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 A B S T R A C T

Allocating limited resources to a set of alternatives with uncertain long-term benefits is a common challenge 
in innovation management, research funding, and participatory budgeting. Related problems arise in emerging 
applications such as ranking outputs of large language models and coordinating decisions in agentic systems. 
All settings include multiple agents tasked with estimating the true value of a potentially large number of 
alternatives. These estimates, or quantities derived from them, are then aggregated to select a final portfolio 
that maximizes overall benefit, ideally using efficient methods. Standard sorting algorithms are ill-suited as 
they do not account for uncertainties associated with each agent’s estimate. Furthermore, the cognitive load 
on agents can be demanding, especially if the number of alternatives to evaluate is large. Building on the 
Quicksort algorithm and the Bradley–Terry model, we develop four new, efficient aggregation protocols based 
on agent-assigned win probabilities of pairwise comparisons that are then globally aggregated. The pairwise 
comparisons we introduce not only reduce cognitive load on agents, but lead to aggregation protocols that 
outperform existing ones, which we confirm via numerical simulations. Our methods can be combined with 
sampling strategies to further reduce the number of pairwise comparisons.
1. Introduction

The problem of allocating limited resources to projects that provide 
the greatest benefit to stakeholders arises in many decision-making con-
texts. When the long-term value of an alternative is difficult to assess, 
the evaluating agents will provide a broad distribution of estimates that 
must be efficiently aggregated. Common examples include members of 
an organization who are tasked with selecting new innovation projects 
with uncertain returns [1,2] or community stakeholders in participa-
tory budgeting [3,4] who must decide which public projects deserve 
funding [5,6]. Similar problems arise in emerging applications, such as 
ranking outputs of large language models (LLMs) [7–9] and coordinat-
ing decisions in multi-agent or agentic systems [10]. In many settings, 
the number of projects under consideration is large and may result 
in a large cognitive load for evaluators. How can agents meaningfully 
compare and rank numerous alternatives when their information is in-
complete or uncertain? Addressing this question requires methods that 
both reduce individual cognitive effort and enable efficient aggregation 
of preferences so that a high-value project portfolio can be selected. 
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While our methods apply to a wide range of selection problems, we 
focus on project portfolio selection for concreteness.

The effectiveness of various aggregation methods such as voting, 
averaging, and expert delegation has been examined within social 
choice theory [11,12] and organizational decision-making [1,2,13]. 
The above methods assume that agents use their own direct estimates 
of project value. Ranked voting methods, like the Borda count [12,14], 
are based on each agent’s ordered ranking of projects. While these 
perform well in portfolio selection with uniform project costs [2,15], 
the cognitive load on agents when ranking a large number of projects 
can be large.

In this paper, we develop four project evaluation and aggregation 
methods that involve pairwise comparisons of projects at the agent 
level. Specifically, the agents, who do not know the intrinsic value 
of the projects they are called to evaluate, compare pairs of projects. 
These comparisons are then used in conjunction with the well-known 
Quicksort algorithm [16] and the Bradley–Terry model [17,18] to 
https://doi.org/10.1016/j.jocs.2025.102728
Received 30 January 2025; Received in revised form 8 September 2025; Accepted 
vailable online 7 October 2025 
877-7503/© 2025 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/ ). 
3 October 2025

icle under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by- 

https://www.elsevier.com/locate/jocs
https://www.elsevier.com/locate/jocs
https://orcid.org/0000-0003-0785-6349
mailto:dorsogna@csun.edu
https://doi.org/10.1016/j.jocs.2025.102728
https://doi.org/10.1016/j.jocs.2025.102728
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2025.102728&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Y. Ge et al. Journal of Computational Science 92 (2025) 102728 
collectively rank projects so that a high-value project portfolio can be 
assembled.

We show that our proposed aggregation methods, based on pairwise 
comparison rules, outperform those that utilize value estimates or 
ordered rankings. Our findings are important because pairwise com-
parisons not only yield better outcomes but help reduce the cognitive 
burden of directly ranking many projects and are more plausible. 
According to Miller’s law [19], human short-term memory is limited 
to processing about seven items at a time, making direct ranking 
increasingly unrealistic as the number of projects grows. Furthermore, 
pairwise comparisons are particularly useful when direct estimations 
are difficult due to psychological biases [20].

Aggregation methods based on pairwise comparisons remain rel-
atively underexplored, particularly in contexts that involve uncer-
tainty [21]. Algorithms for sorting under noisy information were only 
recently introduced [22,23] with some extensions enabling parallel 
processing [24]. Existing strategies to handle ‘‘dirty’’ comparisons 
often combine noisy data with a limited number of accurate, ‘‘clean’’ 
comparisons [25,26], which can be adjusted based on noise levels [27]. 
In some cases, approximate rankings can be achieved with relatively 
few comparisons [28]. Other works have modeled decision-making as 
an analytic hierarchy process [29] that includes pairwise comparisons 
and where fuzzy logic is incorporated to represent uncertainty [30]. 
Pairwise-comparison algorithms have also been proposed in machine 
learning for efficient item ranking [31,32]. Our work contributes to 
this nascent literature by developing efficient and easy-to-implement 
algorithms.

Since we combine aspects of the Bradley–Terry model with portfolio 
selection theory, the next two sections contain a concise overview 
of each topic, highlighting the elements most relevant to our study. 
In particular, in Section 2, we review the Bradley–Terry model and 
the pairwise-comparison algorithm that we later use when agents 
are tasked with comparing project pairs. In Section 3, we discuss 
how agents evaluate projects based on their expertise and project 
type, and where pairwise comparisons are performed according to the 
Bradley–Terry model. Various methods for aggregating the heteroge-
neous project evaluations are discussed in Section 4, including two 
existing methods that do not use pairwise comparisons (the Arithmetic 
Mean and the Borda Count) and four novel methods based on pairwise 
comparisons that use the Quicksort algorithm and the Bradley–Terry 
model. Limitations and advantages of all methods used are discussed in 
Section 5. In Section 6, we introduce the performance measure used to 
compare each of the portfolios generated by the six aggregation meth-
ods. Performances are evaluated numerically in Section 7 for various 
parameter choices: several of our proposed aggregation methods are 
shown to outperform existing ones. Sampling techniques to reduce the 
number of comparisons are also presented. Finally, in Section 8, we 
summarize and discuss our findings.

