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Abstract

Each T cell typically carries a specific T-cell receptor (TCR) that determines its specificity against an epitope presented
by the HLA complex on a target cell. Antigenic challenge triggers the expansion of reactive cells within a diverse pool
of T cells with randomly generated receptors, a process that results in epitope-driven shifts of TCR frequencies over
time. Here, we analyze the effects of SARS-CoV-2 vaccination on the TCR populations in peripheral blood drawn from
seven COVID-naive individuals, before vaccines were widely available. To identify SARS-CoV-2 vaccine-associated
TCR sequences among the ~ 10° — 10° TCR sequences sampled before and after vaccination, we develop statistical
criteria to detect significant increases in abundance of positive TCR clones. Application of our statistical methods shows
a robust identification of TCR sequences that respond to SARS-CoV-2 vaccination in vivo, illustrating the feasibility of
quantifying the clone-specific dynamics of T-cell abundance changes following immunological perturbations.

Keywords: T-cell activation, COVID-19, vaccination, statistical identification

Introduction

mRNA vaccines that deliver SARS-CoV-2 spike protein (S protein) to the blood have been highly effective in
reducing COVID-19 morbidity and mortality [ 2} 31415, 16}7]]. Vaccination promotes HLA-restricted T-cell responses
against the S protein that play a critical role in this protective effect. These responses are mediated by TCRs recognizing
epitopes from the S protein. TCRs are heterodimers [8} 9, [10} [11} [12] consisting of an @-chain (TCRA) and a S-chain
(TCRB) [13]. In the generation of T cells, somatic recombination of the different domains [the variable (V) and joining
(J) domains in TRA and TRB, and the diversity (D) segment in TRB] in the associated TCR sequence occurs. Along
with nucleotide insertions and deletions, a complementarity-determining region 3 (CDR3) is generated with up to 10'3
possible combinations of TCR sequence [[13} 14} [15] [16].

Of this possible diversity, it has been estimated that ~ 10% unique TCR sequences are circulating in the peripheral
blood of a person [[17} 18] 19,120} [21]]. CTLs (cytotoxic T lymphocytes) are CD8* T lymphocytes that eliminate target
cells through cytolysis and apoptosis. A second group of CD4* lymphocytes includes key “helper T cells” that direct
immune responses by supporting CTLs and contributing to antigen-specific antibody production.

These T-cell responses have been shown to play a key role in mitigating the pathogenicity of SARS-CoV-2
infection [13} 22]], and an early T-cell response has been associated with a mild outcome of COVID-19 [23| [24].
In contrast to rapidly waning antibody responses [4} 25]], SARS-CoV-2-specific T cells persist over longer periods
and provide an immediate immune response against COVID-19 re-infection [26} 27]. Furthermore, the evolution of
SARS-CoV-2 into variants has been marked predominantly by mutations in and around the S protein receptor binding
domain (RBD), leading to escape from neutralizing antibodies (which generally target the RBD), while T cells target
epitopes distributed throughout the S protein and thus have a broader recognition of variants. The large size and
abundance of the S protein make it a good target for the adaptive immune response [28]. To better understand the
T-cell response against COVID-19, large libraries of TCR sequences have been analyzed using various bioengineering
methods [29, 30, 31]].

Preprint submitted to Immunological Methods January 1, 2026



25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Quantifiable detection of vaccine-induced peptide-specific expansion of TCR clones is required in many applications.
However, challenges include analyzing ~ 10° TCR clones without replicates and defining abundance changes among
clones with highly dispersed abundances. In addition, different subjects may experience very different immune response
intensities. These factors complicate the accurate assessment of T-cell clone responses during the post-vaccination
visits and the capture of significant changes in the abundances of individual clones.

Several advanced Bayesian methods for detecting clonal expansions, such as NoisET [32] and edgeR [33]], which
are based on Bayesian models, and have been recently developed. The incomplete overlap in identified clones using
these methods and the absence of a ground truth for evaluating their reliability motivates us to develop a new method
grounded in fundamental statistical principles for a better comparative analysis.

