
 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 J

ul
y 

20
22

 

royalsocietypublishing.org/journal/rsos
Research
Cite this article: Wang Y, Dessalles R, Chou T.
2022 Modelling the impact of birth control

policies on China’s population and age: effects of

delayed births and minimum birth age

constraints. R. Soc. Open Sci. 9: 211619.
https://doi.org/10.1098/rsos.211619
Received: 12 October 2021

Accepted: 16 May 2022
Subject Category:
Mathematics

Subject Areas:
theoretical biology/biomathematics/mathematical

modelling

Keywords:
population biology, demographics, McKendrick

equation, population control, one-child policy
Author for correspondence:
Tom Chou

e-mail: tomchou@ucla.edu
© 2022 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
†These authors contributed equally to this study.
Modelling the impact of birth
control policies on China’s
population and age: effects
of delayed births and
minimum birth age
constraints
Yue Wang1,†, Renaud Dessalles2,† and Tom Chou1,3

1Department of Computational Medicine, UCLA, Los Angeles, CA 90095-1766, USA
2Greenshield, 46 rue Saint Antoine, 75004 Paris, France
3Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, USA

RD, 0000-0002-3005-5251; TC, 0000-0003-0785-6349

We consider age-structured models with an imposed refractory
period between births. These models can be used to formulate
alternative population control strategies to China’s one-child
policy. By allowing any number of births, but with an imposed
delay between births, we show how the total population
can be decreased and how a relatively older age distribution
can be generated. This delay represents a more ‘continuous’
form of population management for which the strict one-child
policy is a limiting case. Such a policy approach could be
more easily accepted by society. Our analyses provide an initial
framework for studying demographics and how social
constraints influence population structure.
1. Introduction
Models of age-structured population dynamics are often based
on the classic McKendrick equation [1,2] (sometimes called the
von Foerster equation [3]). These equations describe the dynamics
of the mean population as a function of time t and expressed as a
density in age a. The solutions to the McKendrick equations can
be partially solved using the method of characteristics and
numerical approximations [4,5] across many contexts. Moreover,
stochastic extensions to incorporate the random times of birth and
death (demographic stochasticity) have been formulated using
branching processes [6] and kinetic and operator theory [7–10].
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Figure 1. China’s 1981 birth rate and female death rate μf(a), calculated from 1982 national census data [20]. The red curve
represents the observed birth rate βeff(a) for all women of a given age. The dashed blue curve represents the birth rate β0(a)
for females who have not had any children. The area under the observed birth rate

Ð1
0 beffðaÞda represents the mean number

of children born during an individual’s lifetime.
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Age-structured equations have been used to predict the evolution of human and animal populations
[11–13]. Using such models and ideas from control theory to frame population control strategies was in
vogue in the 1970s [14–17]. A profound example was its use in 1979 by Jian Song [18,19], a Chinese
engineer who numerically solved the one-component McKendrick equation using birth rates
associated with China in the late 1970s (figure 1). By projecting future populations associated with
different birth rates (expressed by the mean number of children per woman), he found that in order
to keep the population manageable (approx. 700 million� 1 billion) within 100 years, this control
parameter would have to be decreased to the point where each woman is allowed only one child
[18,19,21]. This research provided the technical basis of the one-child policy in China [22,23].

In the 1970s,Chinahadencouraged (but not enforced) people tomarry later,wait longer before childbearing,
and have fewer children (‘later-longer-fewer’ policy) [11]. Despite concerns from social scientists and
demographers who proposed such ‘softer’ controls, the one-child policy was implemented in 1980, based on
the implications of Jian Song’s numerical solutions to the McKendrick equation. Rather than imposing a
maximal number of children, a minimum delay between two consecutive births [23] or a minimum birth age
could have been imposed. Such a policy would arguably have been more easily enforced and would have led
to fewer unintended consequences such as a skewed sex ratio and an elder-heavy age distribution. Here, we
retrospectively model such alternatives and make predictions as policies change.

Specifically, we extend the McKendrick age-structured model to incorporate a delay between successive
births by each female. In order to do so, we must explicitly delineate individuals who have not given birth
from thosewhohave given birth at least once. Imposed delays between successive births can then be formally
described by adjusting the birth rate function of the individuals who have given birth at least once. We solve
our model equations using parameters appropriate to 1981 China and compare predictions of the graded
policies with those of a strict one-child policy. We explore how the total population and age distribution
are affected by different values of imposed refractory periods and minimum birth age.

2. Mathematical model
When applying age-structured partial differential equation (PDE) models to two-sex populations, a
simple assumption is to consider only the density of females at time t with age a. The predicted
number of females with age between a and a + da is thus f (a, t)da. Indeed, unless the female
population is much larger than the male population (e.g. after a war), the female population can be
considered as the ‘limiting quantity’ that determines the number of births. In other words, the
frequency of births in the total population is relatively insensitive to the male population. The
McKendrick equations describing the female population density f (a, t) are formulated as

@

@t
fðt, aÞ þ @

@a
fðt, aÞ ¼ �mfðaÞfðt, aÞ, ð2:1aÞ

fðt, 0Þ ¼ h

ð1
0

beffðaÞfðt, aÞda ð2:1bÞ
and fð0, aÞ ¼ IfðaÞ, ð2:1cÞ
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where μf(a) represents the death rate of females of age a, βeff(a) is the observed birth rate of women of age a, η
is the fraction of births that produce girls, and If(a) is the age distribution of the initial population at t = 0.

