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ABSTRACT

Substances of abuse are known to activate and disrupt neuronal circuits in the brain reward system. We propose a simple and easily inter-
pretable dynamical systems model to describe the neurobiology of drug addiction that incorporates the psychiatric concepts of reward
prediction error, drug-induced incentive salience, and opponent process theory. Drug-induced dopamine releases activate a biphasic reward
response with pleasurable, positive “a-processes” (euphoria, rush) followed by unpleasant, negative “b-processes” (cravings, withdrawal).
Neuroadaptive processes triggered by successive intakes enhance the negative component of the reward response, which the user compen-
sates for by increasing drug dose and/or intake frequency. This positive feedback between physiological changes and drug self-administration
leads to habituation, tolerance, and, eventually, to full addiction. Our model gives rise to qualitatively different pathways to addiction that can
represent a diverse set of user profiles (genetics, age) and drug potencies. We find that users who have, or neuroadaptively develop, a strong
b-process response to drug consumption are most at risk for addiction. Finally, we include possible mechanisms to mitigate withdrawal
symptoms, such as through the use of methadone or other auxiliary drugs used in detoxification.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0082997

Drug abuse has been dramatically increasing worldwide over the
last 20 years. Despite attempts to implement effective prevention
programs, treatment options, and legislation, drug poisoning
remains a leading cause of injury-related death in the United
States, with a record of 100 000 fatal overdoses recorded in 2020.
Understanding how addiction to illicit substances develops is of
crucial importance in trying to develop clinical, pharmaceuti-
cal, or behavioral intervention. The neurobiological basis of drug
addiction is centered on disruptions to the dopamine system in
the brain reward pathway of users, which lead to neuroadaptive
changes and the need for larger or more frequent intakes to avoid
withdrawal symptoms. Despite the many qualitative descriptions
of the pathway to addiction, a concise mathematical represen-
tation of the process is still lacking. We propose a unified,
easily interpretable dynamical systems model that includes the
concepts of reward prediction error (RPE), drug-induced incen-
tive salience (IST), and opponent process theory (OPT). Specifi-
cally, we introduce a time-dependent reward function associated
with each drug intake. Physiological parameters evolve through

neuroadaptation, consistently with OPT, while user-regulated
drug intake is dependent on the most recent reward prediction,
consistent with RPE. Our model yields different distinct stages of
the addiction process that are cycled via a dynamical recursion.
Individual-specific parameters may be tuned to represent differ-
ent drug potencies, age, or genetic predispositions. Rich features
emerge, such as monotonically convergent or damped oscillatory
(yo-yo) progression toward full addiction. Finally, our model can
be used to explore detoxification strategies.

I. INTRODUCTION

Despite decades of medical, political, and legal efforts, sub-
stance abuse remains a major issue worldwide. The annual number
of overdose deaths in the United States has risen from about 20 000
in 2000 to over 70 000 in 2019,1 resulting in the highest drug mortal-
ity rate in the world at an economic cost of at least 740 billion USD
per year.2
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Our understanding of addiction, why and how it emerges, is
still incomplete, although several mechanisms of action have been
identified3,4 and modeled.5,6 Addictive substances hijack the meso-
corticolimbic pathways that govern our response to primary rewards
such as food, drink, and sex. Under normal conditions, primary
rewards increase levels of dopamine, the main neurotransmitter in
the brain reward system. Dopamine-strengthened neuronal con-
nections encode information on the reward and its utility,7,8 while
its release in the mesocorticolimbic pathways regulates incentive
salience, the want and seeking of rewards.9,10 To optimize future
responses, dopaminergic neurons respond differently to rewards
that deviate from expectations.11–13 The reward prediction error
(RPE) quantifies the discrepancy between a reward and its predic-
tion and plays a major role in learning: neural activity increases if the
reward is greater than expected (positive RPE) and decreases other-
wise (negative RPE).14–16 The RPE embodies reinforcement learning,
a key concept in psychology that has been modeled and applied to
many contexts, including drug addiction.5

The effects of addictive drugs on the brain are similar to that of
primary rewards; drugs, however, amplify desires in abnormal ways.
Viewed as rewards, cocaine, amphetamines, and morphine act faster
and increase dopamine levels two to ten times more than food or
sex,17–19 exaggerating the brain’s response to any drug-related cue.
The operational mechanisms of each drug type may be different, for
example, cocaine blocks the reuptake of dopamine, whereas heroin
binds to mu-opioid receptors that directly stimulate the release of
dopamine. Other molecular targets of drugs of abuse include the
neurotransmitters endorphin and enkephalin (particularly, in the
case of prescription opioids) and norepinephrine and glutamate.20,21

Signaling between different neurotransmitter types frequently leads
to secondary effects. Whether directly or indirectly activated, the
most common feature of drug intake is a dramatic increase in
dopamine signaling in the nucleus accumbens (NAc),22 which is the
process we will focus on in our modeling.

Incentive sensitization theory (IST) formalizes the concepts
illustrated above.23 Another relevant psychological concept is the
opponent process theory (OPT), whereby every emotional experi-
ence, pleasant or unpleasant, is followed by a counteracting response
to restore homeostasis. Within OPT, the consumption of drugs
induces an “a-process,” marked by euphoria, rush, and pleasure,
later compensated by a “b-process” marked by withdrawal symp-
toms and craving.24,25 For beginners, the pleasant a-process is more
intense and lasts longer than the unpleasant b-process. Continued
use leads to neuroadaptation, with the b-process appearing ear-
lier and lasting longer. Tolerance and dependence set in Refs. 26
and 27 as drug consumption becomes predominantly unpleasant.28

Examples of drug-dependent neuroadaptation include the reduc-
tion of postsynaptic D2 dopamine receptors,29 neuronal axotomy,30

decreased dopamine neuron firing,31 increases in the number of
AMPA receptors,32 and activation of D1-like receptors.33 Central
among the brain tissues responding to drug use is the ventral
tegmental area (VTA) whose dopaminergic neurons project to the
nucleus accumbens (NAc) shell and to the ventral pallidum (VP),
two of the brain’s pleasure centers associated with the a-process.
The neurobiological source of the b-process has been identified with
the subsequent activation of several stress circuits controlled by the
extended amygdala and the hypothalamus, disrupting the release of

stress related hormones or peptides such as CRH, norepinephrine,
dynorphin, or hypocretin, leading to aversive feelings.24,34–36

