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The specificity of T cells is that each T cell has only one T cell receptor (TCR). A T cell clone
represents a collection of T cells with the same TCR sequence. Thus, the number of
different T cell clones in an organism reflects the number of different T cell receptors (TCRs)
that arise from recombination of the V(D)J gene segments during T cell development in
the thymus. TCR diversity and more specifically, the clone abundance distribution, are
important factors in immune functions. Specific recombination patterns occur more
frequently than others while subsequent interactions between TCRs and self-antigens
are known to trigger proliferation and sustain naive T cell survival. These processes are
TCR-dependent, leading to clone-dependent thymic export and naive T cell proliferation
rates. We describe the heterogeneous steady-state population of naive T cells (those that
have not yet been antigenically triggered) by using a mean-field model of a regulated birth-
death-immigration process. After accounting for random sampling, we investigate how
TCR-dependent heterogeneities in immigration and proliferation rates affect the shape of
clone abundance distributions (the number of different clones that are represented by a
specific number of cells, or “clone counts”). By using reasonable physiological parameter
values and fitting predicted clone counts to experimentally sampled clone abundances,
we show that realistic levels of heterogeneity in immigration rates cause very little change
to predicted clone-counts, but that modest heterogeneity in proliferation rates can
generate the observed clone abundances. Our analysis provides constraints among
physiological parameters that are necessary to yield predictions that qualitatively match
the data. Assumptions of the model and potentially other important mechanistic factors
are discussed.

Keywords: naive T cells, T-cell receptor, repertoire diversity, clone-count distributions, mathematical modeling,
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INTRODUCTION

Naive T cells play a crucial role in the immune system’s response
to pathogens, tumors, and other infectious agents. These cells are
produced in the bone marrow, mature in the thymus, circulate
through the blood, and migrate to the lymph nodes where they
may be presented with different antigen proteins from various
pathogens. Naive T cells mature in the thymus where the so-
called V, D, and J segments of genes that code T cell receptors
undergo rearrangement. Most T cell receptors (TCRs) are
comprised of an alpha chain and a beta chain that are formed
after VJ segment and VDJ segment recombination, respectively.
The number of possible TCR gene sequences is extremely large,
but while recombination is a nearly random process, not all
TCRs are formed with the same probability.

The unique receptors expressed on the cell surface of
circulating TCRs enable them to recognize specific antigens;
well-known examples include the naive forms of helper T cells
(CD4+) and cytotoxic T cells (CD8+). The set of naive T cells
that express the same TCR are said to belong to the same T cell
clone. Upon encountering the antigens that activate their TCRs,
naive T cells turn into effector cells that assist in eliminating
infected cells. Effector cells die after pathogen clearance, but
some develop into memory T cells. Because of the large number
of unknown pathogens, TCR clonal diversity is a key factor
for mounting an effective immune response. Recent studies
also reveal that human TCR clonal diversity is implicated in
healthy aging, neonatal immunity, vaccination response and
T cell reconstitution following haematopoietic stem cell
transplantation (1, 2). Despite the central role of the naive T
cell pool in host defense, and broadly speaking in health and
disease, TCR diversity is difficult to quantify. For example, the
human body hosts a large repertoire of T cell clones, however
the actual distribution of clone sizes is not precisely known (3).
Only recently have experimental and theoretical efforts been
devoted to understanding the mechanistic origins of TCR
diversity (4–9). The goal of this work is to formulate a realistic
mathematical model that incorporates heterogeneity in naive
T cell generation and reproduction. Model predictions are
compared with T cell clone data to estimate reasonable and
realistic parameter values.

One way to describe the TCR repertoire is by tallying
the population ni of T cells carrying receptor i. Another is to
use the clone abundance distribution or “clone count” that
measures the number of distinct clones composed of exactly k
T cells, ĉ k := S∞

i=1 (ni, k), where the indicator function (n, k) = 1
if n = k and 0 otherwise. Clone counts ĉ k do not carry TCR
identity information as ni does, however, they can be used to
construct other summary indices for T cell diversity such as
Shannon’s entropy, Simpson’s index, or the whole population
richness Ĉ := S∞

k=1 ĉ k (10).
Clone counts ĉ k and the total number of circulating naive T

cells are difficult to measure in humans. Nonetheless, high-
throughput DNA sequencing on samples of peripheral blood
containing T cells (11–14) have provided some insight into TCR
diversity. A commonly invoked model is that clone counts ĉ k
exhibit a power-law distribution (4, 12, 15–17) in the clone
Frontiers in Immunology | www.frontiersin.org 2
abundance k. Several models have been developed to explain
observed features of clone counts (3, 4, 15, 18, 19), including the
apparent power-law behavior. One proposal is that T cells in
different clones have TCRs that have different affinities for self-
ligands that are necessary for peripheral proliferation (4–6),
leading to clone specific replication rates. An alternative
hypothesis (7) is that specific TCR sequences are more likely to
arise in the V(D)J recombination process in the thymus (20)
leading to a higher probability that these TCRs are produced. De
Greef et al. (7) estimated the probability of production of a given
TCR sequence by using the Inference and Generation of
Repertoires (IGoR) simulation tool that quantitatively
characterizes the statistics of receptor generation from both
cDNA and gDNA data (20).

Although power-law models have been motivated, this
behavior has been observed across only about two decades
of clone sizes k, as shown in Figure 1. Moreover, the above
models have not systematically incorporated and compared
heterogeneity in both immigration and replication rates, and/
or fitted models to measured TCR clone abundance
distributions. Finally, some of them have not taken into
account subsampling in measurements, which will affect the
predicted clone counts, especially for small clone sizes k which
can be missed in small samples. In this paper, we analyze the
effects of heterogeneity and sampling within a dynamic mean-
field model based on a stochastic clone-dependent birth-death-
immigration (BDI) process that includes (i) immigration
representing the arrival of new clones from the thymus,
(ii) birth during homeostatic proliferation of naive T cells that
yield newborn naive T cells with the same TCR as their parent,
and (iii) death representing cell apoptosis (10). We also include a
regulating “carrying capacity” mechanism through a total
population-dependent death rate which may represent the
FIGURE 1 | Normalized naive T cell clone count data from one patient in
Oakes et al. (12) plotted on a log-log scale. Values of the normalized clone
counts along the vertical axis are the average of three samples among CD4
and CD8 cell subgroups. Clones are defined by different nucleotide sequences
associated with different alpha or beta chains of the TCR.
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global competition for cytokines, such as Interleukin-7 (21–25),
needed for naive T cell survival and homeostasis (26, 27). Since
these cytokine signals are TCR-independent, the regulatory
interaction, which ensures a finite homeostatic naive T cell
population, is clone-independent (23).

We derive analytic expressions for the steady state clone
counts in the entire organism and show that the predicted
distributions are negative binomials. However, since T cell
clone populations are measured in small blood subsamples
extracted from an organism, we modify our predictions to
include the effects of random subsampling and find that the
negative binomial structure is preserved. Finally, the subsampled
prediction will be averaged over distributions of TCR generation
(thymic output) and homeostatic proliferation rates. The
distribution of TCR generation rates are extracted from new
computational tools: Inference and Generation of Repertoires
(IGoR) (20) and Optimized Likelihood estimate of
immunoGlobulin Amino-acid sequences (OLGA) (28). Since
there are no equivalent tools that measure proliferation rates,
we will assume simple functions for the distribution of
homeostatic proliferation rates. These model-derived results
depend on the rate parameters of the model and the
hyperparameters defining the probability distributions over
these T cell production and proliferation rates (see Table 1).

