
Journal of Computational Science 92 (2025) 102728

A
1
n

Contents lists available at ScienceDirect

Journal of Computational Science

journal homepage: www.elsevier.com/locate/jocs

Efficient portfolio selection through preference aggregation with Quicksort
and the Bradley–Terry model
Yurun Ge a,b, Lucas Böttcher c,d, Tom Chou b,e , Maria R. D’Orsogna a,b,∗
a Department of Mathematics, California State University at Northridge, Los Angeles, CA, USA
b Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA, USA
c Department of Computational Science and Philosophy, Frankfurt School of Finance and Management, Frankfurt a. M., Germany
d Laboratory for Systems Medicine, University of Florida, Gainesville, FL, USA
e Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, USA

A R T I C L E I N F O

Keywords:
Collective intelligence
Social choice
Portfolio selection
Participatory budgeting
Agentic systems
Preference aggregation
Quicksort
Bradley–Terry model

 A B S T R A C T

Allocating limited resources to a set of alternatives with uncertain long-term benefits is a common challenge
in innovation management, research funding, and participatory budgeting. Related problems arise in emerging
applications such as ranking outputs of large language models and coordinating decisions in agentic systems.
All settings include multiple agents tasked with estimating the true value of a potentially large number of
alternatives. These estimates, or quantities derived from them, are then aggregated to select a final portfolio
that maximizes overall benefit, ideally using efficient methods. Standard sorting algorithms are ill-suited as
they do not account for uncertainties associated with each agent’s estimate. Furthermore, the cognitive load
on agents can be demanding, especially if the number of alternatives to evaluate is large. Building on the
Quicksort algorithm and the Bradley–Terry model, we develop four new, efficient aggregation protocols based
on agent-assigned win probabilities of pairwise comparisons that are then globally aggregated. The pairwise
comparisons we introduce not only reduce cognitive load on agents, but lead to aggregation protocols that
outperform existing ones, which we confirm via numerical simulations. Our methods can be combined with
sampling strategies to further reduce the number of pairwise comparisons.
1. Introduction

The problem of allocating limited resources to projects that provide
the greatest benefit to stakeholders arises in many decision-making con-
texts. When the long-term value of an alternative is difficult to assess,
the evaluating agents will provide a broad distribution of estimates that
must be efficiently aggregated. Common examples include members of
an organization who are tasked with selecting new innovation projects
with uncertain returns [1,2] or community stakeholders in participa-
tory budgeting [3,4] who must decide which public projects deserve
funding [5,6]. Similar problems arise in emerging applications, such as
ranking outputs of large language models (LLMs) [7–9] and coordinat-
ing decisions in multi-agent or agentic systems [10]. In many settings,
the number of projects under consideration is large and may result
in a large cognitive load for evaluators. How can agents meaningfully
compare and rank numerous alternatives when their information is in-
complete or uncertain? Addressing this question requires methods that
both reduce individual cognitive effort and enable efficient aggregation
of preferences so that a high-value project portfolio can be selected.

∗ Corresponding author at: Department of Mathematics, California State University at Northridge, Los Angeles, CA, USA.
E-mail address: dorsogna@csun.edu (M.R. D’Orsogna).

While our methods apply to a wide range of selection problems, we
focus on project portfolio selection for concreteness.

The effectiveness of various aggregation methods such as voting,
averaging, and expert delegation has been examined within social
choice theory [11,12] and organizational decision-making [1,2,13].
The above methods assume that agents use their own direct estimates
of project value. Ranked voting methods, like the Borda count [12,14],
are based on each agent’s ordered ranking of projects. While these
perform well in portfolio selection with uniform project costs [2,15],
the cognitive load on agents when ranking a large number of projects
can be large.

In this paper, we develop four project evaluation and aggregation
methods that involve pairwise comparisons of projects at the agent
level. Specifically, the agents, who do not know the intrinsic value
of the projects they are called to evaluate, compare pairs of projects.
These comparisons are then used in conjunction with the well-known
Quicksort algorithm [16] and the Bradley–Terry model [17,18] to
https://doi.org/10.1016/j.jocs.2025.102728
Received 30 January 2025; Received in revised form 8 September 2025; Accepted
vailable online 7 October 2025
877-7503/© 2025 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).
3 October 2025

icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/jocs
https://www.elsevier.com/locate/jocs
https://orcid.org/0000-0003-0785-6349
mailto:dorsogna@csun.edu
https://doi.org/10.1016/j.jocs.2025.102728
https://doi.org/10.1016/j.jocs.2025.102728
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2025.102728&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Y. Ge et al. Journal of Computational Science 92 (2025) 102728
collectively rank projects so that a high-value project portfolio can be
assembled.

We show that our proposed aggregation methods, based on pairwise
comparison rules, outperform those that utilize value estimates or
ordered rankings. Our findings are important because pairwise com-
parisons not only yield better outcomes but help reduce the cognitive
burden of directly ranking many projects and are more plausible.
According to Miller’s law [19], human short-term memory is limited
to processing about seven items at a time, making direct ranking
increasingly unrealistic as the number of projects grows. Furthermore,
pairwise comparisons are particularly useful when direct estimations
are difficult due to psychological biases [20].

Aggregation methods based on pairwise comparisons remain rel-
atively underexplored, particularly in contexts that involve uncer-
tainty [21]. Algorithms for sorting under noisy information were only
recently introduced [22,23] with some extensions enabling parallel
processing [24]. Existing strategies to handle ‘‘dirty’’ comparisons
often combine noisy data with a limited number of accurate, ‘‘clean’’
comparisons [25,26], which can be adjusted based on noise levels [27].
In some cases, approximate rankings can be achieved with relatively
few comparisons [28]. Other works have modeled decision-making as
an analytic hierarchy process [29] that includes pairwise comparisons
and where fuzzy logic is incorporated to represent uncertainty [30].
Pairwise-comparison algorithms have also been proposed in machine
learning for efficient item ranking [31,32]. Our work contributes to
this nascent literature by developing efficient and easy-to-implement
algorithms.

