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Abstract: Flow cytometry is extensively used in cell biology to differentiate cells of interest (mutants)
from control cells (wild-types). For mutant cells characterized by expression of a distinct membrane
surface structure, fluorescent marker probes can be designed to bind specifically to these structures
while the cells are in suspension, resulting in a sufficiently high fluorescence intensity measurement
by the cytometer to identify a mutant cell. However, cell membranes may have relatively weak, non-
specific binding affinity to the probes, resulting in false positive results. Furthermore, the same effect
would be present on mutant cells, allowing both specific and nonspecific binding to a single cell. We
derive and analyze a kinetic model of fluorescent probe binding dynamics by tracking populations of
mutant and wild-type cells with differing numbers of probes bound specifically and nonspecifically. By
assuming the suspension is in chemical equilibrium prior to cytometry, we use a two-species Langmuir
adsorption model to analyze the confounding effects of non-specific binding on the assay. Furthermore,
we analytically derive an expectation maximization method to infer an appropriate estimate of the total
number of mutant cells as an alternative to existing, heuristic methods. Lastly, using our model, we
propose a new method to infer physical and experimental parameters from existing protocols. Our
results provide improved ways to quantitatively analyze flow cytometry data.
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1. Introduction

A common problem in cell biology research is the desire to differentiate cells into categorical pop-
ulations based on some defining molecular characteristic. Some examples include the presence or
absence of a particular gene transcript [1, 2], cells presenting viral epitopes to indicate infection [3, 4],
or expression of particular membrane proteins [5, 6]. Flow cytometry is an effective tool to count the
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number of cells exhibiting the given characteristic. The process involves suspending cells of interest
in a sheath fluid that is pressurized and extruded single file past a laser beam [7, 8, 9]. Each cell will
scatter the laser’s light towards optical sensors positioned around the stream. Sensors directly in front
of the laser measure the forward scattering about a single cell, and is used to quantify the cell’s surface
area, volume, and shape. Alternatively, side scattering sensors measure photons emitted by fluorescent
markers and dyes excited by the laser. The fluorescent probes are designed a priori to bind specifi-
cally to cell surface proteins and structures that characterize the cell species. Thus, a sufficiently high
fluorescence intensity is an indication the cell is of the desired type.

However, details of the protocol arise that can confound the final count of cells. If we focus on the
example of a population of “mutant” cells, characterized by the expression of a particular membrane
surface receptor, mixed in with a population of “wild-type” cells, we can design a fluorescing probe
that binds specifically to the receptor. If we suspend all cells in a solution containing an excess of
probes, we expect all probes to bind to free receptors. However, each probe-receptor binding event is a
reversible process, allowing some expected proportion of receptors to remain unbound at equilibrium.
Furthermore, variation may exist in the number of receptors expressed, increasing the ways in which a
mutant may escape binding to any probe [4, 5]. To combat this measurement of false negatives, one can
increase the probe concentration in the suspension, increasing its excess and driving the equilibrium
towards more bound receptors. However, although the probes are designed to bind specifically to
the receptors, they will have a relatively small, but non-zero binding affinity to the rest of the cell
membrane and its other embedded structures [10]. Increasing the probe concentration will result in
a higher nonspecific binding to wild-type cell membranes, allowing false positive counts of mutants.
The equilibrium configuration of probe bindings to all cells, whether specifically or nonspecifically,
will produce a distribution of fluorescence data over a range of intensities. Cells that exhibit levels of
fluorescence below a threshold intensity are ignored in a process known as “gating.” Setting the gating
threshold is typically a heuristic procedure, though some methods for automatic gating based on data
clustering have been developed [9, 11]. However, these methods do not incorporate the underlying
chemical kinetics of probe binding and largely ignore the effects of nonspecific binding.