Equation (2.1a) describes the time-evolution of the population, equation (2.1b) denotes the
boundary condition at age a = 0 describing the number of girls born at time t, and equation (2.1c)
specifies the initial condition. This model neglects the explicit mating-age male population which is valid
when η is maintained below 0.5, giving rise to more males than females. For humans, η≈ 0.48− 0.49
naturally (but this is compensated by a slightly higher mortality in males across all ages). With sex-
selective abortion, η can be even smaller [24]. If one were also interested in the male population m(t, a), it
would obey the same equations except with a male version of the death rate μm(a), an initial condition
Im(a), and a boundary condition for male newborns: mðt, 0Þ ¼ ð1� hÞ Ð10 beffðaÞfðt, aÞda.
rnal/rsos
R.Soc.Open

Sci.9:211619
2.1. Delayed birth model
Now, in order to introduce a delay between consecutive births, we need to further partition the female
population into those who have never had a child and those who have already had a child (and who may
need to wait a certain time before having another one). The population densities for each of these classes
of females are defined as:

f0(t, a): the population density of childless females. The quantity f0(t, a)da is the number of females with
age between a and a + da and who have never had a child up to the current time t.

f (t, a, τ): the population of females who have had at least one child. The quantity f (t, a, τ)dadτ is the
number of females at time t whose age is between a and a + da and whose youngest child’s
age is between τ and τ + dτ.

We will assume that these two populations have the same age-dependent death rate μf(a) but give birth at
different rates β0(a) and β(a, τ), respectively. We also define the total female population density as

ftotðt, aÞ ¼ f0ðt, aÞ þ
ða
0
fðt, a, tÞdt, ð2:2Þ

and the total number of females at time t as

nðtÞ ¼
ð1
0

ftotðt, aÞda ¼
ð1
0

f0ðt, aÞdaþ
ð1
0

da
ða
0
dtfðt, a, tÞ: ð2:3Þ

The age-structured McKendrick equations for f0 and f are:

@

@t
f0ðt, aÞ þ @

@a
f0ðt, aÞ ¼ �(mfðaÞ þ b0ðaÞ)f0ðt, aÞ, ð2:4aÞ

@

@t
fðt, a, tÞ þ @

@a
fðt, a, tÞ þ @

@t
fðt, a, tÞ ¼ �(mfðaÞ þ bða, tÞ)fðt, a, tÞ, ð2:4bÞ

f0ðt, 0Þ ¼ h

ð1
0

b0ðaÞf0ðt, aÞdaþ
ð1
0

da
ða
0
dt bða, tÞfðt, a, tÞ

� �
, ð2:4cÞ

fðt, a, 0Þ ¼ b0ðaÞf0ðt, aÞ þ
ða
0
bða, tÞfðt, a, tÞdt ð2:4dÞ

f0ð0, aÞ ¼ I0ðaÞ and fð0, a, tÞ ¼ Iða, tÞ: ð2:4eÞ
Equation (2.4a) describes the evolution of f0 as in the classicalMcKendrick equation (cf. equation (2.1a)) with
birth rate β0(a). For f(t, a, τ), we must introduce the new variable τ to mark the time since the last birth. This
brings in another convection term in equation (2.4b) since τ increases alongside time t and age a. The birth
rate β for this population can depend on both the age a and the time τ since the last birth. Equation (2.4c)
gives the number of girls f0(t, 0) born at time t, while equation (2.4d) describes f(t, a, 0), the density of
females at age a at time t who just gave birth. These individuals can arise from the f0 population (females
who have never had a child) or from the f population itself (females who have already had at least one
child). Thus, the boundary conditions (2.4c) and (2.4d) couple the two populations f0 and f. Finally,
equations (2.4e) simply describe the initial conditions for f0 and f.

In appendix A, we explicitly show that the total female population density ftot(t, a) (equation (2.2))
satisfies the standard age-structured McKendrick equation

@

@t
ftotðt, aÞ þ @

@a
ftotðt, aÞ ¼ �mfðaÞftotðt, aÞ: ð2:5Þ
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Within a model that explicitly considers the time τ since the last childbirth, we can easily describe an
imposed hypothetical policy that applies a refractory period δ between births. After having a child
and before this refractory period (0≤ τ≤ δ) expires, the birth rate β(a, τ) can be set to 0. As a
preliminary description, we will consider a policy-modified (truncated) birth rate function

bða, tÞ ¼ b0ðaÞ1ðt, dÞ, ð2:6Þ
where the indicator function 1ðt, dÞ ¼ 1 for τ > δ and 1ðt, dÞ ¼ 0 for τ≤ δ. This form assumes that once the
imposed refractory period has passed, the birth rate immediately rises back to a value associated with
the person’s current age.
 g/journal/rsos