2. The Bradley–Terry model

The Bradley–Terry model is a statistical method for ranking 𝑛 items 
based on repeated pairwise comparisons originally introduced to rank 
players using tournament outcomes [17,18]. Due to its versatility, the 
Bradley–Terry model has been applied to sports rankings, electoral pref-
erences, skill-based matchmaking, psychological research, and in other 
domains where relative comparisons are more practical than stand-
alone evaluations. More recently, Bradley–Terry models have also been 
used in machine learning [33], to help evaluate LLM outputs [8,34], 
and in other problems involving human choice [35–38].

The Bradley–Terry model assumes that outcomes of pairwise com-
parisons between the items to be ranked are known and that each 
item has an underlying latent ‘‘strength’’. These latent strengths are 
estimated by maximizing the likelihood of the given pairwise compar-
isons, typically using iterative algorithms [39–41]. Extensions include 
allowing items to be tied [42,43], multiple, rather than pairwise, 
2 
comparisons [44], incorporating ordering-based advantages, such as 
playing on one’s home-field in sports [45,46], or using only subsets of 
comparisons [47].

In the original formulation of the Bradley–Terry model, the items 
are 𝑛 competing players and the pairwise-comparison outcomes 𝑤𝑖𝑗 are 
the number of times player 𝑖 wins over player 𝑗. The latter are also 
referred to as win numbers. In our setting, we adapt the model by 
replacing the players with 𝑛 ‘‘competing’’ projects (since not all can 
be selected) and by considering, instead of win counts, the probability 
𝑤𝓁

𝑖𝑗 that agent 𝓁 prefers project 𝑖 over project 𝑗. For concreteness, the 
exposition that follows illustrates how the latent strengths are obtained 
in the original context of the Bradley–Terry model. We later adapt the 
procedure to our specific project-selection setting.

Mathematically, the latent strengths of items (players or projects) 𝑖
and 𝑗 are denoted by 𝜋𝑖 and 𝜋𝑗 , respectively; the relative frequency that 
𝑖 wins over 𝑗 is 𝜋𝑖∕(𝜋𝑖 + 𝜋𝑗 ). Given the win numbers 𝑤𝑖𝑗 , and denoting 
the strength parameter vector 𝝅 = (𝜋1,… , 𝜋𝑛)⊤, one wishes to maximize 
the log-likelihood function 

𝑙(𝝅) =
∑

𝑖≠𝑗
𝑤𝑖𝑗 ln

(

𝜋𝑖
𝜋𝑖 + 𝜋𝑗

)

=
∑

𝑖≠𝑗
𝑤𝑖𝑗

[

ln(𝜋𝑖) − ln(𝜋𝑖 + 𝜋𝑗 )
]

.
(1)

Maximizing Eq. (1) involves iterative updates of the vector 𝝅. Under 
certain conditions, this maximization has a unique solution [17]. In 
practice, for all 𝑖, one can differentiate 𝑙(𝝅) with respect to 𝜋𝑖 and set 
the resulting expression to zero, leading to the implicit form 

𝜋𝑖 =
∑

𝑗≠𝑖 𝑤𝑖𝑗

∑

𝑗≠𝑖

(𝑤𝑖𝑗 +𝑤𝑗𝑖

𝜋𝑖 + 𝜋𝑗

) . (2)

Thus, the updated strength of item 𝑖, 𝜋̃𝑖, is determined via 

𝜋̃𝑖 =
∑

𝑗≠𝑖 𝑤𝑖𝑗

∑

𝑗≠𝑖

(𝑤𝑖𝑗 +𝑤𝑗𝑖

𝜋𝑖 + 𝜋𝑗

) , (3)

where 𝜋𝑖 and 𝜋𝑗≠𝑖 are the strength parameters prior to the update. 
Iterations are repeated until convergence is reached and 𝜋̃𝑖 ≈ 𝜋𝑖. 
While this scheme is simple, it can be slow to converge. A more recent 
approach is Newman’s method [41]. It is based on the update 

𝜋̃𝑖 =

∑

𝑗≠𝑖

( 𝑤𝑖𝑗𝜋𝑗
𝜋𝑖 + 𝜋𝑗

)

∑

𝑗≠𝑖

( 𝑤𝑗𝑖

𝜋𝑖 + 𝜋𝑗

) , (4)

which converges faster than the one in Eq. (3) by a factor of 3 to 
100. Convergence speed and stability can be further improved by 
including the updated values after each iteration as in the Gauss–Seidel 
method [48], leading to 

𝜋̃𝑖 =

∑

𝑗≠𝑖

( 𝑤𝑖𝑗 𝜋̃𝑗
𝜋𝑖 + 𝜋̃𝑗

)

+
∑

𝑗>𝑖

( 𝑤𝑖𝑗𝜋𝑗
𝜋𝑖 + 𝜋𝑗

)

∑

𝑗≠𝑖

( 𝑤𝑗𝑖

𝜋𝑖 + 𝜋̃𝑗

)

+
∑

𝑗>𝑖

( 𝑤𝑗𝑖

𝜋𝑖 + 𝜋𝑗

) . (5)

Once the strength 𝜋𝑖 of each item 𝑖 is determined from Eq. (5), the 
vector 𝝅 is used to generate a global ranking. The strength parameters 
can become ill-defined if an item never wins or never loses in the 
pairwise comparisons. For example, consider items 1, 2, and 3 with 
the following pairing results: 1 wins against 2, 1 wins against 3, 2 wins 
against 3; in this case the algorithm leads to 𝜋1 diverging to infinity at a 
faster rate than 𝜋2, while 𝜋3 converges to 0. These scenarios, however, 
become rarer as the number of items increases.

In our portfolio-selection context, each agent 𝓁 evaluates 𝑛 projects 
and performs comparisons for all distinct project pairs 𝑖, 𝑗 with 𝑖, 𝑗 ∈
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{1,… , 𝑛} and 𝑖 ≠ 𝑗. Agents do not know the exact value of the projects 
they are comparing and can only estimate these values. This uncer-
tainty will propagate to the win number, rendering it a probability. In 
the next section, we describe how the ‘‘win probability’’ 𝑤𝓁

𝑖𝑗 that project 
𝑖 is better than project 𝑗 according to agent 𝓁 is specifically constructed. 
In Section 4, the win probabilities 𝑤𝓁

𝑖𝑗 are aggregated over all agents, 
and a collective win probability 𝑤′

𝑖𝑗 is derived. The set of all 𝑤′
𝑖𝑗 are 

then used in conjunction with the Bradley–Terry model to assign latent 
strengths to all projects. To do this, we will use the improved Newman’s 
method by setting 𝑤𝑖𝑗 = 𝑤′

𝑖𝑗 in the iterative scheme in Eq. (5).

