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Swarming in viscous fluids: Three-dimensional patterns in swimmer- and force-induced flows
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We derive a three-dimensional theory of self-propelled particle swarming in a viscous fluid environment. Our
model predicts emergent collective behavior that depends critically on fluid opacity, mechanism of self-propulsion,
and type of particle-particle interaction. In “clear fluids” swimmers have full knowledge of their surroundings
and can adjust their velocities with respect to the lab frame, while in “opaque fluids” they control their velocities
only in relation to the local fluid flow. We also show that “social” interactions that affect only a particle’s
propensity to swim towards or away from neighbors induces a flow field that is qualitatively different from the
long-ranged flow fields generated by direct “physical” interactions. The latter can be short-ranged but lead to
much longer-ranged fluid-mediated hydrodynamic forces, effectively amplifying the range over which particles
interact. These different fluid flows conspire to profoundly affect swarm morphology, kinetically stabilizing
or destabilizing swarm configurations that would arise in the absence of fluid. Depending upon the overall
interaction potential, the mechanism of swimming ( e.g., pushers or pullers), and the degree of fluid opaqueness,
we discover a number of new collective three-dimensional patterns including flocks with prolate or oblate shapes,
recirculating pelotonlike structures, and jetlike fluid flows that entrain particles mediating their escape from the
center of mill-like structures. Our results reveal how the interplay among general physical elements influence
fluid-mediated interactions and the self-organization, mobility, and stability of new three-dimensional swarms
and suggest how they might be used to kinetically control their collective behavior.
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The collective behavior of self-propelled agents in natural
and artificial systems has been extensively studied [1–22].
Many of the lessons learned from experimental and theoretical
work conducted on organisms as diverse as bacteria, ants,
locusts, and birds [23–36] have been successfully applied
to engineered robotic systems to help frame decentralized
control strategies through ad hoc algorithms [37–44]. In
most mathematical “swarming” models, particles are assumed
to be self-driven by internal mechanisms that impart a
characteristic speed. A pairwise short-ranged repulsion and a
long-ranged decaying attraction are typically employed as the
most realistic choices when modeling aggregating particles
[9,11,45]. The interplay between self-propulsion, particle
interactions, initial conditions, and number of particles is key
in determining the large scale patterns that dynamically arise.
In two dimensions, rotating mills and translating flocks are
often observed, the latter configuration also arising in three
dimensions [9,10,17,19,46,47]. It is possible to classify swarm
morphology in terms of interaction strength and length scales,
as shown for particles coupled via conserved forces derived
from the Morse potential [17,19]. Externally applied potentials
and noise can be also used to trigger transitions between
coherent and disordered structures [3,46,47].

Although different rules for the characteristic speed have
been proposed [9,10,17], most studies so far have focused on
self-propelled agents in “vacuum,” ignoring the medium in
which nearly all real systems operate. One exception is the
literature on swimmers wherein models have been developed
for a single organism or a few organisms that propel themselves
in viscous [48–58] and non-Newtonian fluids [57,59–67]. In
particular, swarming hydrodynamic theories have been derived
wherein swimmer densities with or without fluid flows are
described as continuous fields [4,19,68,69]. These “two fluid”

models, however, may not always display the rich features
observed when particles retain their discreteness, especially
in terms of finite-sized swarm morphology, stability, and self-
organization.

To efficiently study the collective dynamics of self-
propelled particles in a fluid medium, we derive a micro-
scopic three-dimensional “agent-based” kinetic theory that
incorporates hydrodynamic interactions between particles. A
possible starting point would be to assume that the fluid
medium leads to direct coupling between particle velocities
and build this effect into existing models using, for example,
the Cucker-Smale velocity matching mechanism. Here particle
i is subject to an additional force due to the presence of particle
j , given by vj − vi and modulated by a distance-dependent
prefactor g(|ri − rj |) [70–72]. Because of its simple mathe-
matical form, Cucker-Smale type interactions have been used
extensively to study swarming, with coherent morphologies
arising depending on the form of g(|ri − rj |). Although
not explicitly meant to model fluid-mediated couplings, a
heuristic Cucker-Smale-type interaction could be constructed
by choosing an appropriate form for g(|ri − rj |) or different
powers of |vi − vj |. Whether such an approach would be
consistent with more microscopic derivation of fluid-mediated
particle-particle interactions, however, is unclear.

The goal of this paper is to derive a theory of particle
swarming in fluids and to understand the ways viscous flows
can arise and affect particle dynamics and collective behavior.
In order to incorporate fluid couplings into discrete particle
models, one must first identify the physical origin of the
interactions between particles. In typical models of swarming
[9,12,16,17,20,35], the propensity of agents to self-propel
themselves towards or away from others is modulated by an
effective “social” interaction potential. When immersed in
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low-Reynolds-number Newtonian fluids, particle self-
propulsion is force free. Here the fluid flows arising from
swimming or squirming particles can be decomposed in terms
of force dipoles or higher-order force distributions, leading to
velocities that decay away from the swimmer as 1/rn,n � 2
[57,73–77]. The sign and amplitude of this self-propulsion-
induced flow field depend on the specific details of the “stroke”
of the swimmer [55,56,58,68,78].

A qualitatively different flow arises if the potential is
associated with a true “physical” force, arising from, say,
electrostatic molecular, magnetic, or gravitational interactions.
These physical interactions between swimmers impart an
external body force on each of them, ultimately leading to
a flow field that decays as 1/r [79–81]. Although the physical
forces between particles may be short ranged, they can be
transmitted to the surrounding fluid [80,82–86], collectively
generating a much longer-ranged flow field and effectively
extending the range of interactions. Thus, the resulting 1/r

Oseen flow field can be even longer ranged than the 1/rn

flows arising from self-propulsion.
The different origins of fluid flow can be most easily

understood by considering a single particle moving under a
constant chemical gradient or passively sedimenting under a
gravitational potential. A chemoattractant can be represented
by a “social” interaction as it only directs a force-free
self-propeller towards a particular velocity. A body force
resulting from e.g., gravity is a physical force since it
ultimately imparts a force on the fluid. In both cases, particle
trajectories are identical and can be described by motion under
a linear effective potential. However, within a fluid medium,
a chemotactic social interaction generates a different flow
from that of sedimentation under a physical interaction. As
we shall see, the qualitatively different fluid flows arising
from social and physical interactions also lead to qualitatively
different collective particle behavior. How the details of
particle-particle interactions are modeled and interpreted thus
becomes a critical element in the development and application
of hydrodynamically coupled particle swarming theories.

Finally, we also consider two different types of fluids:
“clear” and “opaque.” In a clear fluid, particles can “see”
fixed markers and have direct knowledge of their motion in
reference to the rest frame. Their absolute velocities can be
directly controlled by their internal self-propelling mechanism.
Here the surrounding fluid simply imparts an additional drag
force. In the richer and more interesting case of an opaque
fluid, particles only have near-field vision and their velocities
can be governed only in relation to the surrounding flow.
For both social and physical interactions, we systematically
derive the effective particle-particle coupling arising from
viscous Stokes flows and investigate their effects on coherent
three-dimensional swarming structures. These hydrodynamic
interactions strongly affect collective dynamics and give rise
to surprising new patterns such as distorted flocks, pelotons,
core-filled mills, and mills that perpetually disband and reform.

