
© 2020 The Author(s). Published by IOP Publishing Ltd

1. Introduction

Diversity is a frequently used concept across a broad 
spectrum of scientific disciplines, ranging from 
biology [1–5] and ecology [6–11], to investment and 
portfolio theory [12–16], to linguistics [17, 18] and 
sociology [19–24]. In each of these disciplines, diversity 
is a measure of the range and distribution of certain 
features within a given population. It is considered a key 
attribute that can be dynamically varying, influenced 
by intra-population interactions, and modified by 
environmental factors. The concept of diversity, variety, 
or heterogeneity can be applied to any population. 
The evolution of the population can also be highly 
correlated with its diversity. Some examples of biological 
population dynamics occurring at different scales are 
shown in figure 1. At first sight, diversity seems to be an 
intuitively simple concept, but since certain population 
attributes require a full distribution function to quantify, 
it can be rather complex and difficult to capture using a 
single metric [3, 4, 25, 26]. We could for example think 
of a community with a total of four species, with one of 
the species dominating the total population. Consider a 
second community that consists of two equally common 
species. Which one of the two communities exhibits a 
higher diversity? The first one, because it harbors a larger 
number of species? Or the second one, because a sample 

is more likely to contain two species? This example shows 
that diversity is intrinsically linked to the total number 
of extant species (richness) and how the population 
is distributed throughout the species (evenness), and 
thus cannot be captured by a single number [3]. As a 
result, there are numerous different diversity indices 
and associated concepts used in different applications 
[3, 4, 25–29]. Nonetheless, diversity measures are 
important for assessing the current condition of 
ecosystems, quantifying the influence of environmental 
factors on different species, and planning conservation 
efforts [2, 5, 9, 10, 29–31]. In addition, the concept of 
diversity is important for the quantitative description 
of wealth distributions and, more generally, to identify 
mechanisms leading to variations in societies [32–36]. In 
a broader sense, diversity indices may be helpful for the 
design of robust energy distribution systems [37] or even 
to assemble well-performing teams [23]. Thus we see 
that, despite the ambiguity in the definition of diversity, 
the concept is very relevant to many different disciplines 
and applications.

In this topical review, we start by summarizing the 
basic concepts from information theory which are 
necessary for a quantitative treatment of diversity. We 
continue with describing aspects of populations and 
diversity that are common to many applications in 
biology. In the next section, we present the  common 
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Abstract
Diversity indices are useful single-number metrics for characterizing a complex distribution of a set 
of attributes across a population of interest. The utility of these different metrics or sets of metrics 
depends on the context and application, and whether a predictive mechanistic model exists. In this 
topical review, we first summarize the relevant mathematical principles underlying heterogeneity in 
a large population, before outlining the various definitions of ‘diversity’ and providing examples of 
scientific topics in which its quantification plays an important role. We then review how diversity has 
been a ubiquitous concept across multiple fields, including ecology, immunology, cellular barcoding 
experiments, and socioeconomic studies. Since many of these applications involve sampling of 
populations, we also review how diversity in small samples is related to the diversity in the entire 
population. Features that arise in each of these applications are highlighted.
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mathematical descriptions of diversity in terms of 
both number and species counts. Moreover, in most 
applications, only a small sample of a population is 
available. Thus, we place particular emphasis on the 
effects of sampling on diversity measures in section 5. 
In section 6 and subsections within, we survey a num-
ber of biological systems in which concepts of diver-
sity play a key role in understanding the dynamics of 
the population. These include ecological populations, 
stem cell barcoding experiments, immunology, cancer, 
and societal wealth distributions. Each of these systems 
carry their unique attributes and thus require specific 
diversity measures. Finally, in section 7 we summarize 
the advantages and disadvantages of some common 
diversity measures and conclude with a discussion of 
possible future applications of concepts of diversity.

2. Mathematical concepts

2.1. Entropy, relative entropy, KL divergence, KS 
statistic, mutual information and all that
We first provide a summary of the fundamental 
mathematical structures that arise in the analysis 
of populations in which one naturally seeks to 
quantitatively compare distributions or frequencies 
of subpopulations. These mathematical notions 
invariably involve ideas from information theory such 
as entropy and mutual information which have a rich 
history and deep connections to thermodynamics, 
coding theory, cryptography, inference, and 
communication [38]. To review the necessary 
information-theoretic concepts, we consider a discrete 
random variable X which takes on values from the set 
{x1, x2, . . . , xN} with probability Pk = Pr (X = xk) 
such that

N∑
k=1

Pk = 1, (1)

where the sum is taken over all possible values xk. This 
probability mass function may represent the relative 
frequency that an attribute X takes on the value xk 
within a large population. In the case of species 
diversity, we may interpret Pk as the relative frequency 
of species k or the fraction of species with trait X  =  xk 
(see clone counts in section 4). The entropy, or 
‘Shannon entropy’, is defined by

H(X) = −
N∑

k=1

Pk log Pk (2)

and can be thought of as the expected uncertainty or 
surprise −E[log P(X)].

The continuous limit of Shannon entropy, or differ
ential Shannon entropy, has also been defined, but care 
must be taken if X carries physical dimensions. If the 
probability of X taking on values in the interval [x, x + dx] 
is denoted by P(x) dx, the differential Shannon entropy is

H(X) = −
∫

P(x) log P(x) dx. (3)

These expressions are synonymous with the ‘Shannon 
index’ of species diversity with some freedom in 
the choice of the base of the logarithm. Without any 
constraints on the distributions other than being 
compactly supported, the form of Pk or P(x) that 
maximizes H(X) is a uniform distribution. With 
additional constraints there are classes of distributions 
that maximize the Shannon index. For example, for a 
fixed mean and variance on an unbounded domain, the 
Shannon index- or entropy-maximizing distribution 
is Gaussian. Within Gaussian distributions, the 

Figure 1. Examples of complex, multicomponent populations in which diversity may be a meaningful quantitative concept. 
(a) Diversity in island ecology. A large number of species may migrate onto an island. Organisms can proliferate and die, leading 
to a specific time-dependent pattern of species diversity on the island. (b) Microbes are ingested and form a community in the 
gut by proliferating, competing, and dying. They can also be cleared from the gut. (c) Naive T cell generation in vertebrates. Naive 
T cells develop in the thymus. Each T cell expresses only one type of T cell receptor (TCR). Naive T cells can proliferate and die in 
the peripheral blood. The possible number of T cell receptors that can be expressed is enormous,  >1015, but only perhaps 106–108 
different TCRs usually exist in an organism. The diversity of the T cell receptor repertoire is an important determinant of the 
organism’s response to antigens.
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Shannon index increases logarithmically with the 
variance. In fact, within a specific class of distributions, 
the Shannon index is larger for flatter distributions 
[39, 40]. As such, the Shannon index has been used as a 
measure of diversity [41].

One issue with the differential entropy of 
equation (3) is that P(x) carries dimensions X−1, 
because the cumulative distribution function 

P(X � x) =
∫ x
−∞ P(x′) dx′ has to be dimensionless. 

Therefore, the argument of the logarithm in equa-
tion (3) is not dimensionless as required. To avoid such 
an issue, one can define a point-density function P0(x) 
according to [39]

lim
N→∞

#points ∈ [a, b]

N
≡

∫ b

a
P0(x)dx. (4)

Given that the limit is well-behaved, we can express the 
difference between two adjacent points xk+1 and xk in 
terms of

lim
N→∞

[N(xk+1 − xk)] ∼ P−1
0 (xk). (5)

We now consider the continuum limit of the discrete 
Shannon entropy as defined in equation (2), and set

Pk ∼ P(xk)(xk+1 − xk) ∼ P(xk) [NP0(xk)]
−1 . (6)

In this way, it is possible to derive a continuous 
Shannon entropy

lim
N→∞

HN(X) = −
∫

P(x) log

(
P(x)

NP0(x)

)
dx − log(N)

= −
∫

P(x) log

(
P(x)

P0(x)

)
dx

 

(7)

that is invariant under parameter changes and whose 
logarithm depends on the dimensionless quantity 
P(x)/P0(x). We subtracted log(N) in equation (7) to 
obtain a finite HN(X).

