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Abstract

Each T cell typically carries a specific T-cell receptor (TCR) that determines its specificity against an epitope presented
by the HLA complex on a target cell. Antigenic challenge triggers the expansion of reactive cells within a diverse pool
of T cells with randomly generated receptors, a process that results in epitope-driven shifts of TCR frequencies over
time. Here, we analyze the effects of SARS-CoV-2 vaccination on the TCR populations in peripheral blood drawn from
seven COVID-naive individuals, before vaccines were widely available. To identify SARS-CoV-2 vaccine-associated
TCR sequences among the ∼ 105 − 106 TCR sequences sampled before and after vaccination, we develop statistical
criteria to detect significant increases in abundance of positive TCR clones. Application of our statistical methods shows
a robust identification of TCR sequences that respond to SARS-CoV-2 vaccination in vivo, illustrating the feasibility of
quantifying the clone-specific dynamics of T-cell abundance changes following immunological perturbations.
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Introduction1

mRNA vaccines that deliver SARS-CoV-2 spike protein (S protein) to the blood have been highly effective in2

reducing COVID-19 morbidity and mortality [1, 2, 3, 4, 5, 6, 7]. Vaccination promotes HLA-restricted T-cell responses3

against the S protein that play a critical role in this protective effect. These responses are mediated by TCRs recognizing4

epitopes from the S protein. TCRs are heterodimers [8, 9, 10, 11, 12] consisting of an α-chain (TCRA) and a β-chain5

(TCRB) [13]. In the generation of T cells, somatic recombination of the different domains [the variable (V) and joining6

(J) domains in TRA and TRB, and the diversity (D) segment in TRB] in the associated TCR sequence occurs. Along7

with nucleotide insertions and deletions, a complementarity-determining region 3 (CDR3) is generated with up to 1015
8

possible combinations of TCR sequence [13, 14, 15, 16].9

Of this possible diversity, it has been estimated that ∼ 108 unique TCR sequences are circulating in the peripheral10

blood of a person [17, 18, 19, 20, 21]. CTLs (cytotoxic T lymphocytes) are CD8+ T lymphocytes that eliminate target11

cells through cytolysis and apoptosis. A second group of CD4+ lymphocytes includes key “helper T cells” that direct12

immune responses by supporting CTLs and contributing to antigen-specific antibody production.13

These T-cell responses have been shown to play a key role in mitigating the pathogenicity of SARS-CoV-214

infection [13, 22], and an early T-cell response has been associated with a mild outcome of COVID-19 [23, 24].15

In contrast to rapidly waning antibody responses [4, 25], SARS-CoV-2-specific T cells persist over longer periods16

and provide an immediate immune response against COVID-19 re-infection [26, 27]. Furthermore, the evolution of17

SARS-CoV-2 into variants has been marked predominantly by mutations in and around the S protein receptor binding18

domain (RBD), leading to escape from neutralizing antibodies (which generally target the RBD), while T cells target19

epitopes distributed throughout the S protein and thus have a broader recognition of variants. The large size and20

abundance of the S protein make it a good target for the adaptive immune response [28]. To better understand the21

T-cell response against COVID-19, large libraries of TCR sequences have been analyzed using various bioengineering22

methods [29, 30, 31].23
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Quantifiable detection of vaccine-induced peptide-specific expansion of TCR clones is required in many applications.24

However, challenges include analyzing ∼ 106 TCR clones without replicates and defining abundance changes among25

clones with highly dispersed abundances. In addition, different subjects may experience very different immune response26

intensities. These factors complicate the accurate assessment of T-cell clone responses during the post-vaccination27

visits and the capture of significant changes in the abundances of individual clones.28

Several advanced Bayesian methods for detecting clonal expansions, such as NoisET [32] and edgeR [33], which29

are based on Bayesian models, and have been recently developed. The incomplete overlap in identified clones using30

these methods and the absence of a ground truth for evaluating their reliability motivates us to develop a new method31

grounded in fundamental statistical principles for a better comparative analysis.32

