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Abstract Drug overdose deaths continue to increase in the United States for all major drug categories.
Over the past two decades the total number of overdose fatalities has increased more than fivefold; since
2013 the surge in overdose rates is primarily driven by fentanyl and methamphetamines. Different drug
categories and factors such as age, gender, and ethnicity are associated with different overdose mortality
characteristics that may also change in time. For example, the average age at death from a drug overdose
has decreased from 1940 to 1990 while the overall mortality rate has steadily increased. To provide insight
into the population-level dynamics of drug overdose mortality, we develop an age-structured model for
drug addiction. Using an augmented ensemble Kalman filter (EnKF), we show through a simple example
how our model can be combined with synthetic observation data to estimate mortality rate and an age-
distribution parameter. Finally, we use an EnKF to combine our model with observation data on overdose
fatalities in the United States from 1999 to 2020 to forecast the evolution of overdose trends and estimate
model parameters.

1 Introduction

The number of drug overdose fatalities in the United
States has been steadily increasing over the past 20
years [1, 2]. Between 1999 and 2020, more than 900,000
drug overdose deaths were reported in the United
States. In 2020 alone, almost 100,000 people died from
injury or poisoning from drugs of abuse (mainly opi-
oids and psychostimulants), constituting a 32% rise over
2019. According to provisional mortality data [3], this
trend has continued throughout 2021.

A study [1] that examined the exponential growth
in drug overdose deaths between 1979 and 2016 in
the United States reveals that the drug types causing
these rises have changed over time. During the 1980s
and 1990s, the majority of fatal drug overdoses were
due to illegal substances such as heroin and cocaine.
Successive overdose waves were driven by prescrip-
tion opioids in the 2000s, followed briefly by heroin
in 2010, and, beginning in 2013, by synthetic opioids.
The synthetic opioid wave persists to this day, as the
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majority of US overdose deaths are due to fentanyl
and its derivatives. There is also substantial variability
in the demographic patterns of drug overdose deaths.
While cocaine and prescription drugs mostly led to
increased mortality among 40- to 50-year-olds, current
fentanyl use is accompanied by fatality rate increases
among 20- to 40-year-olds. In addition to age, factors
such as gender, race, and place of residence are also
associated with variations in drug overdose risk [4].

The majority of studies analyzing the spatiotempo-
ral evolution of overdose mortality are mainly descrip-
tive and rely on data visualization and statistical anal-
ysis of past data. In this work, we instead use an age-
structured model [5, 6] to mechanistically study the
drug epidemic in the United States. The model is then
used in conjunction with empirical data to forecast the
short-term evolution of overdose mortality through an
ensemble Kalman filter (EnKF), a data assimilation
technique [7–9].

Age-structured models (also known as Ker-
mack–McKendrick models) can be used to math-
ematically describe the evolution of distinct population
categories (e.g., susceptible and dead), where the
dynamics and interactions among categories may
depend on the distribution of age in the population.
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Different variants of age-structured models have been
developed and applied to model heroin addiction as
an epidemic [10–17]. Such models have also been
applied to mechanistically describe cellular processes
[18, 19] and population dynamics associated with
social interactions [20], birth control policies [21], and
COVID-19 mortality [22–24].

The EnKF, which we use to combine observation
data with an age-structured model of overdose mor-
tality, originated from research activities in the geo-
physical sciences and has found various applications
in problems that require combining high-dimensional
dynamical systems with observation data [25]. Kalman
filtering and related data assimilation methods (e.g.,
Bayesian Markov chain Monte Carlo) have been used in
computational biology and medicine to estimate model
parameters [26–29], identify patients with antibiotic-
resistant bacteria in hospital wards [30], and develop
risk-dependent contact interventions in epidemic man-
agement [31]. Within computational social science, data
assimilation methods have proven useful in combining

mechanistic models with survey data, e.g., to study the
evolution of political polarization in the United States
[32].

In Sect. 2 we present a general age-structured model
that includes age-dependent addiction and age-specific

mortality. We also discuss approximations that admit
analytical solutions. The basic concepts underlying the
EnKF are outlined in Sect. 3. In Sect. 4 we adapt our
general age-structured model to describe a population
suffering from substance use disorder (SUD). We then
describe the available drug overdose data and illustrate
how the EnKF is applied to our model and dataset.
Finally, we conclude our work with a discussion and
future outlook in Sect. 5.