To characterize the diversity between two com-
munities, we consider two discrete random variables 
X and Y with the corresponding joint probability mass 
function PX,Y(xk, y�) = Pr(X = xk, Y = y�). Given 
the joint distribution PX,Y(xk, y�), we can compute the 
marginal distributions PX(xk) =

∑
� PX,Y(xk, y�) and 

PY(y�) =
∑

k PX,Y(xk, y�) by summing over the com-
plementary variable. These definitions enable us to 
define the joint entropy

H(X, Y) = −
∑
k,�

PX,Y(xk, y�) log PX,Y(xk, y�), (8)

which may be also written as −E[log PX,Y ]. Moreover, 
the conditional entropy

H(Y |X) = −
∑
k,�

PX,Y(xk, y�) log

(
PX,Y(xk, y�)

PX(xk)

)

 

(9)
= −

∑
k,�

PX,Y(xk, y�) log PY|X(y�|xk) 

describes the expected uncertainty in the random 
variable Y given X. It can be also expressed as 
−E[log PY|X] where PY|X  is the conditional probability 

mass function. From symmetry, equation (9) 
also holds when all X and Y are interchanged. For 
independent random variables X and Y, we find that 
H(Y |X) = H(Y) and H(X|Y) = H(X).

While the Shannon index is a measure of the abso-
lute entropy of a distribution, the relative entropy or 
Kullback–Leibler (KL) divergence

DKL(P‖Q) =
∑

k

P(xk) log

(
P(xk)

Q(xk)

)

= EP [log P(xk)− logQ(xk)] ,

 (10)

quantifies the distance between two probability 
mass functions P and Q. In the case of continuous 
distributions P(x) and Q(x), we obtain 
DKL(P‖Q) =

∫
P(x) log(P(x)/Q(x)) dx.

The KL divergence is the relative entropy of 
P with respect to the reference distribution Q. 
Note that the limiting Shannon entropy is simply 
the KL divergence between the distribution P(x) 
and the associated invariant measure P0(x). Usu-
ally, P is an experimental or observed distribu-
tion and Q is a model that represents P. Further-
more, the KL divergence is nonnegative and equals 
zero if and only if P  =  Q [38]. It is not symmetric, 
DKL(P‖Q) �= DKL(Q‖P), and is thus not a metric. In 
addition, a special case of the KL divergence is the 
‘mutual information’ 

I(X; Y) = DKL(PX,Y‖PXPY)

=
∑
k,�

PX,Y(xk, y�) log

(
PX,Y(xk, y�)

PX(xk)PY(y�)

)
.

 (11)

Note that I(X; Y) = I(Y ; X) is symmetric and 
quantifies how much knowing one variable reduces 
the uncertainty in the other. If X and Y are completely 
independent, I(X, Y) = 0. According to equation (11) 
and the definitions of joint and conditional entropy 
in equations (8) and (9), the mutual information can 
be written in terms of marginal, conditional, and joint 
entropies [38]:

I(X; Y) = H(X)− H(X|Y) = H(Y)− H(Y |X)
= H(X) + H(Y)− H(X, Y).

 
(12)

A symmetric version of the KL divergence is provided 
by the Jensen–Shannon divergence [42]

JSD(P‖Q) =
1

2
DKL(P‖M) +

1

2
DKL(Q‖M), (13)

where M = (P + Q)/2 defines the mean distribution 
of P and Q. These divergences can be extended 
to include multiple and higher-dimensional 
distributions. The square-root of the Jensen–
Shannon divergence is a distance metric between two 
distributions.

Another useful distance metric is the Kolmogorov–
Smirnov (KS) distance, which is defined as

DKS = max
x

|G(x)− F(x)|, (14)

Phys. Biol. 17 (2020) 031001
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where F(x) is a cumulative reference distribution 
and G(x) is an empirical distribution function. The 
distribution G(x) is based on different samples with 
cumulative distribution function that can be F(x) or 
another distribution to be tested against F(x). The 
KS metric is the maximum distance between the two 
cumulative distributions F(x) and G(x). We outline in 
section 6.6 that the KS metric is related to the Hoover 
index which is used to quantify diversity, or inequity, 
in wealth or income distributions relative to a uniform 
distribution.

3. Commonly used measures of diversity

The notions of entropy and information are 
naturally related to the spread of a distribution 
P(x), and can be subsumed into a general metric 
for quantifying diversity. Usually, a population is 
measured and can be thought of as one realization 
of an underlying distribution. Consider a realization 
n = {n1, n2, . . . , nR} describing the number ni of 
entities of a discrete and distinguishable group/
species/type (1 � i � R). The total population is 

N =
∑R

i=1 ni. This given realization constitutes 
a ‘distribution’ across all possible types. Thus, 
any realization is completely described by a set 
of R numbers. Diversity measures are reduced 
representations of the distribution. An example would 
be a single parameter which captures the spread of the 
distribution of realizations {ni}. This is not different 
than, for example, defining a Gaussian distribution 
by its mean and standard deviation. Realizations 
{ni}, however, usually are not described by specific 
functions that can be defined by one or two parameters 
such as Gaussians. However, many different diversity 
indices can be unified into a single formula called ‘Hill 
numbers’ of order q [43–45]:

qD =

(
R∑

i=1

f q
i

)1/(1−q)

, (15)

where fi ≡ ni/N  is the relative abundance of types i. 
This general formula represents different classes of 
‘diversity indices’ for different values of q. It is also 
useful because one can consistently define an effective 
proportional abundance

feff := 1/qD =

(
R∑

i=1

f q
i

)1/(q−1)

 (16)

that corresponds to an average abundance with 
increasing weighting towards the larger-population 
species as q increases [45, 46].

Note the similarity of this definition to the stand-
ard mathematical p -norm

||f||p :=

(
R∑

i=1

f p
i

)1/p

, (17)

except that the exponent is 1/p  instead of 
1/(1 − q). Another diversity measure is provided by 
the Renyi index [47]

qH = log qD =
1

1 − q
log

(
R∑

i=1

f q
i

)
, (18)

which is a generalization of the Shannon entropy 
defined in equation (2). The order q describes the 
sensitivity of qD  and qH  to common and rare types [48]. 
Below, we provide an overview of the most commonly 
used indices which result from the generalized diversity 
qD  for different values of q:

3.1. Richness
In the limit of q → 0+, the probabilities f q

i  are equal 
to unity and 0D is simply the total number of types 
in the population, or the ‘richness’ R. The richness is 
often used in quantifying the diversity of T cells and 
species counts in ecology [3] and represents a metric 
that weights all subpopulations equally.

3.2. Shannon index
For q = 1 − ε in the limit ε → 0+, the generalized 
diversity as defined by equation (15) becomes

1D = lim
ε→0+

(
R∑

i=1

f 1−ε
i

)1/ε

= lim
ε→0+

(
R∑

i=1

fie
−ε ln fi

)1/ε

= lim
ε→0+

(
R∑

i=1

fi(1 − ε ln fi + O(ε2))

)1/ε

= lim
ε→0+

(
1 − ε

R∑
i=1

fi ln fi

)1/ε

= exp

[
−

R∑
i=1

fi ln fi

]
,

 

(19)

which is the exponential of the Shannon index

Sh := ln

(
lim

q→1−
qD

)
= −

R∑
i=1

fi log fi (20)

that parallels the Shannon entropy defined in 
equations (2) and (9). This index is also sometimes 
called the Shannon–Wiener index (H) and can be 
defined using any logarithmic base. Usually measured 
values are Sh ∼ O(1). Qualitatively, eSh can be thought 
of as a rule of thumb for the number of effective species 
in a population.

3.3. Evenness
Evenness is another class of diversity indices often 
invoked in ecological and sociological studies. One 
definition (‘Shannon’s equitability’) is based on 
simply normalizing the Shannon diversity by the 
maximum Shannon diversity that arises if every 
species is equally likely [49]:

JE :=
Sh

Shmax
=

Sh

lnR
. (21)

Phys. Biol. 17 (2020) 031001
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3.4. Simpson’s index with replacement
When q  =  2, we find

2D = 1/

(
R∑

i=1

f 2
i

)
. (22)

Simpson’s diversity index is defined as

Sr = 1/2D =
R∑

i=1

f 2
i =

R∑
i=1

(ni

N

)2
, (23)

which carries the interpretation that upon drawing 
an entity from a given population the same type is 
selected twice.

3.5. Simpson’s index without replacement.
A related index that cannot be directly constructed 
from qD  is Simpson’s index without replacement:

S =
R∑

i=1

ni(ni − 1)

N(N − 1)
. (24)

Here, when an entity is drawn, it is not replaced before 
the second entity is drawn. The differences between 
Sr and S are significant only for systems with small 
numbers of entities ni for all types i.