In this study, we develop CEI, a Python package designed for the rapid, scalable detection of clonal expansion from33

single samples from repertoires pre- and post-vaccination (or in general, any perturbation). Applied to TCRB repertoires34

from blood drawn before and after mRNA/adenoviral-vectored vaccination, CEI identifies vaccine-associated TCRB35

sequences using a two-proportion test and analyses of differences and log-fold change of abundances. While developed36

for TCRB data in this work, the framework is applicable to other replicate-limited count comparisons (e.g., TCR/BCR37

repertoires or CRISPR screens) where feature-level proportions are contrasted across two distinct conditions.38

Materials and Methods39

Data preprocessing40

Relevant to this study (comparing pre- and post-vaccination TCR abundances in COVID-naive subjects), samples41

were collected from seven individuals (labeled CLE0083, CLE0099, CLE0100, CLE0101, CLE0108, CLE0117,42

and CLE0136) between April 2020 and May 2021. Post-vaccination samples were taken from subjects in January-43

September 2021, very early in the pandemic before vaccines were widely available. These subjects received their first44

vaccinations between 12/18/2020 and 1/8/2021, and their second vaccinations between 01/06/2021 and 01/30/2021.45

Subject CLE0099 received the AstraZeneca chimpanzee adenovirus vectored vaccine while all others received the46

BNT162b2 mRNA vaccine. Additionally, all subjects had no prior history of COVID-19; baseline spike RBD antibodies47

were also confirmed negative by ELISA around the time of the first vaccination. This dataset represents a rare and48

scientifically valuable window into the earliest immune responses to SARS-CoV-2 vaccination, captured during a49

critical period at the onset of the global vaccine rollout. This temporal isolation from natural infection ensures that the50

observed TCR dynamics are most likely to be attributable to vaccination.51

Overall, samples were taken at three time points: baseline (0-3 days before the first vaccination, labeled B), 14 to52

20 days after the first vaccination but before (labeled P1), and 11 to 21 days after the second vaccination (labeled P2).53

Further details are provided in Table 1. The TCRs of both CD4+ and CD8+ T cells in these samples were sequenced54

by Adaptive Biotechnologies.55

Post processing of immunosequencing data for differential abundance analysis56

Differential abundance analysis is a statistical framework used to determine whether a particular receptor rearrange-57

ment is more abundant in one sample than in another. It can be applied to nucleotide, amino acid, or bioidentity (V58

gene/amino acid/J gene) sequences depending on the desired resolution and biological context. While nucleotide-level59

matching provides the highest resolution, amino acid-level matching allows for grouping of clonotypes that may differ60

at the nucleotide level but encode the same protein sequence. We employed the IMSEQ [34] algorithm to collapse61

nucleotide sequences for identical clonotypes for downstream differential abundance analysis of bioidentities. Since62

the amino acid sequence determines protein function, we established criteria to determine whether two nucleotide63

sequences are identical:64

• If the V subtype, CDR3 amino acids, and J subtype are all identical, we consider these two sequences to be65

identical;66

• If the two sequences differ only in their V subtype, and one or both are ambiguous, we treat them as the same if67

the longer sequence contains the shorter;68
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Subjects
Demographics Sample times versus vaccine doses (days)

Age Sex Race Hisp Vaccine B to Vacc #1 P1 to Vacc #1 P2 to Vacc #2

CLE0083 49 M A N BNT162b2 -3 18 18

CLE0099 51 M W N AZD1222 0 15 14

CLE0100 55 M A N BNT162b2 -2 16 14

CLE0101 36 F A N BNT162b2 0 14 13

CLE0108 50 F Iranian N BNT162b2 -1 20 11

CLE0117 64 M W N BNT162b2 0 14 15

CLE0136 42 F W N BNT162b2 0 18 21

Mean (Range) -1 (-3 to 0) 16 (14 to 20) 15 (11 to 21)

Table 1: Vaccination records for all the individuals. BNT162b2 is an mRNA vaccine, while AZD1222 is a chimpanzee adenovirus-vectored vaccine.
“Vacc #1” and “Vacc #2” refer to the first and second doses of the vaccine, respectively. The timing of sample collection in relation to vaccination is
denoted by sample times versus vaccine doses. For example, in “B to Vacc #1,” -3 represents a pre-vaccination baseline sample that was taken three
days before the first ”P1” vaccination.