2 A general age-structured mortality model

Our starting point is the general age-structured model

[
∂

∂a
+

∂

∂t

]
n(a, t) = −μ(a, t)n(a, t) + p(a, t), (1)

where n(a, t)da is the number of individuals (i.e., peo-
ple with SUD in our application) with age between a
and a + da at time t . We assume this population dies
at rate μ(a, t), and that there is an influx rate p(a,t).
The initial conditions at t = t0 and a = 0 are spec-
ified via n(a, t = t0) = ρ(a) and n(a = 0, t) = g(t),
where ρ and g are non-negative functions such that
g(t → t0) = ρ(a → 0). We specifically set g(t) = 0,
implying that no population of age a = 0 exists at any
time. In the context of modeling overdose mortality,
this means that the number of addicted newborns is
assumed to be zero. Note that this model is different
from the original McKendrick model [5], in which an
age-dependent birth rate generates newborns through a
self-consistent boundary condition on n(a,t). To solve
Eq. (1) analytically, we use the method of character-
istics and distinguish the two cases a ≥ t − t0 and
a < t−t0. For a ≥ t−t0, the characteristic will begin at
t = t0 and n(a,t) will remain constant along a = t− t0.
When a < t − t0 the characteristic will begin at a = 0
and n(a,t) will remain constant along t = a + t0. The
formal solution to Eq. (1) can then be expressed as

n(a, t) =

⎧⎪⎨
⎪⎩

ρ(a − t + t0)e
− ∫ t

t0
μ(a−t+s,s) ds +

∫ t

t0
p(s + a − t, s)e− ∫ t

s
μ(a−t+s′,s′)ds′

ds (a ≥ t − t0) (2)

∫ a

0
p(s, s + t − a)e− ∫ a

s
μ(s′,s′+t−a) ds′

ds (a < t − t0). (3)

As a specific example we set the initial time t0 = 0, fix
the initial condition ρ(a) = 0, and impose a constant
death rate μ(a, t) = μ. We further assume an influx
rate p(a, t) = p(a) = ae−λa which has a maximum at
age λ−1 > 0. Equations (2) and (3) become

n(a, t) =

⎧⎨
⎩

e−λ(a−t)

(λ−μ)2

[
e−μt(1 + (a − t)(λ − μ)) − (1 + a(λ − μ))e−λt

]
(a ≥ t) (4)

1
(λ−μ)2

[
e−μa − (1 + a(λ − μ))e−λa

]
(a < t). (5)

The function p(a) = ae−λa describes an influx of peo-
ple of mean age 2λ−1 that suffer from an SUD. Using
this functional form, the number of SUD cases that are
much younger/older than 2λ−1 is small compared to
the number of SUD cases with an age of about 2λ−1.
The distribution of overdose cases in the US popula-
tion follows a qualitatively similar trend [33]. We use
this analytically tractable example in Sect. 3 to explain
how age-structured models of the form presented in
Eq. (1) can be combined with Kalman filters to learn
model parameters from noisy observations. In Sect. 4,
we describe p(a) by a more general linear combination
of two gamma distributions to connect our model of
drug overdose mortality with corresponding data from
the Centers for Disease Control and Prevention (CDC)
Wide-ranging Online Data for Epidemiologic Research
(WONDER) database.

Observe that n(a,t) in Eqs. (4) and (5) is continuous
for a = t and that the maxima of Eq. (4) are located

123



Eur. Phys. J. Spec. Top. (2023) 232:1743–1752 1745

along the trajectory

amax(t) =
t

1 − e−(λ−μ)t
− μ

λ(λ − μ)
, (6)

where amax(t) > t is an increasing function of time.
The steady state form of n(a, t → ∞) is given by the
time-independent term in Eq. (5).

3 Ensemble Kalman filter

In the first part of this section we describe the basic def-
initions and update rules in the EnKF [7]. We use the
standard state-space representation of a physical sys-
tem and distinguish between state, output, and input
(i.e., control) variables. Outputs are quantities that can
be observed or measured (e.g., the number of overdose
deaths), while other quantities such as age-specific mor-
tality rates and the number of individuals suffering from
SUD are state variables that are not known and have
to be estimated. As a first application example, we use
the EnKF to estimate the rates μ and λ that arise
in Eqs. (4) and (5) of the simple model presented in
Sect. 2.