We develop a kinetic model for both specific and nonspecific binding of probes to cells. We employ
a variant on the Langmuir adsorption model [12] with two competing types of binding sites: receptors
and a discretization of the cell membrane. Here, the concentration of initially added probes applies the
“partial pressure” driving probe binding to the cell surfaces. We will show the isotherm of fractional
binding site occupancy to exhibit two regimes in which the receptor and membrane binding sites be-
come saturated at different rates. We discuss how the interface between the two regimes is the ideal
concentration of probes to include in the assay and how the model can inform optimal experimental
design. We then present a probabilistic model for the expected number density of cells over possible
numbers of probe bindings. Employing this model, we develop a variant on the expectation maximiza-
tion (EM) mixture model [13] to estimate the total number of mutant cells without heuristic gating.
Furthemore, we propose a method for inferring the probe binding affinity and the receptor number
distribution using a serial dilution protocol. Finally, we discuss potential applications and problems
of using our method for the fluorescence activated cell sorting (FACS) assay. It should be noted that
throughout this paper we continue using the example of “mutant cells” expressing surface receptors,
but our models and analyses extend to all physiological applications of flow cytometry with fluorescing
surface markers.
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2. Materials and method

2.1. Kinetic model

Let CT be the total number of cells in a suspension also containing NT probe molecules. We assume
CT is precisely counted by the forward scattering measurement to differentiate cells from free probes
or debris. Let M and W = CT − M be the number of mutant cells and wild-type cells, respectively,
and N be the number of free fluorescing probes unbound to any cells. Mutants are the only cells that
express the surface receptors the probes specifically target with association and dissociation rates p+

and p−. Alternatively, for both mutants and wild-types, probes can bind and dissociate non-specifically
to the cell membrane itself with rates q+ and q−. Though we expect the on rates p+ and q+ to be
comparable, probes bound nonspecifically to the membrane will dissociate significantly more rapidly
so that typically q− � p−.

We expect the total number of receptors on a mutant cell I to vary across cells with distribution
f (I) and mean 〈I〉. The exact distribution f will depend on the details of the receptor and its transcrip-
tion/translation pathways. Furthermore, we consider the the total surface area A of the cell membrane
and partition the binding region around a single receptor as As. We define this region as that which a
probe fated to adsorb to the cell surface is more likely to bind to the associated receptor than directly
to the membrane. We can partition the remaining cell surface into J = A

As
− I discrete effective binding

sites for the membrane. We expect the binding region of a receptor to be relatively small compared to
the total surface area, making J � I. Finally, we denote the total number of mutant cells that carry I
receptors as MI = f (I)M.

Table of Variables
CT Total cells
M Total mutants
W Total wild-types
N Total unbound probes
I Specific binding sites per cell
J Nonspecific binding sites per

cell
Mi, j Mutants with i specific and j

nonspecific bindings
Ks Specific dissociation constant
Kn Nonspecific dissociation con-

stant

Figure 1. Cartoon of probe molecules binding to wild-type W and mutant M cells used in a
typical flow cytometry assay. Wild-type cells are assumed to bind probes only nonspecifically
while each mutant cell expresses I receptors to which probes specifically bind. The variables
defining all quantities in the kinetic mass-action model analyzed in this paper are given in
the table.
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To accurately model the kinetic flows from one bound state of a mutant to another, it becomes
necessary to track populations of cells indexed by both the number of probes bound specifically and
nonspecifically. Thus, we define MI

i, j as the number of mutant cells with exactly i probes bound to a
maximum of I specific binding sites and exactly j probes attached nonspecifically. For wild-type cells,
probes can only attach nonspecifically, so we define W j as the number of wild-type cells with exactly
j adsorbed probes. We thus have the chemical rate equations

MI
i, j + N

(i+1)p−
−−−−−⇀↽−−−−−

(I−i)p+

MI
i+1, j, MI

i, j + N
( j+1)q−
−−−−−⇀↽−−−−−
(J− j)q+

MI
i, j+1, W j + N

( j+1)q−
−−−−−⇀↽−−−−−
(J− j)q+

W j+1. (2.1)

Let v be the volume of the cell suspension containing all cells and probes. Normalizing the cell and
probe counts by v, we have the relevant concentrations [MI

i, j], [W j], and [N]. We can now derive the
mass-action equations as

d[MI
i, j]

dt
= − (I − i)p+[MI

i, j][N] − (J − j)q+[MI
i, j][N] + (i + 1)p−[MI

i+1, j] + ( j + 1)q−[MI
i, j+1]

+ (I − i + 1)p+[MI
i−1, j][N] + (J − j + 1)q+[MI

i, j−1][N],
d[W j]

dt
= −(J − j)q+[Wi][N] + ( j + 1)q−[W j+1] + (J − j + 1)q+[W j−1][N],

d[N]
dt

=q−
J∑

j=1

j[MI
i, j] + p−

I∑
i=1

i[MI
i, j] − q+

J−1∑
j=0

(J − j)[MI
i, j] − p+

I−1∑
i=0

(I − i)[MI
i, j]. (2.2)

