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ABSTRACT

Outbreaks are complex multi-scale processes that are impacted not only by cellular dynamics and the ability of pathogens to effectively
reproduce and spread, but alse by population-level dynamics and the effectiveness of mitigation measures. A timely exchange of informa-
tion related to the spread of novel pathogens, stay-at-home orders, and other measures can be effective at containing an infectious disease,
particularly during the early stages when testing infrastructure, vaccines, and other medical interventions may not be available at scale.
Using a multiplex epidemic model that consists of an information layer (modeling information exchange between individuals) and a spa-
tially embedded epidemic layer (representing 2 human contact network), we study how random and targeted disruptions in the information
layer (e.g.. errors and intentional attacks on communication infrastructure) impact the total proportion of infections, peak prevalence (Le.,
the maximum proportion of infections), and the Hme to reach peak prevalence. We calibrate our model to the early outbreak stages of
the SARS-CoV-2 pandemic in 2020. Mitigation campaigns can still be effective under random disruptions, such as failure of information
channels between a few individuals, However, targeted disruptions or sabotage of hub nodes that exchange information with a large num-
ber of individuals can abruptly change outbreak characteristics, such as the time to reach the peak of infection. Our resulis emphasize the
importance of the availability of a robust communication infrastructure during an outbreak that can withstand both rmndom and targeted
disruptions.
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Online communication platforms and exposure notification apps
can help slow down and contain the spread of an infectious
disease.' Individuals who have been made aware of an outbreak
are likely to adapt their behavior to reduce their risk of being
infected. To study the interplay between infectious disease out-
breaks and corresponding changes in individual contact behav-
iors, Granell ef al.’ introduced an epidemic model that accounts
for the spread of awareness through an information layer that is
coupled to a human contact network. Building upon their model
of awareness diffusion, our work studies the impact of random
and targeted disruptions in the information layer on the overall
outbreak dynamies.

I INTRODUCTION

The study of epidemic processes in networks has provided
many insights into the interplay between structure and dynamics.
The aim of many works in this area has been to analyze the
impact of different structural features, such as clustering, commu-
nity structure,” hub nodes, and scale-free degree distributions” on
the evolution of susceptible-infected —susceptible (515) and suscepti-
ble-infected -recovered (SIR) models and their extensions. ' Con-
nections between epidemic processes and percolation contributed to
the development of analytical methods that are useful for analyzing
epidemic transitions and determine outbreak size. " Along with
progress in understanding epidemic processes in static single-layer
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networks, developments in the study of temporal networks,” mul-
tilayer networks, " and other structures describing higher-order
interactions’ - have allowed for the integration of time-varying and
non-binary interactions.

Before research turned to epidemic models in multilayer net-
works, interactions between disease and behavioral dynamics have
been studied mainly in single-laver networks ' and well-mixed
populations.” " In an extension of the classical 515 model, the so-
called susceptible-infected-alert—susceptible (SIAS) model, a new
compartment was used to study the effect of “alert” individuals
on disease dynamics.”-" The SIAS model has been implemented
using a two-layer network” with a contact layer and an information-
dissemination layer to find optimal information-dissemination
strategies that help contain an outbreak.

Using the so-called unaware-aware—unaware (UAU) model,
the interplay between behavioral effects and network dynamics has
alse been analyzed in terms of 2 multiplex structure where infor-
mation on an outbreak diffuses in its own layer. " In a multiplex
network, all of the interlayer edges are edges between nodes and
their counterparts in other layers. As in the SIAS model, individuals
in the information layer can be either aware or unaware of a disease.
Awareness then translates into a reduced infection rate. The original
awareness model has been modified in vardous ways. One study used
a threshold model in the information layer and identified awareness
cascades.” Other research investigated the effects of dynamically
varying transmission rates,”’ coupled SIR and UAU dynamics with
and without latency,”* coupled SIS and UAU dynamics,”' and
higher-order interactions.” For a detailed overview of models of
coevolving spreading processes in networks, we refer the reader to
Ref. 43,

In this work, we study coevolving susceptible—exposed-
infected-recovered—deceased (SEIRD) and UAU dynamics on a
multiplex network that consists of an epidemic layer and an infor-
miation layer. The exposed compartment in our model accounts for
latency (Le., the time between infection and becoming infectious).
Different varfants of SEIRD models have been used to mechanis-
tically describe the spread of an infectious disease for which the
lateney period between the time of infection and the time of becom-
ing infectious cannot be neglected. ™" Examples of such infectious
diseases include measles, smallpox, and SARS-CoV-2.