3.6. Berger–Parker diversity index
In the q → ∞ limit, we find

∞D = lim
q→∞

(
R∑

i=1

f q
i

)1/(1−q)

= lim
q→∞

f
− 1

1−1/q
max

[
R∑

i=1

(
fi

fmax

)q
]1/(1−q)

= f −1
max

 

(25)

where fmax = maxi∈{1,...,R}( fi). The Berger–Parker 
diversity index

1/∞D := fmax (26)

is defined as the maximum abundance in the set {f i}, 
i.e. the abundance of the most common species. It is 
equivalent to the optimal solution of an ∞-norm of 
f= n/N .

4. Clone count representation

An alternative way of quantifying a population is 
through the species abundance distribution or ‘clone 
counts’ defined by

ck :=
R∑

i=1

1(ni, k) ∈ Z+, (27)

where the discrete indicator function 1(n, k) = 1 if 
n  =  k and zero otherwise. The sum is usually taken 
over all species for which ni � 1. Clone counts can 
also be defined over only a certain special subset 
of species. Clone counts, or species abundance 
distributions, in the language of computational 
mathematics, can be thought of as the measure of 

the levelsets [50] of the discrete function ni, or, in the 
language of condensed matter physics, the density of 
states if ni are thought of as energies of states i [51]. 
The clone counts also satisfy

N =

∞∑
k=1

kck and R =

∞∑
k=1

ck, (28)

where N and R are the discrete total population and the 
total number of species (richness) present.

Clone counts are commonly used in the theory of 
nucleation and self-assembly [52–54], where all parti-
cles are identical and ck represents the number of clus-
ters of size k. They are equivalent to ‘species abundance 
distributions’ or sometimes ambiguously described as 
‘clone size distributions.’ Clone counts have recently 
been used to quantify populations in barcoding stud-
ies [55] described below.

Clone counts do not depend on the specific labe-
ling of the different types i and do not contain any 
identity information. However, since the common 
diversity indices are only a summary of the vector {ni} 
and also do not retain species identity information, qD  
can be written in terms of ck rather than ni:

qD =

[ ∞∑
k=1

ck

(
k

N

)q
]1/(1−q)

, (29)

which leads to corresponding expressions at specific 
values of q, e.g. 0D = R,

1D = exp

[
−

∞∑
k=1

ck

(
k

N

)
ln

(
k

N

)]
and

1/2D =

∞∑
k=1

ck

(
k

N

)2

.

 (30)

While qD  is well-defined when species are discretely 
delineated, for more granular or continuous traits, the 
delineation of different species will affect the values of 
ni and ck. Figure 2 shows population counts ordered by 
a continuous trait x. By defining the discrete species i 
according to different binning windows over x, we find 
different sets of number and clone counts. Thus, meas-
ures of diversity can be highly dependent on the reso-
lution and definition of traits and species.

5. Sampling

In most applications, including all the ones we will 
discuss below, the entire population is not accessible 
for identification and measurement. In an ecosystem, 
all animals of the population cannot be tracked. In 
blood samples, only a small fraction of the cell types 
in the whole organism is drawn for identification/
sequencing. Thus, inferring the diversity in the entire 
system from the diversity in the sample is a key problem 
encountered across many fields.

There are numerous ways to randomly sample a 
population. One approach is to draw one individual, 
record its attributes, return it to the system, and allow it 

Phys. Biol. 17 (2020) 031001
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to well-mix or equilibrate before again randomly draw-
ing the next individual. This process can be repeated 
M times. To indicate this type of sampling, we use the 
subscript 1 × M  in the corresponding distributions 
and expectation values. Similar sampling approaches 
are used in the ‘mark-release-recapture’ experiments 
to estimate population size [56], survival, and dispersal 
of mosquitos [57]. For a given configuration {ni} and 
total population size N [58], the probability that the 
configuration {mi} is drawn after M samples is simply

P1×M(m|n, M, N) =

(
M

m1, m2, . . . , mR

) R∏
j=1

f
mj

j ,

 (31)

where fj ≡ nj/N  is the relative population of 

species i, N ≡
∑R

i=1 ni is the total population and 
M ≡

∑R
i=1 mi  is the total number of samples.

We can now use P1×M to compute the sta-
tistics of how the system diversity is reflected in 
the diversity in the samples. For example, the 
mean population in the sample in terms of ni is 
E1×M [mi] ≡

∑
m mP1×M(m|n, M, N). The lowest 

moments of the populations in the sample are

E1×M [mi] = Mfi = ni
M

N
,

E1×M [mimj] = fifjM(M − 1) + fiM1(i, j).
 (32)

An alternative random sampling protocol is to draw 
a fraction σ ≡ M/N < 1 of the entire population 
once. This type of sampling arises in biopsies such 
as laboratory blood tests. To be able to distinguish 
between this sampling protocol and the previous 
one, we now use the notation M × 1. In this case 
the combinatorial probability of a specific sample 
configuration, given n, N, and M is

PM×1(m|n, M, N) =
R∏

j=1

(nj

mj

)
(N

M

)1
(

M,
R∑

i=1

mi

)
, (33)

where the discrete indicator function enforces the 
constraint between mi and the sampled population 
M. In this single-draw sampling scenario, we use the 

Fourier decomposition 1(x, y) ≡
∫ 2π

0
dq
2π eiq(x−y) to 

find

EM×1[mi] = ni
M

N
= niσ, (34)

EM×1[mimj] = ninj
M

N

M − 1

N − 1

+1(i, j)ni
M

N

(
N − M

N − 1

)
.

 (35)

Results using P1×M and PM×1 rely on perfectly random 
sampling, where certain clones/species are not more 
likely sampled or captured than others. The moments 
E[mimj] can be directly used to evaluate the expected 
Simpson’s diversities, Sr (with replacement) and S 
(without replacement) defined by equations (23) and 
(24), in the corresponding sample. In the case of 1×M 
sampling, we find

E1×M[Sr] = E1×M

[∑
i

(mi

M

)2
]

=
M(M − 1)

M2

∑
i

f 2
i +

1

M

∑
i

fi

= Sr

(
1 − 1

M

)
+

1

M
,

 

(36)

and

E1×M[S] = E1×M

[∑
i

mi

M

mi − 1

M − 1

]

=
∑

i

E1×M[m2
i ]

M(M − 1)
−
∑

i

E1×M[mi]

M(M − 1)

=
∑

i

f 2
i ≡ S

 

(37)

while for M×1 sampling, we find

Figure 2. Number counts and clone counts vary depending on the definition and binning of traits or species identity. Both the 
number counts and clone count distributions can vary significantly as the distinguishability threshold is changed, as shown in (a)-
(c) and (d)-(f), where the resolution is coarsened.
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EM×1[Sr] = EM×1

[∑
i

(mi

M

)2
]

= Sr
M − 1

M − σ
+

1 − σ

M − σ

 

(38)

and

EM×1[S] = EM×1

[∑
i

mi

M

mi − 1

M − 1

]

=

[∑
i

EM×1[m2
i ]

M(M − 1)
−
∑

i

EM×1[mi]

M(M − 1)

]

= S.
 

(39)

Note that for both types of random sampling, we 
find that the expected Simpson’s diversity (without 
replacement) in the samples are equal to the Simpson’s 
diversity in the full system. In general, the expectations 
do not commute and E[S] �= S(E[mi]).

Effects of sampling on clone counts ck can be simi-
larly calculated by averaging the definition for the sam-
pled clone count

bk :=
∑
i=1

1(mi, k) ∈ Z+

 (40)

over the sampling probabilities PM×1(m|n, M, N) 
or P1×M(m|n, M, N). For clone counts, the 
calculations of moments of sampled quantities bk 
are more involved, and explicitly noncommutative 
E[bk] �=

∑
i 1(E[mi], k). One advantage of working 

in the bk representation is that diversity indices such as 
the expected sampled richness Rs, are difficult to extract 
from E[mi] but are simply found via E[Rs] =

∑
k E[bk]. 

Some related results are given in [59, 60].
The above results provide expected diversities in 

the sample assuming full knowledge of {ni} in the sys-
tem. They represent solutions to the forward problem, 
the so-called ‘rarefaction’ in ecology. However, the 
problem of interest is usually the inverse problem, or 
extrapolation in ecology. In the simplest case, we wish 
to infer the expected diversity (or {ni} and ck) in the 
system from a given configuration {mi} or clone count 
bk. Extrapolation is a much harder problem and is the 
subject of many research papers [6, 61–64].

One may wish to use the observed sample diversity 
qD(M) to approximate the population diversity qD(N). 
For any q, the underestimation of qD(N) using qD(M) 
decreases as the sample size M increases. The deviation 
of qD(M) from qD(N) is smaller for larger q, as higher-
order Hill numbers are more heavily weighted by large 
species, which are less sensitive to subsampling.