• If the two sequences differ by only one base (A, C, T, G) in the nucleotide sequence of the CDR3 region, we69

consider them identical.70

For identical sequences, we sum their template counts for the subsequent analysis of changes in abundance.71

Quantification of clone abundance changes72

Due to the specificity of TCR binding to assigned antigen peptides, we can statistically screen for sequences that73

expand after vaccination by comparing with the baseline sample. Our analysis identifies TCR sequences that are74

enriched in response to vaccine-associated antigens (including but not limited to S protein) as “positive” and those75

that do not target S proteins as “negative.” We assume that all T cells and SARS-CoV-2 protein-expressing cells76

generated by mRNA vaccination are well-mixed, and neither the exposure nor the expansion capacity of reactive T77

cells is limiting. Although false-positive sequences (i.e., non–vaccine-associated sequences that expand) may occur,78

their number is relatively small compared to the true-positive sequences. Likewise, the likelihood of false-negative79

sequences (i.e., SARS-CoV-2–specific sequences not responding) can be neglected.80

Intuitively, we need to assess the magnitude of the difference in the abundances of individual clones (here, a clone81

denotes the collection of cells with the same V gene, CDR3 amino acid, and J gene identity), measured in samples taken82

before (baseline) and after vaccination. In addition, we can evaluate the intensity of the response at each post-vaccination83

time point. One approach is to treat the clone abundances across clone identities as a distribution and then measure84

the dissimilarity between the distributions at different visit times within one individual. For instance, we can consider85

metrics/distances such as KL divergence [35], Wasserstein distance [36, 37], cosine similarity [38], Bhattacharyya86

distance [39], among others. However, these approaches face challenges in effectively addressing scenarios where87

clones were not initially sampled at the baseline but have grown significantly after vaccination. Moreover, because88

these metrics typically quantify changes in the global shape of the distributions, very high-abundance clones may89

dominate the metrics and thereby obscure relatively small clones that have nonetheless undergone substantial growth.90

It is also probable that extremely large clones are not SARS-CoV-2 specific if they did not appreciably expand upon91

vaccination.92

Here, we will focus on the changes in the abundance of individual clones between samples taken from two93

repertoires. We assign a fixed index 1 ≤ i ≤ I to each clone, where I is the total number of different clones observed94

in the two samples drawn from the same subject before (B) and after (P) vaccination. Given a clone with index i,95

we denote its true in vivo, whole body sizes at time t ∈ {B, P} as integers n(t)
i . We also define the corresponding total96

number of T cells at these two time points as N(B) and N(P), respectively.97

Assuming N(B) ≈ N(P), consider a scenario where the abundance of a sampled clone changes from 10, 000 to98

10, 100. Although the absolute difference of 100 is appreciable, if this difference arises in an already-large clone, the99
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relative change in abundance could be small and attributed to the sampling variability or intrinsic fluctuations in a100

“homeostatic” large clone. On the other hand, a fold-change from 0 to 5 is considered large (infinite in this case), but an101

absolute difference of 5 might also arise from noise, sampling or otherwise. Therefore, we will use both the absolute102

difference and the fold-change as quantities for the identification of statistically significant changes in abundance.103

We motivate and develop two clone-level quantities or “indicators” that can be used to effectively screen expanded104

clones and measure the strength of response following a perturbation, vaccination in our case.105

1. Difference in clone abundance The normalized change in abundances from data is defined as

di ≡ p̂(P)
i − p̂(B)

i (1)

where p̂(t)
i =

s(t)
i

S (t) represents the abundance fraction of clone i in the sample drawn at time t ∈ {B, P}.106