In this study, we develop CEI, a Python package designed for the rapid, scalable detection of clonal expansion from
single samples from repertoires pre- and post-vaccination (or in general, any perturbation). Applied to TCRB repertoires
from blood drawn before and after mRNA/adenoviral-vectored vaccination, CEI identifies vaccine-associated TCRB
sequences using a two-proportion test and analyses of differences and log-fold change of abundances. While developed
for TCRB data in this work, the framework is applicable to other replicate-limited count comparisons (e.g., TCR/BCR
repertoires or CRISPR screens) where feature-level proportions are contrasted across two distinct conditions.

Materials and Methods

Data preprocessing

Relevant to this study (comparing pre- and post-vaccination TCR abundances in COVID-naive subjects), samples
were collected from seven individuals (labeled CLE0083, CLE0099, CLE0100, CLEO101, CLE0108, CLEO0117,
and CLE0136) between April 2020 and May 2021. Post-vaccination samples were taken from subjects in January-
September 2021, very early in the pandemic before vaccines were widely available. These subjects received their first
vaccinations between 12/18/2020 and 1/8/2021, and their second vaccinations between 01/06/2021 and 01/30/2021.
Subject CLE0099 received the AstraZeneca chimpanzee adenovirus vectored vaccine while all others received the
BNT162b2 mRNA vaccine. Additionally, all subjects had no prior history of COVID-19; baseline spike RBD antibodies
were also confirmed negative by ELISA around the time of the first vaccination. This dataset represents a rare and
scientifically valuable window into the earliest immune responses to SARS-CoV-2 vaccination, captured during a
critical period at the onset of the global vaccine rollout. This temporal isolation from natural infection ensures that the
observed TCR dynamics are most likely to be attributable to vaccination.

Overall, samples were taken at three time points: baseline (0-3 days before the first vaccination, labeled B), 14 to
20 days after the first vaccination but before (labeled P1), and 11 to 21 days after the second vaccination (labeled P2).
Further details are provided in Table (I} The TCRs of both CD4* and CD8* T cells in these samples were sequenced
by Adaptive Biotechnologies.

Post processing of immunosequencing data for differential abundance analysis

Differential abundance analysis is a statistical framework used to determine whether a particular receptor rearrange-
ment is more abundant in one sample than in another. It can be applied to nucleotide, amino acid, or bioidentity (V
gene/amino acid/J gene) sequences depending on the desired resolution and biological context. While nucleotide-level
matching provides the highest resolution, amino acid-level matching allows for grouping of clonotypes that may differ
at the nucleotide level but encode the same protein sequence. We employed the IMSEQ [34] algorithm to collapse
nucleotide sequences for identical clonotypes for downstream differential abundance analysis of bioidentities. Since
the amino acid sequence determines protein function, we established criteria to determine whether two nucleotide
sequences are identical:

o If the V subtype, CDR3 amino acids, and J subtype are all identical, we consider these two sequences to be
identical;

o If the two sequences differ only in their V subtype, and one or both are ambiguous, we treat them as the same if
the longer sequence contains the shorter;



69

70

al

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

Subjects Demographics Sample times versus vaccine doses (days)
Age | Sex | Race | Hisp Vaccine B to Vacc #1 | P1 to Vacc #1 | P2 to Vacc #2
CLEO083 | 49 M A N | BNT162b2 -3 18 18
CLE0099 | 51 M w N AZD1222 0 15 14
CLEO100 | 55 M A N | BNT162b2 -2 16 14
CLEO101 | 36 F A N | BNT162b2 0 14 13
CLEO108 | 50 F | Iranian | N | BNT162b2 -1 20 11
CLEO117 | 64 M W N | BNT162b2 0 14 15
CLEO136 | 42 F w N | BNT162b2 0 18 21
Mean (Range) -1(-3t00) 16 (14 to 20) 15 (11 to 21)

Table 1: Vaccination records for all the individuals. BNT162b2 is an mRNA vaccine, while AZD1222 is a chimpanzee adenovirus-vectored vaccine.