I. FLUID-COUPLED EQUATIONS OF MOTION

We consider a system of N identical particles with mass
m = 1. We can write the equations of motion for particle i at

position ri(t) and lab-frame velocity vi(t) as

ṙi = vi ,

v̇i = −γ [vi − u(ri)] + fM [vi ,u(ri)] + fi , (1)

where u(ri) is the lab-frame fluid velocity generated at position
ri by the motion of all other particles in the absence of particle
i. In Eq. (1) the drag force −γ [vi − u(ri)] on particle i is
proportional to its velocity relative to that of the fluid u(ri).
Without loss of generality, we assume spherical particles with a
small radius a and drag coefficient γ = 6πηa. The force term
fM[vi ,u(ri)] represents the self-propelling motility force on
particle i, which can depend on both vi and u(ri). It is usually
chosen to have nontrivial zeros that identify characteristic
speeds of motion. For the purposes of this paper, we adopt
a modified friction form given by

fM [vi ,u(ri)] = [α − β|vi − λu(ri)|2][vi − λu(ri)], (2)

where the parameters α and β quantify self-acceleration and
deceleration, respectively. Equation (2) with λ = 0 yields the
classical Rayleigh-Helmholtz friction that has been exten-
sively used to model self-propulsion in vacuum [17,19,47,87].
In this case, the natural characteristic speed arises by setting
fM to zero and is given by |vi | = √

α/β. We introduce the
“perception coefficient” λ in Eq. (2) to represent how well
particles sense their environment once they are immersed in a
fluid. The choice λ = 0 represents the case where swimmers
can determine their lab-frame velocities vi as if they were
in a vacuum and adjust their speed towards the characteristic
velocity

√
α/β. Thus, λ = 0 indicates a “clear” fluid where

any effects on particle movement imparted to particles by
the fluid will arise only through drag forces. Conversely, the
choice λ = 1 indicates that swimmers have no knowledge of
the lab frame and can determine their motion only in relation
to the local fluid. As a result, swimmers will regulate their
relative velocity vi − u(ri) and not their lab-frame velocity vi

toward the characteristic speed. This is the “opaque” fluid
limit. Other values 0 < λ < 1 yield intermediate regimes.
Note that the Rayleigh-Helmholtz friction is not the only
option for modeling swarming self-propulsion. An in-depth
discussion about the effects of choosing different functional
forms for self-propulsion can be found in [87]; the difference
is particularly profound in the presence of noise. Finally,

fi = −∇i

∑
j �=i

�(|ri − rj |) (3)

is the particle-particle interaction force on particle i, where
∇i ≡ ∂/∂ri and �(|ri − rj |) is the direct pairwise interaction
potential. While any mathematical form for �(|(ri − rj )| can
be used, to be consistent and comparative with previous
literature, we use the commonly studied Morse potential
[9], given by the superposition of repulsive and attractive
components

�(|ri − rj |) = Cre− |ri−rj |

r − Cae− |ri−rj |


a . (4)

The coefficients Ca and Cr in Eq. (4) define the strengths
of the attractive and repulsive potentials, respectively, and 
a

and 
r specify their effective lengths of interaction. Using
this potential, the fluid-free swarming problem [Eq. (1) with
u = 0] has been very well studied, especially in one and two
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dimensions [9,17,19,20,88]. Generally, particles are subject to
two tendencies: changing their separations to minimize � and
adjusting their velocities to match the characteristic speed.
Depending on initial conditions, dimensionality, number of
particles, and/or parameter choices, both tendencies can be
simultaneously satisfied, leading, for example, to rigidly
translating flocks. If only one is satisfied, mills, rigid disks,
or random motion arise [19].

For the fluid-coupled equations of motion what now
remains is to specify the source of u. To model u, we
note that in classical swarming models the potential � is
usually a mathematical representation of socially derived
interactions. In this scenario, the only actual force exerted
by the swimming particles on the fluid is via their self-
propulsion. In this case, the fluid disturbance u ≡ us depends
only on the microscopic details of the swimming mechanism
and decays as 1/rn,n � 2 [57,73–77]. In this paper we
assume an effective stroke-averaged self-propulsion whereby
the swimmer’s period-averaged strokes are described as a force
dipole acting on the fluid leading to

us(r) =
∑

j

Gvj

R2
j

[3(R̂j · v̂j )2 − 1]R̂j , (5)

where Rj ≡ (r − rj ), Rj ≡ |Rj |, R̂j ≡ Rj /Rj , vj ≡ |vj |, and
v̂j ≡ vj /vj [68]. Here the social potential � influences us(r)
through vj , which obeys Eq. (1). The lumped parameter G

in Eq. (5) depends on the details of swimmer geometry such
as its length and longitudinal mass distribution and carries
units of a length squared. For G > 0, the orientation of the
force dipole is parallel to the swimmer’s velocity, describing a
propelling swimmer or a “pusher”; conversely, G < 0 denotes
a contractile swimmer or a “puller.” This pusher-puller model
of self-propulsion in viscous Stokes flow has been often used
in models of swimmers.

Now, if a true action-at-a-distance physical force arises
between particles, the latter will experience body forces
during the course of their dynamics. In addition to a self-
generated flow field us(r), such particles will transfer their
body force to the fluid, resulting in an additional flow field
up(r). For incompressible low Reynolds-number fluids, we
can find up(r) by solving, in the quasistatic limit, Stokes’
equation with an added interaction-mediated force density
F(r) ≈ −∑

i

∑
j �=i δ(r − ri)∇i�(ri − rj ):

ρ
∂up

∂t
= η∇2up − ∇p + F(r). (6)

Here ρ and η are the density and the dynamic viscosity of the
fluid, p is the local pressure, and δ(x) is the Dirac δ function.
In three dimensions, the analytic solution to up(r) is expressed
in terms of the static Oseen tensor

up(r) = −
∑

j

∑
k �=j

[I + R̂j R̂j ]

8πηRj

· ∇j�(|rj − rk|), (7)

where I is the identity matrix. The analytic solution for p(r,t)
is given in Eq. (B5) in the Appendix. Note that, in contrast to
the 1/R2 dependence of us(r) in Eq. (5), up(r) is longer ranged,
decaying as 1/R. Also, note that while we neglect the inertia
of the fluid in Eq. (6), we retain particle inertia in Eq. (1),

implicitly assuming that particle mass density is much higher
than fluid mass density.

In general, self-propulsion in a Stokes fluid will only
generate us(r). The longer-ranged flow up(r) arises only if the
interaction potential is associated with a physical interaction
that imparts a body force on particles and fluid. In this case, the
linearity of the Stokes fluid dynamics allows us to decompose
u(r) ≡ us(r) + χup(r), where us(r) and up(r) are given by
Eqs. (5) and (7), respectively. To separate the effects of the
different flow fields, we introduce the toggle χ = 0 or 1 in
the definition of u, which allows us to switch off the physical
force-induced flow field up (by setting χ = 0). To switch off
swimmer-induced flows us, we can set G = 0 and χ = 1. The
inclusion of both flows requires a nonzero G and χ = 1.

In the remainder of this paper, we investigate swarming
coupled to viscous Stokes flows. Inertial flows given by the
complete time-dependent solution of Eq. (6) can be expressed
in terms of a dynamic Oseen tensor as shown in the Appendix.
In the extreme limit of ν → 0, either the fluid inertia is
too large (ρ → ∞) to induce any flow field, or the fluid
becomes inviscid (η → 0). For inviscid fluids the induced
hydrodynamic interaction can be described as a potential
flow and is dipolar, which is even shorter-ranged than the
force-dipole-generated us(r) considered in this paper. For
completeness, we derive interaction-induced inviscid fluid
flow also in the Appendix.

Henceforth, we nondimensionalize space and time accord-
ing to r′ =

√
αβ

m
r and t ′ = α

m
t . All other dimensionless model

parameters are given in the Appendix. We also drop the prime
superscripts and define the full fluid-coupled swarming model
as ṙi = vi(t) and

v̇i =[1 − |vi − λu(ri)|2][vi − λu(ri)]

− γ [vi − u(ri)] − ∇i

∑
j �=i

�(|ri − rj |). (8)

We numerically solve Eq. (8) with us(r) given by Eq. (5) and
up(r) given by Eq. (7) using the fourth-order Runge-Kutta
method with an adaptable time step [89]. Since both us(r)
and up(r) depend on particle positions, they are updated
at each time step. Initial conditions are defined by still
particles placed at uniformly distributed random positions
within a 3
3

a box, which is removed after the start of the
simulation. Unless otherwise specified, we set dimensionless
Morse-potential parameters to Ca = 1.0, 
a = 2.0, Cr = 2.0,

r = 1.0, representing long-ranged attraction and short-ranged
repulsion [8,9,19]. The effects of varying potential parameters
Cr,a and 
r,a are discussed in the Appendix.

Finally, to counter the collapsing tendency between particle
pairs due to the 1/R2 dependence of us(r), we add to �(|ri −
rj |) an extremely short-ranged diverging repulsive potential
∼ 1/R12 to keep particles reasonably apart. We numerically
investigate our model for different values of dynamic viscosity
η and swimmer propulsion strength G.