How drugs impact the brain reward system has been math-
ematically studied using dynamical systems,5,37–41 real-time neu-
ral networks,42,43 temporal-difference reinforcement learning,44 and
model-free learning models.45 While these models explain certain
observed features of the addiction process, a simpler, yet explicit
quantitative framework that unifies concepts from RPE, IST, and
OPT and allostasis is still lacking. Here, we construct and ana-
lyze a proof-of-principle mathematical model of the onset of drug
addiction, resolved at the individual drug intake time scale. Neu-
roadaptation is represented by changes in physiological parameters
consistent with RPE and OPT, informing changes to user behavior.
These changes induce further neuroadaptation, creating a feedback
loop that may lead to full addiction. We introduce measures to quan-
tify the overall reward resulting from a single drug intake and for the
reward prediction error; addiction is mathematically defined as the
state in which the overall reward is negative and the reward predic-
tion error is below a given threshold. These formulations allow us
to predict the unfolding of the addiction process depending on the
specific physiology and neuroadaptive profile of the user. Specifi-
cally, we find that, given the same drug, users who are more sensitive
to neuroadaptive changes in the b-process (or who have an ini-
tially elevated b-process response) are the ones whose progression
to addiction is faster than those who are less reactive. These more
resilient users may also display reward prediction errors that oscil-
late in value with each drug intake before permanently crossing the
threshold to addiction (“yo-yo” dynamics).

II. MATHEMATICAL MODEL

A. Dopamine release

We begin by describing the time-dependent activity D(t)
(e.g., firing rate) of dopaminergic neurons in the reward system
in response to the dopamine release that follows a single, initial
drug intake. Other rewards such as food, sex, etc., also stimu-
late dopamine release, however, it is known that drug-induced
dopamine release is an order of magnitude larger than what stim-
ulated by “natural” rewards.17 Experimental measurements show
a rapid rise in activity within a few minutes of intravenous drug
administration,46,47 followed by an exponential decay over 1-5 h.17

We propose

D(t) = 1e−δt, (1)

where 1 is the magnitude of the dopamine response and 1/δ is
the effective dopamine residence time, which includes the clearance
time of dopamine-stimulating drugs; typically, δ ∼ 0.2–1 h−1. For
simplicity, we measure time in units of δ, rescale t′ → δt, drop the
prime notation, and set D(t) = 1e−t. Since dopamine release is trig-
gered by drug intake, we, henceforth, use 1 as a proxy for drug
dosage. Although more complex pharmacokinetic models have been
developed to connect drug dose to dopamine activity,48 the time
dependence of dopamine activity qualitatively resembles a decaying
exponential except at very short times.

Chaos 32, 021102 (2022); doi: 10.1063/5.0082997 32, 021102-2

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 1. Schematic of a- and b-processes. Drug use activates the dopaminergic
neurons, which, in turn, activate the hedonic hotspots in the nucleus accumbens
that mediate the pleasurable “a-processes” wa, leading to euphoria and bliss.
Unpleasurable “b-processes” wb may follow, accompanied by cravings and with-
drawal symptoms. The relative magnitude of the two wa,b experiences may vary
among individuals and may depend on the stage of addiction. Dopamine-induced
activity is modeled as D(t) = 1e−δt where 1 is a proxy for drug dosing and
δ its typical degradation rate. The overall a-process is activated by D(t) via the
prefactor 0a, whereas the overall b-process is activated by the a-process via the
prefactor 0b. The activity of the a- and b-processes decay with rates α and β ,
respectively.

B. Single-dose drug-induced a- and b-processes

According to OPT and as described above, drug-induced
dopamine activity D(t) induces a pleasurable a-process, wa(t),
which, in turn, activates an unpleasant b-process, wb(t) (see Fig. 1).
We propose a deterministic model for wa,b(t) that incorporates
simple integrate-and-fire dynamics

dwa(t)

dt
= −αwa(t) + 0aD(t), (2)

dwb(t)

dt
= −βwb(t) − 0bwa(t), (3)

where 0a and 0b represent the coupling of D(t) to wa(t) and of
wa(t) to wb(t), respectively. The intrinsic decay rates of the a- and
b-processes are denoted α and β . The effects of intermittent nat-
ural rewards that induce dopamine release can be incorporated by
including an extra source to wa(t) in the form of a periodic or a
randomly fluctuating term. These non-drug terms would be much
smaller in magnitude than the drug source D(t), since drug induced
stimuli are much larger than non-drug ones.17 The periodic part
may represent, say, eating at regular intervals, whereas the fluctuat-
ing part might describe all other non-drug, pleasurable experiences
that occur at random times. Thus, a stochastic model might yield a
more complete description of the brain reward system and its many
inputs but we shall limit this study to the deterministic response
from well-defined drug intakes as presented in Eqs. (2) and (3).

The wa,b(t) processes generate the brain reward system’s per-
ception of the drug. While further complex processing and filtering
of wa,b(t) may be at play, we assume they are summed to yield the
dynamic, time-dependent response w(t|θ) = wa(t) + wb(t), where
θ = {1, α, 0a, β , 0b} are the parameters associated with the reward
perception process. Upon solving Eqs. (2) and (3), we find the
dynamic response w(t|θ) following a single, isolated dopamine

release and/or drug intake

w(t|θ) =
0a1

α − 1

[(

1 −
0b

β − 1

)

e−t −

(

1 −
0b

β − α

)

e−αt

−

(

0b

β − α
−

0b

β − 1

)

e−βt

]

. (4)

The time-integrated net response

W(θ) =

∫ ∞

0

w(t|θ)dt =
0a1

α

(

1 −
0b

β

)

, (5)

associated with a single, isolated dopamine release and/or drug
intake can be interpreted as a memory of the experience and can
be used as a benchmark for future decision-making. Note that the
amplitude factor 0a in Eqs. (4) and (5) adjusts the “hedonic” scale of
w(t|θ) and W(θ).