“Vacc #1” and “Vacc #2” refer to the first and second doses of the vaccine, respectively. The timing of sample collection in relation to vaccination is

denoted by sample times versus vaccine doses. For example, in “B to Vacc #1,” -3 represents a pre-vaccination baseline sample that was taken three
days before the first "P1” vaccination.

o If the two sequences differ by only one base (A, C, T, G) in the nucleotide sequence of the CDR3 region, we
consider them identical.

For identical sequences, we sum their template counts for the subsequent analysis of changes in abundance.

Quantification of clone abundance changes

Due to the specificity of TCR binding to assigned antigen peptides, we can statistically screen for sequences that
expand after vaccination by comparing with the baseline sample. Our analysis identifies TCR sequences that are
enriched in response to vaccine-associated antigens (including but not limited to S protein) as “positive” and those
that do not target S proteins as “negative.” We assume that all T cells and SARS-CoV-2 protein-expressing cells
generated by mRNA vaccination are well-mixed, and neither the exposure nor the expansion capacity of reactive T
cells is limiting. Although false-positive sequences (i.e., non—vaccine-associated sequences that expand) may occur,
their number is relatively small compared to the true-positive sequences. Likewise, the likelihood of false-negative
sequences (i.e., SARS-CoV-2—specific sequences not responding) can be neglected.

Intuitively, we need to assess the magnitude of the difference in the abundances of individual clones (here, a clone
denotes the collection of cells with the same V gene, CDR3 amino acid, and J gene identity), measured in samples taken
before (baseline) and after vaccination. In addition, we can evaluate the intensity of the response at each post-vaccination
time point. One approach is to treat the clone abundances across clone identities as a distribution and then measure
the dissimilarity between the distributions at different visit times within one individual. For instance, we can consider
metrics/distances such as KL divergence [35]], Wasserstein distance [36} [37]], cosine similarity [38]], Bhattacharyya
distance [39], among others. However, these approaches face challenges in effectively addressing scenarios where
clones were not initially sampled at the baseline but have grown significantly after vaccination. Moreover, because
these metrics typically quantify changes in the global shape of the distributions, very high-abundance clones may
dominate the metrics and thereby obscure relatively small clones that have nonetheless undergone substantial growth.
It is also probable that extremely large clones are not SARS-CoV-2 specific if they did not appreciably expand upon
vaccination.

Here, we will focus on the changes in the abundance of individual clones between samples taken from two
repertoires. We assign a fixed index 1 < i < [ to each clone, where [ is the total number of different clones observed
in the two samples drawn from the same subject before (B) and after (P) vaccination. Given a clone with index i,
we denote its true in vivo, whole body sizes at time ¢ € {B, P} as integers ngt). We also define the corresponding total
number of T cells at these two time points as N® and NP, respectively.

Assuming N® ~ NP, consider a scenario where the abundance of a sampled clone changes from 10,000 to
10, 100. Although the absolute difference of 100 is appreciable, if this difference arises in an already-large clone, the
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relative change in abundance could be small and attributed to the sampling variability or intrinsic fluctuations in a
“homeostatic” large clone. On the other hand, a fold-change from O to 5 is considered large (infinite in this case), but an
absolute difference of 5 might also arise from noise, sampling or otherwise. Therefore, we will use both the absolute
difference and the fold-change as quantities for the identification of statistically significant changes in abundance.

We motivate and develop two clone-level quantities or “indicators” that can be used to effectively screen expanded
clones and measure the strength of response following a perturbation, vaccination in our case.

1. Difference in clone abundance The normalized change in abundances from data is defined as
di=p" - p” (1

)

where p(’ represents the abundance fraction of clone 7 in the sample drawn at time ¢ € {B, P}.

S 5@

2. Regularized log-fold change We define the log of a regularized abundance ratio by

S(P) + & ( ) + &
10g2 S (P) 10g2 S(B) (2)

where ¢ is a Haldane-Anscombe correction to stabilize zero counts (the default value & = 0.5 is typically used).
Taking the logarithm defines r; over the entire real line (—co < r; < 00).