II. RESULTS AND DISCUSSION

Fluid-free limit. For reference, we first consider λ = γ = 0
where particle and fluid dynamics decouple. Equations (1)
and (4) now reduce to the three-dimensional version of the
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FIG. 1. Snapshots of typical three-dimensional swarm patterns
for 100 particles. (a) A rotational mill, and (b) a translating flock.
Here and in the rest of the paper, color shades highlight the three-
dimensional distribution of the arrows as illuminated by a distant light
source.

well-studied two-dimensional swarming model presented in
[17,19]. While studies of three-dimensional swarms have
previously been examined [47], the full dynamics including
the emergence of transient structures have not been explored.
For the interaction parameters chosen above, possible coherent
states in two dimensions include a flock, a single rotating mill,
and two counterrotating mills [90]. In three dimensions we do
not find counterrotating mills; only simple mills and spheri-
cally shaped flocks can arise from random initial conditions,
as shown in Fig. 1. The absence of counterrotating mills in
three dimensions can be easily understood. In two dimensions
there are only two possible rotating directions, but in three
dimensions there are an infinite number of rotational axes.
Reversing rotating directions in two dimensions requires the
angular momentum to change signs, but in three dimensions
the rotational axes of a submill can continuously evolve along
the third dimension until all particles eventually come to rotate
about a common axis. This picture is consistent with diffusion
of angular momentum in three-dimensional swarms [46].

Most notably, despite being the dominant steady state in two
dimensions, the single rotating mill shown in Fig. 1(a) is not
a true three-dimensional steady state. Although particles may
settle into identifiable mills, extensive simulations performed
on a variety of initial conditions show that a mill in three
dimensions will eventually acquire a nonzero center-of-mass
velocity and evolve into a flock, as shown in Fig. 1(b). In
Fig. 2(a), we plot the state indicator Is defined in the Appendix
to characterize the swarming pattern. A value of Is = +1
represents a perfect unidirectional flock, Is = 0 a random
collection of particles, and Is = −1 a perfect rotating mill.
The red curve in Fig. 2(a) shows particles settling into a
transient mill for a lengthy period of time before evolving into
a translating flock; in contrast, the blue curve shows particles
forming a flock without first assembling into a long-lived mill.
In the latter case Is can first decrease before rising back to
Is ≈ 1.

To understand how mills and flocks develop in three
dimensions, in Fig. 2(b) we plot the evolution of the total
interaction energy 1

2

∑
i,j �(|ri − rj |) associated with the

two simulations in Fig. 2(a), showing a lower total energy
for the flock state. Note that when assembled into flocks,
particles settle into positions that correspond to the global

FIG. 2. (a) Three-dimensional simulations of Eqs. (1) without
hydrodynamic interactions. The classifier of swarming patterns Is is
defined in the Appendix. The red solid curve denotes a swarm that first
forms a mill before turning into a uniformly translating flock, while
the blue dotted curve shows particles evolving into a flock without first
forming a mill. We empirically set thresholds Is � −0.85 (bottom
green dashed line) to signal mills and Is � 0.85 (top magenta dashed
line) to identify migrating flocks. We require a swarm to maintain
the Is value in either of the two ranges for a period of 100 time units
or more to be classified as a mill or flock. This criterion corresponds
roughly to the time for a particle to circle a mill at least 10 times. (b)
The total interaction energy

∑
i,j �(|ri − rj |)/2 corresponding to the

two simulations above. The translating flock has a lower interaction
energy than the mill.

minimum of the total potential energy. In contrast, when
assembled into mills, only a local minimum of the total
potential energy is reached. In this case the net interaction
force on each particle provides the centripetal force necessary
to sustain the rotational movement. Although its energy is
lower, for particles starting from random initial conditions,
a flock may be kinetically less accessible than a mill. A
mill is a state of local coherence, where particles match
velocities with their close neighbors only, as opposed to a
flock where global coherence arises from all particles moving
in unison. As a result, three-dimensional mills often emerge
first out of a randomized configuration. For the same reason,
two-dimensional mills are not only stable at steady state,
but also dominate over flocks. However, three-dimensional
mills are unstable since they slowly acquire a translational
momentum along the rotational axis aligned with the third
direction. As particle velocities gradually become aligned with
this translational momentum, the rotational unit turns into a
spiral with continuously reduced angular speed, finally settling
into an equilibrium lattice formation migrating at a uniform
velocity. This effect cannot arise in two dimensions.

Swimmer-induced fluid flow us. We now investigate how
patterns mediated by the us flow field alone differ from
those described in the fluid-free case above. In general, the
extensional flow generated in the reference frame of a puller
(G < 0) converges along the direction of motion and diverges
along the perpendicular direction. Pusher-generated (G > 0)
extensional flows move in the opposite direction, diverging
along the direction of motion and converging laterally. As a
result, pullers tend to flatten existing flocks into oblate shapes,
while pushers tend to longitudinally stretch them into prolate
shapes. These deformed flocks are depicted in Fig. 3 for an
opaque fluid.

In clear fluids (λ = 0), the energy of a swarm dissipates
significantly through the fluid drag term, slowing particle
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FIG. 3. Snapshots of 50-particle simulations showing the defor-
mation of three-dimensional flocks by interacting with us arising in
opaque fluids (λ = 1) when up is absent. (a) For reference, we show
the stable spherically shaped flock arising in the fluid-free case. This
stable spherical flock is used as the initial conditions for both of the
other two simulations before fluid interactions from us(r) are switched
on. (b) A transient prolate flock forms when G = 0.15 (pusher). (c)
A transient oblate flock arises when G = −0.15 (puller). The dark
shaded areas outline the spatial extent of the flock. The thinner red
arrows indicate the direction of us with respect to the center of mass
of the flocks. In these simulations, the prolate flock is transitioning
into a recirculating “peloton,” while the oblate flock is transitioning
into a random blob. These deformed flocks are stable only if |G| is
small, but with much less distortion. The emergence of pelotons and
random blobs is described below.

motion and reducing us. For very large dimensionless drag
γ � 1, the motion of both pushers and pullers is arrested and
us → 0. For intermediate γ , pushers align into prolate flocks
and move at a reduced speed of approximately

√
1 − γ ; pullers

also move at a reduced speed, but mostly randomly without
any spatial order. The γ → 0 limit is the fluid-free case.

We observe a more diverse set of swarm morphologies
in opaque fluids (λ = 1) where the self-propulsion term
fM imparts sufficient energy to the particles to keep them
moving at their preferred self-propulsion speed relative to the
background flow. We assume a → 0 and thus negligible fluid
drag γ = 6πηa. In this case, the oblate-prolate deformation of
flocks is more pronounced than in clear fluids. In Fig. 4(a) we
show the time evolution of 50 particles for |G| = 0.096. The
red (blue) curves represent pullers (pushers). For reference we
also plot the fluid-free case (G = 0) in the green curve. For
such small G, pusher-generated flows suppress the transient
milling seen in the fluid-free case, leading to a stable prolate
flock. However, unlike the fluid-free case, pusher-generated
flocks are not perfect and Is ≈ 0.75 < 1. Here the spatial-
temporal variations in us impart fluctuations to the direction of
particle movement, preventing the formation of a perfectly
aligned flock. Puller-generated flows, on the other hand,
allow for the formation of permanent mills: The mill-to-flock
transition that occurs in the fluid-free case is blocked by the
fluctuating flow field allowing mills to be long lived.

