mean analyte capture rates measured
in experiments. The average times that a pore stays open and
blocked are

To �
1

kon��1�
=

1 − �

�koff + kt��
and Tb �

1

koff + kt
, �39�

respectively. The inverse of the mean time between succes-
sive capture events defines the capture rate �c:

�c �
1

Tb + To
= �koff + kt�� . �40�

Upon defining the normalized capture rate �c��c /�off, we
formally express

�c � � �c

�off

 � �e−fqV +

�t

�off
V


����R, f ,q,V,w,�L,��,�off,�on,�t� ,

�41�

where the voltage-dependent expressions for koff and kt have
been used and the occupation � is determined as a function
of all physical parameters by solving Eq. �34�, or using Eqs.
�36� and �37�. Thus, for fixed applied voltage V, the capture
rate as a function of salt ratio �L is proportional to �, and is
plotted in Fig. 5�a�.

Figure 6�a� shows the normalized capture rate �c as a
function of voltage V for different salt ratios �L. For fixed

FIG. 5. �a� Pore mouth occupation fraction � as a function of salt ratio �L

for various EOF permeability �R and V=10. Note the sharp increase in � as
a function of �L for positive surface charges. Parameters used were ��

=10−7, q=30, V=10, w=0.2, kon /koff=1000, and kon /kt=104. For small �L,
larger �R�0 induces larger U�0, pushing the analyte away. At higher salt
�L, the EOF is mitigated due to the reduction in �-potential �or effective
surface charge� indicated by Eq. �27�. The reduction of EOF to modest
values allows the attraction from the term q�+ to overcome the repulsive
effect of the EOF �cf. Fig. 4�a��, increasing �. �b� Occupation fraction � as
a function of bias voltage V at different salt ratios and �R=0.1.
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�L�1, increasing V initially decreases �c by virtue of the
prefactor �offe

−fqV. Only at larger V does the term �tV /�off

increase the overall capture rate. For small �L, not only is �+

slightly decreased, the �-potential and EOF are increased,
repelling the analyte away from the pore, particularly at high
voltages.

Figure 6�b� plots the capture rate as a function of voltage
at various relative translocation rates. For modest �R and �L,
and relatively small translocation rates �t /�off, the initial
increase in �c with V arises predominantly from an increase
in small � �Fig. 5� which decreases To �Eq. �39�� despite the
decrease in koff. However, for larger V, the decrease in koff is
not compensated by the slower increase in � �Fig. 5�. Only at
large voltages does the kt=�tV term come into play to in-
crease �c linearly. For larger translocation rates �t, the pore
is cleared faster by annihilation of the analyte into the op-
posing reservoir, preventing the initial increase in � with V,
as well as the initial decrease in To that would increase the
overall capture rate.

IV. SUMMARY AND CONCLUSIONS

We have modeled the underlying electrokinetics to quan-
titatively describe capture of charged analytes by nanopores
in the presence of salt gradients. Our analytic analysis shows
that the electrostatic potential near the pore mouth, often
neglected, can be sufficient to be an important determinant in
the capture of charged particles. We also showed that im-
posed salt gradients change the local ionic conductivity,
modifying the potential distributions. In particular, higher
salt �higher conductivity� in the nonanalyte chamber de-
creases the voltage drop in that reservoir and across the
nanopore, increasing the analyte blocking probability. As a
function of salt ratio, our analysis at small analyte concen-
trations predicts that both the blocking probability � and the
capture rate �c always increases as �L increases. The basic
mechanism provides a physically consistent and testable ex-
planation for recently observed increases in capture rate with
salt ratio �L�1.7

Electro-osmotic flow also affects analyte capture. By it-
self, hydrodynamic flow �e.g., from electro-osmosis� into the
analyte reservoir sweeps particles away from the pore, dra-
matically lowering the blocking probability. However, when
the nonanalyte chamber contains a higher salt concentration
such that �L�1, the same repelling fluid flow can also

change the local conductivity structure such that the potential
�+ felt by the charged analyte at the pore mouth initially
increases with flow rate. For small pore charge/permeability
�R, we find that repelling EOF actually increases the overall
attraction of charged analytes, particularly when �L and the
effective analyte charge q are large. Finally, our analysis
shows that the capture rate is sensitive to the translocation
rate �t. When �t��off, and nearly all captured particles are
annihilated via translocation into the receiving reservoir, the
capture rate increases with bias voltage V, except at very low
V.

We considered only outer solutions, accurate in regions
where Q�r��0 outside the charged boundary layer at the
solution-membrane interface. However, since we focus on
the capture of analyte from the bulk reservoir, the main fac-
tor is the voltage drop across the pore with other electrostatic
details within the pore relatively unimportant. Although our
outer solutions do not hold inside pores with small radii a
��R

−1, the ionic current flow across such pores still induces a
slowly decaying electrostatic potential �r�r� in the bulk ana-
lyte chamber, albeit with a small amplitude determined by an
effective, small pore aspect ratio w. The correspondingly
smaller potential �r�r� in the right chamber would give a
smaller capture rate at the same analyte density. We expect
the analyte capture rate by smaller pores to have the same
functional dependences as in our mathematical model, but
with a smaller effective w. Note that the EOF velocity U is
proportional to w2 �through ��U ,�L� in Eq. �27��, while �+

scales as w. Therefore, we also expect EOF to become less
important than direct electrostatic effects for sufficiently
small pores.

In addition to the charge-neutral approximation, our
analysis relies on a number of other assumptions, including
an effective analyte charge q and pore surface charge � that
are independent of the local ionic strength ��r�. At high salt
concentrations, variations of the effective analyte charge
with local salt concentration are expected to be a small,23 but
can be included in the analysis. Moreover, we have assumed
right-cylindrical pores, that the occupation and bulk analyte
density can be approximated using a mean field assumption,
and that the molecular details of the capture and transloca-
tion can be described using simple kinetic rates. Although
some of these assumptions can be lifted in more detailed
models and numerical analyses �for example, in a model of
conical pores32�, our simple model embodies the essential
physics of the problem and we expect our results to be quali-
tatively predictive.
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