3.1 Basic definitions

To outline the main steps associated with the applica-
tion of an EnKF to the age-structured partial differ-
ential equation (PDE) model in Eq. (1), we primarily
follow the notation of Refs. [8, 9]; the EnKF implemen-
tation that we use in this work is instead based on Ref.
[34].

The evolution of the system state x(t) and observed
state z(t) is described by

ẋ = f(x, t) + w(t) w(t) ∼ N (0,Q(t))
z = h(x, t) + v(t) v(t) ∼ N (0,R(t))

, (7)

where Q(t) and R(t) denote the covariance matrices
associated with the Gaussian process noise N (0,Q(t))
and Gaussian observation noise N (0,R(t)) at time t ,
respectively. We assume the quantities Q(t) and R(t)
to be known. The function f(·) describes the dynam-
ics of the system state x(t), while h(·) maps x(t) to a
measurable quantity. Both functions can be nonlinear.

In the context of the age-structured model (1), ele-
ment xj(t) of the state vector x(t) corresponds to
n(aj , t) ≡ n(a0 + jΔa, t) (0 ≤ j ≤ Na − 1), the density
of individuals whose age lies within the [a0 + jΔa, a0 +
(j + 1)Δa) interval at time t . That is,

x(t) = [n(a0, t), n(a1, t), . . . ]�. (8)

We use Na and Δa to denote the number of discretiza-
tions of the age interval and the corresponding age dis-
cretization step, respectively. For the numerical solution
of Eq. (7), we later also discretize the simulation time

interval [0, T ] into Nt equidistant intervals of duration
Δt = T/Nt. If we wish to estimate model parameters
such as μ and λ introduced in Sect. 2, we can augment
the state to obtain

x(t) = [n(a0, t), . . . , n(aNa−1, t), μ, λ]�. (9)

An example of an inference problem with an augmented
state (9) will be provided in Sect. 3.2.

At every time point t , the goal of filtering is to deter-
mine the state posterior distribution given all prior
observations. Before producing EnKF state predictions,
we generate an initial ensemble [χ(1)

0 , . . . ,χ
(M)
0 ] that

consists of M ensemble members χ
(i)
0 ∼ N (x̂0,P 0)

(1 ≤ i ≤ M). The quantities x̂0 and P 0 denote the
given initial state and covariance estimates, respec-
tively.

We now outline the two main EnKF steps: (i) fore-
casting the evolution of the system state and (ii) updat-
ing the predicted state estimates using observation
data. To do so, we discretize the time evolution of the
system state and use the shorthand notation yk ≡ y(tk)
to refer to a quantity y at time tk = kΔt (0 ≤ k ≤ Nt).
Here and in the remainder of the manuscript, we assume
that t0 = 0.

The basic idea behind forecast and update iterations
is that one first uses state estimates χ

(i)
k at time tk

to calculate predicted state estimates χ
(i)−
k+1 at time

tk+1. These predicted estimates are then combined with
observational data to obtain an updated state estimate
χ

(i)
k+1. The superscript “−” in χ

(i)−
k+1 is used to distin-

guish the predicted (i.e., prior) state estimates from the
updated (i.e., posterior) state estimates.

(i) Forecast step: For each ensemble member,
we calculate the predicted state estimate χ

(i)−
k+1

according to

χ
(i)−
k+1 = χ

(i)
k + Δt f(χ(i)

k , tk) + ε
(i)
k , (10)

where ε
(i)
k ∼ N (0,Qk). For the sake of compu-

tational efficiency, we avoid discretizations of the
partial derivative of n(a,t) with respect to a in
the EnKF simulations. In all numerical experi-
ments, we first derive closed-form expressions of
the rate of change of n(a,t) to compute predic-
tions χ

(i)−
k+1 according to Eq. (10). The ensemble

mean of the predicted state, x̂−
k+1, and the corre-

sponding covariance matrix, (P −
x̂x̂)k+1, are given

by

x̂−
k+1 =

1
M

M∑
i=1

χ
(i)−
k+1 (11)

(P −
x̂ x̂ )k+1 =

1

M − 1

M∑

i=1

[
χ

(i)−
k+1 − x̂−

k+1

][
χ

(i)−
k+1 − x̂−

k+1

]�
.