R.Soc.Open
Sci.9:211619
2.2. Asymptotic behaviour
We first analyse the asymptotic behaviour of our model. An important feature of renewal transport
equations such as the McKendrick model is that as t→∞, the total population n(t) will
grow exponentially (in the absence of nonlinear regulation terms [25]), while the normalized, age-
dependent population density converges to a time-independent stationary distribution (see Perthame [5],
ch. 3 and Arino [26]). This property is independent of the initial condition. We will assume that this
steady-state asymptotic property arises in our two-component, three-variable model; i.e. the normalized
densities f0(t, a)/n(t) and f(t, a, τ)/n(t) converge to stationary distributions. We denote the stationary
limits as

lim
t!1

f0ðt, aÞ
nðtÞ ; h0ðaÞ and lim

t!1
fðt, a, tÞ
nðtÞ ; hða, tÞ: ð2:7Þ

We also define the distribution associated with the total female population as

lim
t!1

ftotðt, aÞ
nðtÞ ; htotðaÞ ¼ h0ðaÞ þ

ða
0
hða, tÞdt, ð2:8Þ

where
Ð1
0 htotðaÞda ¼ 1. If we assume that f0(0, a)/n(0) = h0(a) and f(0, a, τ)/n(0) = h(a, τ) for any a, τ at some

initial time t = 0, then f0(t, a)/n(t) = h0(a) and f(t, a, τ)/n(t) = h(a, τ) hold for any t≥ 0.
From equation (2.4a), we have

1
f0ðt, aÞ

@f0ðt, aÞ
@t

¼ � 1
f0ðt, aÞ

@f0ðt, aÞ
@a

� mfðaÞ

¼ � nðtÞ
f0ðt, aÞ

1
nðtÞ

@f0ðt, aÞ
@a

� mfðaÞ

¼ 1
h0ðaÞ

dh0ðaÞ
da

� mfðaÞ:

ð2:9Þ

Thus, [∂f0(t, a)/∂t]/f0(t, a) is independent of t. Moreover, for any a, a0, τ

f0ðt, aÞ
fðt, a0, tÞ ¼

h0ðaÞ
nðtÞ

nðtÞ
hða0, tÞ ¼

h0ðaÞ
hða0, tÞ , ð2:10Þ

is also independent of t so that

@

@t
f0ðt, aÞ

fðt, a0, tÞ
� �

¼ 1

fðt, a0, tÞ2 fðt, a0, tÞ @
@t

f0ðt, aÞ � f0ðt, aÞ @
@t

fðt, a0, tÞ
� �

¼ 0: ð2:11Þ

Thus, for any a, a0, τ,

1
f0ðt, aÞ

@f0ðt, aÞ
@t

¼ 1
fðt, a0, tÞ

@fðt, a0, tÞ
@t

¼ 1
f0ðt, a0Þ

@f0ðt, a0Þ
@t

: ð2:12Þ

Equations (2.9) and (2.12) show that [∂f0(t, a)/∂t]/f0(t, a) is independent of both t and a, allowing us to
define a constant that describes the stationary growth rate

l ¼ 1
f0ðt, aÞ

@f0ðt, aÞ
@t

¼ 1
fðt, a, tÞ

@fðt, a, tÞ
@t

¼ 1
ftotðt, aÞ

@ftotðt, aÞ
@t

: ð2:13Þ

Thus, we can express solutions for the densities f0(t, a) and f (t, a, τ) in the form

f0ðt, aÞ ¼ Ch0ðaÞ elt and fðt, a, tÞ ¼ Chða, tÞ elt, ð2:14Þ
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where C is a constant. After using these expressions in equations (2.4), we find the equations for the
stationary distributions

d
da

h0ðaÞ ¼ �(mfðaÞ þ b0ðaÞ þ l)h0ðaÞ, ð2:15aÞ
@

@a
hða, tÞ þ @

@t
hða, tÞ ¼ �(mfðaÞ þ bða, tÞ þ l)hða, tÞ, ð2:15bÞ

h0ð0Þ ¼ h

ð1
0
b0ðaÞh0ðaÞdaþ

ð1
0

da
ða
0
dt bða, tÞhða, tÞ

� �
ð2:15cÞ

and hða, 0Þ ¼ b0ðaÞh0ðaÞ þ
ða
0
bða, tÞhða, tÞdt: ð2:15dÞ

Next, using equation (2.5), we find

d
da

htotðaÞ ¼ �(mfðaÞ þ l)htotðaÞ, ð2:16Þ

which is solved by

htotðaÞ ¼ htotð0Þ exp �al�
ða
0
mfða0Þda0

� �
: ð2:17Þ

We can then define the effective whole-population birth rate function

beffðaÞ ¼
b0ðaÞh0ðaÞ þ

Ð a
0 bða, tÞhða, tÞdt
htotðaÞ , ð2:18Þ

which describes the overall birth rate weighted over the entire stationary population. This population-
averaged birth rate βeff(a) corresponds to that used in the basic lumped model (equation (2.1b)) and is
the quantity that can be directly extracted from birth data that provide women’s ages at time of birth,
but that may not distinguish whether females are first-time mothers. We prove in appendix B that
given βeff(a), the new-mother birth rate function can be calculated from

b0ðaÞ ¼
beffðaÞ

1� Ð d
0 beffða� tÞdt

, ð2:19Þ

which then allows us to reconstruct β(a, τ) from equation (2.6). Using βeff, the boundary condition for
equation (2.16), the counterpart to equation (2.15c), can be written as

htotð0Þ ¼ h

ð1
0
beffðaÞhtotðaÞda: ð2:20Þ

Finally, after using the solution in equation (2.17) for htot(a) in equation (2.20), we find an equation for λ:

zðlÞ ; h

ð1
0
beffðaÞ exp �al�

ða
0
mfða0Þda0

� �
da ¼ 1: ð2:21Þ

The function z(λ) is monotonically decreasing with λ and obeys the limits lim λ→+∞ z(λ) = 0 and lim λ→−∞

z(λ) = +∞. Thus, equation (2.21) has a unique solution that can easily be found numerically. From
equation (2.21), the solution for λ—the net population growth rate—clearly increases with βeff(a) and
decreases with μf(a).