One of the main goals of this work is to provide insight into
the impact of disruptions in the information diffusion layer on
the overall outbreak dynamics. Therefore, we study different edge-
removal protocols that describe mndom and targeted disruptions.
In Sec. I, we define the disease and awareness model, develop
a heterogeneouns mean-field model, define random and targeted
edge-removal protocols, and briefly describe the structure of the
considered networks. In Sec. [, we first discuss a baseline sim-
ulation that builds upon a compartmental transmission model of
SARS-CoV-2." In addition to accounting for latency and aware-
ness dynamics as in our infectious disease model, other relaged
models of SARS-CoV-2 also account for features, such as asymp-
tomatic and hospitalized individuals,” differences in contact pat-
ternis at home, work, and school,” or discrete-time formulations
of mfectious disease dynamics.” In our model, we use parameters
that are aligned with empirical data on the outbreak of SARS-
CoV-2 in early 20207 We then use this baseline simulation asa
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reference to study the impact of disruptions in the information diffu-
sion layer on three disease severity measures: (i) final outbreak size,
(i) maximum proportion of infectious nodes on a given day (Le,
the height of the prevalence peak), and (iii) the tme to reach the
peak in disease prevalence. In Sec. 1V, we discuss and summarize our
results.

Il. METHODS
A. Epidemic model with information diffusion

We study the interplay between information diffusion and
epidemic dynamics in a multiplex network with two layers
[see Fig. 1ia)]. In the first layer, individuals exchange information
feg., through online socal media or messaging services) on the
prevalence of a certain disease in the overall population accord-
ing to the unaware-aware—unaware (UAU) model” Individuals in
the “information layer” (IL) can be in two states. They are either
unaware (U7 or aware (A) of the disease and do not necessarily
have to be in close proximity (in terms of connectivity) to exchange
information. Unaware nodes can become aware in two ways. If an
unaware node is in contact with an aware node, it becomes aware
at rate L. Additionally, if an unaware node is also infected, it can
become self-aware at rate o, A positive value of & allows the model
to include asymptomatic infectious individuals whe are not aware
of the overall outbreak and their own infection.” " Given that
somie individuals may forget or do not adhere to intervention mea-
sires after a certain time, we also account for transitions from aware
to unaware at rate 8. A schematic of UAU dynamics is shown in
Fig. 1{b].

Inn the second layer, we model an epidemic outbreak using the
susceptible—exposed -infected -recovered—deceased {SEIRDY) model.
In this “epidemic layer” (EL), nodes can be in states § (suscepti-
ble), E {exposed), I {infected), B (recovered), and D (deceased). We
distinguish between two infection rates, 8" and §°, that describe
the rates at which susceptible nodes become infected if they are
unaware and aware, respectively. The disease transmission rate asso-
ciated with aware individuals is assumed to be strictly lower than
the disease transmission rate associated with unaware individuals
(ie, g* = #9), accounting for the decreased likelihood of an aware
individual to become infected. We assume latent rate =, resolu-
ton rate p, and infection fatality ratio f that are independent of
the awareness status. This assumption is valid for infectious dis-
eases for which ne medication that improves recovery is available,
even if a person is aware of an infection before developing symp-
toms. For example, during the early outbreak stages of SARS-CoV-2,
there was very little information available on how to medically sup-
port patients who were aware of their infection but did not yet
suffer symptoms. Non-pharmaceuntical interventions, such as con-
tact restrictions, mask mandates, and quarantine, are often the only
possibility to combat novel pathogens.