Since the flow disturbance may be considered as a form
of noise, our findings are consistent with previous reports
of noise-induced flock-to-mill transitions in three dimensions
[46,87]. The latter show hysteresis in swarm morphology
as a function of the noise amplitude, a feature which we
also observe with pullers as the thresholds in G between a
flock and random blob depend on whether G is increased or
decreased. In addition, we note that disturbances induced by us

lead to particles occasionally deviating from their circulating
trajectories and to a striking intermittent disintegration and re-

(a)

IS

time
0 2000 4000 6000-1
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pullers
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|G|
0 0.05 0.1 0.15 0.2 0.25-1

-0.5

0

0.5

1

pullers
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FIG. 4. (a) Time-dependent swarm morphologies starting from
random initial conditions. Pusher swarms (G = 0.096, blue dotted
curve), evolve directly towards a fluctuating flock, while puller
swarms (G = −0.096, red solid curve) assemble into rotating mills;
the latter persists indefinitely but is intermittently interrupted by
bursts of randomness. For comparison, we also plot the fluid-free case
(G = 0, green dashed curve), where particles transiently form a mill
before eventually assembling into a flock. (b) Long-time formations
(t > 2000) of pushers and pullers with different G values. The
indicator 〈Is〉 is averaged for all time steps between 2000 � t � 3000
and over ten simulations. Error bars indicate standard deviations. For
pullers, persistent mills only occur approximately in the range of
0.07 � G � 0.1; below this range, flocks dominate, similarly to the
fluid-free case; above this range, the swarm is in a permanent random
state. Pushers always assemble into flocks; for large G, however,
the flow field induces a pelotonlike movement within the flock,
which pushes Is towards zero. Error bars widen in the transition
regime where swarming morphologies may vary significantly among
simulations.

assembling of mills, a phenomenon that has not been reported
in noise-induced flock-to-mill transitions. In Fig. 4(b), we
conduct a more thorough investigation of long-time swarming
patterns by varying |G| for pullers (blue) and pushers (red).
Pushers assemble into flocks as G increases, but patterns are
increasingly disturbed by us, leading to decreased Is .

For larger G, us is strong enough to induce a novel
“peloton”-like movement, where leading particles continu-
ously recirculate toward the back end of the flock, as depicted
in Fig. 5. When assembled into a peloton, Is drops to nearly
zero, although the majority of particles are still aligned. Pullers,
on the other hand, tend to keep milling as |G| increases rather
than transition to a flock. Here Is ≈ −1. For very large values
of |G| the strong flow field prevents even mills from forming,
and particle movement remains random. Overall, our results
suggest that pusher-generated flow fields generally promote
particle velocity ordering along a common direction but that an
orthogonal component of the flow prevents perfect alignment
for small G and ultimately to particles recirculating for large
G. Puller-generated flow fields instead introduce more ran-
domness, preventing the mill-to-flock transition for small |G|
and completely preventing a mill from forming for larger |G|.

Physical force-induced fluid flow up. We now examine
the effects of up on swarm dynamics by setting G = 0 and
analyze how patterns differ when compared to those arising in
the fluid-free case. For a clear fluid (λ = 0) our simulations
reveal that at steady state particles either stop or assemble
into a flock. The resulting speed can be evaluated by balancing
self-propulsion with drag, yielding a dimensionless flock speed
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FIG. 5. A snapshot of a pelotonlike formation for G = 0.15.
Particle positions and velocities are represented by the green arrows,
while the blue arrows connected by the red-dashed line track one
particular particle for 15 steps prior to the snapshot. The selected
blue particle is initially near the leading edge of the flock, gets swept
aside by the surrounding flow field, and finally rejoins the flock near
the back end.

√
1 − γ for γ � 1 and 0 for γ > 1, which are both confirmed

by simulations. In physical units, the friction threshold for
immobilizing a flock is 6πηa > α. Hydrodynamic coupling
in a viscous clear fluid simply slows or stops translational
flock motion. Note that in the a → 0 point-particle limit,
drag is negligible and swarming in a clear fluid reduces to
the canonical fluid-free problem.

As with swimmer-induced flows, the opaque fluid case
is much more interesting. Here steady-state configurations
depend nontrivially on the dimensionless viscosity η (defined
in the Appendix), which measures the ratio of the fluid
momentum relaxation time to the time scale of the particle
movement. The parameter η appears in Eq. (8) through up(r)
and in Eq. (7) through γ = 6πηa. We assume small particles
and neglect this latter drag interaction. As can be seen from
Eq. (7), up decreases with η so that as η increases the dynamics
resembles that of the fluid-free case. Indeed, we find that for
η > 1.2, flocks are the only stable steady-state solution for all
random initial conditions used, similar to the fluid-free case.
However, transient mills can form before the permanent flock
is assembled, with the probability of transient mills occurring
decreasing with η. As shown in Fig. 6(a), for η = 100 particles
form mills before finally settling into flocks for about 50% of
the random initial conditions used; this ratio drops to about
20% at η = 1.2.

Below η ≈ 1.2, swarms experience a qualitative change in
behavior and flocks are no longer the only long-lived steady
state. Figure 6(b) shows that the probability of final flock
formation decreases from unity at η ≈ 1.2 to zero at η ≈ 0.1.
In this intermediate range of η, two other long-lived configu-
rations can arise: a mill-like formation as shown in Fig. 7(a)
and a perpetual random blob. Unlike the annular or toroidal
shape of a classical mill, the hydrodynamically mediated three-

FIG. 6. Swarm patterns in an opaque fluid as η is varied. Each
point is an average over 100 simulations, each initialized with random
conditions. (a) Probability of transient mill formation for η � 1.2.
Although in this high-viscosity regime all initial conditions lead to
uniformly translating flocks, the probability of first forming a transient
mill decreases with decreasing η. (b) Probability of permanent flock
formation for η � 2. In this low-viscosity regime steady-state flocks
are no longer the only final outcome when η < 1.2. Other possible
configurations are mill-like structures and random blobs. Error bars
indicate standard errors.

dimensional mill-like structure has a central core filled with
randomly moving particles. As the dimensionless viscosity
decreases from η ≈ 1.2, the randomly moving core particles
in a mill-like swarm expand their boundaries and eventually
swallow the coherent part of the mill. The resulting pattern
is a perpetual random blob without any identifiable spatial
order. Finally, for η � 0.1, swarms immediately collapse into
the above described blob of perpetual random movement. All
possible swarming patterns are listed in Table I as a function
of the dimensionless viscosity η, where surviving formations
are considered asymptotically stable if they persist for long
enough time. A viscous flow up thus allows for the emergence
of persistent mill-like structures not observed in the absence
of fluid flows.

We can also examine the induced flow fields in relation to
particle velocities and how they may drive transitions among

FIG. 7. (a) A stable mill-like formation of 100 particles induced
by hydrodynamic interactions in an opaque fluid with η = 0.7. The
gray shading delineates a disordered core that grows as η is decreased.
(b) A transient mill of 250 particles with an empty core in an opaque
fluid. Such transient mills may arise when η > 1.2. The induced flow
field is indicated by the thicker red arrows and converges toward the
central core along the plane of rotation. To balance the influx, a jet
along the axis of rotation ejects the fluid from the central core. The
jet is normal to the page and is depicted by red arrow in panel (b).
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TABLE I. Swarming structures observed in simulations for
intermediate and long (t > 3000) times under the up flow field and
as a function of the dimensionless fluid viscosity η. Steady-state
configurations take longer to assemble here than under us. In the
fluid-free case only flocks arise at long times. A moderately viscous
fluid allows for the emergence of permanent mill-like structures and
random blobs.

�������η

Time
Intermediate t Long t

η > 1.2 Mill or flock Flock only
Mill or flock Flock

0.1 < η < 1.2 Mill-like or random Mill-like
Random Random

η < 0.1 Random Random

various swarm morphologies. Starting from a high-η transient
mill regime (η � 1.2), Fig. 7(b) qualitatively indicates the in-
stantaneous direction of the hydrodynamic velocity field up(r)
(red arrows) induced by a mill-like formation of 250 particles.
In a transient mill, the net particle-particle interactions provide
the centripetal force that sustains rotation. This net force is
imparted on the fluid, inducing an inward flow along the plane
of rotation. The incompressible fluid is then ejected outward
along the rotational axis, resembling a “jet” emanating from the
center of an accretion disk. This outward jet entrains particles
that wander into the core region, slowly disrupting the mill.
Entrainment arises through the self-propulsion term fM and, if
appreciable, through viscous drag. Moreover, the inward flow
on the rotational plane effectively extends the interaction range
among particles, driving the system into a minimum-energy
flock state. As η is decreased, the induced Stokes accretion
flow increases and drives more particles into the core of the
mill. Particle motion then becomes randomized, disrupting
the outward jet and ultimately hindering the mill-to-flock
transition that would otherwise occur smoothly. Swarms can
thus be trapped in the mill-like formation shown in Fig. 7(a)
indefinitely as listed in Table I. At even lower values of η,
coherence is lost by an expanding disordered core region. The
fluid flow fields observed under different regimes of η are
plotted in Fig. 8.