3. Agent evaluations and win probabilities

In this section, we discuss how agents evaluate the 𝑛 available 
projects and perform pairwise comparisons. Building on past work, we 
assume that the long-term values of the projects exist and are fixed, 
but cannot be precisely determined, leading to noisy evaluations [1,2]. 
Mathematically, each project 𝑖 ∈ {1,… , 𝑛} is characterized by two 
parameters: its type 𝑡𝑖 ∈ [𝑡min, 𝑡max] and value 𝑣𝑖 ∈ R+. The value 
𝑣𝑖 defines the true (but unknown) benefit of project 𝑖 over a specific 
time horizon, if chosen. This ‘‘ground truth’’ value may evolve or 
fluctuate over time due to societal shifts, environmental conditions, or 
complex interactions with other projects 𝑗 ≠ 𝑖. We do not consider 
these external sources of uncertainty in 𝑣𝑖 and restrict ourselves to each 
agent’s uncertainty in the estimation of 𝑣𝑖 at the time of evaluation. This 
leads to subjective evaluations 𝑣𝑖𝓁 (also referred to as perceived values) 
of project 𝑖 from each agent 𝓁 ∈ {1,… , 𝑁}. To construct 𝑣𝑖𝓁 , we first 
assume that each agent 𝓁 involved in the decision-making process has 
a level of expertise 𝑒𝓁 ∈ [𝑒min, 𝑒max] given by 

𝑒𝓁 = 𝑒M − 𝑁 + 1 − 2𝓁
𝑁 − 1

𝛽. (6)

According to Eq. (6) the 𝑒𝓁 values are evenly spaced across the interval 
[𝑒min, 𝑒max] ∶= [𝑒M − 𝛽, 𝑒M + 𝛽]. Here, 𝑒M represents the mean expertise 
level and 𝛽 denotes the knowledge breadth that determines the exper-
tise spread. For mathematical convenience, we set 𝑒M = (𝑡min + 𝑡max)∕2
so that the mean expertise coincides with the mean project type. The 
expertise level distribution in Eq. (6) aligns with typical Hotelling-
type models, where preferences are represented as distances along a 
line [49,50]. The values 𝑡𝑖 and 𝑒𝓁 do not have any specific meaning; 
they are simply labels used to differentiate between various types and 
expertise levels. However, the alignment between 𝑡𝑖 and 𝑒𝓁 affects the 
accuracy of agent 𝓁’s evaluation of project 𝑖’s value, 𝑣𝑖𝓁 . Specifically, 
we assume that the noise 𝜂𝑖𝓁 = 𝑣𝑖𝓁 − 𝑣𝑖 follows a normal distribution 
centered at the origin with standard deviation 𝜎𝑖𝓁 = |𝑡𝑖 − 𝑒𝓁|. That 
is, 𝜂𝑖𝓁 ∼  (0, 𝜎2𝑖𝓁), meaning that the closer the agent’s expertise is to 
the project type, the lower the uncertainty. Each project is evaluated 
by 𝑁 agents and their individual preferences are aggregated into a 
‘‘collective’’ estimate. Since we assume resources are limited, we further 
impose that only a fixed number 𝑛∗ ≤ 𝑛 of projects can be included in 
the final portfolio. The collective estimate of each project determines 
whether or not it is part of the final selection.

We now allow agent 𝓁 to perform pairwise comparisons between 
projects 𝑖 and 𝑗, with estimates 𝑣𝑖𝓁 and 𝑣𝑗𝓁 , and uncertainties 𝜂𝑖𝓁 and 
𝜂𝑗𝓁 , respectively. The agent assigns a personal ‘‘win probability’’ 
𝑤𝓁

𝑖𝑗 ∶= Pr
(

𝑣𝑖 > 𝑣𝑗
)

= Pr
(

(𝑣𝑖𝓁 − 𝜂𝑖𝓁) > (𝑣𝑗𝓁 − 𝜂𝑗𝓁)
)

= Pr
(

(𝜂𝑖𝓁 − 𝜂𝑗𝓁) < (𝑣𝑖𝓁 − 𝑣𝑗𝓁)
)

(7)

that project 𝑖 is better than project 𝑗 based on their evaluations 𝑣𝑖𝓁 , 𝑣𝑗𝓁 . 
The win probabilities 𝑤𝓁

𝑖𝑗 are later aggregated into a collective proba-
bility 𝑤′

𝑖𝑗 that will be used to determine the relative strength of projects 
via Eq. (5). In this formulation, 𝑤𝓁

𝑖𝑗 is no longer a count of the number of 
times 𝑖 wins over 𝑗 as in Section 2, but the likelihood agent 𝓁 places on 𝑖
winning over 𝑗 given his or her evaluations and uncertainties. Similarly, 
𝑤′

𝑖𝑗 is the likelihood that collectively project 𝑖 is deemed superior to 
project 𝑗. Under the assumption that the noise in the perceived value 
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Table 1
Main model parameters. Unless otherwise stated, all parameters are real-
valued.
 Symbol Description  
 𝑁 ∈ Z+ Number of agents  
 𝑛 ∈ Z+ Number of projects (or items)  
 𝑛∗ ∈ Z+, 𝑛∗ ≤ 𝑛 Budget constraint  
 𝑖, 𝑗 ∈ {1,… , 𝑛} Project label  
 𝓁 ∈ {1,… , 𝑁} Agent label  
 𝑣𝑖 ∈ R+ Value of project 𝑖  
 𝑡𝑖 ∈ [𝑡min , 𝑡max] Type of project 𝑖  
 𝑒𝓁 ∈ [𝑒min , 𝑒max] Expertise of agent 𝓁  
 𝛽 ≥ 0 Knowledge breadth of agents  
 𝑒M Mean expertise level; 𝑒M = (𝑡min + 𝑡max)∕2  
 𝑣𝑖𝓁 Value of project 𝑖, evaluated by agent 𝓁  
 𝜂𝑖𝓁 = 𝑣𝑖𝓁 − 𝑣𝑖 Noise of value of project 𝑖, associated with agent 𝓁  
 𝜎𝑖𝓁 > 0 Uncertainty in value of project 𝑖, associated with agent 𝓁  
 𝑣′𝑖 Aggregate value of project 𝑖 over all 𝑁 agents  
 𝑤𝓁

𝑖𝑗 ∈ (0, 1) Win probability of project 𝑖 over project 𝑗 from agent 𝓁  
 𝑊 𝓁 ∈ (0, 1)𝑛×𝑛 Matrix of all win probabilities 𝑤𝓁