(12)
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Fig. 1 State and parameter estimation with an EnKF. a The population with SUD with age between a and a+da at times
t = 0.1, 2.0, 4.5. b, c EnKF estimates λ̂, μ̂ of the rate parameters λ, μ [see Eqs. (4) and (5)]. In all panels, the true solution
is represented by a dashed black line. Solid red lines and gray-shaded regions indicate EnKF solutions and corresponding
3σ intervals. The results shown are based on M = 500 ensemble members

The covariance matrix (P −
x̂x̂)k+1 is not required in

the EnKF iteration, but it can be used to estimate
confidence intervals of x̂−

k+1.
(ii) Update step: We begin with deriving the ensem-

ble mean of the predicted observation

ẑ−
k+1 ≡ 1

M

M∑
i=1

z
(i)−
k+1 =

1
M

M∑
i=1

h(χ(i)−
k+1 ) (13)

as well as the corresponding covariances

(P −
ẑ ẑ )k+1 =

1
M − 1

M∑
i=1

[
h(χ(i)−

k+1 ) − ẑ−
k+1

]

×
[
h(χ(i)−

k+1 ) − ẑ−
k+1

]�
+ Rk+1

(P −
x̂ẑ )k+1 =

1
M − 1

M∑
i=1

[
χ

(i)−
k+1 − x̂−

k+1

]

×
[
h(χ(i)−

k+1 ) − ẑ−
k+1

]�
. (14)

The Kalman gain is

Kk+1 = (P −
x̂ẑ )k+1(P −

ẑ ẑ )−1
k+1. (15)

For a given observation zk+1, the state update of
ensemble member i is

χ
(i)
k+1 = χ

(i)−
k+1 + Kk+1

[
zk+1 + η

(i)
k+1 − h(χ

(i)−
k+1 )

]
,

(16)

where η
(i)
k+1 ∼ N (0,Rk+1). Finally, the updated

state estimate and the corresponding covariance
matrix are given by

x̂k+1 =
1

M

M∑
i=1

χ
(i)
k+1

(P x̂x̂ )k+1 = (P −
x̂ x̂ )k+1−Kk+1(P

−
ẑ ẑ )k+1K

�
k+1 .

(17)

3.2 Estimating model parameters

As a first example of estimating model parameters with
the help of an EnKF, we focus on the analytically solv-
able case from Sect. 2 for which closed-form analytical
solutions of n(a,t) can be obtained. Our goal is to esti-
mate μ and λ in Eqs. (4) and (5). We thus augment the
state (8) by μ, λ to obtain

x(t) = [n(a0, t), . . . , n(aNa−1, t), μ, λ]�. (18)

In accordance with Eqs. (4) and (5), the evolution of
n(a,t) is described by

∂n(a, t)
∂t

=
{

(a − t) e−λ(a−t)−μt (a ≥ t)
0 (a < t)

. (19)

The evolution of the first Na components of the aug-
mented state (18) is described by Eq. (19). We assume
that we can observe perturbed versions of n(a,t) but
not μ, λ (i.e., the measurement function is h(x(t)) =
[n(a0, t), . . . , n(aNa−1, t)]�). To avoid sign changes in
the estimates of μ, λ during the EnKF iterations, we
apply an exponential transform to render both esti-
mates positive. That is, we first replace μ, λ with μ̃, λ̃ in
Eq. (18) and then apply the transform μ = exp(μ̃), λ =
exp(λ̃) before carrying out a prediction step according
to Eq. (19).
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In our simulations, we consider an age interval
of [0, 120] years. We set Na = 1000 such that
Δa = 0.12 year, and we use a timestep of Δt =
0.1 year. Process and observation noise covariances
are assumed to be time-independent and given by
Q = 10−4JNa+2 and R = diag(10−4, . . . , 10−4), respec-
tively. Here, Jn denotes the n × n matrix of ones.
Furthermore, we set the initial state and its covari-
ance matrix to x̂0 = [10−5, . . . , 10−5, 10−1, 10−1] and
P 0 = diag(0.5, . . . , 0.5, 1, 1), respectively.

We generate unperturbed observation data from the
model using μ = 0.08/year and λ = 0.2/year. The
perturbations that we add to n(a,t) are normally dis-
tributed with zero mean and variance 10−4. Our goal
is, given the randomized n(a,t), to estimate the under-
lying μ and λ with an EnKF and verify the degree of
accuracy of our estimates compared to the original val-
ues. In real-world applications, new observation data
may not be available for each prediction. To account
for this potential lack of observation data, we perform
update steps (i.e., integrate observation data into our
predictions) every five prediction periods.