In Fig. 2(a), we plot w(t|θ) for 1 = 1, α = 0.5, 0a = 1, 0b

= 0.8, and β = 1.5 (orange curve I), β = 0.9 (green curve II), and
β = 0.45 (blue curve III). These representative response curves
w(t|θ) are (I) always positive, (II) turning negative with positive
integral W(θ) > 0, and (III) turning negative with negative inte-
gral W(θ) < 0. Type I responses are typical of healthy, naïve users
who for the most part experience only the pleasurable a-process.
For smaller β , larger 0b, and/or larger α (0b < β < 0b + α), w(t|θ)

exhibits a type II response, which is negative at late times but yields
a positive net response W(θ) > 0. For even smaller β and/or larger
0b, the response is type III: the negative b-process overtakes the
a-process and the overall experience is negative with W(θ) < 0.
Type II and type III responses are typical of moderate and addicted
users, respectively. Figure 2(b) shows the density plot of the time
t∗ when the dynamic response w(t∗|θ) = 0, as a function of β and
0b at α = 0.5. For β ≥ 0b + α, there are no finite solutions t∗ to
w(t∗|θ) = 0; in this regime, the dynamic response is always positive
as represented by the type I curve in Fig. 2(a). For β < 0b + α, t∗

is positive and finite and decreases as β decreases or 0b increases,
indicating a stronger overall b-process. Examples are the type II and
type III curves in Fig. 2(a).

What we have described so far is a simple single-dose picture of
the reward response. In Sec. II C, we build on it to describe addiction
as a progression of multiple drug intakes that induce neuroadaptive
changes to the physiological parameters, β and 0b, and behavioral
changes to the user that shift the net response from type I to type III.

C. Successive drug intakes

We now consider successive drug intakes i taken at times Ti

with the first dose taken at T1 = 0 and the most recent one at Tk.
For finite Tk, the total time-dependent response is a superposition
of the time-shifted responses in Eq. (4),

w(t|{θi≤k}) =

k
∑

i=1

w(t − Ti|θi), T1 ≡ 0, Tk < t < Tk+1, (6)

where θi = {1i, αi, 0
a
i , βi, 0

b
i } are the parameters of the system fol-

lowing intake i. The doses 1i and intake times Ti are primarily
user-controlled. We assume the other parameters {αi, 0

a
i , βi, 0

b
i }
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FIG. 2. (a) Three examples of time-dependent response w(t|θ) associated
with a single, isolated dopamine hit. We fix θ = {1 = 1,α = 0.5,0a = 1,β ,
0b = 0.8} and plot Eq. (4) for three different values of β showing a response
that is always positive (I: β = 1.5, orange), a response that can become negative
(II: β = 0.9, green), and one with a negative total reward (III: β = 0.45, blue). (b)
Density plot representing the values of the time t∗ associated with the solution to
the transcendental equation w(t∗|θ) = 0 as a function of β and 0b for α = 0.5.
The white parameter region does not admit a finite solution to t∗ [w(t|θ) is always
positive].

evolve in a step-wise fashion due to dopamine-induced neuroadap-
tive changes, such as long-term potentiation or other long-lasting
physiological, tissue-level, or biochemical processes. The total net
response after the last dose at time Tk can be defined as an integral
over w(t|{θi≤k}) starting from Tk until the current time t. Thus, the
net response associated with dose k is

Wk(t|{θi≤k, Ti≤k}) =

∫ t

Tk

w(t′|{θi≤k}) dt′, (7)

where Tk < t < Tk+1 and Tk+1 is the time of the next dose, if it
occurs. Using Eqs. (4) and (7), we find

Wk(t|{θi≤k, Ti≤k}) =

k
∑

i=1

Ci(e
−(Tk−Ti) − e−(t−Ti))

+

k
∑

i=1

Cα
i (e−αi(Tk−Ti) − e−αi(t−Ti))

+

k
∑

i=1

C
β

i (e−βi(Tk−Ti) − e−βi(t−Ti)), (8)

where

Ci ≡
0a

i 1i

αi − 1

(

1 −
0b

i

βi − 1

)

,

Cα
i ≡

0a
i 1i

αi − 1

1

αi

(

0b
i

βi − αi

− 1

)

,

C
β

i ≡
0a

i 1i

αi − 1

1

βi

(

0b
i

βi − 1
−

0b
i

βi − αi

)

.

(9)

If drug intakes are well-separated (Ti+1 − Ti → ∞) with no residual
effects from previous doses, the net response between Tk and Tk+1

is Wk(Tk+1|{θi≤k, Ti≤k}) → 0a
k1k(1 − 0b

k/βk)/αk, the result given in
Eq. (5).

D. Reward prediction error (RPE) and behavioral

changes

To construct the total time-dependent response for multiple
drug intakes w(t|{θi≤k}) in Eq. (6), we must describe the evolution
of the user-controlled variables {1i, Ti} and of the neuroadaptive
parameters {αi, 0

a
i , βi, 0

b
i } as a function of the number of intakes i.

In this section, we provide a mathematical description of the RPE,
the difference between the expected and received rewards associ-
ated with each drug intake. The RPE is a key component of learning
and decision-making; here, it will be assumed to regulate the spe-
cific decision of the user to change (or not) the next drug dose 1k+1

of intake k + 1.
The expected response of a drug intake depends on the user’s

prior history, experiences, and cues of upcoming rewards. The
expectation may be different from the actual, obtained response
leading to an error, the RPE. For simplicity, we represent the RPEk

following intake k, and just before intake k + 1, as the difference
between the most recent net response Wk and the prior one Wk−1,

RPEk ≡ Wk(Tk+1|{θi≤k, Ti≤k})

− γk−1Wk−1(Tk|{θi≤k−1, Ti≤k−1}) − Ck+1, (10)

weighted by a factor γk−1 < 1 that discounts the previous net
response Wk−1 and that may incorporate memory effects. RPEs that
rely on responses associated with drug doses further in the past
can also be used to reflect longer memory of the reward.37 The
term Ck+1 is a history-independent cue associated with the upcom-
ing k + 1th intake. Examples of cues include seeing or smelling the
drug, or preparing for its consumption. Without loss of general-
ity, we assume Ck = 0 by shifting the baseline value of the RPE. An
example of a negative RPE is shown in Fig. 3, where RPE3 < 0, indi-
cating unmet expectations from intake 3. As defined in Eq. (10),
a positive RPEk arises if Wk > γk−1Wk−1, raising expectations for
future intakes. This increased expectation may represent habitu-
ation, whereby continued use generates a desire for greater net
responses. The value of RPEk will be used in Sec. II F to determine if
a behavioral change, such as a change in dose 1k+1, is elicited.