𝑖𝑗 from agent 𝓁  
 𝑤′

𝑖𝑗 ∈ (0, 1) Aggregated probability of project 𝑖 winning over project 𝑗 
 𝑊 ′ ∈ (0, 1)𝑛×𝑛 Matrix of all aggregated win probabilities 𝑤′

𝑖𝑗  

is independently and normally distributed, the difference 𝜂𝑖𝓁 − 𝜂𝑗𝓁
follows a normal distribution, with mean zero and standard deviation 
√

𝜎2𝑖𝓁 + 𝜎2𝑗𝓁 . We thus rewrite Eq. (7) as 

𝑤𝓁
𝑖𝑗 = 𝛷

⎛

⎜

⎜

⎜

⎝

𝑣𝑖𝓁 − 𝑣𝑗𝓁
√

𝜎2𝑖𝓁 + 𝜎2𝑗𝓁

⎞

⎟

⎟

⎟

⎠

, (8)

where 𝛷 is the cumulative distribution function of the standard normal 
distribution. Eq. (8) quantifies the probability that agent 𝓁 deems 
project 𝑖 to be better than project 𝑗. When the evaluation uncertainty 
vanishes, 𝜎𝑖𝓁 , 𝜎𝑗𝓁 → 0, 𝑤𝓁

𝑖𝑗 is 1 for 𝑣𝑖𝓁 > 𝑣𝑗𝓁 and zero otherwise, 
representing an indicator function for project 𝑖 winning. An immediate 
consequence of Eq. (8) is that 𝑤𝓁

𝑖𝑗 = 1 −𝑤𝓁
𝑗𝑖.

Table  1 summarizes model variables and parameters used through-
out this work. In the following section, we introduce six aggregation 
methods that, starting from the heterogeneous evaluations provided by 
the 𝑁 agents, determine the 𝑛∗ ≤ 𝑛 projects to be included in the final 
portfolio. Two of these aggregation methods are standard and are based 
on the direct value estimates 𝑣𝑖𝓁 ; the other four are contributions from 
this study and employ the win probabilities 𝑤𝓁

𝑖𝑗 in Eq. (8). We will show 
that our proposed aggregation methods, which use win probabilities, 
typically outperform those based on value estimates.

4. Aggregation methods and portfolio selection

Once the individual inputs (projects evaluations 𝑣𝑖𝓁 , or win prob-
abilities 𝑤𝓁

𝑖𝑗) are known, the challenge is to aggregate them into a 
collective output from which the 𝑛∗ ≤ 𝑛 most desirable projects can be 
selected. The optimal aggregation of inputs is a well-studied topic in 
voting, social choice, and organizational decision-making, with various 
methods having been proposed. These include equal weighting, delega-
tion to experts, majority rule and subgroup biasing [1,2,13]. Additional 
considerations such as the presence of hierarchies [51], guaranteeing 
system legitimacy and fairness [52,53], avoiding polarization [54] or 
budget constraints [15], may also influence the choice of aggregation 
method. Fig.  1 presents a schematic of the complete portfolio selection 
model we use in this work.

We proceed by illustrating the six aggregation methods used in 
this work. Of these six, the first two are existing ones based on direct 
evaluations or scores, the other four are novel to this study and use 
pairwise comparisons based on the Quicksort algorithm on the Bradley–
Terry model by incorporating the win probabilities in Eq. (8). This 
allows to bypass using the direct project evaluations 𝑣𝑖𝓁 . Of the four 
novel methods, two rely on pairwise comparisons between all project 
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Fig. 1. Flowchart of the collective portfolio selection process. A set of 𝑛 projects are proposed and evaluated by 𝑁 agents. Aggregated evaluations, scores, or 
win probabilities are computed, and the top 𝑛∗ ≤ 𝑛 projects are selected based on these aggregated outcomes.
pairs, while the other two use comparisons restricted to a subset of 
projects.

4.1. Aggregation through direct evaluations or scores

(a) Arithmetic mean. This method uses the project estimates 𝑣𝑖𝓁 from 
all 𝑁 agents and averages them to obtain the aggregated value 

𝑣′𝑖 =
1
𝑁

𝑁
∑

𝓁=1
𝑣𝑖𝓁 . (9)

The 𝑛∗ projects with largest aggregate values 𝑣′𝑖 are then selected. The 
Arithmetic Mean is the most natural aggregation method, in which all 
inputs are equally weighted. However, the direct value estimates 𝑣𝑖𝓁
may be difficult to ascertain in practice, and outliers can easily bias 
the mean. Ranking-based methods, for example using the Borda count, 
may be more robust to outliers [2].
(b) Borda count. The Borda Count, introduced in the late 18th century, 
is a rank-based aggregation method in which each agent 𝓁 ranks the 
𝑛 projects in descending order according to their estimated values 
𝑣𝑖𝓁 [14]. For each project 𝑖, we denote its position in agent 𝓁’s pref-
erence list by pos𝓁(𝑖). The aggregated score 𝑠𝑖 for project 𝑖 is then 
calculated as the sum of the reversed ranks across all 𝑁 agents. That 
is, 

𝑠𝑖 =
𝑁
∑

𝓁=1

(

𝑛 − pos𝓁(𝑖)
)

. (10)

The 𝑛∗ projects with the highest aggregated scores are selected for 
inclusion in the collective portfolio. This method is particularly robust 
against mis-classification and often outperforms the Arithmetic Mean, 
especially in conditions of high uncertainty [2].

4.2. Aggregation through pairwise comparisons

(c) Quicksort. Quicksort is a widely used sorting algorithm that uses a 
divide-and-conquer approach to sort items [16]. Its average-case time 
complexity is (𝑛 log(𝑛)), making it one of the most efficient sorting 
algorithms [55]. Our adaptation of Quicksort for project selection is 
presented in Algorithm 1. Quicksort selects a ‘‘pivot’’ project from the 
middle of the list of available projects and partitions the remaining 
ones into two sublists: one containing projects ranked worse than the 
pivot, and the other containing projects ranked better than or equal to 
the pivot. This partitioning process is recursively applied to each sub-
list. In our approach, we calculate the aggregated win probability 𝑤′

𝑖𝑗
associated with projects 𝑖 and 𝑗 as 

𝑤′
𝑖𝑗 =

1
𝑁

𝑁
∑

𝓁=1
𝑤𝓁

𝑖𝑗 , (11)

where 𝑤𝓁
𝑖𝑗 is given in Eq. (8), and consider project 𝑖 to be better than 

the pivot 𝑝 if the aggregated win probability of project 𝑖 against the 
pivot 𝑝 is at least 0.5, i.e. if 𝑤′