Figure 1a shows the evolution of both the true solu-
tion n(a,t) for which μ, λ are known (dashed black
lines) and of the corresponding EnKF estimates that
use the augmented state (18). Gray-shaded regions indi-
cate 3σ intervals of the EnKF predictions [see Eq. (12)].
We observe that the EnKF produces estimates of λ and
μ that are very close to the true solution after t � 2
years and t � 7 years, respectively.

4 Application to drug overdoses

We now use an EnKF to combine the model in Eq. (1)
with corresponding empirical data taken from the CDC
WONDER database. Here different causes of death
are classified according to the 10th revision of the
International Statistical Classification of Diseases and
Related Health Problems (ICD-10). We selected ICD-
10 codes T40 (poisoning by narcotics and psychodyslep-
tics) and T43.6 (psychostimulants with abuse potential)
and all drug-induced deaths, including unintentional
death, suicide, homicide, and death by an undetermined
cause. We extracted data for the period 1999–2020.

In order to interface drug overdose data with the ana-
lytical setup given in Eq. (1), we identify n(a, t) da as
the number of people with SUD (w.r.t. any drug) of ages
between a and a + da at time t . We also associate the
influx into the SUD population with an addiction rate
of the non-SUD population: r(a, t)[N(a, t) − n(a, t)],
where N (a,t) is the overall population density at time
t from which we subtract n(a,t), the density of peo-
ple with an existing SUD. Finally, the prefactor r(a,t)
represents an age- and time-dependent addiction rate,
which might be modeled [35] or estimated from addi-
tional data such as surveys. Including these elements,
the model in Eq. (1) is adapted to

[
∂

∂a
+

∂

∂t

]
n(a, t) = − μ(a, t)n(a, t)

+ r(a, t)[N(a, t) − n(a, t)] .
(20)

Equation (20) can be recast in the same form as
Eq. (1) via

[
∂

∂a
+

∂

∂t

]
n(a, t) = − [μ(a, t) + r(a, t)]n(a, t)

+ r(a, t)N(a, t). (21)

Upon comparing Eq. (21) to Eq. (1) we can identify
μ(a, t) → μ(a, t) + r(a, t) and p(a, t) → r(a, t)N(a, t),
so that the analytical solutions to Eq. (21) can be writ-
ten through the proper substitutions in Eqs. (2) and
(3). Apart from n(a,t), Eq. (21) contains the functions
N(a, t), r(a, t), μ(a, t). Here we introduce some possible
forms for them, based on available data and realistic
assumptions. We begin with the entire population den-
sity N (a,t).

Because of different population-level dynamics such
as aging and immigration, the population growth in
specific age classes is non-monotonic. In principle, it
is possible to use interpolation methods and nonlinear
functions to construct an age-stratified N (a,t) based on
empirical population data that is usually available for
5- or 10-year age windows. However, for the sake of ana-
lytical tractability, we will assume an age-independent
quantity with N (t) and focus on the more general form
N (a,t) in future work. To account for the quasi-linear
US population growth in the past two decades, we set

N(t) = N0 + ΔNt, (22)

Fig. 2 Population growth in the United States between
2000 and 2020. The dashed black and solid red lines show the
population growth in the United States during 2000–2020
and a linear population-growth model [see Eq. (22)], respec-
tively
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Fig. 3 Forecasting overdose mortality and estimating model parameters with an EnKF. a–c Reported (dashed black lines)
and predicted (solid red lines) numbers of overdose deaths in 2008, 2013, and 2018. Empirical data have been collected from
the CDC WONDER database. d–g Evolution of estimated mortality rate μ̂, base modulating rate r̂0, and gamma function
means α̂1/β̂1, α̂2/β̂2. In all panels, solid red lines and gray-shaded regions indicate EnKF solutions and corresponding 3σ
intervals. The shown results are based on M = 104 ensemble members. Observation data for the previous year becomes
available in the beginning of every year

where N0 = 274.9 × 106 and ΔN = 2.3 × 106/year.
Figure 2 shows the linear model N (t) and the corre-
sponding population data for the period 2000–2020.

To model r(a,t), we assume a linear combination
of two gamma distributions f1(a;α1, β1), f2(a;α2, β2),
each peaked at different ages, to describe possible vari-
ations in the age dependence of the addiction rate. We
do this to account for changes in the prevalence of drug
type and societal consumption patterns over the 21-
year time frame we examine. The quantities α1, β1 and
α2, β2 denote shape and rate parameters of the two dis-
tributions f1 and f2, respectively. We also assume that
r(a,t) does not depend on time and write

r(a, t) ≡ r(a) =
r0
2

[f1(a;α1, β1) + f2(a;α2, β2)],

(23)

where r0 is a base modulating rate.