With β0(a) and λ determined by equations (2.19) and (2.21), respectively, we can explicitly find h(a, τ).
First, we use the normalization condition

Ð1
0 htotðaÞda ¼ 1 on equation (2.16) to explicitly find htot(0) in

terms of λ and μf(a). Since h(0, τ) = 0, we have h0(0) = htot(0), which allows us to explicitly express the
solution to equation (2.15a):

h0ðaÞ ¼ h0ð0Þ exp �al�
ða
0

�
mfða0Þ þ b0ða0Þ

�
da0

� �
: ð2:22Þ

Next, we use equation (2.15d) and equation (2.18) to eliminate β(a, τ) and find h(a, 0) = htot(a)βeff(a),
which is known. Thus, we can explicitly calculate h(a, τ) by solving equation (2.15b) using the
method of characteristics:

hða, tÞ ¼ hða� t, 0Þ exp �tl�
ða
a�t

�
mfða0Þ þ bða0, a0 � aþ tÞ�da0� �

: ð2:23Þ
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To summarize, starting from βeff(a), μf(a), η (measured, say), and δ, we can compute the growth rate λ
numerically, then analytically reconstruct β0(a), β(a, τ), h0(a) and h(a, τ).

We now use the Chinese national census data recorded in 1982 [20] to infer the overall birth rate
βeff(a) and the female death rate μf(a) functions in China in 1981. Although gestation imposes a
hard refractory period of δ≈ 9 months, some time is needed to recover from childbirth and the birth rate
should more gradually recover. Specifically, in 1981 China, extended breastfeeding was common, which
prevents the next pregnancy [27]. Thus, we will assume the birth rate returns to normal approximately
only after about 2 years. Therefore, when there is no policy that controls the interval between births, we
set d ¼ 2 years such that β(a, τ) = 0 for τ < 2 years and β(a, τ) = β0(a) for t . 2 years. For other societies,
this natural refractory period might be shorter. Using δ = 2 and equation (2.19), we calculate β0(a) from
βeff(a) derived from data. These rates are illustrated in figure 1. Note that β0(a) for 1981 has already been
mildly affected by the incipient birth-control policies in China.

Using the birth rate βeff(a) and death rate μf(a) shown in figure 1, we solve equations (2.15) to find
h0(a) and h(a, τ), and plot them with htot(a) given by equation (2.17) in figure 2a,b. To explore the
effects of an imposed refractory period, we first set d ¼ 2 years, apply the newborn sex ratio of
China in 1981, η = 0.48, and solve equation (2.21). We find λ≃ 0.005 > 0, indicating an exponentially
growing total population. This stationary growth rate is much smaller than the actual growth rate of
China in 1981, which is 0.0146. One reason is that in 1981, the proportion of younger females is much
higher than that in the stationary distribution htot. The shape of htot(a) is consistent with this growth
as it is monotonically decreasing, indicating that every new generation has a larger population than
the previous one. In figure 3, we see how increases in the refractory period δ decrease the asymptotic
growth rate λ and affect the distribution htot(a). A negative overall birth rate λ < 0 (i.e. an
asymptotically decaying population) arises when d * 3:22 years ≈39 months. As soon as λ < 0, the
distribution htot(a) becomes non-monotonic, and a peak in the female population distribution arises at
a finite age a > 0.

If δ is set sufficiently large, a female cannot have a second child, and the outcome is equivalent to a
strict one-child policy. We use the terminology ‘strict one-child policy’ for the scenario in which each
female can have strictly no more than one child, while we use ‘one-child policy’ to refer to the actual
policy realized in practice. From 1980 to 1990, the one-child policy contained many exceptions,
allowing one to bear more than one child [28]. Our formulation is valid only in the asymptotic case
with a fixed delay δ that remains unchanged for a long period of time. For practical modelling of
policies in which delays δ are used as a time-dependent control variable, such as China’s 1980 one-
child policy and its subsequent modification in 2015, it is necessary to analyse the full model that
delineates the two female populations.
2.3. Temporal evolution
As was used to predict the effects of the one-child policy, we use China’s female age distribution in 1981
[20] as a starting point to explore how the total population evolves under different values of the imposed
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to approximately 65.
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Figure 4. Evolution of the population for different delays. (a) Initial female subpopulation distributions in 1981 China
(calculated from Population Census Office under the State Council [20]). (b) Evolution of the total female population n(t) for
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delay δ. Since the data only contain total female numbers Itot(a) and not I0(a) and I(a, τ) individually, we
use I0(a) = Itot(a)h0(a)/htot(a) and I(a, τ) = Itot(a)h(a, τ)/htot(a) to reconstruct these initial age distributions.
These initial distributions are plotted in figure 4a. With these initial conditions, we can solve equation
(2.4a,b) with the method of characteristics to find the full age and time dependence of the female
populations