Our results are then compared to the data shown in Figure 1
and used to estimate hyperparameters associated with the
heterogeneity in the TCR-specific immigration and proliferation
rates. Specifically, we quantify how the width of a simple uniform
proliferation rate distribution and the heterogeneity of immigration
rates from a generative model affect the predicted clone counts. Our
analysis explicitly shows that within reasonable physiological
parameter ranges, heterogeneity in the thymic immigration rate
cannot significantly change clone count distributions. However,
clone counts are sensitive to heterogeneity in T cell proliferation
rates. Thus, different levels of heterogeneity in proliferation rates
can give rise to qualitatively different clone count distributions. This
finding of the dominance of proliferation in shaping clone count
distributions is consistent with the observation that in older
humans with severely reduced thymic output a broad clone
count distribution is still maintained (9, 29).
Frontiers in Immunology | www.frontiersin.org 3
MATERIALS AND METHODS

To understand the observed clone counts, we focus on the clone
count distribution ĉ k associated only with naive T cells, the first
type of cells produced by the thymus that have not yet been
activated by any antigen. Antigen-mediated activation initiates a
largely irreversible cascade of differentiation into effector and
memory T cells that we can subsume into a death rate. Thus, we
limit our analysis to birth, death, and immigration within the
naive T cell compartment. Here, we first present the
mathematical framework of the BDI process to provide an
initial qualitative understanding for clone counts.

Heterogeneous Birth-Death-
Immigration Model
The multiclone BDI process is depicted in Figure 2. We define Q
to be the theoretical number of all possible functional naive T cell
receptor clones that can be generated by V(D)J recombination in
the thymus which is estimated to be Q ~ 1013 – 1018 (6, 28). As
we will later show, results of our model will not depend on the
explicit value of Q as long as Q≫ 1. Due to naive T cell death or
removal from the sampling-accessible pool, not all possible clone
types will be presented in the organism, so we denote the number
of clones actually present in the body (or “richness”) by Ĉ ≪ Q,
where estimates of Ĉ range from ~ 106 – 108 in mice and humans
(1, 6, 32, 33, 35, 36).

Although naive T cells are difficult to distinguish from the
entire T cell population, the total number of naive T cells (across
all clones present) in humans has been estimated to be about
N̂ ∼ 1011. Circulating naive T cells number approximately 109

(37) but can exchange, at different time scales, with those that
reside in peripheral tissue, which may carry their own
proliferation and death rates. The effective pool that is
ultimately sampled is thus difficult to estimate, but
measurements show that the theoretical number of different
clones is much larger than the total number of naive T cells,
which is in turn much greater that the total number of different T
cell clones actually in the body (Q ≫ N̂ ≫ Ĉ ). Regardless of the
precise values of the discrete quantities Q, N̂ , Ĉ , they are related
to the discrete clone counts ĉ k via

Ĉ = o
k≥1

ĉ k ≪ Q  and  N̂ = o
k≥1

kĉ k : (1)

As depicted in Figure 2, each distinct clone i (with 1 ≤ i ≤ Q) is
characterized by an immigration rate ai and a per cell replication
rate ri. The immigration rate ai is clone-specific because it depends
on the preferential V(D)J recombination process; the replication
rate ri is also clone-specific due to the different interactions with
self-peptides that trigger proliferation. Since both the numbers of
theoretically possible (Q ≫ 1) and observed (Ĉ ≫ 1) clones are
extremely large, we can define a continuous, normalized
probability density p(a, r) from which immigration and
proliferation rates a and r of a randomly chosen clone are
drawn. This means that the probability that a randomly chosen
clone has an immigration rate between a and a + da
TABLE 1 | Model parameters q and hyperparameters q0.

(Hyper) Parameters definition

a ∈ R+ naive T cell production rate
�a ∈ R+ mean production rate across all possible Q TCRs
r ∈ [0, R] naive T cell proliferation rate
�r ∈ R+ mean proliferation rate across all possible Q TCRs
R ∈ R+ maximum proliferation rate of all possible Q TCRs
w ∈ [0, 1] dimensionless width of box distribution of r
µ∗ > R naive T cell death rate at steady state
h ∈ [0,1] blood subsampling fraction
The dimensional parameters associated with our mechanistic population model.
Hyperparameters such as �a, r, R, w define the probability distribution or heterogeneity
in the underling rate parameters �a and r. In our analyses, we typically nondimensionalize
by normalizing all rates by R, the maximum proliferation rate across all clones.
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and replication rate between r and r + dr is p (a, r)da dr, andZ ∞

0
da

Z ∞

0
dr p(a , r) = 1.

Since Q is finite and countable, there will exist maximum
values A and R for the immigration and proliferation rates,
respectively, such that p (a, r) = 0 for a > A or r > R. In the BDI
process, the upper bound R on the proliferation rate prevents
unbounded numbers of naive T cells and is necessary for a self-
consistent solution. The heterogeneity in the immigration and
replication rates allows us to go beyond typical “neutral” BDI
models, where both rates are fixed to a specific value for all
clones, ai = a and ri = r for all i.

Finally, we assume the per cell death rate m(N̂ ) is clone-
independent but a function of the total population N̂ . This
dependence represents the competition among all naive T cells
for a common resource (such as cytokines), which effectively
imposes a carrying capacity on the population (24, 31, 38). The
specific form of the regulation will not qualitatively affect our
findings since we will ultimately be interested in only its value
m(N∗) ≡ m∗ at the mean steady state population N∗.

Mean-Field Approximation of the
BDI Process
The exact steady-state probabilities of configurations of the
discrete abundances ĉ k for a fully stochastic neutral BDI model
with regulated death rate m(N̂ ) were recently derived (10).
In Dessalles et al. (10) exact results were derived for the steady-
state probability P(ĉ 1, ĉ 2,…, ĉ k) under uniform immigration,
proliferation, and death rates a, r, and m, respectively. The
Frontiers in Immunology | www.frontiersin.org 4
significant contribution of this paper is that we go beyond the
neutral model (equal immigration, proliferation, and death rates
for all clones) by allowing for heterogeneous distributions of these
rates. To incorporate TCR-dependent immigration and replication
rates in a non-neutral model, wemust consider distinct values ofai

and ri for each clone i. In this case, an analytic solution for the
probability distribution over ĉ k, even at steady state, cannot be
expressed in an explicit form. However, since the effective number
of naive T cells (N̂ ∼ 109 − 1011 (35)) is large, we can exploit a
mean-field approximation to the non-neutral BDI model and
derive expressions for the mean values of the discrete clone
counts ĉ k. We will show later that under realistic parameter
regimes, the mean-field approximation is quantitatively accurate.
Breakdown of the mean field approximation has been carefully
analyzed in other studies (39).

i) Deterministic Approximation for the Total
Population and the Effective Death Rate
To implement the mean-field approximation in the presence of a
general regulated death rate m(N̂ ), we start by writing the
deterministic, “mass-action” ODE for the mean number of cells
na,r(t) with a realized immigration rate a and proliferation rate
r in a BDI process

dna ,r(t)
dt

= a + rna ,r(t) − m(N(t))na ,r(t) : (2)