Since we combine aspects of the Bradley–Terry model with portfolio
selection theory, the next two sections contain a concise overview
of each topic, highlighting the elements most relevant to our study.
In particular, in Section 2, we review the Bradley–Terry model and
the pairwise-comparison algorithm that we later use when agents
are tasked with comparing project pairs. In Section 3, we discuss
how agents evaluate projects based on their expertise and project
type, and where pairwise comparisons are performed according to the
Bradley–Terry model. Various methods for aggregating the heteroge-
neous project evaluations are discussed in Section 4, including two
existing methods that do not use pairwise comparisons (the Arithmetic
Mean and the Borda Count) and four novel methods based on pairwise
comparisons that use the Quicksort algorithm and the Bradley–Terry
model. Limitations and advantages of all methods used are discussed in
Section 5. In Section 6, we introduce the performance measure used to
compare each of the portfolios generated by the six aggregation meth-
ods. Performances are evaluated numerically in Section 7 for various
parameter choices: several of our proposed aggregation methods are
shown to outperform existing ones. Sampling techniques to reduce the
number of comparisons are also presented. Finally, in Section 8, we
summarize and discuss our findings.

2. The Bradley–Terry model

The Bradley–Terry model is a statistical method for ranking 𝑛 items
based on repeated pairwise comparisons originally introduced to rank
players using tournament outcomes [17,18]. Due to its versatility, the
Bradley–Terry model has been applied to sports rankings, electoral pref-
erences, skill-based matchmaking, psychological research, and in other
domains where relative comparisons are more practical than stand-
alone evaluations. More recently, Bradley–Terry models have also been
used in machine learning [33], to help evaluate LLM outputs [8,34],
and in other problems involving human choice [35–38].

The Bradley–Terry model assumes that outcomes of pairwise com-
parisons between the items to be ranked are known and that each
item has an underlying latent ‘‘strength’’. These latent strengths are
estimated by maximizing the likelihood of the given pairwise compar-
isons, typically using iterative algorithms [39–41]. Extensions include
allowing items to be tied [42,43], multiple, rather than pairwise,
2
comparisons [44], incorporating ordering-based advantages, such as
playing on one’s home-field in sports [45,46], or using only subsets of
comparisons [47].

In the original formulation of the Bradley–Terry model, the items
are 𝑛 competing players and the pairwise-comparison outcomes 𝑤𝑖𝑗 are
the number of times player 𝑖 wins over player 𝑗. The latter are also
referred to as win numbers. In our setting, we adapt the model by
replacing the players with 𝑛 ‘‘competing’’ projects (since not all can
be selected) and by considering, instead of win counts, the probability
𝑤𝓁

𝑖𝑗 that agent 𝓁 prefers project 𝑖 over project 𝑗. For concreteness, the
exposition that follows illustrates how the latent strengths are obtained
in the original context of the Bradley–Terry model. We later adapt the
procedure to our specific project-selection setting.

Mathematically, the latent strengths of items (players or projects) 𝑖
and 𝑗 are denoted by 𝜋𝑖 and 𝜋𝑗 , respectively; the relative frequency that
𝑖 wins over 𝑗 is 𝜋𝑖∕(𝜋𝑖 + 𝜋𝑗). Given the win numbers 𝑤𝑖𝑗 , and denoting
the strength parameter vector 𝝅 = (𝜋1,… , 𝜋𝑛)⊤, one wishes to maximize
the log-likelihood function

𝑙(𝝅) =
∑

𝑖≠𝑗
𝑤𝑖𝑗 ln

(

𝜋𝑖
𝜋𝑖 + 𝜋𝑗

)

=
∑

𝑖≠𝑗
𝑤𝑖𝑗

[

ln(𝜋𝑖) − ln(𝜋𝑖 + 𝜋𝑗)
]

.
(1)

Maximizing Eq. (1) involves iterative updates of the vector 𝝅. Under
certain conditions, this maximization has a unique solution [17]. In
practice, for all 𝑖, one can differentiate 𝑙(𝝅) with respect to 𝜋𝑖 and set
the resulting expression to zero, leading to the implicit form

𝜋𝑖 =
∑

𝑗≠𝑖 𝑤𝑖𝑗

∑

𝑗≠𝑖

(𝑤𝑖𝑗 +𝑤𝑗𝑖

𝜋𝑖 + 𝜋𝑗

) . (2)

Thus, the updated strength of item 𝑖, 𝜋̃𝑖, is determined via

𝜋̃𝑖 =
∑

𝑗≠𝑖 𝑤𝑖𝑗

∑

𝑗≠𝑖

(𝑤𝑖𝑗 +𝑤𝑗𝑖

𝜋𝑖 + 𝜋𝑗

) , (3)

where 𝜋𝑖 and 𝜋𝑗≠𝑖 are the strength parameters prior to the update.
Iterations are repeated until convergence is reached and 𝜋̃𝑖 ≈ 𝜋𝑖.
While this scheme is simple, it can be slow to converge. A more recent
approach is Newman’s method [41]. It is based on the update

𝜋̃𝑖 =

∑

𝑗≠𝑖

(𝑤𝑖𝑗𝜋𝑗
𝜋𝑖 + 𝜋𝑗

)

∑

𝑗≠𝑖

(𝑤𝑗𝑖

𝜋𝑖 + 𝜋𝑗

) , (4)

which converges faster than the one in Eq. (3) by a factor of 3 to
100. Convergence speed and stability can be further improved by
including the updated values after each iteration as in the Gauss–Seidel
method [48], leading to