107

2. Regularized log-fold change We define the log of a regularized abundance ratio by

ri ≡ log2
s(P)

i + ε

S (P) − log2
s(B)

i + ε

S (B) (2)

where ε is a Haldane-Anscombe correction to stabilize zero counts (the default value ε = 0.5 is typically used).108

Taking the logarithm defines ri over the entire real line (−∞ < ri < ∞).109

Variance, Wald statistic, and p-values for di110

Under a simple random sampling assumption (i.e., each T cell has the same probability of being sampled) with total
sample size S (B) and S (P), the abundances

{
s(t)

i

}
of sampled clones i at time t ∈ {B, P} follow a multinomial distribution:(

s(t)
1 , s

(t)
2 , . . . , s

(t)
I

)
∼ Multinomial

(
S (t); p(t)

1 , p
(t)
2 , . . . , p

(t)
I

)
, t ∈ {B, P} (3)

where p(t)
i =

n(t)
i

N(t) is the probability of the clone i being sampled at time t. Note that because very few clones from the111

entire body are sampled, S (t) =
∑I

i=1 s(t)
i ≪ N(t) for t ∈ {B, P} and

∑I
i=1 p(t)

i ≪ 1.112

Since only a small number of T cell clones respond to vaccination, we consider no change in abundance, p(B)
i =113

p(P)
i = pi, as the null hypothesis (H0). We expect very few clones to violate this hypothesis.114

Since the joint statistical properties for two signals (difference and log-fold change in abundance) under a true
multinomial null are analytically complex, we adopt a resampling-based approach to assess clone abundance change
significance. To reduce computational burden, we replace the full multinomial in Eq. 3 with a marginalized probability
distribution, treating each clone independently. Specifically, considering the probability of each clone to be sampled is
small and library sizes are extremely large, we use a Poisson model:

s(t)
i ∼ Poisson

(
λ(t)

i

)
, where λ(t)

i = S (t) pi and t ∈ {B, P}. (4)

Since the true pi is unknown, we approximate it using the pooled proportion estimator:

p̂i =
s(B)

i + s(P)
i

S (B) + S (P) (5)

The variance of the difference di for clone i is thus calculated by

Var(di) = Var

 s(P)
i

S (P)

 + Var

 s(B)
i

S (B)

 = p̂i

S (P) +
p̂i

S (B) (6)

To better balance the effects of the difference and log-fold change, we need to nondimensionalize the difference.
Consider taking a sample from each clone as a single experiment. Instead of focusing on global Z scores, we should
utilize Wald statistics to find asymptotic Z scores under H0 for each clone separately. Therefore, for clone i, we have

Zdi =
di√

p̂i

(
1

S (P) +
1

S (B)

) (7)

The one-sided p-value pdi = 1 −Φ(Zdi ) for the clone i is used to detect expansion. Here Φ(x) = 1
2
[
1 + erf

(
x/
√

2
)]

is the115

cumulative density function of the standard normal distribution.116
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Variance, Wald statistic, and p-values for log-fold change ri117

Considering the empirical abundance fraction s(t)
i /S

(P) of clone i in sample t ∈ {B, P}. As assumed previously, the
count of each clone follows a Poisson distribution. Given the definition of the log-fold change ri = log2 p̃(P)

i − log2 p̃(B)
i ,

the null hypothesis for this case is supposed to satisfy H0 : ri = 0 (no change upon vaccination). By assuming the
independence between visits, the multivariate delta method yields the following variance:

Var(ri) ≈
1

(ln 2)2

 1

p̃(P)
i S (P)

+
1

p̃(B)
i S (B)

 (8)

where p̃(t)
i =

s(t)
i +ε

S (t) (t ∈ {B, P}) are empirical proportions smoothed by a Haldane-Anscombe correction ε (default118

ε = 0.5).119

Applying the Wald test gives us the asymptotic Z scores:

Zri =
ri

√
Var(ri)

=
ln 2
(
log2 p̃(P)

i − log2 p̃(B)
i

)
√

1
p̃(P)

i S (P) +
1

p̃(B)
i S (B)