Next, we define and exploit the density of realized values of a
and r. Since Q≫ 1, the number of TCRs that are associated with
immigration rate between a and a + da and a replication rate
FIGURE 2 | Schematic of a multiclone birth-death-immigration process. Clones are defined by distinct TCR sequences i. Each clone carries its own thymic output
and peripheral proliferation rates, ai and ri, respectively. We assume all clones have the same population-dependent death rate m(N̂ ), where N̂ is the total number of
cells in the organism that influence the death rate. Since Q ≫ 1, we impose a continuous distribution over the rates a and r. Theoretically, there may be Q ≳ 1015 (6)
or more (30, 31) possible viable V(D)J recombinations. The actual, effective number of different selected TCRs sequences is expected to be much less since
extremely low probability sequences may never be formed during the organism’s lifetime. A strict lower bound on Q is the actual number of distinct clones Ĉ in an
entire organism [Ĉ ∼ 106 – 108 for humans (1, 6, 32–34)].
February 2022 | Volume 12 | Article 735135
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between r and r + dr is denoted Qp (a, r)dadr, where p (a, r)
is a normalized density that describes how these realized values
of a and r are distributed. Our model for the total mean number
N(t) of naive T cells can then be estimated as a weighted integral
over all na,r(t)

N(t) = Q
Z A

0
da

Z R

0
dr na ,r(t)p(a , r) : (3)

Note that the limits of the integration above can equivalently
be taken as A, R!∞ as long as p (a, r) = 0 when a > A or r > R.
At steady-state, the solution to Eq. 2 can be simply expressed as

na ,r∗ =
a

m(N∗) − r
(4)

in which N∗ is the predicted steady-state value of N(t) as t ! ∞.
Thus, upon weighting Eq. 4 over all possible values of a and r,
we find

N∗ = Q
Z R

0
dr
Z ∞

0
da

ap a , rð Þ
m N∗ð Þ − r ’

(5)

a self-consistent equation for N∗ which depends implicitly on
the parameters that define the distribution p (a, r). Eq. 5 clearly
shows why a finite cutoff p (a, r > R) = 0, R < m(N∗) is required
since the integral diverges if p (a, r ≥ m(N∗)) > 0. However, as
long as p (a, r) decays faster than 1/a2, the a-integration
converges with an explicit cutoff A.

We will first assume that a and r are uncorrelated and that
the distribution factorises: p(a,r) = pa(a)pr(r). Then, the self-
consistent effective steady state death rate m∗ ≡ m(N∗) depends
only on the combination

N∗

�aQð Þ =
Z R

0

drpr rð Þ
m∗ − rð Þ,

where

�a ≡
Z A

0
apa að Þda

is the mean immigration rate across all possible clones. To
simplify subsequent notation, we normalize all rates by the
maximum proliferation rate R. To avoid population blow-up,
we impose that the maximum proliferation is smaller than the
steady-state death rate R < m∗. By measuring time in units of 1/R,
we redefine r/R ! r ≤ 1, a/R ! a, �a=R ! �a , m∗/R ! m∗, and
R2p (a, r) ! p (a, r) so that these quantities are now
dimensionless, unless otherwise explicitly stated. The steady-
state self-consistent condition becomes

N∗

�aQ
≡

l
�a
=
Z 1

0
dr

pr rð Þ
m∗ − r

: (6)

Since the effective Q is a large, uncertain number, we
parameterize our model in terms of l ≡ N∗/Q, the total steady
state naive T cell population normalized by the total possible
number of clones Q. It is sometimes deemed a measure of the
Frontiers in Immunology | www.frontiersin.org 5
“coverage” of the entire repertoire (6). Values of N∗ and Q that
are consistent with measurements and physiologic expectations
give l ≪ 1. Once l=�a and pr(r) are estimated, we can self-
consistently determine m∗ from Eq. 6. Besides l=�a , the self-
consistent value of m∗ will also depend on the function pr(r).
Note from the form of Eq. 6, the self-consistent m∗ is inversely
related to l.

ii) Mean-Field Model of Clone Counts
Given a relationship such as Eq. 6 that determines m∗,
we can explicitly develop a model that quantifies naive T cell
subpopulations according to their immigration and proliferation
rates a and r. For a given, realized value of a and r, we denote the
expected number of clones of size k with these immigration and
proliferation rates by ck(a , r). The mean-field equations for the
dynamics of these mean clone counts in the neutral model were
derived in (39, 40) and are reviewed in Section 1 of the
Supplementary Material. In a neutral model, we assume that
all clones Q carry the same rates a and r so that the mean field
evolution equation for ck(a, r) is given by solving (38, 39)

dck a , rð Þ
dt

= a ck−1 a , rð Þ − ck a , rð Þ½ �
+ r k − 1ð Þck−1 a , rð Þ − kck a , rð Þ½ �
+m Nð Þ k + 1ð Þck+1 a , rð Þ − kck a , rð Þ½ �,

(7)

along with the constraint o∞
k=0ck(a , r) = c0 +o∞

k=1ck(a , r) = Q.
Note that ck(a , r) and na,r are related via o∞

k=1kck(a , r) = na ,r .
We use the notation ck to denote the predicted clone counts
derived from our mathematical model to distinguish them from
measured clone counts ĉ k. Equation 7 assumes that both ck(a , r)
and N are uncorrelated, allowing us to write the last term as a
product of functions of the mean population N =o∞

k=1kck and
ck+1, ck. Under steady-state, we approximate m(N) by m∗ found by
solving Eq. 6 as a function of l, �a , and the hyperparameters
defining pr(r). The steady-state solution of Eq. 7 follows a
negative binomial distribution with parameters a/r and r/m∗ < 1
(10, 39)

ck≥1 a , r,m∗ð Þ = Q 1 −
r
m∗

� �a=r r
m∗

� �k 1
k !

Yk−1
‘=0

a
r
+ ‘

� �
, (8)

The predicted number of absent clones is c0 = Q −

o∞
k=1ck(a , r,m

∗). The solution 8 depends implicitly on the
parameter l=�a through m∗ determined by Eq. 6. Although
ck(a, r, m∗) has not yet been averaged over a, r, it also
implicitly depends on l and the parameters that define pr(r)
through m∗ and Eq. 6. Specifically, larger l leading to smaller m∗

results in a more slowly decaying ck(a, r, m∗) as a function of k.
This behavior will be propagated through subsampling and
averaging over a and r.

Subsampling
Unless an animal is sacked and its entire naive T cell population is
sequenced, TCR clone distributions are typically measured from
sequencing TCRs in a small blood sample. In such samples, low
February 2022 | Volume 12 | Article 735135
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population clones may be missed. In order to compare our
predictions with measured clone abundance distributions, we
must revise our predictions to allow for random cell sampling.
We define h as the fraction of naive T cells in an organism that is
drawn in a sample and assume that all naive T cells in the
organism have the same probability h of being sampled. This is
true only if naive T cells carrying different TCRs are not
preferentially partitioned into different tissues and are uniformly
distributed within an animal. Let us assume that a specific clone is
represented by ‘ cells in an organism. If N∗h ≫ ‘, the probability
that k cells are randomly sampled from the same clone
approximately follows a binomial distribution with parameters ‘
and h (40–44)

P kj‘½ � ≈ ‘
k

� �
hk 1 − hð Þ‘−k,  k ≤ ‘: (9)

The associated mean sampled clone count csk depends on the
predicted whole-organism clone count and P[k|ℓ] via the formula

csk a , r,m∗,hð Þ ≈ o
‘≥k

c‘ a , r,m∗ð ÞP kj‘½ �

= o
‘≥k

c‘ a , r,m∗ð Þ ‘
k

� �
hk 1 − nð Þ‘−k:

(10)

where cℓ(a, r, m∗) is determined by Eq. 8. Explicitly performing
the sum in Eq. 10 yields the sampled clone count

csk a , r,m∗,hð Þ

=
Q
k !