Variance, Wald statistic, and p-values for d;
Under a simple random sampling assumption (i.e., each T cell has the same probability of being sampled) with total
sample size S® and S P, the abundances { s } of sampled clones i at time ¢ € {B, P} follow a multinomial distribution:

(s(]’),s(;),...,s(’)) Multlnomlal(S(” p(]t),pg),...,py)), te{B,P) 3)

where p(t) N(,) is the probability of the clone i being sampled at time . Note that because very few clones from the
entire body are sampled, S® = ¥ s < N® forr € (B, Pyand X1, p\" < 1.

Since only a small number of T cell clones respond to vaccination, we consider no change in abundance, pEB) =

p(P) = p;, as the null hypothesis (Hy). We expect very few clones to violate this hypothesis.

Since the joint statistical properties for two signals (difference and log-fold change in abundance) under a true
multinomial null are analytically complex, we adopt a resampling-based approach to assess clone abundance change
significance. To reduce computational burden, we replace the full multinomial in Eq. 3] with a marginalized probability
distribution, treating each clone independently. Specifically, considering the probability of each clone to be sampled is
small and library sizes are extremely large, we use a Poisson model:

s ~ Poisson (xlﬁ”), where /l(') SOp; and t € {B, P). 4)
Since the true p; is unknown, we approximate it using the pooled proportion estimator:
5 4 5
pi= m (5)
The variance of the difference d; for clone i is thus calculated by
5" s”\_ b b
Var(d,-):VaI[S(P)]+V [S(B)]: WJFW (6)

To better balance the effects of the difference and log-fold change, we need to nondimensionalize the difference.
Consider taking a sample from each clone as a single experiment. Instead of focusing on global Z scores, we should
utilize Wald statistics to find asymptotic Z scores under Hy for each clone separately. Therefore, for clone i, we have

Zy=— % (7)

i (5t + 5im)
The one-sided p-value py, = 1 — ®(Z,,) for the clone i is used to detect expansion. Here ®(x) = %[1 + erf(x/ \/5)] is the

cumulative density function of the standard normal distribution.
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Variance, Wald statistic, and p-values for log-fold change r;

Considering the empirical abundance fraction sl(.’) /S ®) of clone i in sample ¢ € {B, P}. As assumed previously, the
count of each clone follows a Poisson distribution. Given the definition of the log-fold change r; = log, ﬁgp) —log, ﬁEB) ,
the null hypothesis for this case is supposed to satisfy Hy : r; = 0 (no change upon vaccination). By assuming the

independence between visits, the multivariate delta method yields the following variance:

Var(r;) = ! ( ! ! ] ()

+
(In2)? ﬁﬁ”S”’) l~,§8>5(3>
)
where [35.') = YS%E (t € {B, P}) are empirical proportions smoothed by a Haldane-Anscombe correction & (default
e=0.5).
Applying the Wald test gives us the asymptotic Z scores:
. In2(log ﬁEP) —log ﬁf.B)
, i _n2(lg 2) o

Ti
AV . , 1 1
al‘(i’l) _f)f-P)S(P) + ﬁf-B)S(B)

which is approximately normally distributed when Hj holds. In this case, the one-sided p-value is found from
Pri = 1- cI)(Zrl)

CEI-Joint method

Since both differences in abundance and log-fold changes between two samples are considered important in
identifying amplified clones, it is natural to consider their associated Z scores as components of a two-dimensional
vector Z; = (Zg., Zy)" .

To include standardized statistics for both differences and log-fold changes into a single test statistic, we can
consider a score based on a modified Mahalanobis distance for each clone i,

D} = (Zi-m)" 27 (Z; — m) (10)

where X denotes a covariance matrix
% = E[(Zy, - ma)(Z,, - m))] an

Here, we use the trimmed median vector m after removing the largest and smallest 10% of clones by ||Z;||. Vaccine
stimulation leads to a very small number of clones experiencing significant expansion, induces modest contraction in
several others, but leaves the majority of clones statistically unchanged. Consequently, the median serves as a more
stable representation of the “no-change” baseline than the mean.