f0ðt, aÞ ¼ f0ðt� a, 0Þ exp �
ða
0

�
mfða0Þ þ b0ða0Þ

�
da0

� �
if t . a, ð2:24aÞ

f0ðt, aÞ ¼ I0ða� tÞ exp �
ða
a�t

�
mfða0Þ þ b0ða0Þ

�
da0

� �
if t � a, ð2:24bÞ

fðt, a, tÞ ¼ fðt� t, a� t, 0Þ exp �
ða
a�t

�
mfða0Þ þ b(a0, a0 � ða� tÞ)�da0� �

if t . t ð2:25aÞ

fðt, a, tÞ ¼ Iða� t, t� tÞ exp �
ða
a�t

�
mfða0Þ þ b(a0, a0 � ða� tÞ)�da0� �

if t � t: ð2:25bÞ
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Females are fertile only between sexual maturity and menopause. Thus, we set amin (approx. 12 years)
and amax (approx. 50 years), so that β0(a) = β(a, τ) = 0 for a < amin or a > amax. Recall that an imposed
delayed-birth policy is manifested by β(a, τ) = 0 for τ < δ. Equation (2.4c) becomes

f0ðt, 0Þ ¼ h

ðamax

amin

b0ðaÞf0ðt, aÞdaþ
ðamax

amin

da
ða
d

dt bða, tÞfðt, a, tÞ
� �

: ð2:26Þ

For t≤ γ≡min{amin, δ}, the f0(t, a) and f(t, a, τ) terms in the integrands in equation (2.26) can be solved by
equation (2.24b) and equation (2.25b). Thus, we can express f0(t, 0) in terms of I0(a), I(a, τ), β0(a), β(a, τ) and
μf(a). Using equations (2.24), we can calculate f0(t, a) for any a and t≤ γ. Under the imposed refractory
period, equation (2.4d) becomes

fðt, a, 0Þ ¼ f0ðt, aÞb0ðaÞ þ
ða
d

bða, tÞfðt, a, tÞdt: ð2:27Þ

If t≤ γ, we can also use equation (2.25b) for f(t, a, τ) in the integrand of equation (2.27), and then use the
solved f0(t, a) to express f (t, a, 0) in terms of I0(a), I(a, τ), β0(a), β(a, τ) and μf(a). Using equations (2.25), we
can calculate f (t, a, τ) for any a, τ and t≤ γ. Finally, using f0(γ, a), f (γ, a, τ) as the initial conditions, we can
solve f0(t, a), f (t, a, τ) for t≤ 2γ. Repeating this procedure, we can use I0(a), I(a, τ), β0(a), β(a, τ) and μf(a) to
calculate f0(t, a) and f (t, a, τ) for any t, a, τ.

Using the fundamental rates β0(a), μf(a) and β(a, τ) as those used in the previous subsection for the full
model (see figure 1 and equation (2.6)), we use the above procedure to construct the total female
population n(t) (see equation (2.3)). The evolution of n(t) over one century, under different interbirth
delays, are plotted in figure 4b. At long times, the total population exhibits the asymptotic behaviour
predicted by the eigenvalues shown in figure 3a. For d * 3:22 years, the total population will decrease
exponentially. Because the total population growth rate is most sensitive to small values of imposed
delay δ, even a delay of d � 4 years is sufficient to dramatically reduce population over the next 100
years, compared to the δ = 2 case of no refractory period.

The formal results and analyses above can be generalized to include time dependent parameters μf(t,
a), β0(t, a), β(t, a, τ), and even δ(t) to reflect social and policy changes. In this case, an imposed refractory
period would be defined by the time-dependent birth rate function bðt, a, tÞ ¼ b0ðt, aÞ1ðt . dðtÞÞ and the
population densities will need to be evaluated numerically.
3. Results and discussion
Our basic structured population model can be modified and applied to different scenarios and policies to
make predictions about a number of potentially relevant quantities. We focus on the population dynamics
in China under different control scenarios, paying particular attention to age and sex distributions.

3.1. Predictions and comparison to data from China
First, we use parameters inferred from 1981 Chinese data in our model to predict population growth
for different values of δ. When we compare predicted net growth rates with those derived from 1981
to 2020 data, shown in figure 5a, we see that (i) during 1981–1990, the observed growth rate is close
to that when δ = 21; (ii) from 1991 to 2010, the observed growth rate was close to that predicted from a
model with δ = 5, possibly due to harsher policies like coerced abortion [28]; (iii) after 2011, the
observed growth rate rose to a level close to that of a model with δ = 3∼ 4, indicating a de facto
relaxation of the one-child policy. Indeed, after 2011, policies that encouraged births were initiated.
Starting in 2011, a couple was allowed to have up to two children if both parents never had siblings.
Then, starting in 2014, a couple can have up to two children if at least one of the parents never had a
sibling. Finally, starting in 2016, couples could bear up to two children regardless of their sibling
status [30]. These policies might explain the flattening and subsequent increase in the net growth rate
starting about 2011. However, the effects of these policies might be temporary. After the two-child
policy in 2016, the net growth rate increased to the level consistent with a δ = 3 model but soon
returned to the level closer a δ = 4 model. The actual growth rate is higher than in the δ =∞, strict
one-child policy model. This indicates that many couples had, legally or illegally, more than one child.
1This means that there was effectively no interbirth period policy and that the adjusted birth rate β0(a) was not changed much during
the lax birth-control policies during this period [29].
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Figure 5. Predictions and comparison with real data. (a) Net growth rates in 1981–2020, observed (‘obs’) and predicted growth
rates (starting from 1981 conditions) under different policies δ. (b) Predictions of the female population in 2021–2100 under
different values of δ.
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Starting in 2021, a new policy allows any couple to have up to three children without penalty. We
make different predictions for the effect of this three-child policy. The optimistic prediction is that the
policy can fully stimulate childbearing to the point that the net growth rate can reach the level
predicted by a δ = 2 model, but this could be realized only if behaviour and cultural-economic
changes have not affected an intrinsic propensity for childbearing. Another possibility is that the
policy has no significant effect so that the net growth rate will only increase modestly and transiently
before effectively reducing back to that consistent with a δ = 4 model. See figure 5b for different
predictions of population over the 2021–2100 time frame.