The numerical results that we discuss in the fol-
lowing paragraphs show that a linear combination
of two gamma functions allows us to capture the
double-peaked distribution of age-stratified overdose
deaths [see Fig. 3a–c]. Finally, for analytical tractabil-
ity of the double integrals arising from the solutions of
Eq. (21), we retain the constant mortality rate assump-
tion μ(a, t) = μ. To combine the mechanistic model in
Eq. (21) with empirical data on overdose deaths, we
augment the system state x(t) [see Eq. (8)] by

D̃(aj , t) =
∫ t

0

μ(aj , t
′)n(aj , t

′) dt′ (0 ≤ j ≤ Na − 1),

(24)

where D̃(aj , t) is the cumulative number of overdose
deaths in the age interval [aj , aj+1) up to time t .
We also augment the system state x(t) by the model
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parameters μ, r0, α1, β1, α2, β2 that we wish to estimate.
As a result, the final augmented system state is

x(t) =
[
n(a0, t), . . . , n(aNa−1, t),

D̃(a0, t), . . . , D̃(aNa−1, t), μ, r0, α1, β1, α2, β2

]�
.

(25)

We derive the corresponding rate of change ∂n(a, t)/∂t
for the EnKF updates in Appendix A.

For an accurate numerical evaluation of the rate of
change of n(a,t), we use a sufficiently small discretiza-
tion that is associated with age windows that are more
granular than the available overdose data. We thus have
to coarse-grain the modeled overdose death densities
to be able to relate them to observation data. The
CDC WONDER data that we use in this work is based
on 22 age groups with a′

0 = 0, a′
22 = 120 years and

Δa′
1 = 1,Δa′

2 = 4,Δa′
3 = 5, . . . ,Δa′

21 = 5,Δa′
22 = 20

years. We use a superscript ′ to distinguish the age dis-
cretization in the observation data from the age dis-
cretization in the underlying model.

We combine the modeled quantities D̃(aj , t) with cor-
responding observation data by numerically integrating
D̃(aj , t) over age windows [a′

�−1, a
′
�) (1 ≤ � ≤ 22) to

obtain the corresponding number of deaths D(a′
�, t) in

this age interval at time t . Here, a′
� = a′

0 +
∑�

m=1 Δam

for � ≥ 1. Based on the described mapping of D̃(aj , t)
to D(a′

�, t), the measurement function becomes

h(x(t)) = [D(a′
1, t),D(a′

2, t), . . . ]
�. (26)

In our simulations, we set the initial values n(aj , 0) =
D̃(aj , 0) = 0. The initial values of μ, r0, α1, β1, α2,
β2 are 7 × 10−4/year, 0.04/year, 15, 1/(3 year), 15,
and 1/(3 year), respectively. We have chosen the initial
value of r0 in accordance with corresponding empiri-
cal data on the number of substance initiates [33]. The
initial mean of both gamma distributions is equal to
α1/β1 = α2/β2 = 45 years. To ensure that the param-
eters μ, r0, α1, β1, α2, β2 stay positive during EnKF
iterations, we use the same exponential transform as in
Sect. 3.2. All initial covariances are set to 10−4, except
for the diagonal elements associated with μ, r0, α1, β1,
α2, β2, which are set to 10−2. The process and observa-
tion noise covariances are as in Sect. 3.2. We use a small
process noise and a relatively large initial model param-
eter variance to (i) let the dynamics evolve according to
the mechanistic drug overdose model without too much
additional noise in n(a,t), D̃(a, t) and (ii) let the filter
explore different trajectories associated with apprecia-
ble variations in the underlying model parameters. We
have also performed simulations for larger process noise
values associated with n(a,t) and D̃(a, t). For example,
we set the corresponding diagonal elements of Q to val-
ues between 1 and 100 without observing substantial
differences in the simulation results. In the measure-
ment process, we divide D̃(a, t) by 103 to work with

numerical values of O(1) when comparing predicted and
observed overdose fatalities. A measurement variance of
10−4 (i.e., a standard deviation of 10−2) corresponds to
about 10–100 overdose fatalities in the simulated data.
Although the exact measurement noise is difficult to
estimate given the unknown number of undocumented
fatal drug overdose cases, we used a standard deviation
of about 10–100 as a reasonable modeling choice. In our
simulations, we use a relatively large ensemble size of
M = 104 to minimize the effect of sampling errors that
occur during the Monte Carlo approximation of the sys-
tem state evolution in the prediction and update steps.
Our simulations start in 1998 and we use a timestep of
Δt = 0.1 years.