We control false positives by testing our CEI-Joint method with a multinomial permutation under the no-change
null hypothesis. By applying the pooled clone frequencies p;, we redraw entire libraries as sﬁi) ~ Multinomial(S ®, p;)

and sf,’: ) Multinomial($ ®, p) in each permutation » = 1,--- ,R. For each permutation, we recompute the same
per-clone statistics (i.e., Z4,, Z,,) and the 2D Mahalanobis distance. We then pool all permuted distances across clones
to obtain the null distribution. The empirical p-value for clone i is calculated as follows:

. 1+#D}, > D}
pi=——F——F

T+ IR (with I clones, R permutations) (12)

This formula avoids zero p-values and accounts for dependence between the two Z scores. Finally, we apply the
Benjamini-Hochberg (BH) procedure to control the false discovery rate (FDR) [40l 41]]. By setting an FDR threshold,
denoted as a (e.g., @ = 10%). Given a total of I clones and their corresponding p-values, denoted as py, pa, ..., pr,
we sort these p-values in ascending order to obtain p,,, pr,, ..., pr,. Next, we identify the largest index i such that
pr. < (i/Da. The clones ranked from 1 to i are referred to as “expanded.” This filtering step preferentially removes
clones whose apparent changes are consistent with random sampling noise, given the fixed library sizes.
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CEI-ACAT Method

Alternatively, we can combine the two statistics into a single p-value measurement using the Aggregated Cauchy
Association Test (ACAT) [42]]. ACAT merges multiple p-values by mapping each one to a Cauchy distribution and
then returning a single p-value. We use this method to consolidate the two one-sided p-values for Z;, and Z,, into a
single score. ACAT remains valid even if dependency between the two indicators exists. The ACAT method constructs
the quantity

T; = %tan [7(0.5 - pa)]+ %tan [7(0.5 - p,)] (13)

from the one-sided p-values py, = 1 — ®(Z;,) and p,, = 1 — ®(Z,,), respectively. The corresponding effective p-value
for clone i is then calculated from

1
pCAT = 0.5 — ~ arctan(Ty). (14)
T

Again, BH-FDR control is utilized to filter out false positive clones.

Results

We now apply the methods described above to SARS-CoV-2 vaccination data to identify vaccine-associated TCR
sequences. The FDR will be controlled by the BH procedure, and we set @« = 1% — 10% as a possible range for
selection.

Comparison of positive-associated clones identified by different methods

When applying a 10% FDR to both the CEI-Joint and the CEI-ACAT methods, the table shows strong inter-
individual and inter-visit heterogeneity in the number of positive clones. To provide a clear overview of this variability,
we list the number of positive-associated clones in Table[2] The CEI-Joint method typically identifies many more clones
than the CEI-ACAT method (for example, it reports thousands of clones for CLE0108 and CLEO117). In contrast,
CEI-ACAT tends to be more conservative, although it occasionally calls more positive clones than CEI-Joint in specific
cases (such as for CLE0101 B-P1, CLE0100 B-P2, and CLE0136 B-P1). Additionally, the results patterns differ
depending on the visit pairs: some individuals show their strongest signals in P2 compared to P1 (indicating a later
response), while others have the largest signal in P2 compared to B (indicating an overall strong post-vaccination
expansion). Several participants, however, exhibited very few positive clones across all comparisons (e.g., CLE0100
and CLE0136). Since subject CLE0099 received the chimpanzee adenovirus-vectored vaccine, the set of activated
TCR clones in this individual consisted of clones responding not only to SARS-CoV-2 antigens but also to antigens
derived from the adenoviral vector itself.

We compared the positively associated clones identified by our CEI-Joint and CEI-ACAT methods, as illustrated
in Fig. [T]and in Figs. [ST}{S6]in the Supplementary Material. The positive clones selected at different times were
analyzed by comparing sample P1 with sample B, sample P2 with sample B, and sample P2 with sample P1. Results
are presented in Fig. [2[and Figs.[S7HS12|in the Supplementary Material. For better visualization, both figures display
selections made by the CEI-Joint method at a 10% FDR and selections made by the CEI-ACAT method at a 1% FDR.