3.2. Minimum childbearing age and population ageing
Besides mandating a refractory period between births, another method of population control is to impose
a minimum childbearing age. The minimum age amin is thus set by policy rather than by physiology. For
example, starting in 1985, in Yicheng county, Shanxi province, a couple could bear two children, but the
first child was allowed only after the mother turned 24, and the second child was allowed only after the
mother turned 30 [31].2 One side-effect of population control is a distribution shifted toward older ages.
In China, the percentage of seniors (65+) increased from 5% in 1981 to 13% in 2020 [32]. Policies such as
imposing interbirth delays δ and minimum childbearing ages amin can both affect the long-term senior
(65+) population. Figure 6a shows a contour plot of the percentage of seniors as a function of
imposed δ and amin. In order to maintain the senior population under 20% (the red dashed line), the
overall policy must not be too drastic. Nonetheless, with two strategies, a balanced combination can
be used. For example, one can set amin = 26, δ = 2, or amin = 24, δ = 4, or amin = 21, δ = 5 and still prevent
the senior population from exceeding 20% far in the future.

Although increasing the minimum childbearing age amin should reduce the rate of childbirth, we
observe a counter-intuitive scenario in which the net growth rate is non-monotonic in amin. Under the
strict one-child policy (i.e. δ =∞), increasing amin will first increase the stationary net growth rate λ
before decreasing it, as shown in figure 6b. Under a perpetual strict one-child policy, the population in
each successive generation is roughly halved and the total number of future newborns is roughly the
current population. Although decreasing amin can temporarily increase the total population, it
accelerates the ‘halving process’ in the long run since the interval between successive generations is
shorter. When amin is not large, almost every woman can have one child anyway. Further increasing
amin will decrease λ as more women start to be pushed past their childbearing years without giving
birth; thus, a maximum in the growth rate λ arises at amin≈ 29.

3.3. Female population fraction and interbirth delay
We used η = 0.48, the fraction of female births 1981 China, to generate the results presented in §2. Owing
to subsequent sex-selective abortions biased towards males, the value of η dropped to 0.45 in 2005 before
2In China, the legal marriage age for females is 20 implying an existing soft constraint of amin≈ 21.



15
–0.06

–0.05

–0.04

–0.03

st
at

io
na

ry
 n

et
 g

ro
w

th
 r

at
e 

l 
(1

 y
ea

rs
)

2

4

22

0.16
0.18

0.22
0.24

0.26

0.28

0.28
0.30

0.32

0.32
0.34

0.28

0.24

0.26

0.28

0.30

0.30

0.20

0.20

0.22 0.24

0.26

24 26 28

minimum birth age a
min

 (years)

30

6

8

10

0.10

0.15

0.20

0.25

0.30

0.35

0.40

in
te

rb
ir

th
 d

el
ay

 δ
 (y

ea
rs

)

se
ni

or
 p

op
ul

at
io

n 
fr

ac
tio

n

20 25

minimum birth age a
min

 (years)

30

(a) (b)

Figure 6. The effect of adjusting the minimum childbearing age. (a) Increasing the interbirth delay δ and increasing the minimum
childbearing age amin have similar side effects of increasing the percentage of senior population. The red dashed line indicates a
dangerous senior population percentage, 20%. (b) Under the strict one-child policy (namely, δ =∞), when we increase the
minimum childbearing age amin, the stationary net growth rate λ will first increase then decrease.

0.30
0.500.450.40

0.40

0.40

0.38

0.36

0.34

0.42

0.44

0.46

0.48

0.52
0.52

0.50

0.40

0.38

0.36

0.34

0.42

0.44

0.46

0.48

0.40

0.38

0.36

0.34

0.42

0.44

0.46

0.48

0.50
0.50

0.50

female birth fraction   h
0.350.30

0.35

0.40
to

ta
l f

em
al

e 
po

pu
la

tio
n 

fr
ac

tio
n

0.45

0.50

5

10

15

25

20

in
te

rb
ir

th
 d

el
ay

 d
 (

ye
ar

s)

30

Figure 7. Dependence of the stationary female fraction on η and δ. Increasing the fraction of female births η and the interbirth
delay δ can both increase the stationary female population fraction. The red dashed line indicates conditions for 50% females.

royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.9:211619
10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