E. Neuroadaptation and parameter changes

In addition to {1,Ti}, the time-dependent response w(t|{θi≤k})

also depends on the physiological parameters {αi, 0
a
i , βi, 0

b
i }.

Changes in these quantities can be driven by neuroadaptive pro-
cesses following each drug intake and can depend on the specific
characteristics (age, gender, constitution, genetic makeup) of each
user. These neuroadaptive processes are complex and difficult to
model, so we simplify matters by assuming that {αi, 0

a
i , βi, 0

b
i }

change only in response to each drug-induced dopamine release 1i

at Ti. To be consistent with OPT and observations, neuroadaptive
changes should increase the effects of the negative b-process relative
to those of the positive a-process as addiction progresses. This can be
achieved through a decrease in βi and/or an increase in 0b

i . In prin-
ciple, changes in αi arising from tolerance (that shortens the “high”
and affects the relative strengths of the a- and b-processes) can also
be modeled, but since changes to 0a

i 1i/(αi − 1) only rescale w(t),
we fix αi = α and 0a

i = 0a to constant values. Thus, we let 1i drive
neuroadaptive changes in βi+1 and 0b

i+1 according to the simplest
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FIG. 3. Time-dependent response w(t) resulting from multiple drug intakes at
times T1 = 0 (not shown), T2, T3, and T4. Each dopamine release elicits an a-
and b-process response, which can be concatenated [Eq. (6)]. The net reward
Wk associated with dose k is defined as the integral of w(t|{θi≤k}) from time
Tk to Tk+1 and may depend on θi≤k since the a- and b-processes triggered by
previous drug intakes may not have fully dissipated. For small βi , b-processes
relax slowly, making the response to appear to reach a lower homeostatic value.
The small β regime resembles the allostatic effect on time scales . 1/β . In this
limit, repeated drug doses successively drive the reward response negative push-
ing the user to experience increasingly intense withdrawal symptoms. In these
plots, 1 = 1,α = 0.2,0a = 1,0b = 0.2 and β1 = 0.3, β2 = 0.2, β3 = 0.1,
and β4 = 0.1 for intakes at 0, T , 2T , and 3T , respectively. The RPE is defined by
the difference between two consecutive time-integrated responsesWk − Wk−1.

rule consistent with OPT,

βi+1 = βi(1 − B1i+1), 0b
i+1 = 0b

i (1 + G1i+1). (11)

Here, B and G are parameter-change sensitivities that may depend
on i, βi, 0b

i , and 1i, but that we assume to be constant, with the
caveat that B is small enough that for all values of i, B1i < 1.
Equation (11) implies that βi and 0b

i are represented by piecewise
constant values that change after each drug intake. Note that after a
sufficient number of intakes βi becomes very small and the negative
response persists for a long time, yielding an apparent “allostatic”
state.49 In the above recursion Eq. (11), the drug doses 1i may be
assumed fixed or may evolve according to models that involve the
RPE.

We now incorporate the ingredients described above into a
dynamical model that generates trajectories to addiction. In this
model, the neuroadaptative evolution of the physiological parame-
ters induces changes to the reward responses, which, in turn, modify
the RPE and lead to user behavioral changes such as increases in
drug dose or intake frequency to boost the pleasurable a-process.
Despite these user-controlled changes, the evolving neurophysiolog-
ical parameters may eventually lead to negative net responses and
RPEs. We, thus, define addiction as a state marked by persistently
negative RPEi < 0 and negative net responses Wi < 0 that arise for
intakes at or greater than a critical number i ≥ k∗.

F. Evolution of intake doses

We first consider the case where the intake times Ti

= (i − 1)T are perfectly periodic with interval T and study the evo-
lution of the most recent dose 1k to the next one 1k+1. Although
more intense dopamine activity may be stimulated by a larger 1k+1

[according to Eq. (4) for well spaced intakes], the resulting net
response Wk+1 may not necessarily be larger than Wk since Wk+1

depends not only on dose but also on the neuroadaptive parameters
{αk+1, 0

a
k+1, βk+1, 0

b
k+1} over which the user has no direct control.

Thus, scenarios may arise in which although the drug dose increases,
the RPE remains negative and user expectations are not met. We
assume that if the RPE > 0, the user will not alter the drug dose;
however, if RPE < 0, the user will increase it. To concretely model
this behavior and allow variable 1k, we augment the recursion
relations (11) as follows:

1k+1 = 1k + σH(RPEk), H(x) =







1, x ≤ Rc,
x

Rc
, Rc < x < 0,

0, x ≥ 0,
(12)

where σ is the maximal dose-change and H(x) dictates how doses
increase as a function of RPEk. We choose the simple form in
Eq. (12) representing a graded switching function with threshold
Rc/2. We use the representation of RPEk given in Eq. (10) in which
for simplicity we set γk−1 = 1 and Ck+1 = 0. Finally, note that the
argument of H in Eq. (12), RPEk, depends on the drug intake period
T and the dose 1k through Wk(Tk+1|{θi≤k, Ti≤k}), which makes the
evolution Eq. (12) non-linear.