𝜋̃𝑖 =

∑

𝑗≠𝑖

(𝑤𝑖𝑗 𝜋̃𝑗
𝜋𝑖 + 𝜋̃𝑗

)

+
∑

𝑗>𝑖

(𝑤𝑖𝑗𝜋𝑗
𝜋𝑖 + 𝜋𝑗

)

∑

𝑗≠𝑖

(𝑤𝑗𝑖

𝜋𝑖 + 𝜋̃𝑗

)

+
∑

𝑗>𝑖

(𝑤𝑗𝑖

𝜋𝑖 + 𝜋𝑗

) . (5)

Once the strength 𝜋𝑖 of each item 𝑖 is determined from Eq. (5), the
vector 𝝅 is used to generate a global ranking. The strength parameters
can become ill-defined if an item never wins or never loses in the
pairwise comparisons. For example, consider items 1, 2, and 3 with
the following pairing results: 1 wins against 2, 1 wins against 3, 2 wins
against 3; in this case the algorithm leads to 𝜋1 diverging to infinity at a
faster rate than 𝜋2, while 𝜋3 converges to 0. These scenarios, however,
become rarer as the number of items increases.

In our portfolio-selection context, each agent 𝓁 evaluates 𝑛 projects
and performs comparisons for all distinct project pairs 𝑖, 𝑗 with 𝑖, 𝑗 ∈

Y. Ge et al. Journal of Computational Science 92 (2025) 102728
{1,… , 𝑛} and 𝑖 ≠ 𝑗. Agents do not know the exact value of the projects
they are comparing and can only estimate these values. This uncer-
tainty will propagate to the win number, rendering it a probability. In
the next section, we describe how the ‘‘win probability’’ 𝑤𝓁

𝑖𝑗 that project
𝑖 is better than project 𝑗 according to agent 𝓁 is specifically constructed.
In Section 4, the win probabilities 𝑤𝓁

𝑖𝑗 are aggregated over all agents,
and a collective win probability 𝑤′

𝑖𝑗 is derived. The set of all 𝑤′
𝑖𝑗 are

then used in conjunction with the Bradley–Terry model to assign latent
strengths to all projects. To do this, we will use the improved Newman’s
method by setting 𝑤𝑖𝑗 = 𝑤′

𝑖𝑗 in the iterative scheme in Eq. (5).

3. Agent evaluations and win probabilities

In this section, we discuss how agents evaluate the 𝑛 available
projects and perform pairwise comparisons. Building on past work, we
assume that the long-term values of the projects exist and are fixed,
but cannot be precisely determined, leading to noisy evaluations [1,2].
Mathematically, each project 𝑖 ∈ {1,… , 𝑛} is characterized by two
parameters: its type 𝑡𝑖 ∈ [𝑡min, 𝑡max] and value 𝑣𝑖 ∈ R+. The value
𝑣𝑖 defines the true (but unknown) benefit of project 𝑖 over a specific
time horizon, if chosen. This ‘‘ground truth’’ value may evolve or
fluctuate over time due to societal shifts, environmental conditions, or
complex interactions with other projects 𝑗 ≠ 𝑖. We do not consider
these external sources of uncertainty in 𝑣𝑖 and restrict ourselves to each
agent’s uncertainty in the estimation of 𝑣𝑖 at the time of evaluation. This
leads to subjective evaluations 𝑣𝑖𝓁 (also referred to as perceived values)
of project 𝑖 from each agent 𝓁 ∈ {1,… , 𝑁}. To construct 𝑣𝑖𝓁 , we first
assume that each agent 𝓁 involved in the decision-making process has
a level of expertise 𝑒𝓁 ∈ [𝑒min, 𝑒max] given by

𝑒𝓁 = 𝑒M − 𝑁 + 1 − 2𝓁
𝑁 − 1

𝛽. (6)

According to Eq. (6) the 𝑒𝓁 values are evenly spaced across the interval
[𝑒min, 𝑒max] ∶= [𝑒M − 𝛽, 𝑒M + 𝛽]. Here, 𝑒M represents the mean expertise
level and 𝛽 denotes the knowledge breadth that determines the exper-
tise spread. For mathematical convenience, we set 𝑒M = (𝑡min + 𝑡max)∕2
so that the mean expertise coincides with the mean project type. The
expertise level distribution in Eq. (6) aligns with typical Hotelling-
type models, where preferences are represented as distances along a
line [49,50]. The values 𝑡𝑖 and 𝑒𝓁 do not have any specific meaning;
they are simply labels used to differentiate between various types and
expertise levels. However, the alignment between 𝑡𝑖 and 𝑒𝓁 affects the
accuracy of agent 𝓁’s evaluation of project 𝑖’s value, 𝑣𝑖𝓁 . Specifically,
we assume that the noise 𝜂𝑖𝓁 = 𝑣𝑖𝓁 − 𝑣𝑖 follows a normal distribution
centered at the origin with standard deviation 𝜎𝑖𝓁 = |𝑡𝑖 − 𝑒𝓁|. That
is, 𝜂𝑖𝓁 ∼  (0, 𝜎2𝑖𝓁), meaning that the closer the agent’s expertise is to
the project type, the lower the uncertainty. Each project is evaluated
by 𝑁 agents and their individual preferences are aggregated into a
‘‘collective’’ estimate. Since we assume resources are limited, we further
impose that only a fixed number 𝑛∗ ≤ 𝑛 of projects can be included in
the final portfolio. The collective estimate of each project determines
whether or not it is part of the final selection.