According to the described UALU and SEIRD dynamics, nodes
can be in the following states: (L, 8), (A, 8), (U, Ep, (A E), (ULD),
(A0, (LR (A R), and (UnD). The frst entry in each tuple
describes the awareness state (either Uor A}, while the second entry
describes vital and disease states (5, E, I, R, and D). Deceased nodes
are not aware.,
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(a)

Information layer

Epidemic layer
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(b)

aware neighbor already infected

FIG. 1. Model schematic. (a} Information layer and epidemic layer. Nodes in the information layer are eifher unaware (L) or aware (A). while nodes in the epidernic layer can
be im one of five differant states: suscaptible (S), exposed (E), infected (1), recovered (&), and deceased (D). Edge removal that is cauzed by disruptions in the information
layer iz indicated by fhe scissor symbol. (b} Unaware nodes become aware at rate & if they are adjacent fo an aware node. If unaware nodes are infocied, they can also
become aware at rate . Aware nodes transifion back to an unaware state atrate 4. (c) Infectious nodes transmit a dsease founaware and aware suscaplble nodes at rates
A% and f* respectively. To account for a reduction in the infectiousness risk of aware nodes, we assume that the value of fhe disease fransmession rate 8" associated with
unaware nodes is siricly larger than the value of the dsease ransmission rate 5° associated with aware nodes (ie., 5° = ). Onoe suscepible modes have bean infacied,
they enter an exposed state and bocoms infoctious at rate = . The charactedsfc fme scale o~ corresponds to the latency period of the dissase. Infected nodes either die

or recover atratas fy and (1 — Fyy, respectively

B. Heterogeneous mean-field theory

In accordance with Ref. o0, we formulate a heterogensous
mean-field theory of SEIRD-UAU dynamics. We use xyy = xdt)
ix e [walye {seird]) to denote the proportion of nodes in
state X, ¥y (X  [ULAL Y € |8 E L R, D}) with degrees jand & in the
ILand EL at time t, respectively. For example, s = w5,(t) denotes
the proportion of unaware and susceptible nodes with degrees f and
k in the IL and EL at time &, respectively. Henceforth, we will not
explicitly include the time dependence in the notation x for the
sake of notational brevity.

The proportions of susceptible, exposed, infected, recovered,
and deceased nodes are

!
=3 (s +as), (1)
=l
I
& = E(ufq + ), (2)
J=1
I
= E[uj:ll + ;i) [3)
=1
!
=3 (W +an), 4)
=l
I
di = wdy, (5)
i=1

where [ is the maximum (or cutoff) degree in the IL. Since dead indi-
widuals in the EL cannot contribute to propagating awareness in the
IL, the state (A, D) is discarded from Eq. (5. Similarly, we find that
the proportions of unaware and aware nodes are

K
u = Z[ufsg + wiew + 1t + rn + did, (6}
kel
K
& = Z{ujs* + ek + ik + aed, (7
k=1

where K is the maximum {or cutoff) degree in the EL. These
quantities satisfy the normalization conditions

e

El;sx+ﬂ-+it+n-+dﬂ=l. (&)
k=1

!

D S +ap =1 (%)

=l

Assuming an uncorrelated network,”’ the rate equations of the
heterogensous mean-field model are

d[uj-sﬂ - sy i o s o
dt __I;ILE ZJHIJ— E ;kit +45ﬂj:51. {ID}

N
!
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i) s ” 3
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dt i) ik
(12}
and
diae) = Aj“iﬂ E}#a' ) kmsx E‘“J.‘ Sy S i
dt {§ = {k)
(13}
d(:;r:k} = —i% E_fr,ijr + ouge — gl — Kl A+ Sagly, (14)

i

d{n-"r
il J[’”k E-’ﬂ + oae — yaiy + cugly — Sagy, (15)

de [k}
d[ujq] Jejry N )
d— = —\—= E_; ap (1 —_f]yujig -+ dajr, (16}
b ik 7
d i) _ ljum Ef"! L Pyl = (17)
dt kS ! J d
d i) .
% = fr (1 + apic, (18)
where (k) and (k) denote the mean degrees of the EL and IL,
rfsprfﬂvelr.
C. Networks

In our pumerical experiments, we use a Barabdsi-Albert (BA)
network™ to model the information layer of the two-layer structure
underlying SEIRD-UAU dynamics. Such networks exhibit scale-
free degree distributions pik) o k7 [ > 0) and are often found
in social and technological systems” — Other distributions, such
as log-nermal distributions, may also provide good descriptions of
empirical degree distributions in seemingly scale-free networks.
In the epidemic layer, we usge a geometric inhomogeneous ran-
dom graph (GIRG),” a spatial network that bas found applications
in representing spatially embedded metapeopulation structures in
COVID-19 models.