In our model, changes to the neuroadaptive parameters
βi+1, 0

b
i+1 at intake i + 1 carry a linear dependence on the dosage

1i+1, according to Eq. (11). We adopted this choice for simplicity;
however, more complex forms for the evolution of βi+1, 0

b
i+1, and

1i+1 can be used to study a wider range of scenarios.
Specifically, the parameters coefficients B, G in Eq. (11) could

be modeled to be functions of intake number or time on drugs,
through forms that depend on the genetics of age of the user.
Such refinements may be important especially if one is interested
in the long-term dynamics of drug consumption, or in comparing
responses among different user types. For example, it is well known
that drugs of abuse can significantly impact the still-maturing
and, thus, vulnerable, adolescent brain and cause severe, long-term
damage.50 Equation (11) can also be modified to include satura-
tion or recovery of the baseline values of βi+1, 0

b
i+1 if the user stops

using drugs. Other nonlinearities may be introduced to represent
distinct neuroadaptive regimes. These could be stages of more (or
less) impactful changes once a given threshold of, say, drug dose,
cumulative drug dose, or reward value is reached.51 These choices
may lead to non-trivial dynamics involving β , 0b, 1 as well as the
RPE, and possibly lead to chaotic behaviors,52 as proposed in the
context of alcohol addiction.53–55

III. RESULTS

We now study the effects of multiple intakes utilizing
the full model given by Eqs. (7)–(9) and Eqs. (10)–(12).
We set αi = 0.3, 0a

i = 1, Rc = −0.05, σ = 0.1, initialize the sys-
tem with {β1, 0

b
1 , 11, RPE1} = {0.5, 0.1, 1, 0}. Upon specifying B, G

we can find the first net response W1(T2|{θ1, T1}) per Eq. (7).
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We let the second dose 12 = 1 and generate {β2, 0
b
2 } from

Eq. (11) and W2(T3|{θi≤2, Ti≤2}) from Eq. (7), yielding RPE2

= W2(T3|{θi≤2, Ti≤2}) − W1(T2|{θ1, T1}). The next dose 13 is then
determined through Eq. (12), and so on. To illustrate responses to
multiple fixed-period intakes, we must specify the dimensionless
time T between drug intakes relative to the drug-induced dopamine
mean residence times. In Fig. 4, we assume the inter-intake period
T to be six times the effective dopamine residence time 1/δ. Thus,
if δ ≈ 0.25/h, daily drug dosing (once every 24 h) corresponds to
T = 6.

Figure 4(a) shows the total time-dependent response w(t|{θi})

under three sets of parameters, B = 0.05, G = 0 (Case 1, solid black
curve), B = 0, G = 0.05 (Case 2, dashed green curve), and B = G
= 0.05 (Case 3, solid red curve). We see that under neuroadaptation
of both parameters β and 0b (Case 3), the transition to addic-
tion occurs much faster (red curve), with a shorter plateau in Wk

and a quicker drop in RPEk. In general, a larger 0b relative to 0a

depresses the time-dependent dynamical response w(t|{θi}) and the
net response W. Larger α and β lead to more transient responses
that display less overlap between intakes provided T is fixed. Smaller
β leads to longer lasting b-processes that overlap across successive
intakes.

In Fig. 5, we explore the effects of varying the duration
of the a-process by setting β1 = 0.5, σ = 0.05, 0a = 1, 0b

1 = 0.1,
B = 0.05, G = 0, and changing α. In Cases 4 (solid black curves),
5 (dashed green curves), and 6 (solid red curves), we set
α = 0.05, 0.2, 0.7 to represent long-lasting, intermediate, and short-
lived a-processes, respectively. As shown in Fig. 5(a), a smaller α

results in more overlap of positive responses wa and as a result,
more positive overall response w(t|θi≤k). Different values of α do
not seem to appreciably change the number of intakes at which
w(t|θi≤k) becomes negative. The evolution of βk and 1k are nearly
indistinguishable for all three cases as shown in Figs. 5(b) and 5(c).

It is worth noting that, as shown in Fig. 5(c), the net responses
Wk in Cases 4, 5, 6 reach long-lasting plateaus before starting to
decrease, between intakes k = 30 and k = 35. The corresponding
RPEs shown in Fig. 5(d) fluctuate around zero in all cases until
relatively large intake numbers k are reached, indicating “high-
functioning” users. Eventually, however, the RPEs decrease and
become negative as well. However, the quickest descent of the RPEk

toward negative values is observed for the longest lived a-process,
Case 4 for α = 0.05, whereas the most stable RPEk arises for the
shortest lived a-processes, Case 6 for α = 0.7, although the asso-
ciated Wk exhibits a smaller amplitude. These results indicate that
the sensitivity of the responses, Wk, and RPEk to changes in α are
nonlinear and involve a subtle interplay between the overlap of
the a- and b-processes, the amplitude 0b of the b-process, and the
definition of the RPE.

The cases described above are illustrative of how different user-
specific parameters (B, G, σ , α), and initial conditions (β1, 0

b
1 ) yield

qualitatively different paths to addiction. Cases 1, 2, and 3 reveal the
effects of higher neuroadaptive sensitivity (Case 3, B = G = 0.05),
whereby the onset of addiction is dramatically faster. Cases 4, 5,
and 6 compare scenarios in which the trajectories of the neuroadap-
tive parameter βk and intake dose 1k do not substantially differ but
can nonetheless lead to qualitative differences in the magnitudes of
the integrated response Wk, the drop-off point of the RPEk, and the

intake at which addiction occurs. The “yo-yo” behavior of RPEk is
typically seen for users who are allowed to adjust their doses through
Eq. (12).

A. Evolution of intake timing

We now consider the case where drug doses are equal for all
intakes 1i ≡ 1 = 1, but the user-controlled intake times Ti does
not define a periodic sequence. Since 1 is constant, the recur-
sion relations (11) are explicitly solved by βi = β1(1 − B1)i−1 and
0b

i = 0b
1 (1 + G1)i−1 under the assumption B1 < 1. These expres-

sions represent exponential decreases and increases in βi and 0b
i ,

respectively. Similar to how drug doses were determined, we now
assume that the user’s decision of when to next take drugs depends
on the RPE defined in Eq. (10). Here, we set Ck+1 = 0 but keep
the discount term γk−1 ≤ 1. We also assume that the next (k + 1)th
intake occurs when RPEk(t) declines to the threshold value Rc, repre-
senting the onset of unpleasant effects after the high following intake
k. Thus, Tk+1 can be determined by the real root of RPEk(Tk+1) = Rc,
which, using the definition of RPEk, reads

Wk(Tk+1|{θi≤k, Ti≤k}) − γk−1Wk−1(Tk|{θi≤k−1, Ti≤k−1}) = Rc. (13)