𝑖𝑝 ≥ 0.5. The Quicksort method produces 
a list of ranked projects based on their aggregated win probabilities, 
from which the best 𝑛∗ are selected.
4 
Algorithm 1 Quicksort with aggregated win-probability matrix
Require: Aggregated win-probability matrix 𝑊 ′ of size 𝑛 × 𝑛
Ensure: Sorted index array 𝑖𝑑𝑥
1: 𝑖𝑑𝑥 ← list of integers from 0 to 𝑛 − 1
2: function Partition(𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) 
3: 𝑖 ← 𝑙𝑜𝑤 − 1
4: for 𝑗 ← 𝑙𝑜𝑤 to ℎ𝑖𝑔ℎ − 1 do 
5: if 𝑊 ′[𝑖𝑑𝑥[𝑗], 𝑖𝑑𝑥[ℎ𝑖𝑔ℎ]] < 0.5 then 
6: 𝑖 ← 𝑖 + 1
7: Swap(𝑖𝑑𝑥[𝑖], 𝑖𝑑𝑥[𝑗])
8: end if
9: end for
10: Swap(𝑖𝑑𝑥[𝑖 + 1], 𝑖𝑑𝑥[ℎ𝑖𝑔ℎ]) 
11: return 𝑖 + 1
12: end function
13: function QuickSortRecursive(𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) 
14: if 𝑙𝑜𝑤 < ℎ𝑖𝑔ℎ then 
15: 𝑝𝑖 ← Partition(𝑙𝑜𝑤, ℎ𝑖𝑔ℎ) 
16: QuickSortRecursive(𝑙𝑜𝑤, 𝑝𝑖 − 1) 
17: QuickSortRecursive(𝑝𝑖 + 1, ℎ𝑖𝑔ℎ)
18: end if
19: end function
20: QuickSortRecursive(0, 𝑛 − 1) 
21: return 𝑖𝑑𝑥

(d) Bradley–Terry method. Here, we build on the Bradley–Terry model 
described in Section 2 to aggregate the agent win probabilities 𝑤𝓁

𝑖𝑗 and 
to select the 𝑛∗ projects to be included in the collective portfolio. The 
algorithm is as follows

• For each agent, the internal win probabilities 𝑤𝓁
𝑖𝑗 are used to 

construct a win-probability matrix 𝑊 𝓁 ∈ (0, 1)𝑛×𝑛. Since there are 
𝑁 agents, there will also be 𝑁 matrices 𝑊 𝓁 .

• The aggregated win probabilities 𝑤′
𝑖𝑗 are computed from Eq. (11) 

and 𝑊 𝓁 . The aggregated values are used to construct the corre-
sponding win-probability matrix 𝑊 ′ ∈ (0, 1)𝑛×𝑛. Win-probability 
aggregation methods in alternative to Eq. (11) may also be used.

• Newman’s iteration is used to determine the relative strength of 
each project based on 𝑊 ′ and Eq. (5).

• Projects are selected in descending order of relative strength until 
the desired number of projects 𝑛∗ is reached. These are the ones 
that will be included in the collective portfolio.

4.3. Aggregation through sampled pairwise comparisons

Since it may not be feasible for agents to perform pairwise com-
parisons across all project pairs, the final two aggregation approaches 
we propose include modified versions of Quicksort and of the Bradley–
Terry Method that utilize only a subset of comparisons. Limiting the 
number of win probabilities 𝑤𝓁

𝑖𝑗 used is a cost-effective strategy, as 
each additional comparison requires resources. However, as we show 
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Fig. 2. Comparison of three projects 𝑝1, 𝑝2, and 𝑝3 by a single agent. Each node 
represents a project and each directed edge represents a pairwise comparison 
between projects. Once 𝑤1

𝑖𝑗 has been determined, its complement 𝑤1
𝑗𝑖 is given 

by 𝑤1
𝑗𝑖 = 1 −𝑤1

𝑖𝑗 .

in Section 7, choosing a good sampling protocol can also significantly 
enhance performance.

When using only a subset of pairwise comparisons, different sam-
plings can influence the resulting rankings. For example, consider a 
single agent evaluating three projects 𝑝1, 𝑝2, 𝑝3 with value estimates 
𝑣11 = 1, 𝑣21 = 3.5, and 𝑣31 = 4 with uncertainties 𝜎11 = 3, 𝜎21 = 0.1, and 
𝜎31 = 3, respectively. Fig.  2 shows all pairwise comparisons by agent 
1. Comparing project 𝑝1 with project 𝑝2 results in a win probability 
𝑤1

12 = 0.2024, while comparing project 𝑝2 with project 𝑝3 yields 𝑤1
23 =

0.4338. This sequence leads to the ranking: 𝑝3 ≻ 𝑝2 ≻ 𝑝1, where 𝑥 ≻ 𝑦
indicates that 𝑥 is strictly preferred over 𝑦. However, if we compare 
project 𝑝1 with projects 𝑝2 and 𝑝3, the win probabilities 𝑤1

12 = 0.2024
and 𝑤1

13 = 0.2397 produce a different ranking: 𝑝2 ≻ 𝑝3 ≻ 𝑝1.
Although the ordering may depend on the specific subsample of 

comparisons, we explore an (𝑛) cyclic-graph sampling method, similar 
to what has been done in subgraph matching [56]. Our technique 
avoids performing all (𝑛2) comparisons and can be visualized as 
extracting a subgraph from the complete graph generated by 𝑛 projects. 
Given an ordered list of all 𝑝𝑖 projects such as (𝑝1, 𝑝2,… , 𝑝𝑛), cyclic-
graph sampling defines a structured subset of pairwise comparisons 

((𝑝1, 𝑝2), (𝑝2, 𝑝3),… , (𝑝𝑛−1, 𝑝𝑛), (𝑝𝑛, 𝑝1)), (12)

where the parentheses contain pairs of projects to be compared. Out-
comes depend on the initial (𝑝1, 𝑝2,… , 𝑝𝑛) ordering.

We now describe two additional aggregation methods that use 
cyclic graph sampling and a two-stage approach. In the first stage, an 
approximated project ranking is obtained through random sampling 
or by applying existing ranking algorithms. This preliminary ranking 
then serves as input to the second stage, where cyclic-graph sampling 
is used to refine the ranking via an optimization procedure based on 
the Bradley–Terry model. Specifically these methods are:

(e) Two-stage Bradley–Terry method.