Chao and others have shown that for q � 1 and in 
the N → ∞ limit nearly unbiased approximations can 
be obtained and when q � 2, these unbiased estimates 
are very insensitive to sample size M [59, 60]. Using 
clone counts in a sample of population M, Chao et al 
[65] obtained for q  =  1 (in terms of Shannon’s index):

Ŝh =

M−1∑
k=1

1

k

∑
1�mi�M−k

mi

M

(M−mi

k

)
(M−1

k

)

− d1

M(1 − A)M−1

{
logA +

M−1∑
r=1

1

r
(1 − A)r

}
,

 
(41)

where A = 2d2/[(M − 1)d1 + 2d2].
For q � 2, Gotelli and Chao [59] obtained

qD̂ =


∑

mi�q

m(q)
i

M(q)




1/(1−q)

 (42)

where x(j )  =  x(x  −  1)...(x  −  j   +  1). For example, 
2D̂ = M(M − 1)/

∑
mi�2 mi(mi − 1), the inverse of 

Simpson’s index without replacement (equations (22) 
and (24)).

The ill-conditioning of the inverse problems is par-
ticularly severe for the richness 0D. The general form-
ula for an estimate of the system richness is

0D̂ = R(M) + d̂0, (43)

and reduces to the unseen species problem for 
determining d0 [66, 67]. Since the sample size M and 
the richness R in the system are uncorrelated,  one must 
use information contained in the species fractions f i or 
the clone counts ck in the full system [68, 69]. However, 
a popular estimate for the system richness R(N) is the 
‘Chao1’ estimator [59, 70]

Chao1 : R̂(N) = R(M) +
d2

1

2d2
, (44)

which is actually a lower bound and gives reliable 
estimates for systems of size only up to approximately 
double or triple the sample size M. The uncertainty 
of the Chao1 estimator has also been derived via a 
variance that is also a function of d1 and d2 [71]. The 
‘Chao2’ estimator gives the system richness as a 
function of measured incidence [59]

Chao2 : R̂(N) = R(M) +
q2

1

2q2
, (45)

where q1, q2 are the number of species found in 1 or 
2 samples out of many (as in the 1 × M  sampling 
method). Shen et al [72] derived another estimate

R̂(N) = R(M) + d0

[
1 −

(
1 − d1

Md0 + d1

)N−M
]

,

 (46)
which is only reliable if the sample size M is more than 
half of the system size N. Many of these estimators 
have been coded into analysis software such as R and 
iNEXT [73].

Regardless of the estimator, the major limitation is 
an insufficient sample size M � N . Models predict-
ing species abundances as a function of system size can 
help bridge this gap. For example a log-normal rela-
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tionship for the clone count ck [74] has been used to 
find agreeable results [75, 76]. In general, models can 
be extremely useful for quantifying the effects of sam-
pling, particularly when a Bayesian prior is desired.

We have outlined the basic mathematical frame-
works for quantifying diversity that have utility 
across applications in different disciplines. The 
above summary of sampling assumes a wellmixed 
population, precluding any spatial dependence 
of the distribution of individual species. Spatially 
dependent sampling has been proposed for the ori-
gin of relationships between the number of species 
detected and the total area occupied by the popula-
tion (see below).

6. Fields in which diversity play a key role

Below, we summarize a few modern applications in 
which diversity is important. By no means exhaustive, 
the following are simply examples of specific systems 
in modern biology that reflect the authors’ intellectual 
biases.

6.1. Ecology, paradox of the plankton
The classic problem in the context of biological diversity 
is dubbed the paradox of the plankton and was originally 
discussed in a paper of the same title [77]. It describes 
diverse populations of plankton in environments with 
limited resources or nutrients. Sampled populations of 
plankton exhibit a large number of species even in low 
nutrient conditions during which one expects strong 
competition for resources. This observation runs 
counter to the competitive exclusion principle arising in 
many settings [78].

Perhaps the most common application of diversity 
arises in biological population studies, specifically in 
ecology [6–11]. Possible areas of application include the 
monitoring of ecosystems and the development of effi-
cient species conservation strategies [2, 5, 9, 10, 29–31].  
Multiple overlapping and nebulous definitions of 
ecological diversity have been advanced [3, 4, 25–29]. 
Early work by Fisher [6] introduced a logarithmic 
series model to mathematically describe empirical spe-
cies diversity data. Here, the diversity index referred to 
a free parameter in the corresponding model. In a later 
study, MacArthur defined species diversity based on 
the size of the sampled area [79]. In the ecological set-
ting, multiple layers of subpopulations are an impor-
tant feature of populations. These subpopulations may 
be delineated by another property of the individual 
species, such as size, weight, behavioral attributes, etc. 
Subpopulations can also be distinguished through 
their spatial distribution or occupation of different 
habitats. Whittaker [80, 81] qualitatively defined four 
types of diversity (point, alpha, beta, and gamma) 
conditioned on habitat or spatial distribution of the 
subpopulations [81]. Fundamentally, these differences 
arise from different methods of sampling, leading to 

different Hill numbers qD . We summarize a few often-
used descriptions below:

 •  ‘Point diversity’ refers to samples taken at a single 
point or ‘microhabitat.’ This quantity is usually 
operationally measured by trapping organisms at 
one or more specific points.

 •  ‘Alpha diversity’ is defined as the diversity within 
an individual location or specific area. In general, 
one can define a Hill number derived from 
measurements at a specific location as qDα, while 
the index α ≡ 0Dα is the richness encountered 
within a defined area or specific location. A few 
subtle variations in the definition of the index 
α exist, mostly related to the sampling process 
[45, 46]. For example, in relation to beta diversity 
(discussed below), alpha diversity is the mean of 
the specific-location diversities across all locations 
within a larger landscape.

 •  ‘Gamma diversity’ is the diversity index qDγ 
determined from the entire dataset, the total 
landscape, or the entire ecosystem. The index 
γ ≡ qDγ usually denotes the total number of 
different species or clones at the largest scale. Note 
that the mean or sum of the alpha diversities is 
in most cases not equal to the gamma diversity. 
The nonlinearity of the Hill numbers as well as 
the intersection or exclusion of species amongst 
the different sites suggests a need for indices that 
connect alpha and gamma diversities.

 •  ‘Beta diversity’ was devised to describe the 
difference in diversity between two habitats or 
between two different levels of ecosystems. While 
the different levels of diversity are designed to 
the spatial aspects of diversity, different habitats 
overlap, leading to some amount of arbitrariness 
in determining the β-diversity. Moreover, beta 
diversity was initially described in different 
ways [45, 80, 81], leading to confusion about its 
mathematical definition and use [45,  
46, 48]. One possible definition is Whittaker’s [80] 
multiplicative law qDγ ≡ qDα

qDβ  where here, α 
is defined as the mean of the diversities across all 
micro-habitats. Whittaker’s definition describes 
beta diversity qDβ = qDγ/

qDα as a measure to 
quantify the diversity in the total population 
relative to the mean diversity across all micro-
habitats [45]. In the limit of q → 1−, we obtain the 
Shannon diversity relationship Shγ = Shα + Shβ 
according to equation (20). Another definition of 
β is given by Lande’s [82] additive law γ ≡ α+ β  
according to which diversity indices are measured 
in the same units. One concept associated with 
β in terms of the additive partitioning is ‘species 
turnover’ quantifying the difference in richness 
between the entire and the local population. As an 
example, consider two distinguishable or spatially 
separate habitats A and B. If A contains species 
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{a, b, c, d, e} and B contains {b, c, f , g}, we find 
βA,B = 5 associated with the set {a, d, e, f , g}. The 
laws of Whittaker and Lande sparked debates about 
how to properly define beta diversity, and led to the 
distinction between multiplicative and additive 
diversity measures [45, 46, 48].

 •  ‘Delta, epsilon, omega diversity’ are other 
hierarchical definitions of diversities proposed by 
Whittaker [81]. Delta diversity is analogous to beta 
diversity but defined at the larger among-landscape 
scale, while epsilon diversity corresponds to 
gamma diversity, but at the regional scale that 
contains many landscapes. Omega diversity 
is measured at the biosphere scale, and thus 
characterizes the diversity of all ecosystems [83].

 •  ‘Zeta diversity’ was introduced by Hui and 
McGeoch [84], and is defined by a set of ζ indices 
that mathematically describe the species numbers 
between different partitions of a certain habitat. 
Specifically, ζi  is the mean number of species 
shared by i partitions. In particular, ζ1 is the mean 
richness across all sites. For example, between 
two samples A and B or sets of data, the average 
number of species is ζ1 := (RA + RB)/2, while 
the intersection is ζ2 := A ∩ B. Generalizations to 
multiple samples can be defined using a series of 
zeta diversity indices ζi.