We now allow agent 𝓁 to perform pairwise comparisons between
projects 𝑖 and 𝑗, with estimates 𝑣𝑖𝓁 and 𝑣𝑗𝓁 , and uncertainties 𝜂𝑖𝓁 and
𝜂𝑗𝓁 , respectively. The agent assigns a personal ‘‘win probability’’
𝑤𝓁

𝑖𝑗 ∶= Pr
(

𝑣𝑖 > 𝑣𝑗
)

= Pr
(

(𝑣𝑖𝓁 − 𝜂𝑖𝓁) > (𝑣𝑗𝓁 − 𝜂𝑗𝓁)
)

= Pr
(

(𝜂𝑖𝓁 − 𝜂𝑗𝓁) < (𝑣𝑖𝓁 − 𝑣𝑗𝓁)
)

(7)

that project 𝑖 is better than project 𝑗 based on their evaluations 𝑣𝑖𝓁 , 𝑣𝑗𝓁 .
The win probabilities 𝑤𝓁

𝑖𝑗 are later aggregated into a collective proba-
bility 𝑤′

𝑖𝑗 that will be used to determine the relative strength of projects
via Eq. (5). In this formulation, 𝑤𝓁

𝑖𝑗 is no longer a count of the number of
times 𝑖 wins over 𝑗 as in Section 2, but the likelihood agent 𝓁 places on 𝑖
winning over 𝑗 given his or her evaluations and uncertainties. Similarly,
𝑤′

𝑖𝑗 is the likelihood that collectively project 𝑖 is deemed superior to
project 𝑗. Under the assumption that the noise in the perceived value
3
Table 1
Main model parameters. Unless otherwise stated, all parameters are real-
valued.
 Symbol Description
 𝑁 ∈ Z+ Number of agents
 𝑛 ∈ Z+ Number of projects (or items)
 𝑛∗ ∈ Z+, 𝑛∗ ≤ 𝑛 Budget constraint
 𝑖, 𝑗 ∈ {1,… , 𝑛} Project label
 𝓁 ∈ {1,… , 𝑁} Agent label
 𝑣𝑖 ∈ R+ Value of project 𝑖
 𝑡𝑖 ∈ [𝑡min , 𝑡max] Type of project 𝑖
 𝑒𝓁 ∈ [𝑒min , 𝑒max] Expertise of agent 𝓁
 𝛽 ≥ 0 Knowledge breadth of agents
 𝑒M Mean expertise level; 𝑒M = (𝑡min + 𝑡max)∕2
 𝑣𝑖𝓁 Value of project 𝑖, evaluated by agent 𝓁
 𝜂𝑖𝓁 = 𝑣𝑖𝓁 − 𝑣𝑖 Noise of value of project 𝑖, associated with agent 𝓁
 𝜎𝑖𝓁 > 0 Uncertainty in value of project 𝑖, associated with agent 𝓁
 𝑣′𝑖 Aggregate value of project 𝑖 over all 𝑁 agents
 𝑤𝓁

𝑖𝑗 ∈ (0, 1) Win probability of project 𝑖 over project 𝑗 from agent 𝓁
 𝑊 𝓁 ∈ (0, 1)𝑛×𝑛 Matrix of all win probabilities 𝑤𝓁

𝑖𝑗 from agent 𝓁
 𝑤′

𝑖𝑗 ∈ (0, 1) Aggregated probability of project 𝑖 winning over project 𝑗
 𝑊 ′ ∈ (0, 1)𝑛×𝑛 Matrix of all aggregated win probabilities 𝑤′

𝑖𝑗

is independently and normally distributed, the difference 𝜂𝑖𝓁 − 𝜂𝑗𝓁
follows a normal distribution, with mean zero and standard deviation
√

𝜎2𝑖𝓁 + 𝜎2𝑗𝓁 . We thus rewrite Eq. (7) as

𝑤𝓁
𝑖𝑗 = 𝛷

⎛

⎜

⎜

⎜

⎝

𝑣𝑖𝓁 − 𝑣𝑗𝓁
√

𝜎2𝑖𝓁 + 𝜎2𝑗𝓁

⎞

⎟

⎟

⎟

⎠

, (8)

where 𝛷 is the cumulative distribution function of the standard normal
distribution. Eq. (8) quantifies the probability that agent 𝓁 deems
project 𝑖 to be better than project 𝑗. When the evaluation uncertainty
vanishes, 𝜎𝑖𝓁 , 𝜎𝑗𝓁 → 0, 𝑤𝓁

𝑖𝑗 is 1 for 𝑣𝑖𝓁 > 𝑣𝑗𝓁 and zero otherwise,
representing an indicator function for project 𝑖 winning. An immediate
consequence of Eq. (8) is that 𝑤𝓁

𝑖𝑗 = 1 −𝑤𝓁
𝑗𝑖.

Table 1 summarizes model variables and parameters used through-
out this work. In the following section, we introduce six aggregation
methods that, starting from the heterogeneous evaluations provided by
the 𝑁 agents, determine the 𝑛∗ ≤ 𝑛 projects to be included in the final
portfolio. Two of these aggregation methods are standard and are based
on the direct value estimates 𝑣𝑖𝓁 ; the other four are contributions from
this study and employ the win probabilities 𝑤𝓁

𝑖𝑗 in Eq. (8). We will show
that our proposed aggregation methods, which use win probabilities,
typically outperform those based on value estimates.

4. Aggregation methods and portfolio selection

Once the individual inputs (projects evaluations 𝑣𝑖𝓁 , or win prob-
abilities 𝑤𝓁

𝑖𝑗) are known, the challenge is to aggregate them into a
collective output from which the 𝑛∗ ≤ 𝑛 most desirable projects can be
selected. The optimal aggregation of inputs is a well-studied topic in
voting, social choice, and organizational decision-making, with various
methods having been proposed. These include equal weighting, delega-
tion to experts, majority rule and subgroup biasing [1,2,13]. Additional
considerations such as the presence of hierarchies [51], guaranteeing
system legitimacy and fairness [52,53], avoiding polarization [54] or
budget constraints [15], may also influence the choice of aggregation
method. Fig. 1 presents a schematic of the complete portfolio selection
model we use in this work.