hr=m∗

1 − 1 − hð Þ r=m∗ð Þ
� �k 1 − r=m∗

1� 1 − hð Þ r=m∗ð Þ
� �a

rYk−1
j=0

a
r
+ j

� �
:

(11)
Frontiers in Immunology | www.frontiersin.org 6
The total expected number of clones in the sample (the
richness) can be found via direct summation:

Cs a , r,m∗,hð Þ = o
∞

k=1

csk a , r,m∗,hð Þ

= Q 1 −
1 − r=m∗

1 − 1 − hð Þr=m∗

� �a=r
" #

:

(12)

As shown in Figure 3, random subsampling greatly affects the
observed clone counts, with small sampling fractions h leading to
fast decay in k of csk(a , r,m

∗,h) and shifting ck at large k to much
smaller values of kwhile reducing the values of ck for small k (42).
Note that setting h = 1 in Eq. 11 leads to Eq. 8, the whole-body
clone count. In Figures 3A, B we plot results from our model
using two very different dimensionless parameter sets, a = 10-5,
r = 1/2, l = 0.01, and a = l =10, r = 1/2, to generate two
qualitatively different patterns of neutral model clone counts ck.
If the subsampling h ≪ 1 is sufficiently small, the resulting csk
corresponding to the two qualitatively different ck can appear
similar. This implies that small sampling fractions make the
estimation of whole-body clone counts from sampled data
somewhat ill-conditioned, i.e., different whole-body clone
counts, upon sampling, may yield similar sampled clone
counts. Although sampling can strongly affect the inference of
ck, immigration and proliferation rate distributions may also
affect the observed clone count as we investigate below.

Heterogeneity and Determination
of p (a, r | Ɵ0)
The fundamental result given in Eq. 11 applies only to the clone
count density in a neutral model in which the immigration and
A B

FIGURE 3 | The effects of sampling on two different neutral-model relative clone counts csk=C
s plotted using the dimensionless proliferation rate r = 1/2 in Eqs. 11 and

12 or Eq. 10 and S9 from Section 2 of the Supplementary Material. In (A), we used a = 10-5, l =0.01. The effect of sampling is illustrated for h = 1 (no subsampling),
10-3, 10-4, 10-5, and 10-6. All clone counts are qualitatively similar, with subsampling increasing the exponential decay in ck. In (B), we use a physiologically unrealistic set
of parameters, a = l = 10, which leads to a qualitatively different unsampled clone count pattern that exhibits a peak. However, under small subsampling fractions h, the
clone count loses its peak as it shifts to a rapidly decreasing patterns csk that are not significantly different from sampled clone counts predicted using the parameters a
and l in (A). This indicates inferring parameters using clone counts is ill-conditioned (rather insensitive to parameters) if h is too small.
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proliferation rates are a and r for all clones. We now average the
sampled clone counts csk(a , r,m

∗,h) (Eq. 11) and the richness
Cs(a, r, m∗, h) (Eq. 12) over a distribution of immigration and
proliferation rates p (a, r) to capture the heterogeneity across
TCR clones. This final result can then be compared with
experimentally measured clone counts. Recall that p (a, r) can
depend on hyperparameters q0 that define the shape of p. We
then explicitly denote the distribution by p (a, r |q0).

Once p (a, r |q0) is defined, we can weight sampled clone
counts accordingly. For example, one may assume q0 = f�a ,wg,
with each of the two hyperparameters defining p (a , rjq0) =
pa(aj�a)pr(rjw), leading to

csk m∗,h, q0 = �a ,wf gð Þ =
Z ∞

0
da

Z 1

0
dr p a , rjq0ð Þcsk a , r,m∗,hð Þ:

i) Proliferation Rate Heterogeneity
First, we consider a distribution of TCR sequence-dependent
proliferation rates. Since TCR-antigen affinity depends on the
receptor amino-acid sequence, the rate of T cell activation and
subsequent proliferation can be clone-specific (31, 45). Thus, the
specific interactions between TCRs and low-affinity MHC/self-
peptide complexes maps to a distribution of proliferation rates
among all the Q possible clones. Since there are no data (known
to us) that can be used to infer this mapping or the specific shape
of pr(r|w), we assume, for simplicity, a simple uniform “box”
distribution centered about a mean value �r = 1=2:

pr rjwð Þ = 1=w  if r − 1=2j j < w=2
0  otherwise

�
(13)

where 0 ≤ w ≤ 1 represents the relative width of the uniform box
distribution. The minimum and maximum dimensionless
proliferation rates in this distribution are then 1/2-w/2 and
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1/2+w/2, respectively. The dimensionless self-consistency
condition (Eq. 6) thus yields

m∗ =

1
2
+
w
2

� �
elw=�a −

1
2
−
w
2

� �
elw=�a − 1

(14)

To understand the effects of proliferation rate heterogeneity
we begin by considering it effects on whole-organism (h = 1)
clone counts. Since the function ck(a, r, m∗) defined by Eq. 8
contains the exponentially decaying term (r/m∗)k, a fixed
dimensionless value of m∗ and r = 1/2 leads to an exponential
decay in ck in k. However, if w > 0, different values of r and m∗

contribute to this decay term, yielding nontrivial behavior and a
much slower decay as seen in Figure 4 for l=�a = 8, 80 and
different values of w.

ii) Immigration Rate Heterogeneity
Next, we use previous studies that predict V(D)J recombination
frequencies associated with each TCR sequence to construct a
distribution pa(a) for the TCR sequence-dependent thymic
output. A statistical model for differential V(D)J recombination
in humans is implemented in the Optimized Likelihood estimate
of immunoGlobulin Amino-acid sequences (OLGA) software
(28), which is an updated version of the Inference and
Generation of Repertoires (IGoR) software (20). Below, we
estimate pa (aj�a) by sampling a large number of TCRs from
OLGA that draws sequences according to their generation
probability. Our working assumption is that thymic selection is
uncorrelated with V(D)J recombination so the relative
probabilities of forming different TCRs provide an accurate
representation of the ratios of the TCRs exported into
the periphery.

Both IGoR and OLGA can be used to generate the
probabilities corresponding to each drawn sequence but this
A B C

FIGURE 4 | An exploration of the effects of proliferation rate heterogeneity on the mean clone counts ck with Q = 1013. (A) Various box distributions pr(r|w) for w = 0,

0.2, 0.4, 0.6, 0.8, and 1. (B) Using Eq. 14 and the dimensionless values �a = 10−3, l = 8� 10−3 such that l=�a = 8, we plot, using the same color spectrum as (A), the
corresponding clone counts Ck and show that wider distributions typically generate longer-tailed ck. However, if l is set even larger such that l=�a = 80 even modest
values of w can generate a very long-tailed ck, as shown in (C). The color spectrum in (C) is for visualization only and not associated with that in (A, B). In the limit of
very large l=�a, the effects of heterogeneous proliferation saturate at very small w beyond which it has negligible effect in further extending the tail.
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requires significant computational time and memory.
Equivalently, since the sequence draws are proportional to the
underlying probabilities, we simply drew N* sequences and
counted the frequencies of each amino acid sequence. Out of
N* sequence draws from IGoR or OLGA, there will be C* distinct
amino sequences (the richness of the drawn sequences). Since
some sequences are drawn j>1 times, C* ≤ N* . If bj distinct
sequences are drawn j times, and the maximum observed
frequency max{j} ≡ J, C* =oJ

j=1bj, N* =oJ
j=1jbj, while bj/C*

is the fraction of all drawn sequences that appear j times. For
N* = 109, we found C* = 372,806,648 ≈ 3.72 × 108 and a
maximum observed frequency max{j} = J = 52,294 for the
alpha chain and C* = 875,920,705 ≈ 8.76 × 108 and J = 6430
for the beta chain.