1. Barabasi-Albert network

Barabsisi-Albert networks™ are constructed using a preferential
attachment procedure in which new nodes that are iteratively added
o an existing network have a higher likelihood of being attached to
nodes that have higher numbers of connections, A mean-field anal-
ysis of the BA model and corresponding numerical results show that
the exponent of the power-law degree distribution is 3 == 3.°

To construct the BA network that we use in our simulations,
we start with a star graph with one root node and two leaf nodes
and iteratively add new nodes until we reach N nodes. Each new
node has m = 2 edges that connect it to existing nodes using linear
preferential attachment. A visualization of such a BA information-
layer network with N & 10" is given in the top row of Fig 2. In our
simulations, we use 2 BA network with a larger node number of
W10 that is constructed in the same way as the ILs
in Fig. 2.

2. Geometric inhomogeneous random graph

The GIRG model - produces a spatially embedded scale-free
random network. In this model, N points are first selected uni-
formly at random in the n-dimensional hypercube K = [0,1]"
We denote the randomly selected point position by x € K" {1 =
i= N) and assign it a weight w whose value is drawn from a
power-law distribution plw) = (v — Zpw™" (w = 1,7 = 2} The
distribution piw) is normalized such that its mean value is equal
to 1. Pairs of nodes i, with positions x, x; are adjacent with

probability
) S pe [—(&)“] (19)
A RN

where ||x; — x| denotes the Euclidean distance between points f and
7. The resulting degrees k; (1 = i = N)are also distributed according
to a power law with exponent t.

According to Eq. (19), the exponent o tunes the distance and
weight dependence of IT,. When o =0, the probability that two
nodes 1, f are adjacent is independent of their distance Jx; — .
That is, M; =1 —e™" for all i,j. By increasing «, the distance-
dependence of T, strongly influences the structure of the network
o that only nearby nodes are likely to be adjacent. The bottom row
of Fig. 2 shows GIRGs for various parameters.

For small exponents v = 2, the number of nodes with large
welght values increases. According to Eq. (19), nodes with large
weights are more likely to be connected than modes with small
weights. The abundance of these large-weight nodes, which are the
hubs of the underlying scale-free network, impacts the global strue-
ture of GIRGs. By decreasing =, many long-ranpe connections are
added to a GIRG. In the bottom row of Fig. 2, we observe that small
values of © are associated with a larger proportion of long-range
connections,

D. Edge removal

To model disruptions in the information layer (IL), we con-
sider two different edge-removal protocols: (i) mndom edge removal
and (i) rargeted edge removal. In both protocols, we select N = N
nodes and denote the proportion of selected nodes by g = N/N. For
each selected node, we remove each of its edges with probability
p. Values of pg = 0 correspond to disruptions in the IL that slow
down the information spread. For p = g = 1, there are no awareness
dynamics, and the epidemic progresses without interference from
the information layer.

In random edge removal, N nodes are selected uniformly at
random, while in targeted edge removal, we select N hub nodes
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FIG. 2. Muliplex networks. InformaBon layer (top layer) with BA struchure and epidemic layer (bottom layer) with G IRG stucture determined by exponents « =2, ¢+ =25
(ajand ¢ = 2. v = 3.5 (0. In the BA network, each new node has m = 2 edges fat comnect it to existing nodes using Enear prefenenial attachment. We use blue and
orange edges in the epidamic layer be indicabe short-range and longrange connections. respectivaly. An edge connecting wo nodes i, jis considered a shorlrange connection
if the corrasponding posifions x,, x, satisfy (|, — x| = 7. Otherwize, itis considerad a long-range connection. The nurbers of nodes in panels (a) and (b are N = 921 and
N = 873, respecively.

iie, nodes with the largest degrees sorted in descending order).
Such random and targeted disruptions have been studied to provide
insight into the ability of different types of networks to withstand
errors and intentional attacks.” Tt has been shown that structural
features of scale-free networks, such as the size of the largest con-
nected component, are very sensitive to intentional attacks (or
sabotage).