 •  Many other indices have been defined for different 
applications. The Jaccard index [45, 80, 84, 85] 
is defined as J(A, B) = |A ∩ B|/|A ∪ B|, and is a 
general measure for quantifying the similarity in 
richness between two sets of populations A and B. 
Margalef’s index [86] and Menhinick’s index [87] 
are relative richness measures given by R/ lnN  
and R/

√
N , respectively. Other indices include the 

Bray–Curtis dissimilarity [88], the Berger–Parker 
diversity index [89] as defined in equation (26), 
Fager’s index [90], Keefe and Bergersen’s index 
[91], McIntosh’s index [92], and Patil and Taillie’s 
index [93].

A myriad of different definitions of diversity indices 
arise from specific cases of the Hill numbers and 
consideration of different spatial scales of ecosystems. 
There is potential to further unify these definitions 
in a more systematic way using mathematical norms 
and more general mathematical structures of spatial 
dispersal of particles.

6.2. Area-species law and Island biodiversity
A particularly consistent, albeit qualitative feature 
observed in ecology is the species-area relationship 
(SAR) which relates the measured number of species 
(richness) to the relevant area. These areas can 
represent distinct habitats, such as mountain tops, or 
islands. For the latter, much work has been done in the 
subfield of island biodiversity.

The SAR is usually expressed as a power-law rela-
tionship between the number of species (or richness) 
R and the habitat/island area:

R = cAz, (47)

where c is a constant prefactor and z is an exponent. 
On a log–log plot, logR = log c + z logA defines a 
line with slope z. An example of the area-species law 
for species counts of long-horned beetles in the Florida 
Keys is shown in figure 3, yielding a slope z  =  0.29. An 
alternative species-area relationship is eR = cAz [94], 
which is a straight line on a semi-log plot.

The classic book by MacArthur and Wilson [95] 
and many subsequent analyses have promoted and 
extensively analyzed the SAR idea. In MacArthur 
and Wilson’s neutral equilibrium theory, immigra-
tion to and death on an island are monotonically 
decreasing and increasing functions of the number 
of species already on the island, respectively. Usu-
ally, measured values of the exponent fall in the range 
z ∼ 0.1–0.4. Field work has also found relationships 
between the parameters c and z and system-specific 
attributes such as the island distance to the mainland, 
habitat type, etc [95, 96]. Nonetheless, reasonable pre-
dictions based on equation (47) are ubiquitous across 
many ecological examples.

Mechanistic origins of the robustness of the SAR 
have been proposed [98–100]. Different models for 
species populations ni or clone counts ck were surveyed 
and the corresponding species-area laws were derived 
by He and Legendre [99]. Spatial clustering of spe-
cies and the averaging of random measurements were 
shown to robustly generate a power-law species-area 
curve [99, 100], highlighting the fundamental impor-
tance of sampling.

6.3. Gut microbiome
Another ecological system that has recently received 
much attention is the human microbiome, especially 
in the gut. The gut bacterial ecosystem is important for 
health and can impact cardiovascular disease, diabetes, 
neuropsychiatric diseases, inflammatory bowel disease 
(IBD), and digestive and metabolic function to the 
point that fecal transplantation (bacteriotherapy) has 
become an effective treatment for recurrent C. difficile 
colitis infections [102]. This type of infection often 
occurs after antibiotics disrupt the gut microbiome. 
Transplants have also shown to be effective in treating 
slow-transit constipation [103].

Recent efforts to collect and curate gut microbiome 
data have included NIH’s Human Microbiome Project 
(HMP) [104, 105] and the European Metagenomics of 
the Human Intestinal Tract (MetaHIT) [106–108], as 
well as the integration of the data in [109]. Each dataset 
contains sequence data from samples from different 
body regions of hundreds of individuals, both healthy 
and diseased.
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Bacterial species are usually determined by 
sequencing of the 16S ribosomal RNA (rRNA), a 
comp onent of prokaryotic ribosomes that con-
tain hypervariable regions that are species-specific. 
However, closely related taxa can have very simi-
lar sequences, making separation imperfect [110]. 
Nonetheless, with numerous public databases  
[101, 111–113], estimates of species abundances in 
samples are readily available. In the gut, there are usu-
ally on the order of 103 bacterial species, with Bacte-
roidetes and Firmicutes being the dominant phyla 
[114, 115]. Indeed, lower gut diversity is seen to be 
associated with conditions such as Crohn’s disease 
[114]. For example, the frequency distribution of bac-
terial species in healthy and Crohn’s disease patients 
are shown in figure 4. The quantification of diversity 
of human microbiome is an essential step in ongoing 
research and the diversity indices have been applied to 
microbiome data, including α-diversity and β-diver-
sity across the microbiome from different anatomical 
regions and different patients. As with island biodi-
versity, the gut microbiome can be modeled as a birth-
death-immigration (BDI) process.

6.4. Barcoding experiments
Besides taxonomy of gut bacteria, the accurate 
identification of animal and plant species from 
samples is an essential task in ecology. In the early 
2000’s a DNA barcoding method was developed to 
read relatively short DNA regions specific to certain 
species [119, 120]. These barcodes are usually found in 
mitochondrial DNA and often derived from a region 
in the cytochrome oxidase gene [119]. By sequencing 
samples and comparing them with a sequence 
database such as The Barcode of Life Data System 
[121, 122], one can infer the number of species present 
within a sample. Detecting specific species within 
samples using DNA barcoding and DNA libraries 

arises in many applications including identification 
of birds [120] and flowering plants [123], detection 
of contaminants [124], and the tracking of plant 
composition in processed foodstuffs [125].

Recently, a number of barcoding or tagging proto-
cols [126–128] have been developed to genetically 
label a large population of cells to study how they dif-
ferentiate and proliferate, especially in the context of 
hematopoiesis [116, 117, 129, 130] and cancer pro-
gression [131–133].

A novel approach used to investigate hematopoiesis 
exploits in situ barcodes [129]. Mice were engineered 
with an enzyme (Sleeping Beauty Transposase) that 
randomly moves DNA sequences (transposons) to dif-
ferent parts of the genome. The transposase is designed 
to be controllable by doxycycline, an  antibiotic that can 
be used to switch on or off gene regulation. When the 
transposase is briefly activated, transposons within 
cell genomes are randomly rearranged within a brief 
period of time. Since the genome length � transpo-
son length, the new locations of the transposons will be 
distinct across the founder cells. After switching off the 
transposase, proliferation of founder cells imparts the 
same genomic sequence to their daughter cells. These 
collections of cells constitute a multiclonal population 
that proliferates and differentiates.

Analysis of the clonal population within differen-
tiated cell pools shows that granulocytes derive from 
stem cells at particular time points during the life of 
the mouse [129]. Comparing clonal abundance struc-
ture within different cell lineages shows that clones 
originally predominant in the lymphoid lineages 
eventually arise in myeloid cells, indicating that multi-
potent progenitor cells continually produce cells of 
both lineages. 

In another recent series of studies on hemat-
opoiesis, outlined in figure 5, stem cells (HSCs) were 
extracted from rhesus macaques and infected with a 
lentiviral vector. The lentivirus integrates its genome 
randomly in the genome of the HSCs. Since the lenti-
virus genome is much shorter than that of mammalian 
cells, nearly every successful infection results in a new 
viral integration site (VIS) or clone. The infected stem 
cells are autologously transplanted into the animal and 
some of them resume differentiation into progenitor 
cells that transiently proliferate and further differenti-
ate. Descendant cells carry the same genetic sequence, 
including the lentivirus integration locations, or the 
viral integration sites (VIS). Another approach is to 
use libraries of synthesized DNA/RNA as tags. Here, 
the different sequences, rather than their integration 
sites, serve as the distinguishing feature. This process 
avoids the need to determine VISs.

In all of the above approaches, each successive 
 generation of cells will acquire the same tag, VIS or spe-
cific DNA barcode sequence as their parent, and ulti-
mately, as the founder HSC. Compared to the Sleep-
ing Beauty Transposon protocol, the VIS or barcoding 
experiments require an additional viral transfection 

Figure 3. Plot of lnR versus lnA with area A measured in 
terms of km2. Species counts of long-horned beetles in the 
Florida Keys are plotted against the island size [97]. The 
linear regression line yields a slope of z  =  0.29. Usually, fits  
of the species-area exponent z yield a small number.
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step. Nonetheless, these VIS and barcoding experi-
ments are equally effective in dissecting the differentia-
tion process and quantifying lineage bias with age. For 
example, the variation (in time) of the abundances of a 
clone across different lineages indicates the level of fate 
switching of a stem cell [116, 134].