We model the effective immigration rate of a TCR sequence
drawn j times to be proportional to j so that aj ≡ a*j. To fix the
proportionality a*, we identify the mean immigration rate
averaged across the C* observed sequences with the mean
physiological rate �a

a*o
j

jbj
C*

≈ �a (15)

to find a* = �aC*=N* and thus

aj =
�aj

N*=C*

� � : (16)

The frequencies j of the drawn realization of clones are
plotted in decreasing order against the C* distinct sequences in
Figures 5A, B. From these frequencies j and the number of
sequences bj exhibiting them, we approximate averages of any
function y(a) over pa(aj�a) by taking a sum over the values aj:
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Z
pa aj�að Þy að Þ ≈o

J

j=1

bj
C*

y aj

� �
: (17)

Alternatively, when drawing sequences IGoR andOLGA (using
the Pgen feature) one can also directly output their probabilities pi,
whose values would be proportional to the frequency j if large
numbers of sequences are drawn as described above. We can use
these countable sequences and probabilities to construct a and
pa(a) by defining ai = �aQC*pi=pT where pT =o

C*
i=1pi. By

plotting the values of pi, we arrive at a distribution similar to
that shown in Figure 5. In this case too, we find that a large
number of low-probability sequences dominates the averaging of
clone counts using the distribution of immigration rates
constructed using IGoR/OLGA.

Now that we have specified the distributions for pa (aj�a) and
pr(r|w), we can compute the mean, sampled, immigration- and
proliferation-averaged clone counts and compare them with
measurements. The full formula for the immigration and
proliferation rate-averaged clone counts under subsampling is

ck �a ,m∗,w,hð Þ =
Z ∞

0
da

Z 1

0
dr pa(aj�a)pr rjwð Þcsk a , r,m∗,hð Þ

=
Q
k !o

J

j=1

bj
C*

Z 1+wð Þ=2

1−wð Þ=2
dr
w

hr=m∗

1 − 1 − hð Þr=m∗

� �k

�

1 − r=m∗

1 − 1 − hð Þr=m∗

� �aj
r Yk=1

i=0

ai

r
+ i

� �
,

(18)

where aj is given by Eq. 16 and m∗ is given by Eq. 14. Eq. 18 is our
“full model” from which we make predictions of clones count-
related quantities and compare them with data. Using this
A B

FIGURE 5 | Ordered integer-valued frequencies j, plotted on a log-log scale, of the C* distinct (A) alpha and (B) beta chains drawn using OLGA. The index 1 ≤ i ≤
C* < N* labels the distinct sequences drawn while bj is defined as the number these sequences that exhibit the specific frequency j [b1 and b2 are explicitly indicated
in (B)]. The highest frequency clone appears J times such that bj>J = 0. Since C* is comparable to N*, the drawn sequences are dominated by the low probability
ones that appear only once. The insets display the frequencies on a linear scale and indicate the long-tailed behavior of the frequencies. The shape of the frequency
spectra is self-similar once N* ≳ 107, allowing us to use this sampling procedure to reliably estimate pa (aj�a).
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expression, we can mathematically study the importance of
the heterogeneities in a and r by comparing predictions
from simple forms of pa (aj�a) and pr(r|w), as presented in
Section 2 of the Supplementary Material to those derived
from p(a , r) = d(a − �a)d(r − 1

2 ) of the neutral model.
From Figure 5, observe that b1 ≫ bj>1. In fact, a majority of

the naive T cell population is comprised of clones that are
produced only once. The linear-scale insets also show a long
tail indicating a large number of clones that are generated
few times. Thus, for sufficiently small �a , our formulae for ck
and all subsequent quantities can be approximated by taking the
�a=r ≪ 1 limit. As we show in Section 3 of the Supplementary
Material, such a simpler expression remains highly accurate,
provided the dimensionless �a < 10−2, and allows efficient
computation. This implies that the full result arising from
averaging csk(a , r,m

∗,h) over pa (aj�a) can also be approximated
by using a single effective value csk(�a , r,m

∗,h), supporting our
overall conclusion that predicted heterogeneity in human T cell
immigration rates do not appreciably influence clone count
distributions. While physiological distributions pa(aj�a) do not
yield clone counts appreciably different from those of a neutral
immigration model, small changes in proliferation rate
heterogeneity w can significantly affect the clone count structure
csk. Nonetheless, for completeness, we will perform the full
summation over aj (Eq. 18). All parameters, hyperparameters,
and variables used in our modeling and data analysis are listed in
Tables 1, 2.
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RESULTS AND ANALYSIS

Before performing a quantitative comparison with measured
clone counts from Oakes et al. (12), we discuss the qualitative
features of our model and typical physiological parameter ranges.
While even the basic model parameters are difficult to measure,
our nondimensionalized model unifies the mechanisms and
concepts common to the maintenance of diversity in the T cell
repertoire across different organisms.

When considering the data, we observe that even after
significant subsampling, there are appreciable clone counts at
reasonably large clone sizes k, whereas the unsampled clone
counts decay exponentially in k with rate log(m∗/r). Even though
r may take on a range of values, as determined by pr(r), the
slowest decay of ck arises from the largest possible values of r.
Thus, a larger proliferation rate heterogeneity w will generally
yield a longer-tailed ck, as illustrated in Figure 4. Since the data
we analyze are derived from human samples, we will use the
following arguments as a rough guide to the relevant range
of parameters:

• The average total number of naive T cells is not completely
known but is estimated to be about N∗~ 1011 (35). However,
the circulating population in the peripheral blood is
approximately two orders of magnitude smaller. These
circulating naive T cells nonetheless exchange with those in
the much larger population in the lymph and other tissues.
The timescale of this exchange (relative to the age of the
organism being sampled or the intersample times) will
determine the effective statistically accessible N∗ relevant for
sampling clone counts csk. We will use an order-of-magnitude
estimate on the lower range of measurements and estimate
N∗~1010−1011.

• The theoretical total possible numberQ of TCRs of either alpha
or beta chains may be in the range 1013−1018 (46), but the
actual number of clones with immigration rate ai that allows it
to be produced even once in a lifetime is more relevant and
probably much smaller. Thus, the effective value of Q may
reside at the lower range, leading to l ≡ N∗/Q ~ 10-4−10-2.

• The average (dimensional) immigration rate per clone �a
can be deduced from the total thymic output of all clones
�aQ, which has been estimated across a wide range of values
�aQ ∼ 107 − 108/day (29, 47–50). If we use an effective
repertoire size of Q ~ 1013−1014, the average per clone
immigration rate becomes �a ∼ 10−7 − 10−5/day.

• The mean proliferation rate r is difficult to measure but has
been estimated to be on the order of �r ∼ 10−4 − 10−3/day
(29). If we nondimensionalize using R = 2�r, the dimensionless
�a ∼ 10−4 − 10−1.