Combined effects of us and up. In light of the above
discussions, we now consider the effects of superimposing
the two fields so that u(r) = us(r) + up(r). The magnitudes of

FIG. 8. Fluid velocity fields up(r) associated with particle swarms
concentrated within the green shaded regions. (a) For large η, an early
flow field resembles a jet. (b) At longer times the jet is eventually
disrupted and a flock forms. (c) For very low η < 0.1, the disordered
core region of a transient mill-like formation will always expand,
eventually leading to a random blob.

FIG. 9. Phase diagram in (G,η) space delineating possible
persistent structures (t > 3000) in the presence of the total flow
field u(r) = us(r) + up(r). Each point summarizes the possible final
morphologies from 10 simulations. Flocks are more likely to emerge
for large η, and random blobs are more prominent for small η. For
pullers (G < 0), mills may appear with increasing |G|, but random
blobs dominate at large |G|. The flow us generated by weak pushers
(G � 0) promotes particle alignment and flock formation. For even
larger G, flocks exhibit pelotonlike movement.

us and up can be varied independently and are controlled by
G and η, respectively. In clear fluids (λ = 0), the two flows
combine to reduce flock speed to

√
1 − γ , except in the case

of very strong puller flows (large |G|) that prevent particles
from aligning into flocks and lead to a random blob.

Figure 9 shows the phase diagram in (G,η) space of stable
swarm structures arising in opaque fluids (λ = 1). In opaque
fluids for small values of η, up dominates us and swarms
assemble into a random blob. As η increases, up decreases and
the effects of us become more pronounced, prevailing for large
η. In this case, flows generated by strong pullers (very negative
G) still favor the emergence of a random blob. However, upon
increasing G fluctuating transient mills arise. As G keeps
increasing, flows generated by pushers favor the formation
of fluctuating flocks until for very large G pelotons emerge.
As can be seen in Fig. 9, mill-like patterns exist only when
G = 0, suggesting that such structures are easily disrupted or
prevented from forming by us.

III. SUMMARY AND CONCLUSIONS

In the absence of hydrodynamic coupling, our extensive
numerical simulations revealed that three-dimensional swarms
exhibit much less diversity than in two dimensions. This
is due to the additional dimension that provides a pathway
for a variety of stable two-dimensional patterns to transform
into energy-minimizing, uniformly translating flocks in three
dimensions. We then carefully explored the effects of hydro-
dynamic coupling on three-dimensional swarming by deriving
a discrete model of self-propelled interacting swimmers in an
incompressible zero-Reynolds-number Newtonian fluid.
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An important distinction in the source of fluid flow is made.
Under a force-free assumption, particle swimming (or squirm-
ing [77]) can only generate flows that decay as 1/rn,n � 2.
When direct action-at-a-distance physical forces (electrostatic,
magnetic, gravitational) arise between self-propelled particles,
an additional Oseen flow decaying as 1/r can arise [79–81].
Thus, even short-ranged pairwise physical forces can generate
longer-ranged fluid motion enhancing particle interactions and
greatly affect swarm morphology.

In clear three-dimensional fluid environments we find that
only flocks arise, similar to the fluid-free scenario, albeit with
particles moving at reduced speed. Note that our patterns
emerge through direct interactions among particles, in contrast
to the ones observed in previous studies of infinite or confined
systems of swimmers coupled only via the fluid drag [68]. The
latter models include particle density as a fixed, prescribed
parameter, so that high-density particles can be forced to
interact out of equilibrium. As a result, density-dependent
transitions and states, such as nematic orders, may arise. On
the contrary, we consider a finite number of particles in an
infinite domain, where local particle density is determined
by particles collectively minimizing the interactions among
them, favoring the low-energy flock formation. In opaque
fluids, pusher-generated flows accelerate particle alignment
and suppress the emergence of metastable mills seen in
the fluid-free case. Puller-generated flows, conversely, hinder
particle velocity alignment, allowing transient mills to persist
within certain viscosity ranges. Sufficiently strong puller flows
disrupt any spatial order. Flows generated by particle-particle
interactions kinetically accelerate the mill-to-flock transition.
In high-viscosity opaque fluids, the hydrodynamic flow fields
can form an accretion disk/jet structure associated with mills
and entrain the self-propelled particles leading to quicker
dissolution of the mill itself. However, in opaque fluids of
intermediate viscosity, stronger hydrodynamic interactions
may kinetically block the mill-to-flock transition, allowing
a mill-like formation to form and persist. At even lower fluid
viscosity η, swarms are completely chaotic.

When both swimming- and force-induced flows are present,
steady-state configurations depend on the relative strength
between the two flows. Mill-like formations are absent. Our
main results pertain to viscous steady-state Stokes’ flows, but
we derive time-dependent interaction-induced fluid velocities
and inertial interactions arising in potential flows in the
Appendix. We used the Morse potential in our simulations
to provide a mechanistic picture of collective behavior of
three-dimensional swarms and found a rich phase diagram of
patterns; however, the structure of our fluid-coupled swarming
model is sufficiently general that any effective interaction
potential can be used provided that its social or physical
underpinnings are carefully delineated.

Our swarming model can be further refined by addressing
more microscopic fluid coupling mechanisms. In our model,
Eq. (5) defines a stroke period-averaged flow field and Eq. (1)
describes hydrodynamic coupling under the period-averaged
flow assumption. However, the phase difference of the mi-
croscopic strokes between two swimmers has been shown to
actively affect the interaction in unexpected ways, leading to
attraction, repulsion, or oscillations [91]. How these subtle
swimmer-induced pairwise interactions [77,91] influence the

collective behavior of swarms remains to be investigated. Fi-
nally, we have not considered the effects of external potentials.
Our derivation of the fluid coupling mechanisms suggest the
possibility of more new structures depending on whether the
external potential derives from social interactions that influ-
ence self-propulsion (e.g., chemotaxis) or physical ones (e.g.,
gravity) that result in body forces on the fluid. The physical
and mathematical structure of our fluid-coupled kinetic models
provide a basis for future investigation of these extensions.
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APPENDIX A: NONDIMENSIONALIZATION

The nondimensional parameters used in Eq. (8) are defined
as

r′ =
√

αβ

m
r, t ′ = α

m
t,

v′
i =

√
β

α
vi , u′ =

√
β

α
u, γ ′ = γ

α
,

ρ ′ = m2√
α3β3

ρ, η′ = m√
α3β

η, G′ = αβ

m2
G,

(A1)

�′ = β

αm
�, p′ = m2√

α5β
p,

C ′
a = β

αm
Ca, C ′

r = β

αm
Cr,


′
a =

√
αβ

m

a, 
′

r =
√

αβ

m

r .

APPENDIX B: TIME-DEPENDENT STOKES FLOW

We assume ν → 0 for the dimensionless Stokes Eq. (8) of
the main text and conduct our investigation at the quasistatic
limit. More generally, the time-dependent velocity field can be
expressed as

u(rj ,t) = 1

ρ

∑
i �=j

∫ t

0
dt ′T(ri − rj ; t − t ′) · fi , (B1)

where ρ is the mass density of the embedding Newtonian fluid
and T is the three-dimensional dynamic Oseen tensor given by
[80]

T(r,t) =
∫

d3k
(2π )3

e−νk2t+ik·r[I − k̂k̂]

= p(r,t)I − q(r,t)r̂r̂, (B2)
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with

p(r,t) =
(

1 + 2νt

r2

)
f (r,t) − g(r,t)

r2
,

q(r,t) =
(

1 + 6νt

r2

)
f (r,t) − 3g(r,t)

r2
,

(B3)

f (r,t) = 1

(4πνt)3/2
exp

[
− r2

4νt

]
,

g(r,t) = 1

4πr
erf

(
r√
4νt

)
.