Comparison with standard heuristic selection criteria (Adap) and edgeR

Our TCR identification methods were further evaluated by comparing their predictions with those from methods
previously developed to identify differentially abundant clones [40} 43] in different contexts.

The standard heuristic selection method (Adap) previously used by Adaptive Biotechnologies designates a clone as
activated if its sampled baseline and post-vaccination counts exhibit at least a 2-fold increase and that the abundances
pass a two-sided binomial test with a p-value below 0.01. In this analysis, the two-sided binomial test p-values are
adjusted using the BH procedure to effectively control the FDR. Furthermore, to ensure the reliability of the detection,
only clones with a minimum count abundance of five in the sample are considered. edgeR, which tests negative
binomial or generalized linear models, was also applied to our single sample (no replicates) data.

Figure 3] compares the clones identified using two heuristic criteria (Adap and edgeR) with those identified using
our CEI-Joint and CEI-ACAT methods for the subjects CLEO083 and CLEO101. All methods were controlled at a 1%
FDR. The panels highlight significant subject-specific differences and distinct profiles for each method.
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Individuals Rs Rt Ry B vsP1 Bvs P2 P1 vs P2
Joint | ACAT | Joint | ACAT | Joint | ACAT
CLEO083 | 184,988 | 315,615 | 322,569 | 359 5 373 3 2 2
CLEO099 | 223,828 | 85,703 | 231,395 | 451 216 44 27 2584 12
CLEO100 | 245,481 | 219,434 | 267,635 1 1 4 21 17 16
CLEO101 | 252,373 | 271,931 | 177,847 | 24 89 101 47 202 33
CLEO108 | 136,808 | 591,274 | 208,447 | 5127 5 46 2 2001 60
CLEO117 | 133,666 | 89,962 | 369,441 | 117 5 4248 3 5119 11
CLEO136 | 370,013 | 386,065 | 297,501 2 4 5 6 17 7

Table 2: Table of the total number of positive-associated clones across multiple participants. R, Rpi, and Rp, are the number of clones (richness)
detected for each individual in the sample B, P1, and P2, respectively. In the B versus P1, B versus P2, and P1 versus P2 columns, we list the number
of SARS-CoV-2 clones identified through their sufficient increases in abundance as determined by our CEI-Joint and CEI-ACAT approaches. We set
the FDR @ = 10% for selection.

CLEO101
B vs P1 B vs P2 P1 vs P2

Jaccard: 0.15 Jaccard: 0.59 Jaccard: 0.38
CEl-Joint CEI-ACAT CEl-Joint CEI-ACAT CEl-Joint CEI-ACAT

Figure 1: Comparisons between the positive sequences called by each method for individual CLEO101. The blue and green circles represent sets of
clones identified by the CEI-Joint and CEI-ACAT methods, respectively. The size of each circle indicates the number of positive clones detected.
The yellow portion illustrates the overlap of positive clones identified by both the CEI-Joint and CEI-ACAT methods. Left: Clones identified through
comparison of sample P1 to sample B. Middle: Clones identified through comparison of sample P2 to sample B. Right: Clones identified through
comparison of sample P2 to sample P1.

CLEO101
CEl-Joint CEI-ACAT

W BvsPl B BvsP2 B PlvsP2

Figure 2: Comparisons between the positive sequences sampled at different times for subject CLEO101. The subplots, left and right, represent
comparisons using the CEI-Joint and CEI-ACAT methods, respectively. Red, blue, and purple circles correspond to positive clones identified by
comparing sample P1 with B, P2 with B, and P2 with P1. The size of each circle reflects the number of positive clones identified. Left: Clones
identified via the CEI-Joint method. Right: Clones identified by the CEI-ACAT method.