• The sampling fraction h, although in principle determined
experimentally, is also hard to quantify due to the uncertainty
in N∗. Blood sampling volume fractions from humans are
typically h ~ 10-3; however, in recent experiments (12) the
number of enumerated sequences ~105, which, given rough
estimates of effective N∗ ~ 1010-1011, yield h ~ 10-6 - 10-4. Due
to this uncertainty in h, we will explore different fixed values
of h around 10-5.
TABLE 2 | Model variables and their definitions.

variables definition

Q ∈ Z+ theoretical number of possible TCRs ~1013 – 1018

(36)

N̂ ∈ Z+ number of naive T cells in organism ~1010 – 1011 (5)

N(t) ∈ R+ number of naive T cells from model
N∗ ∈ R+ steady-state number of naive T cells from model
Ns ≡ hN∗ ∈ R+ subsampled number of naive cells from model
N* ∈ Z+ number of draws from IGoR/OLGA

Ĉ ∈ Z+ total number of clones in organism (richness) ~106 –
108 (36)

Ĉ s ∈ Z+ total number of sampled clones (sampled richness)

C(q) ∈ R+ total number of clones in organism from model
Cs(q,h) ∈ R+ total number of sampled clones from model
C* ∈ Z+ number of different sequences drawn from IGoR/

OLGA

ĉk ∈ Z+ discrete number of clones of size k

ck(q) ∈ R+ model of number of clones containing k cells

ĉ s
k ∈ Z+ discrete number clones of size k in sample

csk (q,h) ∈ R+ modeled number of sampled clones containing k
cells

fsk =
kĉ s

k

Ĉ s
∈ ½0, 1� fraction of all sampled cells in clones of size k

fsk (q,h) =
kcsk (q,h)
Cs (q,h)

∈ ½0, 1� modeled fraction of all sampled cells in clones of size k
The variables with :̂ denote measured numbers, while populations written as functions of
parameters q are those predicted from our model (the dimensionless parameters used
in our model are q = {a, r}). The probability distributions p (a, r|q0) are defined by
hyperparameters q0 (the dimensionless hyperparameters used in this study are q0 =
f�a,wg). Upon averaging predicted quantities such as csk (a, r) over p(a, r|q0) we find csk (q0).
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Using the above guide for reasonable parameter ranges, we
now consider fitting our results in Eqs. 18, S9-S14 to some of the
available data (12). Before doing so, note that although the log-
log plots shown in Figures 1A, B provide a simple visual for
log csk or log½csk=Cs�, fitting must be performed on the linear
scale. The measured data includes data at values of k for which
no clones were detected so that csk = 0. These data points
nonetheless should be included in the fitting as they represent
realizations of the system. However, on the log scale these zero
data points translate to log csk ! −∞ so numerical fitting on the
log-log scale could be misleading once a value of csk = 0 is
encountered. Thus, we will fit our mean-field model on the
linear scale to the fraction f sk of the total number of sampled cells
that are in clones of size k

f sk �a , l,w,hð Þ ≡ kcsk �a , l,w,hð Þ
Ns =

kcsk �a , l,w,hð Þ
o∞

‘=1‘c
s
‘ �a , l,w,hð Þ

=
kcsk �a , l,w,hð Þ

Qhl

(19)

where the denominator Qhl comes directly from the definition

o∞
‘=1‘c

s
‘(�a , ljh) ≡ Ns, the sampling relation Ns = hN∗, and Eq. 6.

Note that we have switched the dependence from m∗ to l
(see Eq. 14). Rather than using Ns directly from the number of
reads in an experimental sample, equivalently, we use the model
expression Ns = Qhl to arrive at the last equality in Eq. 19. This
form ensures strict normalization and is independent of the
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unknown repertoire size Q since csk is proportional to Q. The
implicit factor of Q in csk from Eq. 11 cancels the explicit Q in
the denominator of Eq. 19 so that f sk as well as c

s
k=C

s depend onQ
only through the determination of m∗ through l ≡ N∗/Q in Eq. 6.

Our mathematical framework provides only mean sampled
clone counts while each sample of the data represents one
realization. Large sample-to-sample variations in the clone
counts would render the fitting less informative, but these large
variations were not seen in the triplicate samples in Oakes et al.
(12). Mechanistically, we expect that for large k the number of
cells contributing to f sk is also large so demographic stochasticity
is relatively small and results in small uncertainties in the value of
k, and not in the magnitude of f sk . Large clones are also likely to
include memory T cells that have been produced after antigen
stimulation of specific clones. Memory T cells are difficult to
accurately distinguish from naive T cells (12) but we will see that
large k components of f sk negligibly influence the fitting. We can
now compare our model f sk (�a , l,w,h) with the data f sk (data) by
constructing the error

H �a , l,w,hð Þ = o
∞

k=1

jf sk datað Þ − f sk �a , l,w,hð Þj2 (20)

and exploring how it depends on the parameters �a , l,w, and
sampling fraction h. Our goal is to find relationships among the
parameters l, �a , and w that minimize H(�a , l,w,h).

In Figures 6A–C the data f sk (data) were derived from the
average of three samples of beta chain CD4 sequences from one
A B

D E F

C

FIGURE 6 | The error H(�a, l,w,h) plotted as a function of a (on a log10 scale) and l. Darker colors represent smaller values of error as shown by the scale bar on
the right. The data used are the clone counts of beta chain sequences of naive CD4 cells from one patient, averaged over three samples. Panels (A–C) use the
simple neutral model (Eqs. S9 and S10) and sampling fractions h = 10-4, 10-5, and 10-6, respectively. Since �a is on a log scale, the error is minimal along a line lmin

∝ �a; the error does not change appreciably along this path and only slightly decreases as l and �a become smaller. For the neutral model (w = 0), the error is very
sensitive to the sampling fraction h. Here, a fixed, physiologically reasonable value of �a results in a minimizing lmin that is unreasonably large, in excess of one and
that does not agree well with our expectations of l = N∗=Q ≪ 1. Panels (D–F) show results for the distributed proliferation rate model at full width (w = 1). In this
case, the errors are insensitive to the specific choice of h and the minimizing lmin values are much smaller, consistent with our estimates of N∗ and repertoire size.
For w = 1, the values of the errors H are also smaller along the lmin − �a minimum valley.
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patient (12). These data, were used to compute and plot the error
H(�a , l,w = 0,h) as a function of l for various values of �a using
the neutral model (w = 0, Eq. S9 in Section 2 of the Supplementary
Material). For reasonable values of dimensionless �a ≈ 10−5 − 0:01
and sampling fractions h = 10-4, 10-5, and 10-6, we find that the
value of l that minimizes H(�a , l,w = 0,h), lmin, is typically
O(1) or larger. In Figures 6D–F we use the full-width
distribution pr(r|w = 1) to show the error for the same data
using the same sampling fractions h = 10-4, 10-5, 10-6. Note that
the values of lmin are significantly smaller than those in found
using w = 0 in Figures 6A–C and that the results are rather
insensitive to the sampling fraction h. These smaller values
of lmin are more consistent with known physiological
understanding. Thus, the distributed proliferation rate model
provides a much more self-consistent fit to the data than the
fixed proliferation rate neutral model. Figure 6 also reveals that the
values of H along the minimum valley are nearly constant, only
slightly decreasing as �a ! 0. For each value of a we can identify
the corresponding lmin that minimizes H. However since the
values of H(�a , lmin,w = 0,h) for each (�a , lmin) pair do not
change appreciably, we cannot independently determine both.