• First stage: Generate an initial ranking where projects 𝑝𝑖 (𝑖 ∈
{1,… , 𝑛}) are selected uniformly at random without replacement 
from the 𝑛 available ones. Construct a cyclic-graph sampling of 
the randomly ordered list as shown in Eq. (12), and for each 
of the 𝑛 pairs calculate 𝑤′

𝑖𝑗 via Eq. (11). Then apply Newman’s 
iteration given in Eq. (5) using the win probabilities 𝑤′

𝑖𝑗 to obtain 
an approximate ranking.

• Second Stage: Starting from the approximate ranking, compute 
the corresponding win probabilities 𝑤′

𝑖𝑗 using the cyclic-graph 
sampling in Eq. (12). To further refine the ranking, apply New-
man’s iteration again, using the win probabilities obtained in the 
first stage. Set win probabilities that are not calculated in either 
stage to 0.
5 
(f) Two-stage Quicksort.
• First Stage: Instead of relying on randomly selected pairwise 
comparisons, apply the Quicksort algorithm to the matrix of 
aggregated win probabilities 𝑊 ′ with elements 𝑤′

𝑖𝑗 as shown in 
Eq. (11) to generate an initial ranking. Sample only the nec-
essary entries of the aggregated win-probability matrix 𝑊 ′ to 
keep a (𝑛 log(𝑛)) complexity. Since the underlying estimates are 
noisy observations, this Quicksort-derived ranking may deviate 
from the true ranking that would be obtained in the absence of 
uncertainty.

• Second Stage: Starting from the Quicksort ranking, compute the 
corresponding win probabilities 𝑤′

𝑖𝑗 using the cyclic-graph sam-
pling in Eq. (12). Then apply Newman’s iteration given in Eq. (5) 
for a refined ranking. Unlike in the Two-Stage Bradley–Terry 
method discussed in (e), only consider win probabilities associ-
ated with the cyclic graph structure and not those obtained in 
the first stage.

5. Values, scores, or win probabilities?

We now discuss some of the advantages and limitations of the six 
aggregation methods and the quantities they rely on (i.e., values, scores, 
and win probabilities). When outliers are present, aggregating win 
probabilities using Eq. (11) may be preferable to using the arithmetic 
mean in Eq. (9). To illustrate this, consider three agents evaluating 
Project 1 and Project 2. The first agent holds a highly favorable view of 
Project 1, while the other two agents assign lower value estimates to it. 
If the first agent’s evaluation is an outlier – say if 𝑣11 approaches infinity 
– its influence on the aggregated outcome differs substantially between 
the two methods. Under the Arithmetic Mean, the aggregated value for 
Project 1, 𝑣′1, is highly skewed by the outlier and may approach infinity 
as well. This disproportionate influence from a single agent distorts the 
collective assessment of Project 1’s value. Win probabilities mitigate the 
impact of outliers, since they are bounded quantities. Let us assume that 
the extreme value from the first agent translates into a win probability 
of 𝑤1

12 = 0.98, indicating a strong preference. If the other two agents 
provide negative assessments of Project 1 with respect to Project 2, 
such as 𝑤2

12 = 𝑤3
12 = 0.2, the aggregated win probability, calculated 

using Eq. (11), results in 𝑤′
12 = 0.46. This result is more closely aligned 

with the agents’ evaluations compared to the outcome produced by the 
arithmetic mean.

Using win probabilities also offers an advantage over the Borda 
Count, as it more precisely captures individual preferences through 
real-valued probabilities. Consider two agents evaluating Project 1 and 
Project 2. The first agent strongly prefers Project 1 over Project 2 
(𝑤1

12 = 0.8), while the second agent only slightly favors Project 2 over 
Project 1 (𝑤2

12 = 0.46). The aggregated win probability, 𝑤′
12 = 0.63, 

indicates that Project 1 is the preferred choice overall, reflecting the 
stronger preference of the first agent. This approach takes into account 
the intensity of each agent’s preference. On the other hand, if the 
Borda Count is used, each project would receive a Borda score of 
1, resulting in a tie. This outcome fails to differentiate between the 
strong preference expressed by the first agent and the more moderate 
preference of the second.

6. Comparing aggregation methods

Once the six aggregation methods (a–f) have been used to assemble 
a final portfolio of 𝑛∗ ≤ 𝑛 projects, a natural question arises: which 
method is the most effective in selecting the most valuable projects? 
Recall that agents do not know the actual values 𝑣𝑖 of the projects 
they are estimating and that their decision-making is based on project 
estimates 𝑣𝑖𝓁 that can be quite different from the actual values or on 
scores or win probabilities that are also subject to uncertainty. The 𝑛∗
projects that are selected for inclusion in the collective portfolio can 
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thus include projects that were estimated to have high value (or that 
ranked high, or that had large win probabilities) but that in practice do 
not.

The effectiveness of a given aggregation method can be quantified 
in different ways. A performance metric for each method can be defined 
by either fixing or averaging over project types and/or fixing a set of 
agents or averaging over agent expertise distributions. Here, we choose 
to measure an aggregation method’s performance by the expected total 
value 𝐸(𝛽;𝑁, 𝑛, 𝑛∗) of 𝑛∗ ≤ 𝑛 projects evaluated by 𝑁 agents with 
knowledge breadth 𝛽. The expectation is taken over different project 
types, ensuring that the 𝑁 agents (with knowledge breadth 𝛽) achieve 
robust performance on average across decision-making scenarios in-
volving heterogeneous projects. The most effective aggregation method 
will be the one that yields the highest performance 𝐸(𝛽;𝑁, 𝑛, 𝑛∗). In 
the absence of uncertainty, 𝐸(𝛽;𝑁, 𝑛, 𝑛∗) simplifies to the total intrinsic 
value of the most valuable 𝑛∗ projects for all aggregation methods. In 
the presence of uncertainty, 𝐸(𝛽;𝑁, 𝑛, 𝑛∗) will depend on the chosen 
aggregation method.

As an example, consider 𝑁 = 3 agents, each with a knowledge 
breadth 𝛽 = 0, and 𝑛 = 3 projects, from which 𝑛∗ = 2 projects must 
be selected. The project values are 𝑣1 = 1, 𝑣2 = 2, and 𝑣3 = 3. 
We assume that agents perceive the true project values (i.e., 𝑣𝑖𝓁 = 𝑣𝑖
for 𝓁 ∈ {1, 2, 3}). Since there is no uncertainty, agents will all select 
the two most valuable projects and the performance is calculated as 
𝐸(𝛽 = 0;𝑁 = 3, 𝑛 = 3, 𝑛∗ = 2) = 𝑣2 + 𝑣3 = 5.