We next explore how variations in p, g £ [0, 1] impact the total
proportion of infections * = | — 3%, peak prevalence, and the time
tor reach the prevalence peak, measured from the start of the out-
break. At the beginning of an outbreak, the proportion of aware
individuals is usually very small and likely smaller than the propor-
tion of infected individuals. Thus, most early infections occur with
the infection rate #" of unaware individuals and disruptions in the
information layer at this time do not substantially alter the epidemic
threshold.

IIl. RESULTS

We first consider a baseline case of SEIRD-UAU dynamics
without edge removal (Le, pg = 0) in two different multiplex net-
works. Both multiplex networks are connected and have the same
BA information layer (see Sec. [1 C 1). In the epidemic layer, we set
T = 35and r = 2.5 to model contact networks with different pro-
portions of long-range connections (see Fig. 2). In the remainder of
this work, we will refer to the networks with r =25 and r = 35

as long-range and short-range networks, respectively. In both net-
works, we set o = 2 [see BEq. (191]. All stechastic simulations are
implemented using the Gillespie algorithm. -

A. Baseline

We have chosen the model parameters that we use in the base-
line simulation in accordance with empirical data on the outbreak
of SARS-CoV-2 in the beginning of 2020. For example, for the two
multiplex networks that we use in our simulations, we have set the
infection rate of unaware nodes to f* = 0.17,0.5day”' to obtain a
basic reproduction number B, of about 2 — 47 Given a Latrn-:ly
period of about 5 days,” we set the ]a:ent rate o g = 1/5day
The resolution rate is setto ¥ = 1/14day ', and we use an infection
fatality ratio fof 1%

Other model parameters that are associated with UAU dynam-
ics are as in Ref. 47, We provide an overview of all parameters and
o rrespcnd ing references in Table |

Figure 2 shows the stochastic evolution of the proportions
of susmptlble $(f), exposed (), infected i(f), recovered rif), and
deceased d(f) nodes in the EL and of unaware w(#) and aware a(
nodes in the IL. Initially, ten nodes are infections and one node is
aware. For networks of about N = 10000 nodes that are used in our
stochastic simulations, these initial conditions correspond to (0} =
107% and a(0) == 10~%, The simulation results shown in Figs 30a)
and 3[c) and Figs. (b and 3(d) are based on short-range (z = 3.5)
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TABLE I. Overview of model parameters. We use infection rates 8" =047 and #* =08day" for GIRG networks with r =2.5 (long range) and v =35 (short ranga),

raspactively.

Paraimeter Syl Value Units Comments/references

Infection rate {unaware) A 0.17, 0.6 day™* Inferred from By == 2 — 4 for a given 3
Infection rate (aware) A 02pe day™" 71

Latent rate a 15 day™ 53

Resolution rate ¥ 1/14 day™ 54 and 55

Infection fatality ratio f 1% i 56 and 57

Self-awareness rate (infected) K 1 day™* !

Base awareness rate A 058 day™ 4

Unawareness rate 5 1/30 day™ 47

and long-range (t = 2.5) GIRGs, respectively. The evolution of the
UAU dynamics in the IL is very similar for both GIRGs. However,
structural differences between the ELs directly impact the evolution
of SEIRD dynamics. For the short-ranged EL, the infected fraction
peaks at ~0.21 after about 51 days, while for the long-ranged EL,
the infection fraction peaks at ~0.17 after about 38 days. Figure 2
also shows that the final epidemic size 1| — s(t — o0) for the two
networks differs significantly. To understand what causes the dif-
ferent outbreak characteristics in both networks, we examined the
degree distribution of susceptible nodes at T = 150 days and found
that there are substantially more susceptible low-degree nodes in
the long-range GIRG where r = 2.5 than in the short-ranged GIRG
with = = 3.5, Although there are more hub nodes with a large degree
in the long-range GIRG, the proportion of low-degree nodes is also
larger. Hence, there are more low-degree nodes in the long-range
GIRG that are less exposed to the outbreak dynamics.