For CLEO0083 (a), our CEI-Joint test identifies a considerable number of expansions (n = 87), far exceeding the
counts for CEI-ACAT (n = 5), Adap (n = 7), and edgeR (n = 2). Some of the CEI-Joint calls lie just above the B=P1
diagonal, indicating a broad but modest shift following vaccination. In contrast, for CLE0101 (b), the rankings shift.
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CEI-ACAT (n = 70) and Adap (n = 52) identify the largest sets along the rising trend, while edgeR falls in between
with n = 28. The CEI-Joint method is the most stringent, identifying only n = 13 clones.

Across both subjects, selected clones predominantly sit above the diagonal (indicating expansion), but the methods
emphasize different regions of the plot. The standard heuristic method focuses solely on larger log-fold changes, while
edgeR tends to favor high log-fold change signals with low clone abundance at baseline. Our CEI-ACAT and CEI-Joint
methods strike a balance between absolute differences and log-fold changes. This results in many calls when there is a
diffuse, concordant shift (as seen in CLE0083), but fewer calls when changes cluster along a tight trajectory (as seen in
CLEO101).

Our collection of statistical techniques provides a more systematic framework for fine-tuning FDR, which allows
us to control the stringency in identifying activated clones. These flexible tools can be customized to detect population
expansions in different biological contexts, ensuring that the identification process is both rigorous and adaptable to
varying experimental conditions.

a CLE0083: B vs P1 clone frequencies b .- CLE0101: B vs P1 clone frequencies
/ /
-2.5 / ///
2 /
@) ® / - o /
—3.0 - pd . /
4 w2
/ —_
fa 2] / )
© —3.51 n /// ©
Q \ B % b
o 7 o
— —4.0 H A =l
o> i [e)]
ke 1l 2
— -45 p <4 All clones b All clones
e P% @ edgeR (n=2) edgeR (n=28)
-5.0 A ®  Adap (n=7) Adap (n=52)
g e ACAT (n=5) ACAT (n=70)
s S Joint (n=87) Joint (n=13)
. . , , : : : -6 : : : ;
-55 -50 -45 -40 -35 -3.0 -2.5 -6 -5 -4 -3 -2 -1
B (log10 scale) B (log10 scale)

Figure 3: Abundances of individual TCR clones before vaccination (B) are plotted along the x-axis, while their abundances after vaccination (P1) are
plotted along the y-axis. (a) and (b) correspond to subjects CLE0083 and CLEO101, respectively. Clones that are statistically significantly expanded
(blue) are identified by a corrected binomial model [41] and additionally, a threshold of at least a 2-fold increase or decrease from B to P1. Each dot
corresponds to a unique TCR clone: grey circles represent robust clones with an abundance greater than 5 templates, while clones with fewer than 5
templates are shown in white to indicate they fall below the threshold for reliable detection. Purple squares represent the expanded clones called by
our ACAT method using a FDR at 1%, while green circles denote the expanded clones identified by the standard heuristic approach. Similarly,
clones that have been detected by edgeR are indicated by the red triangles. These results illustrate the overlap between the clones identified by the
ACAT method, the clones detected using the standard heuristic criteria, and those called by edgeR for differential abundance analysis.

Discussion and Conclusions

Our study builds on the efforts to map TCRs to SARS-CoV-2 antigens by offering a high-resolution, longitudinal
view of both CD4* and CD8* T cell responses at three critical timepoints: pre-vaccination, post-dose 1, and post-dose
2. This design allows for precise tracking of TCR clonal expansion and repertoire reshaping in response to antigenic
stimulation. By focusing on COVID-naive individuals, this study avoids confounding from prior infection and provides
a clean baseline for understanding vaccine-induced T cell immunity—an essential component of long-term protection
and immune memory.

To determine whether changes in TCR abundances are deemed vaccination-sensitive (e.g., whether associated
T cells proliferate following vaccination) requires us to carefully define statistical thresholds. We presented several
measures to detect clones whose abundances increased significantly after vaccination. Our framework quantifies each
clone with two complementary statistics—the rescaled abundance change of a clone d; and its log-fold change in
abundance r;.