These experiments also enabled observation of 
biological mechanisms on a finer scale compared to 
traditional studies, allowing inference of parameters 
that are difficult to measure directly such as the initial 
HSC differentiation rate and the proliferative potential 
(number of generations) accessible to progenitor cells 
[55, 135].

After sampling, PCR amplification, and sequenc-
ing (each process carrying specific errors), the relative 
species populations and clone counts within defined 
cell types can be quantified. Figure 6(a) shows frequen-
cies of barcode i as a function of sampling times tj  in 
rhesus macaque. The fraction of each clone is depicted 
by the vertical distance between two neighboring 
curves. Here, it is important to note that the ‘diversity’ 
is a measure of the distribution of clone ID (barcodes) 
instead of lineages (cell types). In figure 6(b), we plot 
three different and rescaled diversity indices associated 
with the data in (a). The sampled richness is initially 
low at month 3 when barcoded clones have not fully 
differentiated and emerged in the peripheral blood. 
The sampled richness then peaks at month 9 before 
stabilizing after month 29. Simpson’s diversity seems 
to continue to increase after month 29 which may indi-
cate more unevenness and coarsening (fewer clones 
dominating the total population).  Shannon’s index is 
shown to decrease slightly, suggesting a decrease in the 
effective number of barcodes.

Sun et al [129] and Kim et al [116] also used sim-
ple clustering algorithms that identified similar clones 
according to their activity patterns across time. They 
identified distinct groups of clones that are featured by 
different time points of contribution to hematopoie-
sis. Koelle et al [134] calculated Shannon diversity to 
ensure comparability across time between animals and 
different cell types.

The employment of neutral barcodes to study 
blood cell populations is statistically insensitive to 
spatial partitioning (different tissues in the organism).  

Nonetheless, small sampling (M � N) makes infer-
ence difficult. Thus, mechanistic simplifications and 
 mathematical models have been used to quanti fy 
clonal evo lution. Assuming a multispecies birth-
death-immigration process (figure 7) Dessalles et al 
[136] found explicit steady-state distribution func-
tions for ni (log series) and ck (Poisson) for constant r 
and µ, as well as formulae for the expected Shannon’s 
and Simpson’s diversities. Goyal et al [55] derived a 
master equation for the evolution of E[ck] and then 
extended the solution to expected clone counts in the 
progenitor and sampled mature cell pools. By compar-
ing results to the expected clone count in the sample 
at steady-state, they were able to infer kinetic param-
eters of the differentiation process. Biasco et al [138] 
proposed two candidate stochastic models for ni and 
used Bayesian Information Criterion (BIC) to assess 
the likelihood of each.

6.5. Cells of the adaptive immune system
Another intra-organism system for which diversity 
is often quantified is the adaptive immune system in 
vertebrates. The simplest immune subsystem consists 
of lymphoid cells (e.g. B and T cells) and tissues. B and 
T cells originate from common lymphoid progenitors 
(CLPs) that differentiate from HSCs in the bone 
marrow. B cells develop from CLPs in multiple stages 
in the bone marrow and spleen while T cells are formed 
from CLPs in the thymus. During T cell development 
in the thymus, T cell receptors (TCRs) are generated 
by random recombination of the associated receptor 
gene. TCRs are heterodimeric proteins that usually 
consist of an alpha chain and a beta chain. After a 
specific genetic sequence–corresponding to a specific 
amino acid sequence–is selected for, the naive T cell is 
exported from the thymus into peripheral tissue (such 
as circulating blood and lymph nodes) where they can 
further proliferate or interact with antigens presented 
on the surface of antigen-presenting cells (APCs). 
Naive T cells (those that have not previously strongly 
interacted with an antigen) can be activated through 
association of the surface T cell receptors (TCRs) 
with antigens presented by major histocompatibility 
complex (MHC) molecules on the surface of APCs. 
Similarly, naive B cells are generated in the bone 

Figure 4. Frequencies of approximately 200 species of bacteria distributed across about a dozen phyla. (a) Group 1 depicts the 
relative species abundance distribution in samples from patients with Crohn’s disease while (b) Group 2 shows the species pattern 
in normal patients. The differences in abundance patterns are apparent and have been quantified using the Shannon index for each 
individual plotted in (c). From Park et al [101].
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marrow. The B cell receptors (BCRs) are comprised 
of heavy and light chains and an antigen-binding 
region, which is generated by the same recombination 
processes as TCRs. B cells are subsequently activated 
within tissues by binding to an antigen via their B-cell 
receptors (BCRs).

The mechanism responsible for creating very 
diverse repertoires of both BCRs and TCRs is V(D)
J recombination [139]. In developing B cells, this 
mech anism involves the random recombination of 
diversity (D) and joining (J) gene segments of the 
heavy chain (DJ recombination). In the following 
step, a variable (V) gene segment joins the previously 
formed DJ complex to create a VDJ segment. In light 
chains, D segments are missing and therefore only VJ 
segments are generated. During T cell development 
and TCR generation, gene segments of the alpha chain 
and beta chain, the VJ and VDJ segments, respec-
tively, also undergo random recombination. In the 
case of the beta chain, one of two different D regions 
of thymocytes recombine with one of six different 
joining J regions first, followed by rearrangement of 
the variable V region connecting it to the now-com-
bined DJ segment. Due to the missing D segments in 
alpha chains, only VJ recombination is taking place. 
The recombination and joining processes in B cells 
and T cells involve many different genetic deletions 
and insertions that result in many different BCR and 
TCR protein sequences and a very large theoretical 
total number of possible clones with R � 1014–1015  
[140, 141].

In the end, each T or B cell expresses only one TCR 
or BCR type (an ‘immunotype’ or ‘clonotype’). TCR 
sequences are preserved during proliferation, while 
BCR sequences can further evolve [142]. Since the 
space of antigens (the different amino acid sequences, 
or epitopes, presented by MHCs) is large, a large num-
ber of different TCR and BCR sequences should be 
present in an organism in order to mount an effec-
tive response to a wide range of infections. However, 
before T cell export from the thymus, a complex selec-
tion process occurs [143]. Positive selection eliminates 

Figure 5. (a) Protocol for Viral Integration Site (VIS) barcode studies of hematopoiesis in rhesus macaque [55, 116, 117]. Here, 
‘barcodes’ are defined by the random integration sites of a lentiviral vector. (b) Xenograft barcode experiments using mice [118] in 
which a library of barcodes was used to tag leukemia-propagating cells before direct transplantation into mice.

Figure 6. (a) The fractional populations of the largest 
clones (barcodes) detected in granulocyte blood samples 
from rhesus macaque. Relative populations are described 
by the distances between neighboring curves. (b) Diversity 
indices derived from the data in (a). The Simpson’s index and 
Shannon diversity are rescaled to fit on the same plot.

Phys. Biol. 17 (2020) 031001



13

S Xu et al

T cells that interact too weakly with MHC molecules. 
Subsequently, negative selection eliminates those T 
cells and TCRs that bind too strongly to epitopes. Cells 
that escape negative selection may lead to autoim-
mune disease as they react to self-proteins. Thus, the 
total number of different distinct immunoclones real-
ized in an organism (the richness) defines its T cell rep-
ertoire and is estimated to range from 106–108 [144], 
with the lower range describing mice and the higher 
range an estimate for humans. B cell richness in man 
is estimated to be 108–109 [145, 146]. These values 
are much lower than the theoretical repertoire size 
R � 1014–1015. TCR and BCR diversity is an important 
factor in health. For example, TCR diversity has been 
shown to influence the tumor microenvironment and 
lymphoma patient survival [147].

Although specific TCR sequences i can be deter-
mined, and their populations ni measured and esti-
mated, the TCR identities vary significantly across 
individuals (private sequences) so clone counts are 
usually studied. Figure 8(a) shows T cell clone counts 
bk sampled from mice [141] that exhibit a biphasic 
power-law behavior. Figure 8(b) shows preliminary 
clone counts for six individuals, three uninfected 
patients and three HIV-infected patients [150].

Quantifying T cell diversity is confounded by a 
number of technical limitations. Usually, the  complete 
T cell repertoire in an animal cannot be directly meas-
ured. Rather, as in most other applications, small sam-
ples of the entire population are usually drawn. When 
sampling from animals, the fraction of cells drawn and 
sequenced is perhaps only σ = M/N ∼ 10−5–10−2. 