To complement the stochastic simulation results, we numer-
ically solve the heterogeneous mean-field model (10015 for
the same networks and model parameters (see Table 1), We set
the degree cutoffs to [ =210, K =400 (r = 2.5} and =210,
K=164 (r =35). In the multiplex network with short-range
IL with = 3.5, the degree cutoffs correspond to the maximum
degrees. In the long-range EL where © = 2.5, the maximum degree
is 856, and to keep the solution of the mean-field model compu-
tationally feasible, we set the cutoff K = 400. Initially, we set a;i,(0)
=ppal00/2, a5 (0 = pfai) /2, w5 (01 = (1 — i)
—ail/2), wi ) = ppeia0) —a(0)/2), where p; and py denote
the degree distributions in the IL and EL, respectively. Both
degree distributions are normalized according to E;_, pi=1and

Yoiti=1

The initial conditions satisfy

s(0) = 3 (w5(0) +ami0)) = 3 pipuft — i(@)] = 1 — iqo),
T ik
(200

i0) =3 (wi(0) + aic(0)) = 3 piui(0), (21)
ik ik

w(0) = Y (w0} + wic(0)) = Y pip[1 —a(0)] =1 - ao),
13 ik
J (22)

aily = z (5001 + @i (0)) = E pifeally. (23]

I ik
In accordance with the initial conditions that we used in the stochas-
tic simulations, we set {0} = 107 and a{0) = 107 Figure 4 shows
the corresponding numerical results. Comparing Figs. 5 and 4, we

{iny

Proportion

n Sl 100 150 ] ail LiH) 150

— it

= ali)

=t}
—it]}
- it}
T
BAUEE ]

Proportion

00 25 &0 T.5 100 040 25 50 7.5 10

Time [dayvs] Time [days]
FIG. 3. Siochastic smulation of a baseline scanano withoutin formation-layver dis-
rugtion (i.e., pg = 0). {a) and (b) Proporions of suscepible [5(1)]. exposed [ei0],
infected [i{]. recovered [r(f)], and decoased [d(f)] nodes at time f. The expo-
nent t in the epidemic layer in panats (a), (c) and (b}, (d) is set to 3.5 (short
ranga) and 2.5 (long range), respectively. The corresponding numbers of nodes
are N = 10 49 and N = 10025, Solid cobored lines rapresent mean values that
are based on ten iid. realizafions (thin gray lines).
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FIG. 4. Heterogenaous mean-field soluion of a bazeline scanario without infor-
mabon-layer disruption {i.e., pg = 0. (a}and (o) Proporticns of susceplible [s(11],
exposed [alh]. infected [1{01], recovered [r((1]. and deceased [d()] nodes at fime
i. The exponent 1 in the epidemic layer in panels (a), {c} and (b}, {d) is setto 3.5
(short range) and 2.5 (long range), respecively. The corresponding numbers of
nodes are N = 10049 and N = 10025

observe that the heterogeneous mean-field model captures charac-
teristic features that arise in the evolution of stochastic SEIRD-UAU
dynamics. Examples of such features include (i) the rapid spread
of awareness in the IL and (i) differences between both ELs in the
final epidemic size 1 — s(t — o). In the heterogeneous mean-field
mwdel (10)-112), we take into account only differences in the node
degree and neglect other structural features of the considered multi-
plex networks. Subpopulations interact in a well-mixed manner, and
susceptible nodes of the same degree have the same risk of being
infected at any given time. As a consequence of these approxima-
tions, the mean-field model overestimates both the number of new
infections and the final outbreak size compared to the stochastic
simulation results in Fig 3.

B. Impact of edge removal

We now study the impact of random and targeted edge removal
in the IL (see Sec. [ D) on SEIRD dynamics in terms of three disease
severity measures: (1) final epidemic size, (i) peak prevalence, and
11il} time to peak prevalence measured from the start of the outbreak.