This equation must be solved on the decreasing branch of the RPEk

curve as the user takes the next dose to alleviate the decreasing net
response. The user is “initialized” with daily intakes (of period T = 6
in non-dimensional units) until a real solution arises from Eq. (13),
indicating a user who adjusts their intake timing to avoid unpleas-
ant effects. If at any time RPEk = Rc again exhibits no real solution,
we simply add T to the last intake time Tk so that Tk+1 = Tk + T.
In this case, the user is satisfied with the effects of the kth intake
and can return to his or her daily routine of drug consumption. For
concreteness, we set 1k = 0a = 1, α = 0.1, B = G = 0.01, β1 = 0b

1

= 0.5 and evaluate W1(T2 = 6). We then generate {β2, 0
b
2 } accord-

ing to the exponential solutions to Eq. (11). The time of the
third intake T3 is then found by solving W2(T3|{θi≤2, Ti≤2})

− γ1W1(T2|{θ1, T1 = 0}) = Rc, and so on.
In Fig. 6, we consider three scenarios representing different lev-

els of memory of the previous intake reflected by different values
of γk−1 in Eq. (10). In Case 1T (solid black curve), we set γk−1 = 0
to describe a user who does not remember the response from any
previous dose and only uses the current net response Wk(t) to deter-
mine the next intake at time Tk+1. As shown in Fig. 6(a), the intakes
become successively more frequent giving rise to a sharp decline in
the dynamic response w(t|θi≤k) after about t ≈ 65, about a week if
T = 6 corresponds to 24 h. In Case 2T (dashed green curve), we set
γk = 0.5 to describe a user who weights the net response of the pre-
vious intake, Wk−1 half as much as that relative to the current intake,
Wk. In this case, full addiction occurs at intake k = 4 (not explicitly
shown) at time t ≈ 20, about three days. In Case 3T (solid red curve),
γk = 1 and the user fully remembers the response associated with
the previous dose in his or her determination of the next intake. In
this case, the response decreases more slowly than in Cases 1T and
2T. The decreases occur later than when γ = 0.5 but earlier than
when γk = 0. In Fig. 6(b), we plot Tk+1 − Tk for all three cases which
show subtle differences in timing associated with the three qualita-
tively different cases. In Case 3T, the slower decrease in successive

Chaos 32, 021102 (2022); doi: 10.1063/5.0082997 32, 021102-6

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

T T T T T T T
-0.5

0

0.5

1

1 5 10 15 20 25 30
0

0.25

0.5

0.75

1 5 10 15 20 25 30
-1

0

1

2

3

4

5 10 15 20 25 30
-0.5

0

0.5

(b) (c) (d)

1

FIG. 4. (a) The time-dependent response resulting from multiple drug intakes with varying 1k for three scenarios. In Case 1 (solid black curve), we set B = 0.05,G = 0,
while in Case 2 (dashed green curve), B = 0,G = 0.05. Finally, in Case 3 (solid red curve), B = G = 0.05. The interval between two consecutive intakes in these examples
is T = Tk+1 − Tk = 6. The effects of neuroadaptation when both βk and0b

k
evolve are synergistic as Case 3 leads to addiction after significantly fewer intakes. (b) Evolution

of the parameters βk (open circles, solid curves) and 0b
k
(filled circles, dashed curves) for Cases 1, 2, and 3. (c) Evolution of the integrated response and intake doses 1k

[blue triangles, Eq. (12)] associated with intake k for each of the three cases. The evolution of 1k is similar for Cases 1 and 2, while 1k for Case 3 rises faster and might
describe a highly addictive drug that results in addiction after a smaller number of doses. The integrated responsesWk become negative at about intake k ≈ 27, 26, and 16
for Cases 1, 2, and 3, respectively. (d) The RPEk as a function of the intake k exhibit oscillations with increasing then decreasing amplitude before monotonically decreasing
well below zero at intakes k ≈ 20, 18, and 10 for Cases 1, 2, and 3, respectively. In all cases, the user experiences a “yo-yo” progression to addiction. Since in all cases,Wk

becomes negative after the RPE, addiction occurs whenWk < 0 at intakes k∗ ≈ 27, 26, and 16, respectively.

Tks for large k results from the slower drop-off of w(t|θi≤k) at long
times.

Since by construction, RPEk(Tk+1) = Rc < 0 for all k, addiction
is reached at intake k∗ such that Wk∗ < 0. If the first i ≤ i∗ intakes
are taken at fixed times Ti = (i − 1)T because Eq. (13) has not yet
generated a real root, the first intake for which Wk∗ < 0 occurs at
k∗ ≈ i∗ + j∗, where j∗ is found by the lowest integer j such that

j−2
∑

`=1

γ −` > −
Wi∗

Rc

(14)

for constant γk = γ . A related form can be easily derived when γk

depends on k. For Cases 1T, 2T, and 3T shown here, k∗ ≈ 2, 4, 10,
respectively. In general, we find that the iteration of Eq. (13) contin-
ues until either the inter-intake times Tk+1 − Tk → 0, or no positive
real root can be found, indicating an RPE that is permanently below
the threshold value Rc and that the user’s expectation can never be
met. The loss of the root is more likely to arise when βk and 0b

1 are
small but always occurs after W < 0 and RPE < 0 (addiction).

The above examples show that the protracted use of drugs
leads to neuroadaptive decreases in β and more slowly decaying b-
processes. In the limiting case β → 0, the user appears to be in an
allostatic state, with near-permanently damaged brain circuits and
altered reward response baseline levels. Note that a true allostatic
state can be defined within our model by replacing −βwb(t) in Eq.
(3) with a term such as −β(wb(t) + w∞). The infinite time response
would then relax to wb(t → ∞) → −w∞. This new baseline level
may itself evolve after repeated intakes via neuroadaptive processes
similar to those represented by Eq. (11).