We proceed by illustrating the six aggregation methods used in
this work. Of these six, the first two are existing ones based on direct
evaluations or scores, the other four are novel to this study and use
pairwise comparisons based on the Quicksort algorithm on the Bradley–
Terry model by incorporating the win probabilities in Eq. (8). This
allows to bypass using the direct project evaluations 𝑣𝑖𝓁 . Of the four
novel methods, two rely on pairwise comparisons between all project

Y. Ge et al. Journal of Computational Science 92 (2025) 102728
Fig. 1. Flowchart of the collective portfolio selection process. A set of 𝑛 projects are proposed and evaluated by 𝑁 agents. Aggregated evaluations, scores, or
win probabilities are computed, and the top 𝑛∗ ≤ 𝑛 projects are selected based on these aggregated outcomes.
pairs, while the other two use comparisons restricted to a subset of
projects.

4.1. Aggregation through direct evaluations or scores

(a) Arithmetic mean. This method uses the project estimates 𝑣𝑖𝓁 from
all 𝑁 agents and averages them to obtain the aggregated value

𝑣′𝑖 =
1
𝑁

𝑁
∑

𝓁=1
𝑣𝑖𝓁 . (9)

The 𝑛∗ projects with largest aggregate values 𝑣′𝑖 are then selected. The
Arithmetic Mean is the most natural aggregation method, in which all
inputs are equally weighted. However, the direct value estimates 𝑣𝑖𝓁
may be difficult to ascertain in practice, and outliers can easily bias
the mean. Ranking-based methods, for example using the Borda count,
may be more robust to outliers [2].
(b) Borda count. The Borda Count, introduced in the late 18th century,
is a rank-based aggregation method in which each agent 𝓁 ranks the
𝑛 projects in descending order according to their estimated values
𝑣𝑖𝓁 [14]. For each project 𝑖, we denote its position in agent 𝓁’s pref-
erence list by pos𝓁(𝑖). The aggregated score 𝑠𝑖 for project 𝑖 is then
calculated as the sum of the reversed ranks across all 𝑁 agents. That
is,

𝑠𝑖 =
𝑁
∑

𝓁=1

(

𝑛 − pos𝓁(𝑖)
)

. (10)

The 𝑛∗ projects with the highest aggregated scores are selected for
inclusion in the collective portfolio. This method is particularly robust
against mis-classification and often outperforms the Arithmetic Mean,
especially in conditions of high uncertainty [2].

4.2. Aggregation through pairwise comparisons

(c) Quicksort. Quicksort is a widely used sorting algorithm that uses a
divide-and-conquer approach to sort items [16]. Its average-case time
complexity is (𝑛 log(𝑛)), making it one of the most efficient sorting
algorithms [55]. Our adaptation of Quicksort for project selection is
presented in Algorithm 1. Quicksort selects a ‘‘pivot’’ project from the
middle of the list of available projects and partitions the remaining
ones into two sublists: one containing projects ranked worse than the
pivot, and the other containing projects ranked better than or equal to
the pivot. This partitioning process is recursively applied to each sub-
list. In our approach, we calculate the aggregated win probability 𝑤′

𝑖𝑗
associated with projects 𝑖 and 𝑗 as

𝑤′
𝑖𝑗 =

1
𝑁

𝑁
∑

𝓁=1
𝑤𝓁

𝑖𝑗 , (11)

where 𝑤𝓁
𝑖𝑗 is given in Eq. (8), and consider project 𝑖 to be better than

the pivot 𝑝 if the aggregated win probability of project 𝑖 against the
pivot 𝑝 is at least 0.5, i.e. if 𝑤′

𝑖𝑝 ≥ 0.5. The Quicksort method produces
a list of ranked projects based on their aggregated win probabilities,
from which the best 𝑛∗ are selected.
4
Algorithm 1 Quicksort with aggregated win-probability matrix
Require: Aggregated win-probability matrix 𝑊 ′ of size 𝑛 × 𝑛
Ensure: Sorted index array 𝑖𝑑𝑥
1: 𝑖𝑑𝑥 ← list of integers from 0 to 𝑛 − 1
2: function Partition(𝑙𝑜𝑤, ℎ𝑖𝑔ℎ)
3: 𝑖 ← 𝑙𝑜𝑤 − 1
4: for 𝑗 ← 𝑙𝑜𝑤 to ℎ𝑖𝑔ℎ − 1 do
5: if 𝑊 ′[𝑖𝑑𝑥[𝑗], 𝑖𝑑𝑥[ℎ𝑖𝑔ℎ]] < 0.5 then
6: 𝑖 ← 𝑖 + 1
7: Swap(𝑖𝑑𝑥[𝑖], 𝑖𝑑𝑥[𝑗])
8: end if
9: end for
10: Swap(𝑖𝑑𝑥[𝑖 + 1], 𝑖𝑑𝑥[ℎ𝑖𝑔ℎ])
11: return 𝑖 + 1
12: end function
13: function QuickSortRecursive(𝑙𝑜𝑤, ℎ𝑖𝑔ℎ)
14: if 𝑙𝑜𝑤 < ℎ𝑖𝑔ℎ then
15: 𝑝𝑖 ← Partition(𝑙𝑜𝑤, ℎ𝑖𝑔ℎ)
16: QuickSortRecursive(𝑙𝑜𝑤, 𝑝𝑖 − 1)
17: QuickSortRecursive(𝑝𝑖 + 1, ℎ𝑖𝑔ℎ)
18: end if
19: end function
20: QuickSortRecursive(0, 𝑛 − 1)
21: return 𝑖𝑑𝑥

(d) Bradley–Terry method. Here, we build on the Bradley–Terry model
described in Section 2 to aggregate the agent win probabilities 𝑤𝓁

𝑖𝑗 and
to select the 𝑛∗ projects to be included in the collective portfolio. The
algorithm is as follows

• For each agent, the internal win probabilities 𝑤𝓁
𝑖𝑗 are used to

construct a win-probability matrix 𝑊 𝓁 ∈ (0, 1)𝑛×𝑛. Since there are
𝑁 agents, there will also be 𝑁 matrices 𝑊 𝓁 .