Both edge-removal protocels model disruptons in the L
Examples of processes that can be modeled by random edge removal
include, eg., unintended software and hardware issues that lead to
connectivity problems in the communication channels that individ-
wals use to exchange information. Targeted edpe removal describes
the intentional interdiction of communication infrastructure by
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adversaries. ' In the context of COVID-1%, online communica-
tion networks were primarily subject to misinformation campaigns.
More direct attacks on personal devices and local Internet hubs,
which we model as targeted L disruptions in the SEIRD-UAU
madel, may be associated with cyber attacks as a part of combined
biclogical and cyber warfare.

1. Random edge removal

In random edge removal, we randomly select a proportion of
§ = N/W nodes in the IL. For each selected node, edges are removed
with probability p.

Figures 5ia) and 5(d) show the epidemic size 1 — s(f — oc) as
a function of p, g for both short-range and long-range GIRGs. The
epidemic size increases with p and g because larger values of p, g are
associated with fewer edges in the IL, leading to a smaller propor-
tion of aware nodes. Hence, the proportion of nodes with a reduced
infection rate Y also decreases. For the long-range GIRG (r = 2.5),
the final epidemic size increases from about 0.60 for p.g =0 to
about 0.90 for pr,g = 1. Because the final epidemic size in the short-
range GIRG {t = 3.5) is already about 0.92 for p,g = 0, random
edge removal has relatively litile impact on this quantity. Without
any edges in the IL {Le., p. g = 1), the final epidemic size approaches
0599,

As with the impact on the final epidemic size, random edge
removal penerates a similar-looking p, g-dependent prevalence peak,
as shown in Figs. 5(b) and 5(¢). For the short-range GIRG, the values
of the prevalence peak for p.g =0 and p,g = 1 are 0.22 and 0.37,
respectively. The corresponding values in the long-range GIRG,
respectively, are 0.17 and 0.36, slightly smaller than in the GIRG
with more short-range edges. The time associated with the peak of
prevalence decreases with p, g since higher p.g are associated with
smaller proportions of aware nodes. Thus, the proportion of nodes
with a reduced infection rate BY also decreases, and the epidemic
spreads faster through the network. For the short-range GIRG, the
time to reach the prevalence peak is about 30 days for p, g = Oand 32
days for p,g = 1. In the GIRG with more long-range edges, the cor-
responding times to reach the prevalence peak are 37 and 25 days,
respectively.

2. Targeted edge removal

For targeted edge removal where the N selected nodes cor-
respond to the hubs (Le., largest-degree nodes) of the 1L, we find
that the overall dependence of epidemic size, peak prevalence, and
time to peak prevalence on p,g (see L o) is qualitatively similar
to random edge removal. As in mndom edge removal, the impact
of targeted edge removal on the final epidemic size is smaller for the
short-range GIRG compared to the long-range one. A key difference
in targeted edge removal is that all studied quantities are more sen-
sitive to variations in g, the proportion of selected hub nodes. For
example, the transition of the epidemic size for p = 1 as a function
of g in targeted edge removal [see Fige o0a) and /0] is steeper than
the corresponding transition in random edge removal [see Fige 500
and 5], As another example, for (p.g) %= (0.9,0.5), in comparison
with randoem edge removal, the final outbreak sizes under targeted
edge removal are about 2% and 12% larger in the short-range and

Chaos 33, 033145 (2023); doi: 1010650139844
Published under an exciusive beonsa by AIP Pubkshing

33, 0331457

TEEFEL EZ0T 158y L



Chaos ARTICLE

(a) Epidemic size {7 = 3.5)

P 1.0 0.0 i

L0 0.0 q 9

(b) Peak prevalence (r = 3.5)

LD .o

scitation.org/journalicha

(c) Time to peak prevalence (T = 3.5]

a0
an
30

P 1.0 0.0 q

.35
.25
0.15
1.0

0.5
i L0 o q

FIG. 5. Random edge ramoval. The impact of random odge removal in the 1L on diseass dynarmics i the EL Epidemic size 1 — s(f — oc) (eft column), peak prevalence
{middle column), and fime to reach the peak prevalencs fraction in days {right column), as funclons of the proportion of selected nodes g and the corresponding edge-removal
protability p. The axponent = in the ELs in the top row and the botiom row is setto 3.5 (short range) and 2.5 (long range), respeciively. Tha corresponding numbess of nodes

are N = 10049 and N = 10 025. Simulation results are based on 300 i.i.d. realzations.

long-range GIRG, respectively. Similarly, the corresponding preva-
lence peak values are 19% and 26% larger, while the times to reach
the peaks are 12% and 5% shorter.