(9)

which is approximately normally distributed when H0 holds. In this case, the one-sided p-value is found from120

pri = 1 − Φ(Zri ).121

CEI-Joint method122

Since both differences in abundance and log-fold changes between two samples are considered important in123

identifying amplified clones, it is natural to consider their associated Z scores as components of a two-dimensional124

vector Zi = (Zdi ,Zri )
⊤.125

To include standardized statistics for both differences and log-fold changes into a single test statistic, we can
consider a score based on a modified Mahalanobis distance for each clone i,

D2
i ≡ (Zi − m)⊤ Σ−1 (Zi − m) (10)

where Σ denotes a covariance matrix
Σ = E

[
(Zdi − md)(Zri − mr)

]
(11)

Here, we use the trimmed median vector m after removing the largest and smallest 10% of clones by ∥Zi∥∞. Vaccine126

stimulation leads to a very small number of clones experiencing significant expansion, induces modest contraction in127

several others, but leaves the majority of clones statistically unchanged. Consequently, the median serves as a more128

stable representation of the “no-change” baseline than the mean.129

We control false positives by testing our CEI-Joint method with a multinomial permutation under the no-change
null hypothesis. By applying the pooled clone frequencies p̂i, we redraw entire libraries as s(B)

i,r ∼ Multinomial(S (B), p̂i)
and s(P)

i,r ∼ Multinomial(S (P), p̂) in each permutation r = 1, · · · ,R. For each permutation, we recompute the same
per-clone statistics (i.e., Zdi , Zri ) and the 2D Mahalanobis distance. We then pool all permuted distances across clones
to obtain the null distribution. The empirical p-value for clone i is calculated as follows:

p̂i =
1 + #{D2

null ≥ D2
i }

1 + IR
(with I clones, R permutations) (12)

This formula avoids zero p-values and accounts for dependence between the two Z scores. Finally, we apply the130

Benjamini-Hochberg (BH) procedure to control the false discovery rate (FDR) [40, 41]. By setting an FDR threshold,131

denoted as α (e.g., α = 10%). Given a total of I clones and their corresponding p-values, denoted as p1, p2, . . . , pI ,132

we sort these p-values in ascending order to obtain pr1 , pr2 , . . . , prI . Next, we identify the largest index i such that133

pri ≤ (i/I)α. The clones ranked from 1 to i are referred to as “expanded.” This filtering step preferentially removes134

clones whose apparent changes are consistent with random sampling noise, given the fixed library sizes.135
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CEI-ACAT Method136

Alternatively, we can combine the two statistics into a single p-value measurement using the Aggregated Cauchy137

Association Test (ACAT) [42]. ACAT merges multiple p-values by mapping each one to a Cauchy distribution and138

then returning a single p-value. We use this method to consolidate the two one-sided p-values for Zdi and Zri into a139

single score. ACAT remains valid even if dependency between the two indicators exists. The ACAT method constructs140

the quantity141

Ti =
1
2

tan
[
π (0.5 − pdi )

]
+

1
2

tan
[
π (0.5 − pri )

]
(13)

from the one-sided p-values pdi = 1 − Φ(Zdi ) and pri = 1 − Φ(Zri ), respectively. The corresponding effective p-value
for clone i is then calculated from

pACAT
i = 0.5 −

1
π

arctan(Ti). (14)

Again, BH-FDR control is utilized to filter out false positive clones.142

Results143

We now apply the methods described above to SARS-CoV-2 vaccination data to identify vaccine-associated TCR144

sequences. The FDR will be controlled by the BH procedure, and we set α = 1% − 10% as a possible range for145

selection.146

Comparison of positive-associated clones identified by different methods147

When applying a 10% FDR to both the CEI-Joint and the CEI-ACAT methods, the table shows strong inter-148

individual and inter-visit heterogeneity in the number of positive clones. To provide a clear overview of this variability,149

we list the number of positive-associated clones in Table 2. The CEI-Joint method typically identifies many more clones150

than the CEI-ACAT method (for example, it reports thousands of clones for CLE0108 and CLE0117). In contrast,151