In the quasistatic limit, the Oseen tensor is

1

ρ
T(r,t) ≈ 1

8πηr
[I + r̂r̂]δ(t), (B4)

which is used in Eq. (7) to provide an analytic form of the
velocity field. The solution to the pressure field p(r,t) can be
analytically obtained as

p(r,t) = −
∑

j

∑
k �=j

R̂j

4πR2
j

· ∇j�(|rj − rk|). (B5)

We ignore its effect on swimmers since the gradient of
p(r,t) is negligible across the size a → 0 of small particles.

APPENDIX C: POTENTIAL FLOW

As derived in [92], the fluid velocity potential φ(r) at a
location r from an accelerating spherical particle of radius
a can be approximated in the far-field |r| � a limit by the
formula

φ(r,t) ∼ − m(t)

4π |r| − d(t) · r
4π |r|3 + O(|r|−3), (C1)

where

m(t) =
∮

∂V

∇φ · dS, (C2)

and

d(t) =
∮

∂V

φdS +
∮

∂V

r∇φ · dS (C3)

are obtained by integrating over the boundary ∂V of the
spherical volume V of the source object. The near-field φ in the
integrands depends on the shape and swimming mechanism
of the source object. Let us consider the simplest case of solid
spherical particles moving through an inviscid fluid. For a lone
particle of radius a traveling at a velocity v as illustrated in
Fig. 10, we may derive the fluid velocity potential in the lab
frame as

φ(r) = −v
a3

2|r|2 cos θ, (C4)

where v = |v|, r is the a spatial position relative to the center
of the particle, and θ is the angle between r and v.

Substituting Eq. (C4) into Eqs. (C2) and (C3), we obtain

m(t) = 0, and d(t) = 2πa3v(t).

FIG. 10. Hydrodynamic interactions due to potential flow. Equa-
tions (C1)–(C5) express the approximated fluid potential at an
arbitrary far-field location caused by the acceleration of a particle
at rj . Equation (C10) gives the force induced by the fluid potential
on a particle at ri .

As a result, the far-field fluid velocity potential of the moving
sphere is

φ(r,t) ∼ −a3v(t) · r
2|r|3 , (C5)

Let us now calculate the force induced by a moving particle
at position rj on an identical particle at a position ri . We
assume that |ri − rj | � a, so that the far-field approximation
is appropriate. From the Euler equation of inviscid flow, we
know that the fluid velocity potential φ induces a pressure,

p = p0 − ρ
∂φ

∂t
− 1

2
ρ|u|2, (C6)

where ρ is the fluid density, u = ∇φ is the fluid velocity,
and p0 is an arbitrary reference point of the pressure. The
resultant force on a spherical object is found from integrating
the pressure variation over its surface:

Fp.f. =
∮

∂V

pdS

= −
∮

∂V

ρ
∂φ

∂t
dS

= ρ

4π

dd(t)

dt
·
∮

∂V

(r − s)

|r − s|3 ŝdS. (C7)

Here r ≡ rj − ri , s is a vector from the particle center to
the particle surface, and ŝ ≡ s/|s|. For a spherical particle of
radius a = |s| � |r|, we use the approximation |r − s|−3 �
|r|−3[1 + 3(s · r)/|r|2] to find

Fp.f. = ρa3

3|r|3 ḋ(t) ·
[

3
rr
|r|2 − I

]
. (C8)

Substituting Eq. (C3) into the above equation, we obtain

Fp.f. = 2πρa6

3|r|3 v̇(t) ·
[

3
rr
|r|2 − I

]
. (C9)
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Assuming there are N identical particles, the potential flow-
induced force on particle i is thus

Fi
p.f. = 2πρa6

3

N∑
j �=i

v̇j (t)

|rj − ri |3 ·
[

3
(rj − ri)(rj − ri)

|rj − ri |2 − I
]
.

(C10)
Note that the force is short ranged, of the order O(|rj − ri |−3).
Moreover, its amplitude is proportional to a6. As a result, the
hydrodynamic interaction force induced by potential flows
does not have significant impact on collective behavior partic-
ularly when ρ and/or the volume fraction of particles is small.
If ρ is very large, the flow field imposes a repulsion between
particles that encounter each other, potentially preventing them
from forming a coherent structure.

APPENDIX D: INDICATOR OF THE SWARMING STATES

Here we define a metric to describe the state of a swarm.
This quantity will consistently distinguish between parallel
flock, single rotating mill, and random swarms. To identify the
parallel flock state, we note that all particles are moving at the
same velocity as the center-of-mass (c.m.) velocity. To find
the rotating mill state, we take advantage of the fact that all
particles share the same axis of rotation. We combine these
properties into a single quantity Is over the desired range
[−1,1], where −1 is associated with a perfect mill and +1
indicates a uniformly translating flock. The indicator Is is
decomposed according to

Is ≡ Iflock − Imill. (D1)

Given N particles,

Iflock ≡ 1 −
∑

i |vi − vCM|
N

√
α/β

. (D2)

Note that Iflock = 1 for a perfect parallel flock and Iflock = 0
for a perfect mill. To define Imill we first compute the rotational
axis ω̂i of particle i,

ω̂i(t) = vi(t) × Fi(t)

|vi(t)||Fi(t)| , (D3)

where Fi is the force acting on particle i. We then evaluate the
degree of alignment between all ω̂i and define

Imill =
∑

i

∑
j �=i ω̂i · ω̂j

N (N − 1)
. (D4)

Note that Imill = 1 when the rotations of all the particles are
perfectly aligned and Imill = 0 when all particles are in a
perfect parallel flock formation. Putting Iflock and Imill together
in Is [Eq. (D1)], we find Is = −1 for a perfect mill and Is = +1

FIG. 11. The dependence of stable flock formation probability
on potential types and opaque medium viscosity. Here we fix 
a = 1,

r = 0.5 and vary C ≡ Cr/Ca = 6–10 while keeping Ca = 100. H-
stable flocks are more robust against hydrodynamic disruption. Error
bars represent standard errors.

for a perfect flock. Finally, since swarms are seldom in a
perfect formation, we considered thresholds on Is as indicated
in Fig. 2.

Distinguishing more subtly different structures is not
always unequivocal using the metric Is . In particular, we
prescribe Is > 0.5 to indicate a flock and Is < 0.5 to indicate a
peloton where there is more rotational movement from particle
recirculation.

APPENDIX E: EFFECTS OF CHANGING INTERACTION
POTENTIALS

All the results presented in the main text were obtained
using a fixed set of potential parameters Cr,a,
r,a . The primary
effect of varying these parameters is to change the spatial size
of swarms. For rotational mills, an increase in diameter is
accompanied by a decrease in the magnitude of the centripetal
force and weaker destabilizing flows. A larger swarm is also
less sensitive to hydrodynamic effects since particles are
spaced further apart, generating weaker interaction forces and
hence weaker flows. In Fig. 11, we explore different potentials
and test the robustness of flock formation in the low-η
regime where the flock can be broken up by hydrodynamic
interactions. Not surprisingly, for potentials that are more
“H stable” [17,19], the probability of stable flock formation
increases. While H stability is an equilibrium property that is
insensitive to hydrodynamics [17,19], our results suggest that
H-stable flocks are more resistant to hydrodynamic disruption.
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Phys. Rev. E 92, 062111 (2015).
[70] F. Cucker and S. Smale, Jpn. J. Math. 2, 197 (2007).
[71] F. Cucker and S. Smale, IEEE Trans. Autom. Control 52, 852

(2007).
[72] J. Shen, SIAM J. Appl. Math. 68, 694 (2008).
[73] S. Nasseri and N. Phan-Thien, Comput. Mech. 20, 551 (1997).
[74] R. Cortez, N. Cowen, R. Dillon, and L. Fauci, Comput. Sci. Eng.

6, 38 (2004).
[75] R. Cortez, L. Fauci, and A. Medovikov, Phys. Fluids 17, 031504

(2005).
[76] I. Riedel, K. Kruse, and J. Howard, Science 309, 300 (2005).
[77] T. Ishikawa, M. P. Simmonds, and T. J. Pedley, J. Fluid Mech.

568, 119 (2006).
[78] A. Najafi and R. Golestanian, Phys. Rev. E 69, 062901 (2004).
[79] J. Happel and H. Brenner, Low Reynolds Number Hydrodynam-

ics with Special Applications to Particulate Media (Prentice-
Hall, Englewood Cliffs, NJ, 1965).