Targeted edge removal selects nodes based on their degree
and leads to more significant changes in epidemic size, peak preva-
lence, and time to peak prevalence as p = 0.5, These findings are
in accordance with previous work that showed that scale-free net-
works break down more easily under intentonal attacks than under
uniform random failure.” Complementing these earlier results, our
work provides insights inte how disruptions in information diffu-
ston translate into differences in disease severity measures.

IV. DISCUSSION

In this work, we studied the impact of disruptions in com-
munication networks on information diffusion and their subse-
quent effects on disease outcome. To do so, we constructed a
multiplex network that consists of two layers. The first layer,

called the information layer (IL), is used to medel communica-
tion between individuals (e, online information exchange via
a soctal media platform). The second layer, called the epidemic
layer (EL}, is used to represent a spatially embedded human con-
tact network in which infectious individuals can transmit a disease
to susceptible individuals. We employ this multiplex network to
simulate coevolving unaware-aware—unaware [UAU) and suscepti-
ble—exposed -infected-recovered -deceased (SEIRD) dynamics. The
murde] parameters that we use in our simulations are consistent with
empirical data on the early outbreak stages of SARS-CoV-2 in the
beginning of 2020.

We considered two different epidemic layers with different
proportions of long-range connections, representing human con-
tact networks with different contact characteristics. To illustrate
the impact of disruptions in the IL on the eveluton of an out-
break, we utilized two different edge removal protocels: (i) random
edge removal and (i) targeted edge removal. Random edge removal
may describe the unexpected failure of communication channels
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FIG. 6. Targated edge ramaoval. The impact of targeted edge removal in the IL on disease dynarmics in the EL. Epidamic size 1 — st — o) (left panel). peak pravalence
[midde panal). and Sme 1o reach peak prevalence in days (right panel), as funcons of e proportion of selected nodes g and the corresponding edge-removal probability
. The exponent T in the ELs in the fop row and e boflorn row is set 1o 3.5 (short range) and 2.5 (long range). respectively. The corresponding numbers of nodes are

N = 10049 and N = 10025. Srrukation results are based on 300 i1.d. realizations.

that individuals use to exchange information, while targeted edge
removal is associated with the intentional interdiction of 2 commu-
nication infrastructure by adversaries. In both protocols, we select
a proportion g of nodes and then remove corresponding edges with
probability p. In random edge removal, we select nodes in the IL uni-
formly at random, while we select nodes with the largest degrees (e,
hub nodes) in targeted edge removal. Although edge removal may
render the IL disconnected, the EL is always connected in our simu-
lations such that all nodes in the EL can potentially become infected.

Our results show that both edge-removal protocels can have
a significant effect on the progression of an outbreak as quanti-
fled by the epidemic size (ie., the total proportion of infections),
the peak prevalence (Le, the maximum proportion of infections),
and the time it took to reach peak prevalence from the start of the
outbreak. Given that the infection rate of unaware individuals is
larger than that of aware individuals, a dysfunctional IL is generally
associated with a larger final epidemic size and peak prevalence and
with a smaller time to peak prevalence. Previous work has shown

that scale-free networks, such as the ILin our multiplex network, are
more robust to random than to targeted disruptions. " The reason
for this effect is that by removing hub nodes of a scale-free network,
alarge number of all edges in the network is being removed, strongly
impacting the connectivity properties of such a network. We observe
that targeted edge removal can abraptly change outbreak charac-
teristics, such as the Hme to reach peak prevalence, even for small
proportions of selected nodes. Our results extend those presented in
the previous work ™ on random and targeted disruptions by estab-
lishing a connection between different types of disruptions, disease
transmission, and coevolving information exchange dynamics.
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