CEI-ACAT tends to be more conservative, although it occasionally calls more positive clones than CEI-Joint in specific152

cases (such as for CLE0101 B–P1, CLE0100 B–P2, and CLE0136 B-P1). Additionally, the results patterns differ153

depending on the visit pairs: some individuals show their strongest signals in P2 compared to P1 (indicating a later154

response), while others have the largest signal in P2 compared to B (indicating an overall strong post-vaccination155

expansion). Several participants, however, exhibited very few positive clones across all comparisons (e.g., CLE0100156

and CLE0136). Since subject CLE0099 received the chimpanzee adenovirus-vectored vaccine, the set of activated157

TCR clones in this individual consisted of clones responding not only to SARS-CoV-2 antigens but also to antigens158

derived from the adenoviral vector itself.159

We compared the positively associated clones identified by our CEI-Joint and CEI-ACAT methods, as illustrated160

in Fig. 1 and in Figs. S1-S6 in the Supplementary Material. The positive clones selected at different times were161

analyzed by comparing sample P1 with sample B, sample P2 with sample B, and sample P2 with sample P1. Results162

are presented in Fig. 2 and Figs. S7-S12 in the Supplementary Material. For better visualization, both figures display163

selections made by the CEI-Joint method at a 10% FDR and selections made by the CEI-ACAT method at a 1% FDR.164

Comparison with standard heuristic selection criteria (Adap) and edgeR165

Our TCR identification methods were further evaluated by comparing their predictions with those from methods166

previously developed to identify differentially abundant clones [40, 43] in different contexts.167

The standard heuristic selection method (Adap) previously used by Adaptive Biotechnologies designates a clone as168

activated if its sampled baseline and post-vaccination counts exhibit at least a 2-fold increase and that the abundances169

pass a two-sided binomial test with a p-value below 0.01. In this analysis, the two-sided binomial test p-values are170

adjusted using the BH procedure to effectively control the FDR. Furthermore, to ensure the reliability of the detection,171

only clones with a minimum count abundance of five in the sample are considered. edgeR, which tests negative172

binomial or generalized linear models, was also applied to our single sample (no replicates) data.173

Figure 3 compares the clones identified using two heuristic criteria (Adap and edgeR) with those identified using174

our CEI-Joint and CEI-ACAT methods for the subjects CLE0083 and CLE0101. All methods were controlled at a 1%175

FDR. The panels highlight significant subject-specific differences and distinct profiles for each method.176
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Individuals RB RP1 RP2
B vs P1 B vs P2 P1 vs P2

Joint ACAT Joint ACAT Joint ACAT

CLE0083 184, 988 315, 615 322, 569 359 5 373 3 2 2

CLE0099 223, 828 85, 703 231, 395 451 216 44 27 2584 12

CLE0100 245, 481 219, 434 267, 635 1 1 4 21 17 16

CLE0101 252, 373 271, 931 177, 847 24 89 101 47 202 33

CLE0108 136, 808 591, 274 208, 447 5127 5 46 2 2001 60

CLE0117 133, 666 89, 962 369, 441 117 5 4248 3 5119 11

CLE0136 370, 013 386, 065 297, 501 2 4 5 6 17 7

Table 2: Table of the total number of positive-associated clones across multiple participants. RB, RP1, and RP2 are the number of clones (richness)
detected for each individual in the sample B, P1, and P2, respectively. In the B versus P1, B versus P2, and P1 versus P2 columns, we list the number
of SARS-CoV-2 clones identified through their sufficient increases in abundance as determined by our CEI-Joint and CEI-ACAT approaches. We set
the FDR α = 10% for selection.