043112-11

http://dx.doi.org/10.1007/s002850050112
http://dx.doi.org/10.1007/s002850050112
http://dx.doi.org/10.1007/s002850050112
http://dx.doi.org/10.1007/s002850050112
http://dx.doi.org/10.1103/PhysRevE.63.017101
http://dx.doi.org/10.1103/PhysRevE.63.017101
http://dx.doi.org/10.1103/PhysRevE.63.017101
http://dx.doi.org/10.1103/PhysRevE.63.017101
http://dx.doi.org/10.1007/s12064-001-0019-7
http://dx.doi.org/10.1007/s12064-001-0019-7
http://dx.doi.org/10.1007/s12064-001-0019-7
http://dx.doi.org/10.1007/s12064-001-0019-7
http://dx.doi.org/10.2307/1543482
http://dx.doi.org/10.2307/1543482
http://dx.doi.org/10.2307/1543482
http://dx.doi.org/10.2307/1543482
http://dx.doi.org/10.1016/S0167-2789(03)00102-7
http://dx.doi.org/10.1016/S0167-2789(03)00102-7
http://dx.doi.org/10.1016/S0167-2789(03)00102-7
http://dx.doi.org/10.1016/S0167-2789(03)00102-7
http://dx.doi.org/10.1007/s00605-004-0234-7
http://dx.doi.org/10.1007/s00605-004-0234-7
http://dx.doi.org/10.1007/s00605-004-0234-7
http://dx.doi.org/10.1007/s00605-004-0234-7
http://dx.doi.org/10.1038/nature03236
http://dx.doi.org/10.1038/nature03236
http://dx.doi.org/10.1038/nature03236
http://dx.doi.org/10.1038/nature03236
http://dx.doi.org/10.1007/s00285-005-0334-6
http://dx.doi.org/10.1007/s00285-005-0334-6
http://dx.doi.org/10.1007/s00285-005-0334-6
http://dx.doi.org/10.1007/s00285-005-0334-6
http://dx.doi.org/10.1007/s00285-004-0279-1
http://dx.doi.org/10.1007/s00285-004-0279-1
http://dx.doi.org/10.1007/s00285-004-0279-1
http://dx.doi.org/10.1007/s00285-004-0279-1
http://dx.doi.org/10.1103/PhysRevLett.96.104302
http://dx.doi.org/10.1103/PhysRevLett.96.104302
http://dx.doi.org/10.1103/PhysRevLett.96.104302
http://dx.doi.org/10.1103/PhysRevLett.96.104302
http://dx.doi.org/10.1142/S0218202506001509
http://dx.doi.org/10.1142/S0218202506001509
http://dx.doi.org/10.1142/S0218202506001509
http://dx.doi.org/10.1142/S0218202506001509
http://dx.doi.org/10.1016/j.physd.2007.05.007
http://dx.doi.org/10.1016/j.physd.2007.05.007
http://dx.doi.org/10.1016/j.physd.2007.05.007
http://dx.doi.org/10.1016/j.physd.2007.05.007
http://dx.doi.org/10.1137/130925669
http://dx.doi.org/10.1137/130925669
http://dx.doi.org/10.1137/130925669
http://dx.doi.org/10.1137/130925669
http://dx.doi.org/10.1103/PhysRevE.87.032712
http://dx.doi.org/10.1103/PhysRevE.87.032712
http://dx.doi.org/10.1103/PhysRevE.87.032712
http://dx.doi.org/10.1103/PhysRevE.87.032712
http://dx.doi.org/10.3938/jkps.63.1134
http://dx.doi.org/10.3938/jkps.63.1134
http://dx.doi.org/10.3938/jkps.63.1134
http://dx.doi.org/10.3938/jkps.63.1134
http://dx.doi.org/10.1126/science.2118274
http://dx.doi.org/10.1126/science.2118274
http://dx.doi.org/10.1126/science.2118274
http://dx.doi.org/10.1126/science.2118274
http://dx.doi.org/10.1006/jtbi.1994.1218
http://dx.doi.org/10.1006/jtbi.1994.1218
http://dx.doi.org/10.1006/jtbi.1994.1218
http://dx.doi.org/10.1006/jtbi.1994.1218
http://dx.doi.org/10.1006/jtbi.1995.0251
http://dx.doi.org/10.1006/jtbi.1995.0251
http://dx.doi.org/10.1006/jtbi.1995.0251
http://dx.doi.org/10.1006/jtbi.1995.0251
http://dx.doi.org/10.1016/0304-3800(95)00202-2
http://dx.doi.org/10.1016/0304-3800(95)00202-2
http://dx.doi.org/10.1016/0304-3800(95)00202-2
http://dx.doi.org/10.1016/0304-3800(95)00202-2
http://dx.doi.org/10.1002/(SICI)1521-1878(199812)20:12<1030::AID-BIES9>3.3.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1521-1878(199812)20:12<1030::AID-BIES9>3.3.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1521-1878(199812)20:12<1030::AID-BIES9>3.3.CO;2-Z
http://dx.doi.org/10.1002/(SICI)1521-1878(199812)20:12<1030::AID-BIES9>3.3.CO;2-Z
http://dx.doi.org/10.1126/science.284.5411.99
http://dx.doi.org/10.1126/science.284.5411.99
http://dx.doi.org/10.1126/science.284.5411.99
http://dx.doi.org/10.1126/science.284.5411.99
http://dx.doi.org/10.1016/S0378-4371(03)00204-8
http://dx.doi.org/10.1016/S0378-4371(03)00204-8
http://dx.doi.org/10.1016/S0378-4371(03)00204-8
http://dx.doi.org/10.1016/S0378-4371(03)00204-8
http://dx.doi.org/10.1016/S0092-8240(03)00065-X
http://dx.doi.org/10.1016/S0092-8240(03)00065-X
http://dx.doi.org/10.1016/S0092-8240(03)00065-X
http://dx.doi.org/10.1016/S0092-8240(03)00065-X
http://dx.doi.org/10.1016/j.ecolmodel.2005.05.014
http://dx.doi.org/10.1016/j.ecolmodel.2005.05.014
http://dx.doi.org/10.1016/j.ecolmodel.2005.05.014
http://dx.doi.org/10.1016/j.ecolmodel.2005.05.014
http://dx.doi.org/10.1007/s11538-006-9135-3
http://dx.doi.org/10.1007/s11538-006-9135-3
http://dx.doi.org/10.1007/s11538-006-9135-3
http://dx.doi.org/10.1007/s11538-006-9135-3
http://dx.doi.org/10.1140/epjst/e2008-00633-y
http://dx.doi.org/10.1140/epjst/e2008-00633-y
http://dx.doi.org/10.1140/epjst/e2008-00633-y
http://dx.doi.org/10.1140/epjst/e2008-00633-y
http://dx.doi.org/10.1371/journal.pcbi.1003178
http://dx.doi.org/10.1371/journal.pcbi.1003178
http://dx.doi.org/10.1371/journal.pcbi.1003178
http://dx.doi.org/10.1371/journal.pcbi.1003178
http://dx.doi.org/10.1016/S0167-2789(96)00195-9
http://dx.doi.org/10.1016/S0167-2789(96)00195-9
http://dx.doi.org/10.1016/S0167-2789(96)00195-9
http://dx.doi.org/10.1016/S0167-2789(96)00195-9
http://dx.doi.org/10.1109/TAC.2003.809765
http://dx.doi.org/10.1109/TAC.2003.809765
http://dx.doi.org/10.1109/TAC.2003.809765
http://dx.doi.org/10.1109/TAC.2003.809765
http://dx.doi.org/10.1109/TAC.2003.812781
http://dx.doi.org/10.1109/TAC.2003.812781
http://dx.doi.org/10.1109/TAC.2003.812781
http://dx.doi.org/10.1109/TAC.2003.812781
http://dx.doi.org/10.1109/TAC.2002.806657
http://dx.doi.org/10.1109/TAC.2002.806657
http://dx.doi.org/10.1109/TAC.2002.806657
http://dx.doi.org/10.1109/TAC.2002.806657
http://dx.doi.org/10.1006/jtbi.2002.3065
http://dx.doi.org/10.1006/jtbi.2002.3065