Figure 3a–c shows reported drug overdose deaths
(dashed black lines) for the years 2008, 2013, and 2018.
Solid red lines represent EnKF predictions that are
based on updates that involved observation data from
all previous years since 1999. No additional observa-
tion data were available between two subsequent years.
That is, for predictions that were made for, e.g., 2008,
the most recent observation data that was available to
the EnKF was from 2007. Still, the EnKF predictions
in Fig. 3a–c are closely aligned with the reported over-
dose deaths. For almost all age classes, predicted over-
dose fatalities lie within the shown 3σ regions (gray
shaded regions). For applications in real-time monitor-
ing of overdose fatalities, one may also include provi-
sional data that becomes available during the course of
a year to further refine forecasts.

The evolution of μ̂ and r̂0 [see Fig. 3d, e] sug-
gests that drug overdose mortality increased over the
years while the proportion of newly addicted individ-
uals approaches about 0.01/year. Up until 2001–2002,
the evolution of the mean values of both gamma func-
tions is synchronous [see Fig. 3f, g]. From 2003 onwards,
one gamma function captures the addiction dynamics
of individuals who are older than 40 years, while the
second gamma function captures the inflow of younger
people with SUD.

Finally, in Fig. 4, we show forecasts of overdose mor-
tality in the United States for the years 2021, 2022,
and 2023. The latest observation data that is available
for these forecasts is from 2020 (dashed black lines in
Fig. 4). The predicted overdose mortality in 2021 is
slightly smaller than in 2020 in age groups between 30
and 60. In 2022 and 2023, the predicted overdose mor-
tality in many age groups exceeds that of 2020. Since
the overall overdose mortality has increased unsteadily
more than fivefold in the past two decades (with a par-
ticularly steep increase between 2019 and 2020), the
variance in the shown forecasts is relatively large.

5 Discussion and conclusions

We have developed an age-structured model of drug
overdose mortality. Our model accounts for age and
time-dependent addiction and mortality rates. It can
readily be extended to account for multiple drug classes
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Fig. 4 Predicted overdose mortality in 2021, 2022, and 2023. Solid red lines show EnKF predictions of numbers of overdose
deaths in a 2021, b 2022, and c 2023. As a reference, dashed black lines show overdose deaths in 2020. Empirical data have
been collected from the CDC WONDER database. Gray-shaded regions indicate corresponding 2σ intervals. The shown
results are based on M = 104 ensemble members. The latest observation data that was available to generate the shown
predictions is from 2020

and different ways of stratifying the population. In a
simple example, we have shown how age-structured
models can be combined with data-assimilation meth-
ods such as an EnKF to forecast the evolution of fatal-
ities and estimate model parameters.

Combining our age-specific overdose model with
empirical data on overdose fatalities in the United
States, we have provided a proof-of-principle set of
methods that can be useful for estimating parame-
ters governing drug addiction and mortality and for
forecasting the evolution of population-level overdose
dynamics.

In addition to developing a framework to include
provisional overdose data and retrospective updates
of observation data, possible future work includes the
study of how regularization terms can help smooth
Kalman filter updates [36], or how other ensemble-
based Kalman filters, such as ensemble adjustment
Kalman filters [37], may help improve numerical stabil-
ity and forecast accuracy. For applications of the pro-
posed methodology to small population sizes, it might
be worthwhile to update the age-stratified population
using a Poisson-process model, where the Gaussian
noise term only affects the underlying model parame-
ters and not the population numbers themselves. Since
we focused on drug overdose forecasting over the past
two decades, we decided to use the EnKF in a forward
mode and not use backward passes/smoothing (i.e., not
use future observations from times t′ > t at time t). As
noted by Evensen and van Leeuwen [38], in forecast-
ing mode, the EnKF and ensemble Kalman smoother
(EnKS) produce the same state estimate at the latest
time. However, using backward passes and an EnKS
(or lagged versions) can help improve earlier parame-
ter estimates, which is also an interesting direction for
future research. Another possible direction for future
work is to extend the presented data assimilation frame-
work to account for age-dependent death rates μ(a, t)
and age-dependent population data N (a,t) in Eq. (21).
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Appendix A Rate of change