7. Simulation results

We now compare the performances 𝐸(𝛽;𝑁, 𝑛, 𝑛∗) across the six 
aggregation methods (a–f) via numerical simulations and determine 
which of them yields the highest 𝐸(𝛽;𝑁, 𝑛, 𝑛∗). Following prior work [1,
2,15], we assume project types are uniformly distributed according to 
 (0, 10), so that 𝑡min = 0, 𝑡max = 10. The expertise value of the central 
decision maker is set at 𝑒M = (𝑡min + 𝑡max)∕2 = 5. We consider 𝑛 = 30
projects, 𝑁 = 3 agents, and a target of 𝑛∗ = 15 projects. We define the 
value of project 𝑖 as 𝑣𝑖 = 𝑖 with 𝑖 ∈ {1,… , 30}. The uncertainty in agent 
𝓁’s project evaluations is quantified by additive Gaussian noise with 
zero mean and standard deviation 𝜎𝑖𝓁 = |𝑡𝑖 − 𝑒𝓁|, where the expertise 
level 𝑒𝓁 of agent 𝓁 is given by Eq. (6). Variations in value distribution, 
type distribution, and other parameters are known to not significantly 
affect the relative ordering of aggregation-rule performance [2].

All our results are based on Monte Carlo simulations. For methods 
based on pairwise comparisons and win probabilities, we use 100,000 
independent and identically distributed samples. For the remaining 
two methods, Arithmetic Mean and Borda Count, which are compu-
tationally less demanding, we increase the sample size to 500,000. The 
theoretical maximum performance is ∑30

𝑖=16 𝑣𝑖 =
∑30

𝑖=16 𝑖 = 345.
We consider two scenarios for computing the win probabilities 

𝑤′
𝑖𝑗 . In the first scenario, the probabilities are calculated according 

to Eqs. (8) and (11). However, in real-world applications of aggrega-
tion methods based on pairwise comparisons and win probabilities, 
assigning probabilities with several decimal places may be imprac-
tical. Therefore, in the second scenario, we prespecify a set of win 
probabilities from which agents can choose when making pairwise 
comparisons.

7.1. Continuous win probabilities

In Fig.  3, we plot the performance 𝐸(𝛽) ≡ 𝐸(𝛽;𝑁 = 3, 𝑛 =
30, 𝑛∗ = 15) for the six aggregation methods (a–f) as a function of 
knowledge breadth 𝛽. Both the Arithmetic Mean and the Borda Count 
methods are known to be effective in identifying high-value projects 
within a portfolio [2]. In particular, the Borda Count is more robust 
to evaluation outliers than the Arithmetic Mean and performs better 
across a wide range of parameters. This is observed in Fig.  3, which also 
6 
Fig. 3. Portfolio selection using continuous values of win probabilities. In this 
example, 𝑛∗ = 15 projects are to be selected out of 𝑛 = 30 projects by 𝑁 = 3
agents. We show the performance 𝐸(𝛽) ≡ 𝐸(𝛽;𝑁, 𝑛, 𝑛∗) as a function of the 
knowledge breadth 𝛽 for the six aggregation methods (a–f). The Quicksort (c) 
and Bradley–Terry (d) approaches proposed in this work perform favorably 
compared to the existing Arithmetic Mean (a) and Borda Count (b) methods, 
especially for larger knowledge breadth values 𝛽 ⪆ 5.5, which are associated 
with larger uncertainties.

shows that Quicksort (c), Two-Stage Quicksort (f), and the Bradley–
Terry method using all pairwise comparisons (d), outperform both the 
Arithmetic Mean (a) and Borda Count (b) methods, particularly for 
higher 𝛽. The Two-Stage Bradley–Terry method (e) performs worse 
than both the Arithmetic Mean (a) and Borda Count (b) for knowledge 
breadths 𝛽 ⪅ 5.5.

Since the above findings are based on aggregating the evaluations 
of only 𝑁 = 3 agents we also conducted simulations for 𝑁 = 15 and 
𝑁 = 30 agents to verify how absolute and relative performances would 
change upon increasing 𝑁 . We found that the absolute performance 
of all six methods increases with 𝑁 , while their relative performance 
remains similar. Thus, at least for modest 𝑁 , Quicksort (c), Two-Stage 
Quicksort (f), and the Bradley–Terry method using all pairwise compar-
isons (d) emerge as high performing aggregation methods independent 
of the number of agents 𝑁 . Additionally, the performance gap between 
the three methods above and the Two-Stage Bradley–Terry method 
widens with 𝑁 . This is because compared to other methods, the Two-
Stage Bradley–Terry method uses a sampling protocol that leaves more 
entries in the aggregated win probability matrix 𝑊 ′ empty.

7.2. Discrete win probabilities

In practical applications of the Bradley–Terry method, it may be 
necessary to prespecify a set of win probabilities 𝑤𝓁

𝑖𝑗 from which 
agents can choose. Limiting probability values to a finite, manage-
able set, may be helpful in decision-making scenarios where high 
precision is not feasible. In Fig.  4, we show a comparison of the 
aggregation methods (a–f) where the win probabilities for methods (c–
f) are restricted to values taken from a set of 11 possibilities given 
by {0.01, 0.1, 0.2,… , 0.8, 0.9, 0.99}. The relative performance ranking of 
the methods remains unchanged. However, the performance values 
of Quicksort and Two-Stage Quicksort exhibit a greater difference 
compared to the continuous case shown in Fig.  3. Recall that the 
Two-Stage Quicksort method employs a refinement stage in which 
the final ranking is computed according to Newman’s iteration given 
in Eq. (5). While this second stage had little impact on performance 
in the continuous case, it substantially affects results when using the 
prespecified win probabilities listed above. This is consistent with the 
observation that Newman’s iteration (or similar iterative methods used 
in the Bradley–Terry method) performs well even when rankings are 
derived from a limited set of tournament outcomes.
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Fig. 4. Portfolio selection using discrete values of win probabilities. We show 
the performance 𝐸(𝛽) ≡ 𝐸(𝛽;𝑁, 𝑛, 𝑛∗) as a function of the knowledge breadth 
𝛽 for the six aggregation methods (a–f) using the same parameters as in Fig. 
3. Here, agents that select projects using win-probability-based approaches, 
Quicksort (c), Two-Stage Quicksort (f), Bradley–Terry (d), and Two-Stage 
Bradley–Terry (e), are limited to selecting win probabilities from a discrete 
set of 11 values: {0.01, 0.1, 0.2,… , 0.8, 0.9, 0.99}. The Arithmetic Mean (a) and 
Borda Count (b) curves are the same as those in Fig.  3 and are included 
for reference. The relative ranking of the six methods remains unchanged 
compared to Fig.  3 in which continuous win probabilities are used. However, 
the difference in performance between Quicksort (c) and Two-Stage Quicksort 
(f) is more pronounced than in Fig.  3.