At chemical equilibrium, we expect detailed balance in each of Eqs. 2.1. For specific and nonspecific
binding respectively, we can define the dissociation constants

[N][Mi, j]
[Mi, j+1]

=
q−
q+

= Kn and
[N][Mi, j]
[Mi+1, j]

=
p−
p+

= Ks. (2.3)

One might interpret these constants as the probe concentration’s resistance to binding and are parame-
ters that will shape the entire dynamics of the model. Using inductive reasoning, we can characterize
the mutant populations solely with the concentration of unbound cells:

[MI
i, j] = [MI

0,0]
(
I
i

) (
[N]
Ks

)i (J
j

) (
[N]
Kn

) j

. (2.4)

By the conservation of total mutant cells with I binding sites, we use the binomial expansion to derive

[MI] =

I∑
i=0

J∑
j=0

[MI
i, j] = [MI

0,0]
(
1 +

[N]
Ks

)I (
1 +

[N]
Kn

)J

. (2.5)

Using very similar arguments, we derive the concentration of unbound wild-types as

[W0] = [W]
(
1 +

[N]
Kn

)−J

. (2.6)
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Next, we find the following result:

I∑
i=0

J∑
j=0

(i + j)[MI
i, j] =

I∑
i=0

J∑
j=0

(i + j)[MI
0,0]

(
I
i

) (
[N]
Ks

)i (J
j

) (
[N]
Kn

) j

= [MI
0,0]

I (
[N]
Ks

) (
1 +

[N]
Ks

)I−1 (
1 +

[N]
Kn

)J

+ J
(
[N]
Kn

) (
1 +

[N]
Ks

)I (
1 +

[N]
Kn

)J−1
= [MI

0,0]
(
1 +

[N]
Ks

)I (
1 +

[N]
Kn

)J [
I[N](Kn + [N]) + J[N](Ks + [N])

(Ks + [N])(Kn + [N])

]
= [MI]

[
I[N](Kn + [N]) + J[N](Ks + [N])

(Ks + [N])(Kn + [N])

]
. (2.7)

Using the conservation of the total concentration of initial probes [NT], we derive

[NT] = [N] +

J∑
j=0

j[W j] +

J∑
I=0

I∑
i=0

J∑
j=0

(i + j)[MI
i, j]

= [N] +

J∑
j=0

j[W0]
(
J
j

) (
[N]
Kn

) j

+

J∑
I=0

[MI]
[
I[N](Kn + [N]) + J[N](Ks + [N])

(Ks + [N])(Kn + [N])

]

= [N] +
J[N][W]
Kn + [N]

+
[N][M]

(Ks + [N])(Kn + [N])

J(Ks + [N]) + (Kn + [N])
J∑

I=0

I f (I)

 . (2.8)

Noting that 〈I〉 =
∑J

I=0 I f (I), we can solve Eq. 2.8 for [N] analytically as the roots of a cubic polynomial
with [M], [W], [NT], [Ks], [Kn], [J], and 〈I〉 as parameters. We will show how this kinetic model can be
used to quantify aspects of the assay for optimal experimental design, automatic gating, and parameter
inference.

2.2. Two species Langmuir adsorption model

If we define θT as the fractional occupancy of total binding sites across all cells, using Eq. 2.8 we
have

θT =
[NT] − [N]

J[CT]
=

(
〈I〉
J

) (
[M]
[CT]

) [N]
Ks

1 + [N]
Ks

+

[N]
Kn

1 + [N]
Kn

(2.9)

Note that each of the two terms resemble a Langmuir isotherm which measures the fractional occu-
pancy of binding sites on a surface substrate [12]. Framed in the Langmuir adsorption picture, the
concentration of free probes [N] is directly analogous to the partial pressure of adsorbing gas. As
shown in Fig. 2(a), the fraction of occupied binding sites grows as you add more free probes, but even-
tually saturates. Note that the saturation is normalized according to the number of non-specific binding
sites J as we expect it to be much larger than 〈I〉. Also note that the rate of adsorption is attenuated
by the non-specific dissociation constant Kn. For small [N], when the cell membrane is far from satu-
ration, we see the dynamics of the receptor binding site saturation in Fig 2(b). As Ks � Kn, the total
occupancy increases rapidly to saturation relative to that of the more dominant non-specific isotherm.
Thus, there is a range of [N] sufficiently large to reach the receptor binding saturation, but low enough
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to be far from the full membrane saturation. This would be an ideal range to operate one’s assay to
increase the likelihood that a probe bound to a cell is due to it being bound specifically to receptor as
opposed to the membrane itself.