02
 J

ul
y 

20
22

 

gradually increasing [24,33,34]. We can alter the value of η and calculate the stationary female fraction of
total population, which is also affected by the interbirth delay δ. Figure 7 illustrates the stationary female
percentage as a function of η and δ. When δ = 2, the stationary female percentage is approximately 1%
higher than the female percentage η at birth. When we fix η and increase δ, the stationary female
fraction also increases. When δ =∞, the stationary female population is approximately 3% higher
than η. For larger δ, the stationary age distribution is shifted to larger ages. Since the female death
rate μf(a) is lower than the male death rate μm(a) at larger ages a, the female percentage increases with
age (in 1981 China, newborns were 48% female while 65+ seniors were 56% female).
3.4. Behavioural response to policies
We have discussed the policy of applying a refractory period between births and predicted its effects. We
assume that the birth rate returns to normal after the refractory period, meaning that people obey this
policy and do not respond with compensatory behaviours. In reality, people who want to have more
children might mitigate the effects of control policies by, for example, giving birth again immediately
after the end of the refractory period following the previous birth. In addition to this ‘catch up’
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strategy to recover from the ‘missed opportunity,’ people might also prefer to have the first child earlier,
so that the refractory period finishes at a younger age.

We propose a model that considers possible behavioural responses and compare it with a no-
response model. (1) For females of age a who have just finished their refractory period, the birth rate
for the following year (only) will be set to β0(a)c1 instead of simply β0(a). We can model the
compensatory increase of birth rate after the refractory period by c1 = 1 + 0.1 ×min{δ− 2, 10} > 1. When
the refractory period δ is longer, people are more likely to more quickly make up for the lost
opportunity. (2) For females of age a who have not had children, if a + δ≤ 40, the birth rate, instead of
simply being β0(a), will be set to β0(a)c2, where c2 = 1 + 0.05 ×min{δ− 2, 10}. This means that females
prefer to have the first child earlier, if they know that they are young enough to have another child
after the refractory period (the age will be a + δ at that future time).

Figure 8 compares predictions from the standard no-response model (red) to those from a behavioural
response model (blue). As expected, behavioural responses blunt the policy-induced decreases in the
stationary growth rate (figure 8a) and the total population (figure 8b), resulting in higher-than-expected
growth and populations. For an imposed δ, a compensatory behavioural response model leads to a
higher stationary growth rate. In other words, if the behavioural responses of this example are included,
the imposed delay δ would have to be about 1–2 years longer than in the absence of behavioural
response in order to achieve the same overall growth rate (for intermediate delays d � 5�15 years).
However, if the refractory period is set very long (d * 20 years), our proposed behavioural responses are
futile since females are irreversibly moved past their fertility window.

3.5. Comparison between China and Japan
We have examined the effect of applying a refractory period policy in China, which has implemented
various birth-control policies over past four decades. To better study this interbirth delay, we apply
our model to Japan, which does not have enforced polices on population control. We use Japan’s 2000
population data as a starting point [35]. For Japan, we use its 2000 birth rate, which was much lower
than that of 1981 China.

Figure 9 compares the stationary growth rates between China and Japan, imposing different
refractory periods δ. Since Japan has a much lower growth rate β0, with the same δ, the stationary
growth rate of Japan is lower than that of China. When δ is sufficiently large, since each female can
have at most one child, the difference between China and Japan diminishes. In fact, the limiting high-
δ stationary growth rate of Japan is slightly higher than that of China. Since the childbearing age is
older in Japan, the gap between two successive generations is longer. As observed in figure 6b, under
large-δ, sub-replacement conditions, a moderately longer gap between generations can increase the
stationary (very long-term) growth rate.
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4. Summary and conclusion
We have formulated a ‘continuum’ of birth-control policies for population management in which the
strict one-child policy is a limiting case. Our approach is based on explicitly incorporating a refractory
period between births. In general, our age- and gestation-period structured model can also apply to
organisms in which the gestation time is appreciable compared to an organism’s window of fertility.
For example, animals such as the Greater cane rat (Thryonomys swinderianus), the Pacarana (Dinomys
branickii) and the Steenbok (Raphicerus campestris) have gestation periods approximately 15% of their
fertility window [36]. Although a single gestation period is about 3% of the childbearing period in
humans [37], socially imposed refractory periods can be much longer (and infinite in a strict one-child
policy). Thus, our model provides a natural way to test how imposed tunable interbirth refractory
periods δ affect the predicted total female population and its steady-state age distribution. For long
delays δ, the model approaches the strict one-child policy as a larger fraction of women are pushed
past menopause.

In our mathematical analysis, we found a number of analytic or closed-form solutions to relevant
demographic quantities such as the steady-state age distribution. We then considered an alternative
scenario in which ‘lax’ birth control policies that was being implemented in 1981 are kept, along with
an additional policy of an imposed refractory period between births. Using 1981 as the starting point,
we predicted population levels and compared them to the actual, realized populations. By applying a
refractory period δ between births and using 1981 China birth rates, we provided a retrospective
analysis and arrived at a number of quantitative conclusions. Our analyses assumed that the birth rate
β0 and death rate μ did not change in the intervening years and that the population adhered to the
birth-control policies without further behavioural responses. We concluded that: (i) when
d * 3:2 years, the total population will not grow in the long run (figure 3a); (ii) when d � 4 years, the
total population in China would have always been maintained under 1.45 billion (figure 4b);
(iii) when d � 6 years, the net growth rates during 1990–2010 (when a harsher one-child policy was
applied) would be as low as what was realized (figure 5a); (iv) without increasing the minimum
childbearing age, when d � 5 years, the stationary senior population would be maintained under 20%
(figure 6a).