An alternate representation is shown in Figure 7 where the
relationship between �a and lmin is seen to be approximately linear
for both the neutral model (w = 0) and the heterogeneous, full-
width model (w = 1). The color shading represents the
corresponding value of H(�a , lmin,w,h). One major observation
is that the full-width case yields values of (�a , lmin) that are closer
to measured and expected physiological values and that these
results are also less sensitive to h compared to those of the neutral
case. On the other hand, although the variation in H is negligible
across �a in both cases, the fully heterogeneous model (w = 1)
carries a slightly larger error than the neutral one (w = 0). This is
solely a consequence of our use of f sk which weights the small k
values significantly more in the fitting.
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Since experimentally we expect small l, we also investigate
whether small errors H emerge for values of (�a , lmin ≪ 1) at
intermediate 0 <w < 1. In Figure 7C, we plot lmin as a function ofw
for various values of �a . Note that even smallw significantly reduces,
relative to the neutral case, the corresponding lmin. However, if our
target is lmin ∼ 10-4-10-3, the required w can become quite large.
These results indicate that more heterogeneity is associated with
more realistic values of the experimentally observed values ofN∗/Q.

Finally, to explore the dependence of the error on the
proliferation rate heterogeneity w, we fix �a , l, and h, and plot
H(�a , l,w,h) as a function of w. Figure 8 shows that the H-
minimizing w is very sensitive to l=�a : for fixed h, as l=�a is
decreased the error is lowest for larger proliferation heterogeneity
w. The minimum value of H(�a , l,w,h), however, is rather
insensitive to l=�a for all chosen h. Hence, near-optimal
solutions with l ≪ 1 can be found when the proliferation rate
heterogeneity w is appreciable. Using the parameters associated
with the minima in Figure 8A (h = 10-4), we plot our predicted f sk
against the data f sk (data) in Figure 9. As can be seen, when
proliferation rate heterogeneity is allowed, the best-fits have small
error and are found using realistic values, l ≪ 1. Note that most
of the information in the data lies in how f sk (data) decreases over
the first few values of k. The neutral model (w = 0) fits best for
small values of k, but the corresponding values of l and �a are too
large and small, respectively. The goodness of fit of our model
to the data depends mostly on the predicted initial decreases
in f sk (�a , l,w,h). The constraints among the parameters l, �a ,w,
and h derived from our model and can be applied to different
clone counts such as the data shown in Figure 1. However, due to
the ill-conditioning when h ≪ 1, the differences in these
constraints across different data sets do not vary appreciably
are only quantitatively different. Generally, the more rapidly
decaying a clone count, the smaller the w, the smaller the h, of
the larger the l, all else being equal.
A B C

FIGURE 7 | Log-log plots of lmin values as functions of a for h = 10-4, 10-5, 10-5, and 10-6 for (A) the neutral model, w = 0, and (B) the full-width distributed
proliferation rate model, w = 1. These curves trace the values of lmin along the minimum valley in and show the relative insensitivity of the distributed proliferation rate
model to the subsampling fraction h. In both (A, B), the minimum line slopes are near one, with (B) showing a slightly greater slope, indicating lmin is approximately
proportional to �a over the entire range of w. The color intensity along the lines in (A, B) indicates variation in the total error along the minimum valley; their uniformity

shows that the errors are nearly constant along each line. (C) Log-linear plot of lmin as a function of proliferation rate heterogeneity w for �a = 2� 10� 5, 10� 4. The
lower darker curves in each pair correspond to h = 10-4 while the lighter curves correspond to h = 10-6. The curves show that even a small heterogeneity w quickly
reduces lmin to below one; however, if l is forced to be even smaller, the required heterogeneity w increases.
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DISCUSSION

Here, we review and justify a number of critical biological
assumptions and mathematical approximations used in our
analysis. The effects of relaxing our approximations are
also discussed.

Distinct T Cell Components
It is known that naive T cells can change in time, with recent
thymic emigrants evolving into mature naive T cells that carry
different proliferation and death rates (51). For simplicity, we
have assumed a single naive T cell compartment. To incorporate
naive T cell evolution, we can allow the distribution pr(r) to
evolve in time to reflect the relative abundances of T cell
Frontiers in Immunology | www.frontiersin.org 12
subpopulations, or, one can explicitly include multiple
compartments, with cells from a recent emigrant compartment
transitioning into a mature compartment. Each compartment
would be described by its own steady-state death rates, clone
counts, and distributions of proliferation rates. An analysis of a
related sequential cell state transition model has been developed
for clonal tracking in hematopoiesis (41).

Factorization of p (a, r)
For mathematical tractability, we have assumed p(a , rjq0) =
pa(aj�a)pr(rjw). Given the typical physiological values of �a ,
the clone count formulae derived from our model can be
accurately approximated by a single value of �a . Thus, we
expect that the immigration rate distribution can be
A B

FIGURE 9 | Plots of the representative optimal solutions of clone counts fsk from Eq. 19 (using h = 10-4 and l = 10-3 unless otherwise indicated) plotted along side the
shown data from Oakes et al. (12). The model predictions and CD4 beta chain data are shown in both (A) log-log and (B) linear scales (there are no zero-values clone

counts in this dataset). In (A), the best fit model for the neutral model (w = 0 and pa (aj�a) = d (a − �a )) using �a = 10� 4 is given by l ≈ 3 shown by the solid black curve.

The dashed curves represents best-fit curves using the values associated with the error minima in, where �a = 2� 10� 5, w ≈ 0.09 (red), 6 × 10-5, w ≈ 0.3 (green), 10-4,
w ≈ 0.53 (blue) and 1.4 × 10-4, w ≈ 0.76 (black). Note that the neutral model fits well for only the first 2-3 k-points, while the heterogeneous model (w > 0) fits better at
larger k.
A B C

FIGURE 8 | The error H(�a, l,w,h) using CD4 alpha data from Oakes et al. (12) plotted as a function of w for various l=�a. We fixed l = 10-3 and varied, from left to

right, �a = 2� 10−5 (red), 6 × 10-5 (green), 10-4 (blue) and 1.4 × 10-4 (black). From (A–C), h = 10-4, 10-5, and 10-6. Smaller values of l=�a result in larger best-fit
values of w.
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approximated by pa(aj�a) = d(a − �a). This allows further
approximation of our formulae as shown in Section 3 of the
Supplementary Material. In Section 4 of the Supplementary
Material , we explicitly show that factorisation is an
accurate approximation.

We have also assumed that selection is uncorrelated with the
generation probabilities of the TCR nucleotide sequences
encoded in IGoR/OLGA. The assumption is that the
recombination statistics are uncorrelated with the statistics of
thymic selection, a process that is based on TCR amino acid
sequences. However, we note that it has been suggested that
selection pressure may induce a correlation between TCRs
generated and selected (52). The corresponding statistics of the
frequencies of selected TCRs would be modified from those of the
generated TCRs shown in Figure 5. Nonetheless, we assume that
the resulting distribution can still be approximated by a single-a
model which will not qualitatively alter our conclusions.

Mean-Field Approximation
Our mean-field approximation for the mean clone count ck is
embodied in Eq. 7, where correlations between fluctuations in the
total population N =okkck in the regulation term m(N) and the
explicit ck terms are neglected. This approximation has been
shown to be accurate for k ≲ N∗ when �aQ2 > m(N∗) (39). The
mean-field results overestimate the clone counts for k ≲ N∗.
Moreover, when the total steady-state T cell immigration rate is
extremely small, the effects of competitive exclusion dominate and
a single large clone arises (39, 53, 54). Nonetheless, an accurate
approximation for the steady-state clone abundance ck can be
obtained using a variation of the two-species Moran model as
shown in (39). For the naive T cell system, because Q is so large,
the mean immigration rate �a is such that competitive exclusion is
not a dominant feature. Moreover, since N∗ ≳ 1010, clones counts
at comparable sizes are not observed and predicted to be negligible
in all models. Since the values of f sk (data) become exponentially
smaller for large k, our inference is most sensitive to the values of
f sk (data) for small to modest k. The information in the data is
primarily manifested by how the f sk (data) decays in k, we before
the mean-field approximation deviates from the exact solution.
Thus, the parameters associated with the human adaptive immune
system satisfy the conditions for the mean-field approximation to
be accurate, justifying its use in the BDI model.