0 50 100
0

0.5

1(a)

0 0.5 1
0

0.01(b)

Figure 2. Fractional occupancy θT of available binding sites as a function of the free probe
concentration [N]. (a) The isotherms for large [N] with [CT] = 100, [M] = 10, Ks = 10−1,
J = 103, 〈I〉 = 10, and Kn = 101, 102, and 103. The cell membrane reaches saturation of
bound probes at a rate dictated by Kn. (b) The isotherms for small [N] values with [CT] = 100,
[M] = 10, Kn = 103, J = 103, 〈I〉 = 10, and Ks = 10−1, 10−2, and 10−3. Due to small Ks,
the occupancy reaches saturation for all available receptors quickly, then resumes the slower
saturation of non-specific binding to membrane. Optimal assay conditions would be in free-
probe ranges just above the specific binding saturation.

2.3. Cell population mass density

In order to establish a connection between the equilibrium kinetic model and a typical output of a
flow cytometry assay, we define the concentration of cells [Cr] with exactly r probes bound, regardless
if they are bound specifically or nonspecifically, as

[Cr] =[Wr] +

J∑
I=0

min(r,I)∑
k=0

[Mk,r−k]

= ([CT] − [M])
(
1 +

[N]
Kn

)−J (
J
r

) (
[N]
Kn

)r

+ [M]
J∑

I=0

min(r,I)∑
k=0

f (I)
(
1 +

[N]
Ks

)−I (
1 +

[N]
Kn

)−J (
I
k

) (
[N]
Ks

)k ( J
r − k

) (
[N]
Kn

)r−k

. (2.10)

In order to compute Eq. 2.10, we must consider a functional form for the distribution f (I) of the number
of receptors I found on a given mutant cell. The receptor number is likely due to transcriptional activity
and other cellular processes that result in varying numbers of functional proteins on the membrane.
Then a reasonable and simplifying assumption is that I is Poisson-like such that

f (I) =
1
I!
〈I〉I exp (− 〈I〉)

(
J − I

J − 〈I〉

)
, (2.11)
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where the mean 〈I〉 encompasses all the physiological processes involved in expressing the receptors.
Note the extra correction term forcing J to be the carrying capacity for receptors on the membrane is
sufficiently close to 1 that it can be ignored for most applications, making the distribution completely
Poisson.

0 5 10 15 20
0

10

20

30

40(a)

40 60 80 100
0

2

4

6(b)

Figure 3. Expected population densities of cells Cr with exactly r probes bound. (a) Low
concentrations of free probe [N] = 1.2 with CT = 100, 〈I〉 = 10, J = 103, Ks = 10−1, and
Kn = 103 for M = 10 and 90 cells. The density will cause clustering of wild-type cells
close to r = 0 and mutants close to r = 〈I〉, though the non-specific binding allows some
of the density associated with the mutants to contribute to the lower r values of Cr. A clear
boundary exists between the two densities and heuristic gating can partition the populations
sufficiently. (b) Large concentrations of free probe [N] = 60 with CT = 100, 〈I〉 = 10,
J = 103, Ks = 10−1, and Kn = 103. The population densities of wild-types and mutants are
now found in similar values of r and overlap extensively, causing difficulty in differentiating
the two clusters as probes saturate the membrane.

Eq. 2.10 informs us of how the distribution of cell data will cluster, as illustrated in Fig. 3(a).
At relatively low concentrations of free probe [N], the binding of receptors can saturate, but leave
the wild-type cells with only nonspecific binding to have significantly lower probe bindings. This
effectively makes the two clusters qualitatively separable and imposing a gating threshold is straight-
forward. However, at high levels of free probe, the clusterings overlap and are thus difficult to differ-
entiate heuristically, as demonstrated in Fig. 3(b). Furthermore, these distributions are taken over the
probe binding number r which is not directly measurable. We next show how r and [Cr] relates to the
measurable fluorescence intensity distribution.