We evaluate the derivative of Eq. (2) w.r.t. t for t0 =
0, r(a, t) ≡ r(a) = r0[f1(a;α1, β1) + f2(a;α2, β2)]/2,
N(t) = N0 + ΔNt, μ(a, t) = μ. The resulting rate of
change of n(a,t) for a > t is
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∂n(a, t)
∂t

= − [ρ′(a − t) + ρ(a − t)(μ + r(a − t))]e−μt−∫ t
0 r(a−t+s) ds + r(a)N(t)

−
∫ t

0

e−μ(t−s)−∫ t
s

r(a−t+s′) ds′
N(s)

(
r(a − t + s)(μ + r(a − t + s)) + r′(a − t + s)

)
ds. (A1)

For a < t, the rate of change is

∂n(a, t)
∂t

=
∫ a

0

r(s)ΔNe−μ(a−s)−∫ a
s

r(s′) ds′
ds .

(A2)

The integrals
∫ t

s
r(a − t + s′) ds′,

∫ t

0
r(a − t + s) ds, and∫ a

s
r(s′) ds′ can be evaluated using the identity

∫ t

s

βα

Γ(α)
(a − t + s′)α−1e−β(a−t+s′) ds′ =

1
Γ(α)

[Γ(α, (a − t + s)β) − Γ(α, aβ)], (A3)

where Γ(s, x) =
∫ ∞

x
ts−1e−t dt denotes the upper

incomplete gamma function. We evaluate the remaining
integrals

∫ t

0
(·) ds numerically. The simulation results

that we present in Sect. 4 use the age-dependent ini-
tial condition

ρ(a) = 0.04N0f(a;α, β), (A4)

where f(a;α, β) is a gamma distribution with shape
and rate parameters α and β, respectively. In all sim-
ulations, we set α = 15 and β = 1/(3 year) such that
the distribution mean is 45 years. The prefactor of 0.04
is chosen such that initially 4% of the population are
suffering from a substance use disorder [33].
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Burov, A. Garbuno-Iñigo, G.L. Wagner, S. Pei, C.
Daraio, R. Ferrari et al., Epidemic management and
control through risk-dependent individual contact inter-
ventions. PLOS Comp. Biol. 18, e1010171 (2022)

32. L. Böttcher, H. Gersbach, The great divide: drivers of
polarization in the US public. EPJ Data Sci. 9(1), 1–13
(2020)

33. R.N. Lipari, E. Park-Lee, Mental Health Services
Administration. Key substance use and mental health
indicators in the United States: Results from the 2018
National Survey on Drug Use and Health (HHS Pub-
lication No. PEP19-5068, NSDUH Series H-54) (Cen-
ter for Behavioral Health Statistics and Quality. Sub-
stance Abuse and Mental Health Services Administra-
tion, Rockville, 2018)

34. Labbe, R.: Kalman and Bayesian Filters in Python,
https://github.com/rlabbe/Kalman-and-Bayesian-
Filters-in-Python/blob/master/Appendix-E-Ensemble-
Kalman-Filters.ipynb. GitHub (2022)

35. T. Chou, M.R. D’Orsogna, A mathematical model of
reward-mediated learning in drug addiction. Chaos 32,
021102 (2022)

36. C.J. Johns, J. Mandel, A two-stage ensemble Kalman
filter for smooth data assimilation. Environ. Ecol. Stat.
15, 101–110 (2008)

37. J.L. Anderson, An ensemble adjustment Kalman fil-
ter for data assimilation. Mon. Weather Rev. 129(12),
2884–2903 (2001)

38. G. Evensen, P.J. Van Leeuwen, An ensemble Kalman
smoother for nonlinear dynamics. Mon. Weather Rev.
128(6), 1852–1867 (2000)

123

https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python/blob/master/Appendix-E-Ensemble-Kalman-Filters.ipynb

	Modeling and forecasting age-specific drug overdose mortality in the United States
	1 Introduction
	2 A general age-structured mortality model
	3 Ensemble Kalman filter
	3.1 Basic definitions
	3.2 Estimating model parameters

	4 Application to drug overdoses
	5 Discussion and conclusions
	Appendix A Rate of change
	References
	References