7.3. Efficiency and scalability

We now estimate the computational cost of each aggregation
method. Aggregating inputs via the Arithmetic Mean does not involve 
any pairwise comparisons. However, a single sorting step is still nec-
essary after aggregation to determine which of the 𝑛∗ ≤ 𝑛 projects 
should be included in the final portfolio; if this is done via the standard 
Quicksort algorithm, the number of necessary comparisons scales as 
(𝑛 log(𝑛)). If projects are instead aggregated via the Borda Count, each 
of the 𝑁 agents must rank their own scores. This requires (𝑛 log(𝑛))
comparisons per agent to produce a ranking if the standard Quicksort 
algorithm is similarly used. For the other four methods that are based 
on win probabilities, the average number of pairwise comparisons are:

• Bradley–Terry (c) (all pairwise comparisons): (𝑛2)
• Quicksort (d) (without a second refinement stage): (𝑛 log(𝑛))
• Two-Stage Bradley–Terry (e): (𝑛)
• Two-Stage Quicksort (f): (𝑛 log(𝑛))

In Fig.  5, we show the number of pairwise comparisons for the four 
methods above using discrete win probabilities. Since the number of 
pairwise comparisons depends on 𝑛 and not on the set of possible win 
probability values, similar trends are observed for continuous win prob-
abilities. The Bradley–Terry method (c) utilizes all 30(30 − 1)∕2 = 435
possible comparisons regardless of 𝛽. Similarly, the Two-Stage Bradley–
Terry method (e) involves approximately 58 comparisons regardless of 
the value of 𝛽. For aggregation methods that utilize Quicksort instead 
a 𝛽 dependence emerges: Quicksort (d) (without a second refinement 
stage), requires a number of pairwise comparisons that decreases from 
265 for 𝛽 = 0 to 193 for 𝛽 = 10. The Two-Stage Quicksort (f) method 
results in slightly more comparisons, with 266 for 𝛽 = 0 and 194 for 
𝛽 = 10.

The observed decrease in the number of pairwise comparisons 
results from the interplay between noise in the estimates and the divide-
and-conquer nature of Quicksort. The algorithm compares elements 
against a pivot to split the dataset into two parts. The fastest completion 
of the algorithm is when the two parts contain an equal number of 
7 
Fig. 5. Number of pairwise project comparisons across aggregation methods 
(c–f) for knowledge breadths 𝛽 ∈ {0, 5, 10} used to determine the performance 
𝐸(𝛽) in Fig.  4 using discrete win probabilities. Estimates of the average number 
of pairwise comparisons for 𝑛 are provided in Section 7.3. Although the 
Bradley–Terry (d), Quicksort (c), and Two-Stage Quicksort (f) methods achieve 
higher performance, the Two-Stage Bradley–Terry (e) method requires the 
least number of comparisons, making it the most practical choice for actual 
implementations.

projects, while the slowest is when one part contains all projects aside 
from the pivot, and the other contains none. As the noise in project 
values increases with 𝛽, it becomes less likely that highly imbalanced 
sublists arise during Quicksort recursions. While larger knowledge 
breadth allows Quicksort to be more efficient by requiring fewer num-
ber of pairwise comparisons, its overall performance decreases with 𝛽, 
but is still higher than or equal to other methods.

Although the Bradley–Terry, Quicksort, and Two-Stage Quicksort 
methods exhibit the highest performance in our simulations, the num-
ber of pairwise comparisons they require is likely too high for practical 
applications. In contrast, the Two-Stage Bradley–Terry method achieves 
favorable performance with significantly fewer comparisons, making 
it the most practical approach for real-world use. Further refinements 
could include identifying alternative sampling methods analogous to 
our cyclic graph approach that maintain strong performance while 
reducing the number of pairwise comparisons. Finding ways to spar-
sify the aggregate win probability matrix 𝑊 ′ could also improve the 
applicability of our methods.

8. Conclusions

In this work, we compared six aggregation methods (a–f) for se-
lecting project portfolios under uncertainty, including four novel ones 
based on pairwise comparisons (c–f). Agents evaluate projects with-
out knowing their long-term value; the accuracy of these evaluations 
depends on how well agent expertise matches project types, with 
misalignment favoring large errors. How to arrive at a decision? Typ-
ically, direct estimations are collectively aggregated. However, when 
estimates are difficult to obtain or when expertise mismatches lead to 
outliers, Borda-type methods that rely on rankings offer a more robust 
alternative. Yet, generating full rankings can be cognitively demanding, 
especially when the number of projects is large.

To improve upon existing methods, we established a connection 
between portfolio selection, the Quicksort algorithm, and the Bradley–
Terry model where project rankings are inferred from agent-specific 
win probabilities in pairwise comparisons. Based on this, we pro-
posed four new aggregation methods. The first extends Quicksort to 
rank projects using aggregated win probabilities with a computational 
complexity of (𝑛 log(𝑛)); the second uses Newman’s method with a 
complexity of (𝑛2). To further lower the number of required com-
parisons, we incorporated a cyclic-graph sampling technique to both 
approaches, yielding two other aggregation methods of computational 
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complexity (𝑛) (Two-Stage Bradley–Terry) and (𝑛 log(𝑛)) (Two-Stage 
Quicksort).

Our methods are relevant to participatory budgeting, social choice, 
organizational decision-making, and other resource allocation problems 
that involve decision-making under uncertainty. Our sampling and 
ranking methods can also be applied to rank foundation models such 
as LLMs.

Note that our analysis assumed uniform project costs, distributions 
over a single type variable, and a single set of project values. These sim-
plifying assumptions can be relaxed to explore heterogeneous project 
costs and varying type and value distributions, providing a more realis-
tic setting and additional insight into the determinants of performance 
in pairwise aggregation methods. Depending on context, it may also 
be useful to incorporate delegation strategies, querying only agents 
with relevant expertise, or to use alternative aggregation methods, such 
as the median instead of the mean. Exploring how agent interactions 
influence evaluations, for instance via social influence network models, 
could also offer valuable insights [57–59].
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