2.4. Fluorescence intensity

As each cell passes through the cytometer, any bound probes will fluoresce with some strictly
positive light intensity Fs. However, some variation in the fluorescence signal arises from molecular
variability and instrumentation noise, so we assume the intensity is lognormal distributed with the
shape parameter σ2

0 [14]. We also expect each cell to have some relatively small amount of background
side scattering with intensity F0. Then if we define x as the total fluorescence intensity of a given cell
and r as its corresponding number of bound probes, then we expect the probability density of x to
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follow

Pr(x|r) =
1

x
√

2πσ2
0

exp
[
−

(ln(x) − ln(F0 + rFs))2

2σ2
0

]
. (2.12)

In a typical flow cytometry assay, however, we do not know how many probes are bound to each cell.
Furthermore, we do not know the species b ∈ {0, 1} of the cell, where 0 and 1 denote wild-type and
mutant respectively. Using Eqs. 2.10 and 2.12, we derive the marginal density of fluorescence intensity
as

Pr(x) = Pr(b = 0)
J∑

r=0

Pr(x|r)Pr(r|b = 0) + Pr(b = 1)
J∑

r=0

Pr(x|r)Pr(r = j|b = 1)

=
1

[CT]

J∑
r=0

[Cr]

x
√

2πσ2
0

exp
[
−

(ln(x) − ln(F0 + rFs))2

2σ2
0

]
. (2.13)

Considering total number of probes r bound to a cell regardless if they are bound specifically or non-
specifically is sufficient if each probe fluoresces with an intensity independent of binding. However, for
some probes, the fluorescence may be a product of a conformation change when binding to the designed
target. This means that for non-specifically bound probes, their conformation change may be partial
and can result in a lower mean fluorescence intensity Fn. We must now consider how many probes
are bound specifically and nonspecifically, making Eq. 2.10 insufficient for computing the marginal
density of x. Thus we derive the conditional densities

Pr(x|b = 0) =

(
1 −

[M]
[CT]

) (
1 +

[N]
Kn

)−J J∑
j=0

(
J
j

) (
[N]
Kn

) j 1

x
√

2πσ2
0

exp
[
−

(ln(x) − ln(F0 + jFn))2

2σ2
0

]
,

(2.14)
and

Pr(x|b = 1) =
[M]
[CT]

(
1 +

[N]
Kn

)−J ∑
I

f (I)
(
1 +

[N]
Ks

)−I I∑
i=0

J∑
j=0

(
I
i

) (
[N]
Ks

)i (J
j

) (
[N]
Kn

) j

×
1

x
√

2πσ2
0

exp
[
−

(ln(x) − ln(F0 + iFs + jFn))2

2σ2
0

]
. (2.15)

In the next section we will show how these mathematical results can be used to iteratively estimate the
size of the mutant population [M] from data and infer physical parameters such as Ks and 〈I〉.

3. Results and Discussion

3.1. EM mixture model estimation of mutant population

Using Eqs. 2.14 and 2.15, we propose an iterative algorithm to automatically infer the concentration
of mutant cells [M] without heuristic gating. Let ~x be a set of data, where xk is the fluorescence
intensity measured for cell k and let bk ∈ {0, 1} be its corresponding species assignment. Because this
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is an iterative method, we will index each numerical step with t ∈ {0, 1, 2, · · · }. Using Bayes rule, we
can compute the probability cell k is a mutant as

Pr(bk = 1|xk, [M](t)) =
[M](t)Pr(xk|bk = 1, [M](t))

([CT] − [M](t))Pr(xk|bk = 0, [M](t)) + [M](t)Pr(xk|bk = 1, [M](t))
, (3.1)

where [M](t) is the current mutant concentration estimate. The iterative procedure starts with an initial
guess at the concentration of mutant cells [M](0) which is used to calculate the probability in Eq. 3.1.
The next estimate [M](t+1) is then given by

[M](t+1) =

CT∑
k=1

Pr(bk = 1|xk, [M](t)). (3.2)

This process is repeated until [M](t) converges. Note that, though calculating Eq. 3.1 for a single xk

can technically be a O(J3) computational operation, some asymptotic arguments can be made to con-
catenate summations to terms that are sufficiently close to zero. More importantly, the only value that
changes over all iterations is [M](t). Thus, the more computationally heavy summations in Eqs. 2.14
and 2.15 can be done once and stored in a matrix, making all subsequent iterations compute linearly
with the number of cells CT.