• The aggregated win probabilities 𝑤′
𝑖𝑗 are computed from Eq. (11)

and 𝑊 𝓁 . The aggregated values are used to construct the corre-
sponding win-probability matrix 𝑊 ′ ∈ (0, 1)𝑛×𝑛. Win-probability
aggregation methods in alternative to Eq. (11) may also be used.

• Newman’s iteration is used to determine the relative strength of
each project based on 𝑊 ′ and Eq. (5).

• Projects are selected in descending order of relative strength until
the desired number of projects 𝑛∗ is reached. These are the ones
that will be included in the collective portfolio.

4.3. Aggregation through sampled pairwise comparisons

Since it may not be feasible for agents to perform pairwise com-
parisons across all project pairs, the final two aggregation approaches
we propose include modified versions of Quicksort and of the Bradley–
Terry Method that utilize only a subset of comparisons. Limiting the
number of win probabilities 𝑤𝓁

𝑖𝑗 used is a cost-effective strategy, as
each additional comparison requires resources. However, as we show

Y. Ge et al. Journal of Computational Science 92 (2025) 102728
Fig. 2. Comparison of three projects 𝑝1, 𝑝2, and 𝑝3 by a single agent. Each node
represents a project and each directed edge represents a pairwise comparison
between projects. Once 𝑤1

𝑖𝑗 has been determined, its complement 𝑤1
𝑗𝑖 is given

by 𝑤1
𝑗𝑖 = 1 −𝑤1

𝑖𝑗 .

in Section 7, choosing a good sampling protocol can also significantly
enhance performance.

When using only a subset of pairwise comparisons, different sam-
plings can influence the resulting rankings. For example, consider a
single agent evaluating three projects 𝑝1, 𝑝2, 𝑝3 with value estimates
𝑣11 = 1, 𝑣21 = 3.5, and 𝑣31 = 4 with uncertainties 𝜎11 = 3, 𝜎21 = 0.1, and
𝜎31 = 3, respectively. Fig. 2 shows all pairwise comparisons by agent
1. Comparing project 𝑝1 with project 𝑝2 results in a win probability
𝑤1

12 = 0.2024, while comparing project 𝑝2 with project 𝑝3 yields 𝑤1
23 =

0.4338. This sequence leads to the ranking: 𝑝3 ≻ 𝑝2 ≻ 𝑝1, where 𝑥 ≻ 𝑦
indicates that 𝑥 is strictly preferred over 𝑦. However, if we compare
project 𝑝1 with projects 𝑝2 and 𝑝3, the win probabilities 𝑤1

12 = 0.2024
and 𝑤1

13 = 0.2397 produce a different ranking: 𝑝2 ≻ 𝑝3 ≻ 𝑝1.
Although the ordering may depend on the specific subsample of

comparisons, we explore an (𝑛) cyclic-graph sampling method, similar
to what has been done in subgraph matching [56]. Our technique
avoids performing all (𝑛2) comparisons and can be visualized as
extracting a subgraph from the complete graph generated by 𝑛 projects.
Given an ordered list of all 𝑝𝑖 projects such as (𝑝1, 𝑝2,… , 𝑝𝑛), cyclic-
graph sampling defines a structured subset of pairwise comparisons

((𝑝1, 𝑝2), (𝑝2, 𝑝3),… , (𝑝𝑛−1, 𝑝𝑛), (𝑝𝑛, 𝑝1)), (12)

where the parentheses contain pairs of projects to be compared. Out-
comes depend on the initial (𝑝1, 𝑝2,… , 𝑝𝑛) ordering.

We now describe two additional aggregation methods that use
cyclic graph sampling and a two-stage approach. In the first stage, an
approximated project ranking is obtained through random sampling
or by applying existing ranking algorithms. This preliminary ranking
then serves as input to the second stage, where cyclic-graph sampling
is used to refine the ranking via an optimization procedure based on
the Bradley–Terry model. Specifically these methods are:

(e) Two-stage Bradley–Terry method.

• First stage: Generate an initial ranking where projects 𝑝𝑖 (𝑖 ∈
{1,… , 𝑛}) are selected uniformly at random without replacement
from the 𝑛 available ones. Construct a cyclic-graph sampling of
the randomly ordered list as shown in Eq. (12), and for each
of the 𝑛 pairs calculate 𝑤′

𝑖𝑗 via Eq. (11). Then apply Newman’s
iteration given in Eq. (5) using the win probabilities 𝑤′

𝑖𝑗 to obtain
an approximate ranking.

• Second Stage: Starting from the approximate ranking, compute
the corresponding win probabilities 𝑤′

𝑖𝑗 using the cyclic-graph
sampling in Eq. (12). To further refine the ranking, apply New-
man’s iteration again, using the win probabilities obtained in the
first stage. Set win probabilities that are not calculated in either
stage to 0.
5
(f) Two-stage Quicksort.
• First Stage: Instead of relying on randomly selected pairwise
comparisons, apply the Quicksort algorithm to the matrix of
aggregated win probabilities 𝑊 ′ with elements 𝑤′

𝑖𝑗 as shown in
Eq. (11) to generate an initial ranking. Sample only the nec-
essary entries of the aggregated win-probability matrix 𝑊 ′ to
keep a (𝑛 log(𝑛)) complexity. Since the underlying estimates are
noisy observations, this Quicksort-derived ranking may deviate
from the true ranking that would be obtained in the absence of
uncertainty.