0 7613

CEI-Joint CEI-ACAT
Jaccard: 0.15

B vs P1

17 938

CEI-Joint CEI-ACAT
Jaccard: 0.59

B vs P2

27 1023

CEI-Joint CEI-ACAT
Jaccard: 0.38

P1 vs P2
CLE0101

CEI-Joint
CEI-ACAT
overlap

Figure 1: Comparisons between the positive sequences called by each method for individual CLE0101. The blue and green circles represent sets of
clones identified by the CEI-Joint and CEI-ACAT methods, respectively. The size of each circle indicates the number of positive clones detected.
The yellow portion illustrates the overlap of positive clones identified by both the CEI-Joint and CEI-ACAT methods. Left: Clones identified through
comparison of sample P1 to sample B. Middle: Clones identified through comparison of sample P2 to sample B. Right: Clones identified through
comparison of sample P2 to sample P1.

CEI-Joint CEI-ACAT

CLE0101

B vs P1 B vs P2 P1 vs P2

Figure 2: Comparisons between the positive sequences sampled at different times for subject CLE0101. The subplots, left and right, represent
comparisons using the CEI-Joint and CEI-ACAT methods, respectively. Red, blue, and purple circles correspond to positive clones identified by
comparing sample P1 with B, P2 with B, and P2 with P1. The size of each circle reflects the number of positive clones identified. Left: Clones
identified via the CEI-Joint method. Right: Clones identified by the CEI-ACAT method.

For CLE0083 (a), our CEI-Joint test identifies a considerable number of expansions (n = 87), far exceeding the177

counts for CEI-ACAT (n = 5), Adap (n = 7), and edgeR (n = 2). Some of the CEI-Joint calls lie just above the B=P1178

diagonal, indicating a broad but modest shift following vaccination. In contrast, for CLE0101 (b), the rankings shift.179
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CEI-ACAT (n = 70) and Adap (n = 52) identify the largest sets along the rising trend, while edgeR falls in between180

with n = 28. The CEI-Joint method is the most stringent, identifying only n = 13 clones.181

Across both subjects, selected clones predominantly sit above the diagonal (indicating expansion), but the methods182

emphasize different regions of the plot. The standard heuristic method focuses solely on larger log-fold changes, while183

edgeR tends to favor high log-fold change signals with low clone abundance at baseline. Our CEI-ACAT and CEI-Joint184

methods strike a balance between absolute differences and log-fold changes. This results in many calls when there is a185

diffuse, concordant shift (as seen in CLE0083), but fewer calls when changes cluster along a tight trajectory (as seen in186

CLE0101).187

Our collection of statistical techniques provides a more systematic framework for fine-tuning FDR, which allows188

us to control the stringency in identifying activated clones. These flexible tools can be customized to detect population189

expansions in different biological contexts, ensuring that the identification process is both rigorous and adaptable to190

varying experimental conditions.

a b

Figure 3: Abundances of individual TCR clones before vaccination (B) are plotted along the x-axis, while their abundances after vaccination (P1) are
plotted along the y-axis. (a) and (b) correspond to subjects CLE0083 and CLE0101, respectively. Clones that are statistically significantly expanded
(blue) are identified by a corrected binomial model [41] and additionally, a threshold of at least a 2-fold increase or decrease from B to P1. Each dot
corresponds to a unique TCR clone: grey circles represent robust clones with an abundance greater than 5 templates, while clones with fewer than 5
templates are shown in white to indicate they fall below the threshold for reliable detection. Purple squares represent the expanded clones called by
our ACAT method using a FDR at 1%, while green circles denote the expanded clones identified by the standard heuristic approach. Similarly,
clones that have been detected by edgeR are indicated by the red triangles. These results illustrate the overlap between the clones identified by the
ACAT method, the clones detected using the standard heuristic criteria, and those called by edgeR for differential abundance analysis.