An example using our algorithm for estimating the mutant cell count from simulated data is shown
in Fig. 4(a) where CT = 100 and M = W = 50. Immediately evident is the wild-type cells’ propensity
to be clustered close to the mutants when as little as one probe is bound. When a reasonable gate
threshold is drawn as demonstrated, the 87 cells to the right are counted as mutants, resulting in 27
false positives. Our algorithm accounts for the probability of wild-types having high fluorescence,
resulting in the closer estimate of M = 51. Even for parameter regimes where probe binding to wild-
types are rare, for large numbers of cells CT, the occasional nonspecific binding event will result in the
gating process invariably over-counting mutants.
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Figure 4. (a) Simulated fluorescence data using parameters CT = 100, [N] = 1.2, Ks =

10−1, Kn = 103, J = 103, 〈I〉 = 5, F0 = 1, Fs = Fn = 103, and σ0 = 0.5. We set
M = 0.5CT and assign each cell k with a number of bound probes rk using Eq. 2.10 and
subsequent fluorescence intensity xk using Eq. 2.12. At this particular parameter regime, 27
of the 50 wild-type cells managed to bind with at least one probe, increasing their relative
fluorescence and clustering them with the mutants. A typical gating threshold, shown above,
would separate the two clusters and count all 87 cells on the right hand side as mutants;
far larger than the true count of 50. The iterative estimate using Eq. 3.2 returns M = 51,
relatively close to the actual count. (b) Probability that a given cell has one or more probes
bound as a function of the dilution number d as we vary the receptor distribution mean 〈I〉.
Here [N] = 1, Kn = 103, Ks = 10−3, J = 103, and dilution factor D = 10.

3.2. Parameter inference using serial dilution

In typical flow cytometry assays, probes designed to bind specifically to the receptors of interest
are often prepared elsewhere. Thus it is not uncommon for an experimentalist to test the affinity of
a probe prior to an assay in order to insure it is sufficiently effective for the planned experiment [5].
This is typically done by preparing a homogeneous suspension of mutant cells with the probes, so that
[M] = [CT]. The experimentalist will then perform cytometry with a sufficiently high concentration
of free probes [N] and quantify the number of cells that contain any fluorescing probes. The solution
of probes is subsequently diluted by some factor D and the assay is repeated dmax number of times.
This process, known as serial dilution, arises in many applications from testing antibacterial agents
[15] to quantifying viral infectivity [16]. In this context, it is used to find the characteristic dilution
number dc such that all cells are still bound to at least one probe. The experimentalist can then use the
corresponding probe concentration for the flow cytometry assay. However, having provided a kinetic
model, we can employ this process to infer physical parameters of interest. To do so, we start by using
Eq. 2.10 to derive the concentration of the number of cells C∗ with one or more probes attached as

[C∗] = [CT] − [C0]

= [CT] − [CT]
∑

I

〈I〉I exp (− 〈I〉)
I!

(
1 +

[N]D−d

Ks

)−I (
1 +

[N]D−d

Kn

)−J

= [CT]

1 −
(
1 +

[N]D−d

Kn

)−J

exp

− 〈I〉 [N]D−d

Ks

1 + [N]D−d

Ks


 , (3.3)
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where d is the dilution number. If we normalize [C∗] by the total concentration of cells [CT], then we
can treat the expression as a probability that a given cell will fluoresce as a function of d, as shown in
Fig. 4(b). The placement of the characteristic drop in probability is dictated by the parameters Ks and
〈I〉. If we consider the data C∗d as the number of cells that fluoresce at dilution d, then we expect its
value to be binomial distributed and we can derive the likelihood function

L
(
~C∗d

)
=

dmax∏
d=dmin

(
CT

C∗d

) 1 − (
1 +

[N]D−d

Kn

)−J

exp

− 〈I〉 [N]
Ks

Dd + [N]
Ks




C∗d
(1 +

[N]D−d

Kn

)−J

exp

− 〈I〉 [N]
Ks

Dd + [N]
Ks




CT−C∗d

.