• Second Stage: Starting from the Quicksort ranking, compute the
corresponding win probabilities 𝑤′

𝑖𝑗 using the cyclic-graph sam-
pling in Eq. (12). Then apply Newman’s iteration given in Eq. (5)
for a refined ranking. Unlike in the Two-Stage Bradley–Terry
method discussed in (e), only consider win probabilities associ-
ated with the cyclic graph structure and not those obtained in
the first stage.

5. Values, scores, or win probabilities?

We now discuss some of the advantages and limitations of the six
aggregation methods and the quantities they rely on (i.e., values, scores,
and win probabilities). When outliers are present, aggregating win
probabilities using Eq. (11) may be preferable to using the arithmetic
mean in Eq. (9). To illustrate this, consider three agents evaluating
Project 1 and Project 2. The first agent holds a highly favorable view of
Project 1, while the other two agents assign lower value estimates to it.
If the first agent’s evaluation is an outlier – say if 𝑣11 approaches infinity
– its influence on the aggregated outcome differs substantially between
the two methods. Under the Arithmetic Mean, the aggregated value for
Project 1, 𝑣′1, is highly skewed by the outlier and may approach infinity
as well. This disproportionate influence from a single agent distorts the
collective assessment of Project 1’s value. Win probabilities mitigate the
impact of outliers, since they are bounded quantities. Let us assume that
the extreme value from the first agent translates into a win probability
of 𝑤1

12 = 0.98, indicating a strong preference. If the other two agents
provide negative assessments of Project 1 with respect to Project 2,
such as 𝑤2

12 = 𝑤3
12 = 0.2, the aggregated win probability, calculated

using Eq. (11), results in 𝑤′
12 = 0.46. This result is more closely aligned

with the agents’ evaluations compared to the outcome produced by the
arithmetic mean.

Using win probabilities also offers an advantage over the Borda
Count, as it more precisely captures individual preferences through
real-valued probabilities. Consider two agents evaluating Project 1 and
Project 2. The first agent strongly prefers Project 1 over Project 2
(𝑤1

12 = 0.8), while the second agent only slightly favors Project 2 over
Project 1 (𝑤2

12 = 0.46). The aggregated win probability, 𝑤′
12 = 0.63,

indicates that Project 1 is the preferred choice overall, reflecting the
stronger preference of the first agent. This approach takes into account
the intensity of each agent’s preference. On the other hand, if the
Borda Count is used, each project would receive a Borda score of
1, resulting in a tie. This outcome fails to differentiate between the
strong preference expressed by the first agent and the more moderate
preference of the second.

6. Comparing aggregation methods

Once the six aggregation methods (a–f) have been used to assemble
a final portfolio of 𝑛∗ ≤ 𝑛 projects, a natural question arises: which
method is the most effective in selecting the most valuable projects?
Recall that agents do not know the actual values 𝑣𝑖 of the projects
they are estimating and that their decision-making is based on project
estimates 𝑣𝑖𝓁 that can be quite different from the actual values or on
scores or win probabilities that are also subject to uncertainty. The 𝑛∗
projects that are selected for inclusion in the collective portfolio can

Y. Ge et al. Journal of Computational Science 92 (2025) 102728
thus include projects that were estimated to have high value (or that
ranked high, or that had large win probabilities) but that in practice do
not.

The effectiveness of a given aggregation method can be quantified
in different ways. A performance metric for each method can be defined
by either fixing or averaging over project types and/or fixing a set of
agents or averaging over agent expertise distributions. Here, we choose
to measure an aggregation method’s performance by the expected total
value 𝐸(𝛽;𝑁, 𝑛, 𝑛∗) of 𝑛∗ ≤ 𝑛 projects evaluated by 𝑁 agents with
knowledge breadth 𝛽. The expectation is taken over different project
types, ensuring that the 𝑁 agents (with knowledge breadth 𝛽) achieve
robust performance on average across decision-making scenarios in-
volving heterogeneous projects. The most effective aggregation method
will be the one that yields the highest performance 𝐸(𝛽;𝑁, 𝑛, 𝑛∗). In
the absence of uncertainty, 𝐸(𝛽;𝑁, 𝑛, 𝑛∗) simplifies to the total intrinsic
value of the most valuable 𝑛∗ projects for all aggregation methods. In
the presence of uncertainty, 𝐸(𝛽;𝑁, 𝑛, 𝑛∗) will depend on the chosen
aggregation method.

As an example, consider 𝑁 = 3 agents, each with a knowledge
breadth 𝛽 = 0, and 𝑛 = 3 projects, from which 𝑛∗ = 2 projects must
be selected. The project values are 𝑣1 = 1, 𝑣2 = 2, and 𝑣3 = 3.
We assume that agents perceive the true project values (i.e., 𝑣𝑖𝓁 = 𝑣𝑖
for 𝓁 ∈ {1, 2, 3}). Since there is no uncertainty, agents will all select
the two most valuable projects and the performance is calculated as
𝐸(𝛽 = 0;𝑁 = 3, 𝑛 = 3, 𝑛∗ = 2) = 𝑣2 + 𝑣3 = 5.

7. Simulation results

We now compare the performances 𝐸(𝛽;𝑁, 𝑛, 𝑛∗) across the six
aggregation methods (a–f) via numerical simulations and determine
which of them yields the highest 𝐸(𝛽;𝑁, 𝑛, 𝑛∗). Following prior work [1,
2,15], we assume project types are uniformly distributed according to
 (0, 10), so that 𝑡min = 0, 𝑡max = 10. The expertise value of the central
decision maker is set at 𝑒M = (𝑡min + 𝑡max)∕2 = 5. We consider 𝑛 = 30
projects, 𝑁 = 3 agents, and a target of 𝑛∗ = 15 projects. We define the
value of project 𝑖 as 𝑣𝑖 = 𝑖 with 𝑖 ∈ {1,… , 30}. The uncertainty in agent
𝓁’s project evaluations is quantified by additive Gaussian noise with
zero mean and standard deviation 𝜎𝑖𝓁 = |𝑡𝑖 − 𝑒𝓁|, where the expertise
level 𝑒𝓁 of agent 𝓁 is given by Eq. (6). Variations in value distribution,
type distribution, and other parameters are known to not significantly
affect the relative ordering of aggregation-rule performance [2].