http://dx.doi.org/10.1006/jtbi.2002.3065
http://dx.doi.org/10.1006/jtbi.2002.3065
http://dx.doi.org/10.1103/PhysRevE.78.031927
http://dx.doi.org/10.1103/PhysRevE.78.031927
http://dx.doi.org/10.1103/PhysRevE.78.031927
http://dx.doi.org/10.1103/PhysRevE.78.031927
http://dx.doi.org/10.1103/PhysRevE.86.011136
http://dx.doi.org/10.1103/PhysRevE.86.011136
http://dx.doi.org/10.1103/PhysRevE.86.011136
http://dx.doi.org/10.1103/PhysRevE.86.011136
http://dx.doi.org/10.1098/rspa.1951.0218
http://dx.doi.org/10.1098/rspa.1951.0218
http://dx.doi.org/10.1098/rspa.1951.0218
http://dx.doi.org/10.1098/rspa.1951.0218
http://dx.doi.org/10.1098/rspa.1953.0048
http://dx.doi.org/10.1098/rspa.1953.0048
http://dx.doi.org/10.1098/rspa.1953.0048
http://dx.doi.org/10.1098/rspa.1953.0048
http://dx.doi.org/10.1016/0021-9290(73)90082-1
http://dx.doi.org/10.1016/0021-9290(73)90082-1
http://dx.doi.org/10.1016/0021-9290(73)90082-1
http://dx.doi.org/10.1016/0021-9290(73)90082-1
http://dx.doi.org/10.1017/S002211208900025X
http://dx.doi.org/10.1017/S002211208900025X
http://dx.doi.org/10.1017/S002211208900025X
http://dx.doi.org/10.1017/S002211208900025X
http://dx.doi.org/10.1007/s002050050156
http://dx.doi.org/10.1007/s002050050156
http://dx.doi.org/10.1007/s002050050156
http://dx.doi.org/10.1007/s002050050156
http://dx.doi.org/10.1017/S0022112003005184
http://dx.doi.org/10.1017/S0022112003005184
http://dx.doi.org/10.1017/S0022112003005184
http://dx.doi.org/10.1017/S0022112003005184
http://dx.doi.org/10.1103/PhysRevE.77.011920
http://dx.doi.org/10.1103/PhysRevE.77.011920
http://dx.doi.org/10.1103/PhysRevE.77.011920
http://dx.doi.org/10.1103/PhysRevE.77.011920
http://dx.doi.org/10.1017/jfm.2012.101
http://dx.doi.org/10.1017/jfm.2012.101
http://dx.doi.org/10.1017/jfm.2012.101
http://dx.doi.org/10.1017/jfm.2012.101
http://dx.doi.org/10.1529/biophysj.107.118257
http://dx.doi.org/10.1529/biophysj.107.118257
http://dx.doi.org/10.1529/biophysj.107.118257
http://dx.doi.org/10.1529/biophysj.107.118257
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1016/j.mcm.2010.04.002
http://dx.doi.org/10.1016/j.mcm.2010.04.002
http://dx.doi.org/10.1016/j.mcm.2010.04.002
http://dx.doi.org/10.1016/j.mcm.2010.04.002
http://dx.doi.org/10.1113/jphysiol.1908.sp001274
http://dx.doi.org/10.1113/jphysiol.1908.sp001274
http://dx.doi.org/10.1113/jphysiol.1908.sp001274
http://dx.doi.org/10.1113/jphysiol.1908.sp001274
http://dx.doi.org/10.1017/S0022112079001415
http://dx.doi.org/10.1017/S0022112079001415
http://dx.doi.org/10.1017/S0022112079001415
http://dx.doi.org/10.1017/S0022112079001415
http://dx.doi.org/10.1016/S0006-355X(99)80012-2
http://dx.doi.org/10.1016/S0006-355X(99)80012-2
http://dx.doi.org/10.1016/S0006-355X(99)80012-2
http://dx.doi.org/10.1016/S0006-355X(99)80012-2
http://dx.doi.org/10.1063/1.2751388
http://dx.doi.org/10.1063/1.2751388
http://dx.doi.org/10.1063/1.2751388
http://dx.doi.org/10.1063/1.2751388
http://dx.doi.org/10.1103/PhysRevE.78.061907
http://dx.doi.org/10.1103/PhysRevE.78.061907
http://dx.doi.org/10.1103/PhysRevE.78.061907
http://dx.doi.org/10.1103/PhysRevE.78.061907
http://dx.doi.org/10.1209/0295-5075/86/64001
http://dx.doi.org/10.1209/0295-5075/86/64001
http://dx.doi.org/10.1209/0295-5075/86/64001
http://dx.doi.org/10.1209/0295-5075/86/64001
http://dx.doi.org/10.1103/PhysRevLett.99.258101
http://dx.doi.org/10.1103/PhysRevLett.99.258101
http://dx.doi.org/10.1103/PhysRevLett.99.258101
http://dx.doi.org/10.1103/PhysRevLett.99.258101
http://dx.doi.org/10.1063/1.3086320
http://dx.doi.org/10.1063/1.3086320
http://dx.doi.org/10.1063/1.3086320
http://dx.doi.org/10.1063/1.3086320
http://dx.doi.org/10.1063/1.4718446
http://dx.doi.org/10.1063/1.4718446
http://dx.doi.org/10.1063/1.4718446
http://dx.doi.org/10.1063/1.4718446
http://dx.doi.org/10.1073/pnas.0906586106
http://dx.doi.org/10.1073/pnas.0906586106
http://dx.doi.org/10.1073/pnas.0906586106
http://dx.doi.org/10.1073/pnas.0906586106
http://dx.doi.org/10.1103/PhysRevE.92.062111
http://dx.doi.org/10.1103/PhysRevE.92.062111
http://dx.doi.org/10.1103/PhysRevE.92.062111
http://dx.doi.org/10.1103/PhysRevE.92.062111
http://dx.doi.org/10.1007/s11537-007-0647-x
http://dx.doi.org/10.1007/s11537-007-0647-x
http://dx.doi.org/10.1007/s11537-007-0647-x
http://dx.doi.org/10.1007/s11537-007-0647-x
http://dx.doi.org/10.1109/TAC.2007.895842
http://dx.doi.org/10.1109/TAC.2007.895842
http://dx.doi.org/10.1109/TAC.2007.895842
http://dx.doi.org/10.1109/TAC.2007.895842
http://dx.doi.org/10.1137/060673254
http://dx.doi.org/10.1137/060673254
http://dx.doi.org/10.1137/060673254
http://dx.doi.org/10.1137/060673254
http://dx.doi.org/10.1007/s004660050275
http://dx.doi.org/10.1007/s004660050275
http://dx.doi.org/10.1007/s004660050275
http://dx.doi.org/10.1007/s004660050275
http://dx.doi.org/10.1109/MCISE.2004.1289307
http://dx.doi.org/10.1109/MCISE.2004.1289307
http://dx.doi.org/10.1109/MCISE.2004.1289307
http://dx.doi.org/10.1109/MCISE.2004.1289307
http://dx.doi.org/10.1063/1.1830486
http://dx.doi.org/10.1063/1.1830486
http://dx.doi.org/10.1063/1.1830486
http://dx.doi.org/10.1063/1.1830486
http://dx.doi.org/10.1126/science.1110329
http://dx.doi.org/10.1126/science.1110329
http://dx.doi.org/10.1126/science.1110329
http://dx.doi.org/10.1126/science.1110329
http://dx.doi.org/10.1017/S0022112006002631
http://dx.doi.org/10.1017/S0022112006002631
http://dx.doi.org/10.1017/S0022112006002631
http://dx.doi.org/10.1017/S0022112006002631
http://dx.doi.org/10.1103/PhysRevE.69.062901
http://dx.doi.org/10.1103/PhysRevE.69.062901
http://dx.doi.org/10.1103/PhysRevE.69.062901
http://dx.doi.org/10.1103/PhysRevE.69.062901


YAO-LI CHUANG, TOM CHOU, AND MARIA R. D’ORSOGNA PHYSICAL REVIEW E 93, 043112 (2016)
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