(3.4)
For a given set of a data ~C∗d, the log of the likelihood is a function of the parameters and can be maxi-
mized to solve for maximum likelihood estimates (MLE) of these parameters. As the original intent of
the serial dilution procedure is to quantify the affinity of specific probe binding, Ks would be the desired
inferred parameter. However, depending on the underlying experiment, one can envision estimating
the expression of surface receptors 〈I〉 and its change under differing experimental environments.

3.3. Applications in FACS

A very common use of flow cytometry is in fluorescence activated cell sorting (FACS) in which cells
are physically sorted into bins based on their species type [8, 17]. As each cell is sent past the laser, the
intensity measurement informs the computer in real-time which category the cell falls into. The droplet
containing the cell exits an electrically charged ring that induces an electric charge in the droplet. An
electric field controlled by the computer is then used to propel the extruded cell into the appropriate
bin based on the fluorescence measurement. However, the confounding factors previously discussed
can cause incorrect sorting of cells due to non-specific binding and other background fluorescence.
If all parameters are a priori known, then using Eq. 3.1 can technically be used to determine the
cell species as the expression quantifies the probability that a cell is a mutant over a wild-type cell
given its fluorescence. A resulting probability larger than 0.5 will indicate a mutant, making Eq. 3.1
a decision function. However, there are two complications. One is that the evaluations of Eq. 3.1
are relatively computationally intensive, especially if the expected number of receptors 〈I〉 is large.
The real-time nature of the physical process of FACS requires rapid evaluation, though increasing
computational resources can alleviate the problem. The second, more pertinent issue is that, though we
are assuming all parameters are known, it is unlikely that the concentration of mutants [M] is a priori
known. Biologists typically use cytometry assays after some experiment and the quantification of [M]
is often the primary desired quantity still undetermined. Furthermore, our method of estimating [M]
is a model-based clustering technique that leverages all data collectively, making real-time analysis
problematic.

One potential solution for both problems is to use a two-pass cytometry method. One pass through
the cytometer would be used to quantify the concentration of mutants [M] while also storing the eval-
uations of Eq. 3.1. All cells would be collected together and reintroduced to the sheath fluid for a
second pass for the FACS step. Though it would be improbable to exactly match each cell with their
stored evaluation in the first pass, this extra data will act as a prior for more informed statistical sorting
of the cells. Though previously discussed applications of our model use protocols already practiced
by biologists, the potential overhead of using a two-pass cytometry process would be subject to the
specific requirements of each experiment employing the method.

Mathematical Biosciences and Engineering Volume 5, Issue x, xxx–xxx



12

4. Conclusions

In this paper, we have created a full kinetic model of the specific and nonspecific binding dynamics
of a cell/probe suspension at chemical equilibrium. Using a mass-action approach, we derived expres-
sions for important equilibrium quantities as functions of physical and experimental parameters of the
flow cytometry assay. The total number of afflicted cells, which we refer to as mutants, is often the
primary desired quantity of the protocol as the probes are assumed to attach only to those cells. How-
ever, we show quantitatively how the nonspecific binding of probes to the membranes of both mutants
and wild-type cells can confound the results. Furthermore, using the analogous Langmuir adsorption
isotherm, we demonstrated how to choose probe concentration that will minimize these confounding
effects. For the estimation of the total number of mutants in flow cytometry output, which is often
subject to heuristic gating, we provided an iterative algorithm to obtain this number without input from
the experimentalist. We claim that having a fundamental model for which the algorithm is based will
increase the accuracy over other clustering attempts. Furthermore, we extract further utility from a
serial dilution process often employed to measure the affinity of probes to infer true physical param-
eters of the cells. Lastly, we discuss the potential applications and issues with using our method for
fluorescence activated cell sorting (FACS) while proposing a two-pass cytometry process to alleviate
some of the problems.

Our model and analysis approach can be readily extended to include multiple probes, multiple
specifically binding receptors, and more general distribution functions for receptor expression by the
mutant cells. We expect that in such more complex, higher dimensional discrimination assays, our
more systematic and quantitative analysis methods should provide more accurate results. Finally, we
are developing a web based tool that fully implements our flow cytometry analysis procedure so that it
can be applied to experimentally measured data. This will increase the accessibility of our model and
enable quantitative comparisons with existing methods, including heuristic gating.
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