191

Discussion and Conclusions192

Our study builds on the efforts to map TCRs to SARS-CoV-2 antigens by offering a high-resolution, longitudinal193

view of both CD4+ and CD8+ T cell responses at three critical timepoints: pre-vaccination, post-dose 1, and post-dose194

2. This design allows for precise tracking of TCR clonal expansion and repertoire reshaping in response to antigenic195

stimulation. By focusing on COVID-naive individuals, this study avoids confounding from prior infection and provides196

a clean baseline for understanding vaccine-induced T cell immunity—an essential component of long-term protection197

and immune memory.198

To determine whether changes in TCR abundances are deemed vaccination-sensitive (e.g., whether associated199

T cells proliferate following vaccination) requires us to carefully define statistical thresholds. We presented several200

measures to detect clones whose abundances increased significantly after vaccination. Our framework quantifies each201

clone with two complementary statistics—the rescaled abundance change of a clone di and its log-fold change in202

abundance ri.203

Human samples make collection of replicates challenging and make it difficult to filter out experimental noise204

during the selection process and sequencing procedure. To validate our methods, we compared our selections with the205
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simpler rule “ri ≥ 2” (plus a minimum of five template counts), NoisET and edgeR. NoisET and edgeR are well-known206

packages designed for clonal expansion detection. NoisET explicitly learns an experimental noise model and then207

applies a Dirichlet-Multinomial Bayesian test for expansion under stimulation. However, our dataset lacks replicates,208

which prevents us from using NoisET to learn about the noise and detect expanded clones. On the other hand, edgeR209

uses empirical Bayes moderation techniques for scenarios with very few or no replicates. However, it is too conservative210

and highly sensitive to the abundance of clones in the baseline sample, such that it can only detect expanded clones if211

their abundance in the baseline sample is nearly zero. If the size of these clones is even slightly larger in the baseline212

sample, edgeR may fail to identify the expansion. We provide a case example for reference in Fig. 4.

a b c

Subject CLE0136

Figure 4: For subject CLE0136, the boxplots compare clone frequencies between time points for the clones called by each method (n listed below
panels): (a) B vs P1, (b) B vs P2, and (c) P1 vs P2. For each contrast, boxplots display the frequencies of the identified clones by comparing two
samples using three different methods: CEI-Joint, CEI-ACAT, and edgeR (with the number of calls, n, under each method). The CEI-Joint method
yields significantly higher frequencies at both baseline and post-vaccination samples. Note that edgeR calls no positive sequences any significant
expansion in the B vs P1 comparison, even when we relaxed the FDR.

213

We performed sensitivity analysis of the number of positive clones selected by scanning the FDR α from 0.001 to214

0.5. Since most clones are of small abundance with relatively small changes, the number of detected clones increases215

sharply once α exceeds a certain level, shown in the Fig. 5.

// /a b c

Figure 5: Sensitivity of the number of positive clones selected with respect to the FDR threshold α, where α ∈ (0, 0.5]. The dashed lines correspond
to the CEI-ACAT method, while the solid lines correspond to the CEI-Joint method. (a) Sensitivity analysis conducted by comparing sample P1 with
B. (b) Sensitivity analysis conducted by comparing sample P2 with B. (c) sensitivity analysis conducted by comparing sample P2 with P1.

216

Our general methods can be applied to any multispecies system subject to an external perturbation that yields217

before and after snapshots of abundances. Using the same metrics and thresholds also enable direct comparisons218

across different induction protocols and experimental contexts, allowing one to quantify overlaps in results from219

different experimental/clinical methods. For example, using changes in the in vivo T-cell abundance as an indicator220

of vaccination response led to significantly fewer identified TCRs than using cellular immune assays using antigen221

libraries [44]. The substantial difference between clones that were measured to have expanded in vivo and those222

identified through antigen recognition in cell culture suggests a more complex pathway from antigen recognition to T223

9



cell amplification and carries important clinical implications. Besides overcounting low-affinity TCRs, discrepancies224

between the in vivo and ex vivo methods may arise from other causes such as finite sampling from individuals, different225

timescales between ex vivo assays and in vivo clone abundance dynamics, and dynamical fluctuations of interacting226

T-cell populations in an individual. How these effects influence changes in clonal populations subjected to different227

stimulation protocols will be quantitatively compared in future investigations that use the methods described here.228
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