Human samples make collection of replicates challenging and make it difficult to filter out experimental noise
during the selection process and sequencing procedure. To validate our methods, we compared our selections with the
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simpler rule “r; > 2 (plus a minimum of five template counts), NoisET and edgeR. NoisET and edgeR are well-known
packages designed for clonal expansion detection. NoisET explicitly learns an experimental noise model and then
applies a Dirichlet-Multinomial Bayesian test for expansion under stimulation. However, our dataset lacks replicates,
which prevents us from using NoisET to learn about the noise and detect expanded clones. On the other hand, edgeR
uses empirical Bayes moderation techniques for scenarios with very few or no replicates. However, it is too conservative
and highly sensitive to the abundance of clones in the baseline sample, such that it can only detect expanded clones if
their abundance in the baseline sample is nearly zero. If the size of these clones is even slightly larger in the baseline
sample, edgeR may fail to identify the expansion. We provide a case example for reference in Fig. ]

Subject CLE0136

a B vs P1 frequencies b B vs P2 frequencies C P1 vs P2 frequencies
0.00014
B 0.00010 B 0.00010 n
0.00012 . Pl . P2 . . P2
0.00008 i
0.00010 0.00008
> > I
2 0.00008 2 0.00006 £ 0.00006
o o
El El El
o o o
0.00006 15
£ £ 0.00004 & 0.00004
0.00004
0.00002 0.00002
0.00002 ?
0.00000 0.00000 0.00000
Joint ACAT edgeR Joint ACAT edgeR Joint ACAT edgeR
n=2 n=4 n=0 n=5 n=6 n=7 n=17 n=7 n=7

Figure 4: For subject CLE0136, the boxplots compare clone frequencies between time points for the clones called by each method (n listed below
panels): (a) B vs P1, (b) B vs P2, and (c) P1 vs P2. For each contrast, boxplots display the frequencies of the identified clones by comparing two
samples using three different methods: CEI-Joint, CEI-ACAT, and edgeR (with the number of calls, n, under each method). The CEI-Joint method
yields significantly higher frequencies at both baseline and post-vaccination samples. Note that edgeR calls no positive sequences any significant
expansion in the B vs P1 comparison, even when we relaxed the FDR.

We performed sensitivity analysis of the number of positive clones selected by scanning the FDR « from 0.001 to
0.5. Since most clones are of small abundance with relatively small changes, the number of detected clones increases
sharply once @ exceeds a certain level, shown in the Fig. 5]

FDR Sensitivity —— Joint --- ACAT

# Selected clones

FDR a FDR a FDR a
—— CLE0099 —— CLEO100 —— CLEO101 CLE0108 CLEO117 —— CLEO136

Figure 5: Sensitivity of the number of positive clones selected with respect to the FDR threshold o, where a € (0, 0.5]. The dashed lines correspond
to the CEI-ACAT method, while the solid lines correspond to the CEI-Joint method. (a) Sensitivity analysis conducted by comparing sample P1 with
B. (b) Sensitivity analysis conducted by comparing sample P2 with B. (c) sensitivity analysis conducted by comparing sample P2 with P1.

Our general methods can be applied to any multispecies system subject to an external perturbation that yields
before and after snapshots of abundances. Using the same metrics and thresholds also enable direct comparisons
across different induction protocols and experimental contexts, allowing one to quantify overlaps in results from
different experimental/clinical methods. For example, using changes in the in vivo T-cell abundance as an indicator
of vaccination response led to significantly fewer identified TCRs than using cellular immune assays using antigen
libraries [44]]. The substantial difference between clones that were measured to have expanded in vivo and those
identified through antigen recognition in cell culture suggests a more complex pathway from antigen recognition to T
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cell amplification and carries important clinical implications. Besides overcounting low-affinity TCRs, discrepancies
between the in vivo and ex vivo methods may arise from other causes such as finite sampling from individuals, different
timescales between ex vivo assays and in vivo clone abundance dynamics, and dynamical fluctuations of interacting
T-cell populations in an individual. How these effects influence changes in clonal populations subjected to different
stimulation protocols will be quantitatively compared in future investigations that use the methods described here.
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