Such predictions assume the adjusted birth rate β0(a) does not change over time. This assumption is
definitely unrealistic, since many important socio-economic factors can affect birth rate distributions. The
decrease of birth rate in China (illustrated in figure 4a) is not due solely to birth-control policies. After
1980, female education increased, which had the statistically significant effect of decreasing the birth
rate [38]. Additional evidence consistent with an extra-policy influence on birth rates in China is the
increase in the average age of first childbirth (which one expects to be less affected by policies) from
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24.3 years to 26.9 years from 2006 to 2016 [39]. Moreover, we expect behavioural responses to policies that
could mitigate their effectiveness. Since it is difficult to separate and quantify the effects of socio-
economic factors and behavioural responses on birth rates, we did not explicitly incorporate these
factors in our model. Nonetheless, we discussed how policies can be implemented through different
modifications of age- and refractory period-dependent birth rate functions. For example, we
considered a population-control policy whereby a minimum birth age amin is imposed. Here, we
found the counterintuitive result that under a strict one-child policy, increasing amin first increases the
stationary net growth rate, before decreasing it as amin is further increased.

Age-structured models can also be generalized to include additional subpopulations, such as those
arising in cell division [40] and disease propagation [41] models. For example, in the birth control
context, different generations and family structure can be enumerated in order to predict the effects of
policies such as those implemented in 2011 and 2014 that consider the sibling status of would-be
parents, allowing those without siblings more latitude in childbirth. Additional concepts from
sociology and response to socioeconomic and political influences can also potentially be integrated for
a more complete framework of population dynamics and demography. The ideas and mathematical
tools in this paper can be adapted to other fields. For example, an economist or a sociologist might
study the cultural norms regarding child spacing and use our models to connect child spacing to
growth rates.
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Mathematical appendices
Appendix A. The equation of ftot(t, a)
We show by direct substitution that the total female population density ftot(t, a) satisfies the standard age-
structured McKendrick equation. Substitution of equation (2.2) into equation (2.5) and expanding,

@

@t
ftotðt, aÞ þ @

@a
ftotðt, aÞ ¼ @

@t
f0ðt, aÞ þ @

@a
f0ðt, aÞ

þ
ða
0

@

@t
fðt, a, tÞdtþ

ða
0

@

@a
fðt, a, tÞdt

þ fðt, a, aÞ þ
ða
0

@

@t
fðt, a, tÞdt�

ða
0

@

@t
fðt, a, tÞdt

¼ �(mfðaÞ þ b0ðaÞ)f0ðt, aÞ �
ða
0

�
mfðaÞ þ bða, tÞ�fðt, a, tÞdt

þ fðt, a, aÞ � fðt, a, aÞ þ fðt, a, 0Þ

¼ �mfðaÞftotðt, aÞ � b0ðaÞf0ðt, aÞ �
ða
0
bða, tÞfðt, a, tÞdt

þ b0ðaÞf0ðt, aÞ þ
ða
0
bða, tÞfðt, a, tÞdt

¼ �mfðaÞftotðt, aÞ:

ðA 1Þ

https://github.com/YueWangMathbio/ChildPolicy
https://github.com/YueWangMathbio/ChildPolicy
https://github.com/YueWangMathbio/ChildPolicy
https://doi.org/10.5281/zenodo.6394805
https://doi.org/10.5281/zenodo.6394805
https://doi.org/10.5281/zenodo.6394805
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Appendix B. Relation between βeff(a) and β0(a)
In this appendix, we prove equation (2.19), the link between βeff(a) and β0(a). In the following, assume
τ≤ δ. In equation (2.23), β(a0, a0 − a + τ) = 0 for any a− τ < a0 < a. Thus, we have

hða, tÞ
hða� t, 0Þ ¼ exp �tl�

ða
a�t

mfða0Þda0
� �

, ðB 1Þ

while from equation (2.17), we have

htotðaÞ
htotða� tÞ ¼ exp �tl�

ða
a�t

mfða0Þda0
� �

: ðB 2Þ

Thus,

htotðaÞ
htotða� tÞ ¼

hða, tÞ
hða� t, 0Þ : ðB 3Þ

From equations (2.15d) and (2.18), we have

hða� t, 0Þ ¼ beffða� tÞhtotða� tÞ: ðB 4Þ
Upon combining equations (B 3) and (B 4), we arrive at

hða, tÞ ¼ beffða� tÞhtotðaÞ: ðB 5Þ
Since equation (B 5) is valid for any τ≤ δ, we have

ðd
0
beffða� tÞdt ¼

Ð d
0 hða, tÞdt
htotðaÞ : ðB 6Þ

Equation (2.18) can be transformed into

beffðaÞ ¼ b0ðaÞ
h0ðaÞ þ

Ð a
d hða, tÞdt

htotðaÞ ¼ b0ðaÞ 1�
Ð d
0 hða, tÞdt
htotðaÞ

" #
: ðB 7Þ

Combining equations (B 6) and (B 7), we obtain beffðaÞ ¼ b0ðaÞ½1�
Ð d
0 beffða� tÞdt� and thus

b0ðaÞ ¼
beffðaÞ

1� Ð d
0 beffða� tÞdt

: ðB 8Þ
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