Thus, clones that have small populations may be missed 
in the sample. Besides sampling, sequencing requires 
PCR amplification of the sample, leading to PCR bias, 
especially in the larger-sized clones [149]. Finally, as in 
many other applications, there are multiple subclasses 
of the T cell population. Naive T cells that are activated 
by antigens develop into memory T cells that carry the 
same TCR and can further proliferate. Thus, it is diffi-
cult to separate the clone counts of different subpopu-
lations such as naive or memory T cells [149].

Many mathematical models for the development 
and maintenance of the immune systems have been 
developed [135, 136, 140, 143, 151, 152]. For the mul-
ticlonal naive T cell population, rudimentary insights 
can also be gleaned from a birth-death-immigration 
process, much as in the modeling of hematopoiesis. 
Here, the thymus mediates the immigration of a large 
number of clones, which undergo homeostatic prolif-
eration and death in the periphery. Immigration rates 
can be different for different clones, depending on the 
likelihood of specific recombination patterns which 
may be inferred from probabilistic models of VDJ 
recombination [153, 154].

Proliferation in the periphery depends on interac-
tions between self-peptides with T cell receptors and is 
thus clone-dependent. Recently, it has been shown that 
TCR-dependent thymic output and proliferation rates 
(a nonneutral BDI model) influence the measured 
clone count patterns [155]. These processes form and 
maintain a diverse T cell receptor repertoire, which 
is usually characterized by its richness. Unlike the  
barcode abundances arising during hematopoiesis, 
the neutral BDI processes are not able to capture the 
shapes of the measured TCR clone counts.

It is also known that T cell residence times depend 
on interactions between tissues and T cell recep-
tors. Thus, different clones of T cells are expected 
to be differentially spatially distributed in the body. 

N=30,
c =70

Nµ(   )

r (   )N

R= 9
R=16

α

Figure 7. A simple multispecies birth-death-immigration 
(BDI) process [55, 135–137]. A constant source (i.e. stem 
cells with slow dynamics) generated by 16 cells, each of a 
different clone, undergo asymmetric differentiation with 
rate α to produce differentiated cells that can undergo birth 
or death with rates r(N) and µ(N) that may depend on the 
total population in the differentiated pool. In this example, 
the differentiated population contains N  =  30 cells, R  =  9 
different clones (barcodes), thus leaving c0  =  7 unseen 
species.

Figure 8. Examples of recently published clone count 
data. (a) Clone counts derived from a small sample (105 
sequences) of T cells [141]. Note the broad distribution 
described by a biphasic power-law curve. Ignoring the largest 
clones, power-law fits for each regime yield slopes of  −1.13 
and  −1.76. However, one should be cautious describing 
sampled TCR (and BCR) clone counts using power laws as 
they hold typically for far less than two decades. (b) Human 
TCR clone counts for three HIV-infected (red) and three 
uninfected (black) individuals show qualitative differences 
between the distributions (unpublished). Other data 
from mice and humans, under different conditions and in 
different cell types, have been recently published [148, 149].
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Hence, diversity metrics should be defined within and 
between habitats, much like that in ecology.

Finally, it is known that T cell richness decreases 
with age [156–159]. Qualitatively, a loss of diversity 
has been predicted within the multispecies BDI pro-
cess by assuming a decreasing thymic output rate with 
age. Even when the thymus is abruptly shut down, the 
diversity of the T cell repertoire slowly decreases as suc-
cessive clones go extinct and the clone abundance dis-
tribution slowly coarsens. In humans, since the overall 
T cell population is primarily maintained by prolifera-
tion rather than thymic immigration [160], the reduc-
tion in diversity is fortunately a slow process.

6.6. Societal applications of diversity: wealth 
distributions
Metrics associated with diversity have been naturally 
applied in human social contexts [19–21, 161], 
including physical, cultural, educational [24, 32], 
and economic settings. For example, the distribution 
of wealth is the chief metric in many economic 
and political studies. As with all applications, data 
collection, sampling, and delineating differences in 
attributes are main research challenges.

Wealth and income, unlike species, are essen-
tially continuous and ordered quantities, and can be 
described by many indices designed by economists to 
measure different wealth attributes of a population. 
Distinct from cellular or ecological contexts, socio-
economic diversity is also often discussed in terms of 
‘inequality,’ ‘evenness,’ or ‘polarization.’ Diversity or 
‘inequality’ indices in the socioeconomic setting usu-
ally invoke a number of additional assumptions

 •  Individual identities are irrelevant: this is 
analogous to barcoding studies of a singular cell 
type in which the barcode identity is not important.

 •  Size and total wealth invariance: the diversity 
is invariant to the total population size. Only 
proportions of the total population that are 
associated with a proportion of the total wealth are 
relevant.

 •  Dalton principle: any inequality index should 
increase if any amount of wealth is transferred 
from an entity to one with higher existing wealth.

Mathematically, one starts by ordering the 
wealth or income of a population of N entities 
w1 � w2 . . . � wi � wi+1, . . . � wN . For large N, 
the rescaled wealth distribution w( f ) ≡ wfN is a 
function of the relative fraction of the total population 
f = n/N ∈ [0, 1]. Furthermore, we can define a 
normalized wealth distribution or density

w̃( f ) =
w( f )

WT
, WT =

N∑
i=1

wi ≈
∫ 1

0
w( f ′)df ′,

 (48)

and the corresponding cumulative distribution

Wi =
1

WT

i∑
j=1

wj (49)

or

W( f ) =

∫ f

0
w̃( f ′)df ′ ≡ 1

WT

∫ f

0
w( f ′)df ′. (50)

The functions W( f ) are known as ‘Lorenz-
consistent’ if they satisfy the above assumptions [33]. 
Four representative Lorenz consistent raw wealth 
distributions are shown in figure 9(a) as functions 
of the individual index. In figure 9(b), we plot the 
continuous cumulative rescaled wealth distribution 
W( f ) as a function of the relative population fraction 
f  corresponding to the wealth distributions shown in 
figure 9(a). From any ordered distribution, we can 
define a so-called ‘Lorenz curve’ that illustrates many 
indices graphically. The Lorenz curve is defined as the 
cumulative wealth of all individuals of a relative index 
f   =  n/N and lower.

Many indices can be visualized by the Lorenz 
curves. For example, the Gini index [162, 163] for the 
red distribution (linear wealth) in figure 9(a) is calcu-
lated by the area of the red shaded region (A) divided 
by the area under the equality curve (A  +  B  =  1/2): 
Gini = A/(A + B) = 2A. In a society where every 
person receives the same income, the Gini index equals 
zero. However, if the total wealth is concentrated in 
only one out of N entities, Gini = 1 − 2/N . This moti-
vates one to define the Gini index for discrete cumula-
tive wealth values Wi according to

Gini = 1 − 2

N

N∑
i=1

Wi, (51)

while the ‘Hoover’ or ‘Robin Hood’ index defined by 
[34, 164, 165]

H = max
f

{| f − W( f )|} (52)

is the Legendre transform at f ∗, the fraction of 
individuals corresponding to dW( f )/df |f=f ∗ = 1. For 
the two Lorenz curves in figure 9(b), the Robin Hood 
index is indicated by the two corresponding arrows.

The Robin Hood index happens to be a specific case 
of the Kolmogorov–Smirnoff statistic as defined in equa-
tion (14) for two cumulative distributions. For convex 
functions W( f ) that satisfy W(0) = 0, W(1) = 1, the 
index H corresponds to the fraction of the total wealth 
that needs to be distributed in order to achieve uniform 
wealth. This can be seen by considering the wealth wi 
up to an index n∗ such that wi � N−1 for all i � n∗. 
The total wealth that needs to be redistributed to obtain 
equal wealth fractions N−1 for every individual is

H =

n∗∑
i=1

(
1

N
− wi

)
=

n∗

N
− Wn∗

≈ f ∗ − W( f ∗).
 

(53)
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Another possibility is to sum over all entities wi 
according to

H =
1

2

N∑
i=1

∣∣∣∣
1

N
− wi

∣∣∣∣

≈ 1

2

∫ 1

0
|1 − w( f )| df

=
1

2

[∫ f ∗

0
(1 − w( f )) df +

∫ 1

f ∗
(w( f )− 1) df

]

= f ∗ − W( f ∗).
 (54)

The specific, local redistribution is not specified but it 
would be intriguing to cast it in the language of optimal 
transport and Wasserstein distances [166]. This way, 
one might also define costs to wealth redistribution.