B. Mitigation through agonist intervention

Our model provides a framework to study detoxification strate-
gies where dosing of substitutes, such as methadone in the case of
heroin addiction, can be calibrated to alleviate withdrawal symp-
toms without producing euphoric effects.56 We assume an “auxil-
iary” drug, such as methadone, operates on a related, but different,
pathway of the brain reward system relative to the ones stimulating
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FIG. 5. (a) The time-dependent response resulting from multiple drug intakes at times Ti = (i − 1)6 with user-adjusted 1i for three additional scenarios corresponding to
different durations 1/α of the a-process. In Case 4 (black solid curve), we keep β1 = 0.5,0a = 1,0b

1 = 0.1, σ = B = 0.05,G = 0 but assume a long-lasting a-process

by setting α = 0.05. In Cases 5 (green dashed curve) and 6 (solid red curve), we use α = 0.2 and α = 0.7, respectively. The corresponding βk and 0b
k
for these cases

are nearly indistinguishable, as shown in (b). The corresponding doses (blue triangles) shown in (c) are also indistinguishable. The integrated responsesWk for these three
cases reach long-lived plateaus of different amplitudes. The associated RPEs are also qualitatively different, as shown in (d). In all cases, the RPEs hover around small
values for many intakes. Note while longer lasting a-processes generate higher values ofWk , the corresponding RPEs decrease faster. Addiction in these three cases occur
at k∗ ≈ 33, 30, and 31 whenWk < 0 since RPEk < 0 occurs at k ≈ 11, 5, and 2.

FIG. 6. (a) Time-dependent response curves resulting frommultiple drug intakes with varying Tk are generated usingα = 0.5,0a = 1, B = G = 0.01, andβ1 = 0b
1 = 0.5.

Case 1T (solid black curve) assumes γk = γ = 0 and no memory before the last intake, while Cases 2T (solid black curve) and 3T (dashed red curve) assume intermediate
and strong memory, γk = γ = 0.5 and γk = γ = 1, respectively. Note that qualitatively, the decreasing trend is nonmonotonic in the memory γk . (b) Time separations
Tk+1 − Tk between two consecutive intakes for the three cases.
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FIG. 7. (a) Time-dependent response w(t|θ) (black dashed curve) with the superimposed methadone contribution wM(t) (red solid curve). The time-dependent response
in the absence of methadone returns to the baseline over a timescale ∼1/β40, producing unpleasant withdrawal symptoms during this time. Methadone treatment (+wM(t))
adds to the response reducing the negative effects of b-processes by an amount indicated by the red shaded area. (b) βk , 1k , Wk , and RPEk associated with the drug
sequence prior to the administration of methadone.

the a- and b-processes described in Eqs. (2) and (3). This auxil-
iary drug may generate a separate reward response which itself may
evolve according to neuroadaptation or interactions with other neu-
ral networks. We denote the additional reward response wM(t) so
that, within the context of our model, the overall user perception is
given by the sum wa + wb + wM. Positive values wM > 0 shift the
overall response toward the homeostatic baseline, reducing with-
drawal symptoms. If neurocircuits are not permanently damaged,
our results imply that an ideal treatment consists of applying a
large enough wM > 0 that mitigates the negative response wb over
a timescale ∼ 1/βk, where βk is the value of the b-process decay rate
at the time of the last intake.

To be concrete, we model a hypothetical heroin addiction
via an intake sequence associated with α = 0.3, β1 = 0.5, 0a = 1,
0b = 0.1, B = 0.05, G = 0, σ = 0.05, Rc = −0.05, and T = 6. In
Fig. 7, we show the response starting at t ≈ 200 corresponding to
approximately intake 33 (in this example, full addiction occurred
at intake k∗ = 32). We assume the user subsequently ceases heroin
consumption at intake k = 40 where β40 ≈ 0.02 and 140 ≈ 2.3. The
user is then assumed to start a methadone maintenance treatment
following a protocol of 1M

k doses at prescribed times TM
k . We model

the methadone response as

wM(TM
k < t < TM

k+1|1
M
i≤k, δ

M
i≤k, T

M
i≤k) =

k
∑

i=1

1M
i e−δM

i (t−TM
i ), (15)

where the dimensionless decay rates δM
i are measured relative to the

overall dopamine clearance rate δ discussed in Eq. (1). Equation (15)
is a succinct representation of the user perception of methadone;
1/δM

i represents an effective lifetime that depends on the decay of
methadone in the body and of the effects of the associated reward.
A more complex model can be developed along the lines of Eq. (2).
The lifetime of methadone in the body changes as treatment pro-
gresses, and ranges from initial values of 10–20 h to 25–30 h in the
maintenance phase. In clinical settings, 1M

k also typically increases;57

for example, the first methadone doses range between 10 and 30 mg,
while later doses are increased to about 60–120 mg. Methadone
dosage can also depend on the user’s history of opioid use.

In our model, we apply 11 daily methadone doses, with the
drug administered at periodic intervals of T = 6 starting at time
t = 246, a day after the last k = 40 heroin intake at t = 240.
We assume that the methadone doses follow the sequence 1M

i

= {1, 1, 0.8, 0.6, 0.4, 0.2, 0.2, 0.2, 0.1, 0.1, 0.1} and that neuroadapta-
tion increases the methadone timescale from about 10 to 27 h lead-
ing to δM

i = {0.4, 0.4, 0.2, 0.2, 0.2, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15}.
Figure 7 shows the methadone-induced response wM(t) (red curve)
added to the drug-induced response (black dashed curve).

Note that without methadone treatment, once heroin con-
sumption ceases after intake k = 40, the time-dependent reward
response (black dashed curve) resembles an allostatic load which
returns to the baseline over a long timescale ∼1/β40 ≈ 50, over a
week. The methadone-derived response wM(t) (red curve) alleviates
much of the negative b-process and associated withdrawal symp-
toms. The net time-integrated reduction in withdrawal symptoms
is represented by the red shaded area between the wa + wb and the
wa + wb + wM curves as shown in Fig. 7.