Steady State Assumption
In this study, we only considered the steady state of our birth-
death-immigration model in Eq. 8 because this limit allowed
relatively easy derivations of analytical results. This was also the
strategy for previous modeling work (4, 6, 7, 38, 39). However,
the per-clone immigration and proliferation times may be on the
order of months or years, a time scale over which thymic output
diminishes as an individual ages (29, 55–57). Indeed, clone
abundance distributions have been shown to show specific
patterns as a function of age (58–60). Although N(t), with fixed
�a and �r relaxes to steady-state quickly, on a timescale of months,
the different subpopulations of specific sizes described by their
number ck relax to quasi-steady-state across a spectrum of time
scales depending on the clone sizes k (39, 61). The timescales of
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relaxation of the largest clones can be estimated from the
eigenvalues of the linearized system (Eqs. 7) and are found to be
~ 10 years. Thymic involution could be modeled by using a time-
dependent a(t) that slowly decreases with age (57). Although T
cells are thought to be primarily maintained through proliferation,
thymic regeneration has also been shown to affect the naive T cell
pool many years after thymectomy in infants. Here, a time
dependent increase in a(t) after early thymectomy could be
used. Indeed, the clone counts may be determined in early life
(17) suggesting the dynamics of certain clones may be very slow,
precluding a strict steady-state analysis for the entire repertoire.

In addition to time-dependent changes in a, more subtle time-
inhomogeneities such as changes in proliferation and death rates
have been demonstrated (55, 56, 62). Thus, our steady-state
assumption could be relaxed by incorporation of time-dependent
perturbations to the model parameters m∗ and/or p(a, r).
Longitudinal measurements of clone abundances or experiments
involving time-dependent perturbations would provide significant
insight into the overall dynamics of clone abundances. The
timescales required to reach steady state fall between 1/(�aQ) and
1=�a . Thus, it is possible that some components of ck does not
reach steady state in an organism’s lifetime and our steady state
model might not be be valid for all values of ck (57, 61) and a
dynamic approach must be taken.

Clustered Immigration
Our mean field model assumed that each immigration event
introduced a single naive T cell in the immune system.
However, T cells can divide before leaving the thymus and reach
a homeostatic state in the periphery. This process can be described
by the simultaneous immigration of more than one naive T cell
with the same TCR. Clustered immigration of q cells can be
implemented in the core model for ck (Eq. 7) via an immigration
term of the form aq(ck-q(aq, r)-ck(aq, r)), where ck-q = 0 for k-q < 0
(see Section 5 of the Supplementary Material). For q > 1, an
informative analytic expression for ck is not available. In Figure S2
of the Section 5 of the Supplementary Material, we show the
predicted clone abundance ck for a neutral model in which q = 5.
When compared to the case where there is only one cell per
immigration, the clone abundance ck will have a larger slope for
k ⪅ q, making it kink more downward near k ≈ q. Thus, from
Figures S2 and 9A, we can see that paired immigration (q = 2)
would increase f sk for k = 2, providing an improved fitting to data
over single copy immigration (q = 1).

Thus, in addition to appreciable sensitivity of the predicted clone
counts to pr(r|w), we also expect clustered immigration defined
through the immigration rates aq, q > 1 to control the goodness of
fit to data. Indeed, Figure S2 suggests that the distribution of
immigration cluster sizes q, in addition to the proliferation rate
heterogeneity w, is an important determinant of measured clone
counts and that aq may be constrained by data. We leave this for
future investigation.

General Conclusions
We developed a heterogeneous multispecies birth-death-
immigration model and analyzed it in the context of T cell
clonal heterogeneity; the clone abundance distribution is derived
February 2022 | Volume 12 | Article 735135
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in the mean-field limit. Unlike previous studies (4), our modeling
approach incorporated sampling statistics and provided simple
formulae, allowing us to predict clone abundances under
different rate distributions for arbitrarily large systems (N∗ ∼
1010 - 1011), without the need for simulation. The properties of
the BDI model and the overall shape of the sampled clone count
data renders the first few k-values of csk or f

s
k the most important

for determining the constraints among the model parameters. In
other words, only the initial rate of the decrease in f sk (data) for
small k governs the quality of fitting to the model, and one
should not expect to be able to explicitly infer more than one or
two free parameters.

Our heterogeneous BDI model produced mean sampled clone
count distributions that we could directly compare with measured
clone counts. The unsampled clone counts ck of the neutral model
(homogeneous a and r) follow a negative binomial distribution
which is further modified upon sampling and distribution over
the heterogeneous immigration and proliferation rates. Although
we determined pa (aj�a) through a code that implemented
recombination statistics inferred from cDNA and gDNA
sequences (20, 28), we found that the behavior of the model is
rather insensitive to distributions pa (aj�a) with mean values �a
much smaller than the largest proliferation rates r. The model
results are dominated by many low immigration-rate clones and a
model that replaces a with its mean value �a is sufficient.

Conversely, we find that the shape of the clone count profiles
ck are quite sensitive to the proliferation rate heterogeneity w. A
small amount of heterogeneity quickly reduces the best-fit values
of l to reasonable values. For estimated values h ~ 10-6 – 10-4,
�a ∼ 10−4, and small values of l = N∗/Q ≲ 10-3, requires a best-fit
width w ≈ 1. Heterogeneity is needed to generate clones of
sufficiently large size that persist after sampling. Although the
number of TCR clones with large proliferation rates r may be
small, such clones proliferate more rapidly contributing to higher
clone counts at larger sizes. In particular, we found that the shape
of expected clone abundance is sensitive to the behavior of the
proliferation rate distribution near the maximum dimensional
proliferation rate R, pr(r ≈ R). The predicted clone counts are also
modestly sensitive to the distribution of immigration cluster sizes
q (representing transient proliferation just before thymic output).
When q > 1 cells of a clone are simultaneously exported by the
thymus, the predicted mean clone counts decay much more
slowly for small k ≲ q (see Figure S2). This modification will
allow for better fitting since clustered immigration increases the
predicted clone counts for larger k, cs2, c

s
3, etc., and eventually f s2 ,

f s3 , etc. Thus, we expect that a model containing multiple
clustered immigration rates aq≥1 will lower the error and
provide better fitting, particularly at larger w. Additional
analysis using a distribution of immigration cluster sizes may
allow this type of clone count data to reveal more information
about the physiological mechanism of naive T cell maintenance.
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Even assuming modest heterogeneity, our work leads to the
conclusion that the typical immigration heterogeneity is not
enough to influence measured clone counts and that varying
levels of proliferation heterogeneity is needed to shape csk (and f sk )
(12). These results are consistent with the finding that naive T
cells in humans are maintained by proliferation rather than
thymic output (9). Since we have only investigated the effects of
a uniform distribution for pr(r|w), further studies using more
complex shapes of p(a, r|q0) can be easily explored numerically
using our modeling framework. Different parameter values and
rate distributions appropriate for mice, in which naive T cells are
maintained by thymic output, should also be explored within our
modeling framework. Finally, it will be important to extend our
steady-state model to allow a(t), pr(r,t), and m∗(t) to be functions
of time in order to predict clone abundances in the presence of
thymic involution and reduced proliferation with age (62, 63),
which can even arise differentially in different compartments (64).
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