It is also possible to quantify inequity according to 
the Theil index [167–169]

T =
1

N

N∑
i=1

wi

E[w]
log

(
wi

E[w]

)
, (55)

which corresponds to a relative entropy as defined 
in equation (10). In this case, the entropy of 
the distribution of wi is measured with respect 

to the expected value E[w] = N−1
∑N

i=1 wi. If ∑N
i=1 wi = 1, we may interpret wi as the probability of 

finding an individual in income class i, and E[w] = N−1 
corresponds to the relative share of equally distributed 
wealth. Naturally, many other measures for inequality 
have been defined by numerous authors focussing on 
specific socioeconomic areas [170].

However, typical inequality indices do not convey 
any judgment, belief system, or behavioral propensity 

on measured inequity and thus may not capture typical 
social concepts. In an effort to better quantify concepts 
such as inequity or ‘polarization’ [171], sociologists 
have proposed a number of polarization indices that 
are argued to be more directly correlated with social 
tension and unrest. For example, Esteban and Ray [35, 
36] developed a measure of polarization to account for 
clusters within which individuals are more similar in 
an attribute x (such as wealth) than they are between 
clusters. While there may be many ways to define polar-
ization, imposing a few reasonable features and con-
straints can narrow down the allowable forms. First, 
they assume an ‘identity-alienation framework’ in 
which an individual also identifies with his own distri-
bution f (x) at value x. An effective ‘antagonism’ of an 
individual with attribute x towards those with attrib-
ute y  is defined as T[ f (x), d] where a simple form for 
the distance is d = |x − y|. The polarization P is then 
assumed to take the form

P[ f ] =

∫ ∫
T[ f (x), |x − y|] f (x) f (y) dx dy. 

(56)
By imposing axioms that the polarization (i) cannot 
increase if the distribution is squeezed (compressed 
towards its peak), (ii) must increase if two non-
overlapping distributions are moved farther apart, and 
(iii) the polarization should be invariant to scalings 
of the total population. Using these constraints, the 
polarization can be more explicitly defined as

P[ f ] =

∫ ∫
f 1+α(x) f (y)|x − y| dx dy,

 
(57)

where 1/4 � α � 1 [36] (Esteban and Ray [35] 
and Kawada, Nakamura, and Sunada [172] found 

Figure 9. (a) Ordering of all N  =  100 individuals in increasing wealth or income. The hypothetical wealth distributions plotted 
are wi  =  3 (equal wealth, black curve), wi  =  10  +  (i  −  1)/2 (linear distribution, red), wi = 5 + ei/5−15 − e−14.8 (green), and 
wi  =  14.5  +  50/(101  −  i) (blue). The latter three represent distributions with some amount of inequity. (b) These inequalities 
can be visually quantified by their corresponding Lorenz curves, plotted as the relative fraction of the population f . The Lorenz 
curve for a perfectly uniform wealth distribution is given by the straight diagonal line. The area between the diagonal equality line 
and any other Lorenz curve can be used to visualize the Gini coefficient of the associated wealth distribution. The Gini coefficient, 
Gini = A/(A + B), is calculated by dividing the difference in areas between the equality line and the Lorenz curve in question (A) by 
the total area (A  +  B  =  1/2) under the equality curves. The ‘Robin Hood’ index is defined as the maximum difference between the 
equality line and a given Lorenz curve, and is indicated by arrow for the red and green Lorenz curves.
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0 � α < 1.6 using slightly different assumptions). The 
parameter α describes the amount of ‘polarization 
sensitivity.’ It measures identification of a population 
with its distribution and distinguishes polarization 
from other standard inequity measures such as the 
Gini index (when α = 0 [35]) or Simpson’s index. 
Also, note that when α = 0, the form of P[f ] resembles 
the total potential energy of a system of particles that 
are distributed according to f (x) and exhibits an 
interaction energy |x − y|. The discrete analogue of 

equation (57) is P[ f ] ∝
∑

i,j f 1+α
i fj|xi − xj|, for which 

the individuals i, j  can be generalized to groups. In 
empirical studies, the Esteban and Ray polarization 
measure is given by

PER[ f ] ∝
∑

i,j

π1+α
i πj|µi − µj|, (58)

where

πi =

∫ xi

xi−1

f (x) dx and µi =
1

πi

∫ xi

xi−1

xf (x) dx, 
(59)

are the relative frequency and the mean of the wealth 
in group i, respectively [173]. D’Ambrosio and Wolff 
suggested replacing the difference of mean wealths in 
equation (57) by the Kolmogorov measure of variation 
distance [173, 174]

Kovij =
1

2

∫
| fi(y)− fj(y)| dy, (60)

to obtain

PDW[ f ] ∝
∑

i,j

π1+α
i πjKovij. (61)

Additional indices have been proposed, including a 
class of polarizations by Tsui and Wang [175] of the 
form

PTW(x) =
1

N

N∑
i=1

ψ(di), di =

∣∣∣∣
xi − m(x)

m(x)

∣∣∣∣, 
(62)

where ψ is a smooth function of the rescaled distance 
di. The median income m(x) is computed from the 
individual incomes xi (1 � i � N).

Many of these polarization metrics can in fact be 
expressed in terms of the Gini coefficient. For exam-
ple, the Foster–Wolfson polarization index is defined 
as [176]

PFW(x) = (GiniB − GiniW)(µ(x)/m(x)), (63)

where µ(x) is the corresponding mean income, and 
the subscript indices B and W denote the between 
and within group Gini coefficients. According to the 
definition of PFW(x), inequity differs from polarization 
in the following way: the Gini index as the sum of GiniB 
and GiniW  quantifies the unequal distribution of 
wealth in a society whereas polarization is measured 
in terms of the difference of GiniB and GiniW . Thus, 
an increase in within-group inequality leads to a 
larger total inequality but a lower polarization. A more 

refined understanding of socioeconomic diversity 
will need to consider multiple classes of attributes, 
including possible geographic or spatial distributions.

The described polarization measures are relevant 
not only in the context of wealth distributions, but they 
are also able to provide important insights into other 
sociological phenomena associated with the notion 
of diversity. As one example, quantitative measures 
of polarization are applicable to examine factors that 
influence the cohesiveness of groups [23]. In this con-
text, the social entropy theory aims to quantitatively 
compare diversity across social systems such as socie-
ties, organizations, and individual groups [19, 20, 177].

7. Summary and discussion

Quantifying the diversity of a given population in 
terms of a single measure such as richness does not 
fully describe the underlying distribution of species 
or other properties. Various diversity measures have 
been developed and tailored to specific applications 
in different fields including ecology, biology, and 
economics. Mathematically, one can describe 
populations in terms of species numbers ni (number of 
entities of type i) or clone counts ck (number of species 
of size k). Hill numbers qD  provide a framework to 
unify some common diversity indices that are based 
on a species-number description. Hill numbers with 
large values of q put more weight on common species 
whereas small values of q yield measures that are more 
sensitive to rarer species. This implies that measures 
such as richness (q  =  0) and evenness (q  =  1) are more 
prone to sampling effects than Simpson’s diversity 
index (q  =  2) or Hill numbers with q  >  2 [179]. 
In table 1, we summarize some common diversity 
measures, their applications, and advantages and 

disadvantages.
In conclusion, we have provided an overview of the 

most relevant measures of diversity and their infor-
mation-theoretic counterparts. We then summarized 
common applications of diversity indices in biological 
and ecological systems. Despite the ambiguity in the 
definitions and the variety of diversity measures [3, 4, 
25–29], the concept is still of great importance for the 
monitoring of ecosystems and in the context of con-
servation planning [2, 5, 9, 10, 29–31].

We also described the importance of a  quantitative 
treatment of diversity for experiments in the study 
of the gut microbiome, stem cell barcoding, and 
the adaptive immune system. Finally, we discussed 
 examples of the application of diversity measures 
in human social systems including the charac-
terization of wealth distributions in societies and 
measures of political or cultural polarization. Sci-
entific conclusions in these fields, and in ecology, 
are particularly sensitive to sampling and measure-
ments. However, accurate measurements [180], 
meaningful classification, spatial resolution [100],  
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and informative sampling protocols [68, 75] remain 
elusive across almost all fields. Sometimes, as illus-
trated in figure 6(b), different measures even lead to 
contradictory conclusions [181]. There is no golden 
rule in choosing a unique metric for a specific situa-
tion, as the sampling effects also depend on the under-
lying unknown clone-count distribution [179]. It is 
recommended that one cross-checks different met-
rics, while bearing in mind how sampling effects may 
impact diversity measures differently.
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