Although methadone is used to treat addiction, it is an opioid
agonist and can itself induce addiction through wM, which may also
trigger its own b-processes. This is especially true if methadone is
taken in an uncontrolled manner and may explain why often subop-
timal doses are administered.58 Thus, control of wM(t) is crucial in
using methadone as a treatment. An ideal protocol would calibrate
doses and timing to alleviate the negative response as much as pos-
sible, but would also prevent the induction of methadone-associated
b-processes, or other interactions with addictive pathways. One can
also explore the consequences of irregular methadone intakes or
nonadherence to specific detoxification protocols.59

IV. DISCUSSION AND CONCLUSIONS

We constructed a quantitative framework for the evolution of
drug addiction based on concepts from IST, OPT, and where drug
dosages depend on the RPE. Our goal was to develop an explicit
model that incorporates these key ingredients in a simple and clear
way, without invoking a large number of parameters. Although
many models that include action choice have been developed,37,60
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our work assumes only one dominant action (drug taking) that
emerges from the background response to all other routine rewards.
We are thus assuming that the response to these “normal”
rewards has already been subtracted from the drug-specific response
wa + wb. A much richer stochastic model can be developed by
considering fluctuating responses from routine rewards.

In our model, repeated intakes lead to overall negative reward
responses due to neuroadaptive processes that lessen drug-induced
pleasurable effects. To counterbalance this shift, the user actively
seeks higher rewards by increasing drug dose, intake frequency, or
both. These behaviors create a feedback loop that induces further
neuroadaptive changes and that eventually lead to an addicted state.
Our model captures the well-known phenomenon of tolerance by
allowing expectations to increase after a drug intake, which, in turn,
leads the user to increase the dosage as an attempt to meet the new
expectation level. Mathematically this is represented by allowing the
RPE to fall below a critical threshold value. Our model can also
explain the increased frequency of drug intaking by dictating that
the user takes a new dose once the RPE reaches the critical threshold
value. A more realistic description would define an objective func-
tion that allows the user to both increase drug dosage and to take it
more often.

How addiction unfolds depends on the specific physiology
and neuroadaptive response of the user. Within our simple math-
ematical model, the path to addiction depends on the sequence
of representative parameters that change with each drug intake
i. These parameters represent neuroadaptive characteristics such
as {αi, 0

a
i , βi, 0

b
i } that appear in Eqs. (2) and (3) as well as user-

controlled dosing 1i and timing Ti that dictate the evolution of
the RPE. In our analyses, we fixed αi and 0a

i and proposed sim-
ple recursion relations for 1i, βi, and 0b

i that evolve consistently
with OPT. Specifically, this scheme represents b-processes becoming
more prominent as drug addiction unfolds. If a user is genetically
predisposed to addiction or if the drug is highly addictive, as in
the case of methamphetamines, the parameters Rc and σ , and B
and G that drive the evolution of the b-process will be larger and
the number of intakes necessary to reach the addicted state will
be few. For more resistant users and/or slowly addictive substances
such as cannabinoids, Rc, σ , B, and/or G will be smaller, leading to
a more drawn-out addiction process that includes damped oscil-
latory progression of the RPE. We also find that reaching the
addicted state will require less intakes if the onset value of 0b/β > 1,
implying an initially strong and persistent b-process. These results
allow us to predict that the most at-risk users are those who are
most reactive to changes in the b-process and (assuming that the
brain processes all rewards through the same pathway) those who
manifest elevated b-process responses even prior to drug intak-
ing. Although there are not many studies connecting personality
traits with addiction,61 our finding is consistent with reports of neu-
rotic individuals being among the most at risk for drug addiction.62

One of the main hallmarks of neuroticism in fact is for negative
effects, such as the ones expressed by the b-process, to be more
pronounced.63,64

One simplification of our analysis is that we considered either
variable doses 1i administered at periodic intervals T or constant
doses 1 taken at non-uniformly spaced timings Ti. A more compre-
hensive study would allow for the RPE to dictate both dosages 1i

and timings Ti as a function of expectations built on previous drug
intakes, without fixing either a priori.

A number of refinements to our model can be straightfor-
wardly incorporated. For example, instead of a sequential response
to drug intake, where wb is triggered by wa, one could consider a par-
allel response where the drug-induced dopamine surge triggers both
wa and wb. Similarly, we could consider a networked response, with
several pleasurable and aversive neuronal centers being activated
and/or stimulating one another. Alternatively, one could consider
a multicomponent reward response that depends on neuronal sets
differentially activated by multiple drugs. To study this case, one
would need to derive a single-output reward response from a high-
dimensional multi-drug input. If the multiple drugs lead to neuroad-
aptive changes in the relaxation rates α and β , their effects on the
rewards wa and wb would be multiplicative. Different drugs may
have different in vivo clearance rates and drive dopamine release
with different durations leading to different dopamine residence
times 1/δ(j). They may also activate different sets of neurons that
contribute to the a- and b-processes wa and wb additively through
the weights 0a and 0b. Thus, multiple drugs potentially adminis-
tered at different times can contribute to the overall response both
additively and multiplicatively, leading to rich dynamical behav-
ior of the brain reward system. The inclusion of broader action
classes (or “policies”) can also be incorporated using a more formal
framework from reinforced learning.38

Another possible approach would be to include continuous-
time evolution of the parameters {α, 0a, β , 0b} or to include more
realistic forms for the RPE such as a convolution of a memory kernel
with wa + wb as motivated from data.37,44 More complex nonlinear
evolution of parameters could also be considered which could give
rise to sharper transitions into an addictive state37 and to chaotic
behaviors.52,55 Sharper transitions would be partially mitigated by an
RPE definition where current rewards are compared with averages
over past periods. Although we assumed a well-defined “determin-
istic” behavioral rule for changing drug dose and intake timing,
prolonged drug use can lead to dysfunction in decision-making and
unpredictable and random behavioral changes,65 justifying nonlin-
ear dynamics and/or stochasticity in the definition of an effective
RPE. Note that this stochasticity applied to the RPE would be dif-
ferent from adding noise to D(t) and treating Eqs. (2) and (3)
stochastically (e.g., as a Langevin equation). One can also examine in
more detail the intake-dependent additive cue in Eq. (10) to predict
how the RPE changes when moving from a controlled drug-taking
environment (where cues such as location, paraphernalia, and acces-
sibility are constant) to a more random one (where cues may vary in
time and across intakes). Cues can also trigger dopamine releases
without any actual drug intaking66 and can lead to relapses after
long periods of abstinence when the memory of previous intakes
has subsided. Finally, our model can be generalized to other forms
of chemical or behavioral addictions, such as alcoholism, gambling,
or social-media addiction.
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