All our results are based on Monte Carlo simulations. For methods
based on pairwise comparisons and win probabilities, we use 100,000
independent and identically distributed samples. For the remaining
two methods, Arithmetic Mean and Borda Count, which are compu-
tationally less demanding, we increase the sample size to 500,000. The
theoretical maximum performance is ∑30

𝑖=16 𝑣𝑖 =
∑30

𝑖=16 𝑖 = 345.
We consider two scenarios for computing the win probabilities

𝑤′
𝑖𝑗 . In the first scenario, the probabilities are calculated according

to Eqs. (8) and (11). However, in real-world applications of aggrega-
tion methods based on pairwise comparisons and win probabilities,
assigning probabilities with several decimal places may be imprac-
tical. Therefore, in the second scenario, we prespecify a set of win
probabilities from which agents can choose when making pairwise
comparisons.

7.1. Continuous win probabilities

In Fig. 3, we plot the performance 𝐸(𝛽) ≡ 𝐸(𝛽;𝑁 = 3, 𝑛 =
30, 𝑛∗ = 15) for the six aggregation methods (a–f) as a function of
knowledge breadth 𝛽. Both the Arithmetic Mean and the Borda Count
methods are known to be effective in identifying high-value projects
within a portfolio [2]. In particular, the Borda Count is more robust
to evaluation outliers than the Arithmetic Mean and performs better
across a wide range of parameters. This is observed in Fig. 3, which also
6
Fig. 3. Portfolio selection using continuous values of win probabilities. In this
example, 𝑛∗ = 15 projects are to be selected out of 𝑛 = 30 projects by 𝑁 = 3
agents. We show the performance 𝐸(𝛽) ≡ 𝐸(𝛽;𝑁, 𝑛, 𝑛∗) as a function of the
knowledge breadth 𝛽 for the six aggregation methods (a–f). The Quicksort (c)
and Bradley–Terry (d) approaches proposed in this work perform favorably
compared to the existing Arithmetic Mean (a) and Borda Count (b) methods,
especially for larger knowledge breadth values 𝛽 ⪆ 5.5, which are associated
with larger uncertainties.

shows that Quicksort (c), Two-Stage Quicksort (f), and the Bradley–
Terry method using all pairwise comparisons (d), outperform both the
Arithmetic Mean (a) and Borda Count (b) methods, particularly for
higher 𝛽. The Two-Stage Bradley–Terry method (e) performs worse
than both the Arithmetic Mean (a) and Borda Count (b) for knowledge
breadths 𝛽 ⪅ 5.5.

Since the above findings are based on aggregating the evaluations
of only 𝑁 = 3 agents we also conducted simulations for 𝑁 = 15 and
𝑁 = 30 agents to verify how absolute and relative performances would
change upon increasing 𝑁 . We found that the absolute performance
of all six methods increases with 𝑁 , while their relative performance
remains similar. Thus, at least for modest 𝑁 , Quicksort (c), Two-Stage
Quicksort (f), and the Bradley–Terry method using all pairwise compar-
isons (d) emerge as high performing aggregation methods independent
of the number of agents 𝑁 . Additionally, the performance gap between
the three methods above and the Two-Stage Bradley–Terry method
widens with 𝑁 . This is because compared to other methods, the Two-
Stage Bradley–Terry method uses a sampling protocol that leaves more
entries in the aggregated win probability matrix 𝑊 ′ empty.

7.2. Discrete win probabilities

In practical applications of the Bradley–Terry method, it may be
necessary to prespecify a set of win probabilities 𝑤𝓁

𝑖𝑗 from which
agents can choose. Limiting probability values to a finite, manage-
able set, may be helpful in decision-making scenarios where high
precision is not feasible. In Fig. 4, we show a comparison of the
aggregation methods (a–f) where the win probabilities for methods (c–
f) are restricted to values taken from a set of 11 possibilities given
by {0.01, 0.1, 0.2,… , 0.8, 0.9, 0.99}. The relative performance ranking of
the methods remains unchanged. However, the performance values
of Quicksort and Two-Stage Quicksort exhibit a greater difference
compared to the continuous case shown in Fig. 3. Recall that the
Two-Stage Quicksort method employs a refinement stage in which
the final ranking is computed according to Newman’s iteration given
in Eq. (5). While this second stage had little impact on performance
in the continuous case, it substantially affects results when using the
prespecified win probabilities listed above. This is consistent with the
observation that Newman’s iteration (or similar iterative methods used
in the Bradley–Terry method) performs well even when rankings are
derived from a limited set of tournament outcomes.

Y. Ge et al. Journal of Computational Science 92 (2025) 102728
Fig. 4. Portfolio selection using discrete values of win probabilities. We show
the performance 𝐸(𝛽) ≡ 𝐸(𝛽;𝑁, 𝑛, 𝑛∗) as a function of the knowledge breadth
𝛽 for the six aggregation methods (a–f) using the same parameters as in Fig.
3. Here, agents that select projects using win-probability-based approaches,
Quicksort (c), Two-Stage Quicksort (f), Bradley–Terry (d), and Two-Stage
Bradley–Terry (e), are limited to selecting win probabilities from a discrete
set of 11 values: {0.01, 0.1, 0.2,… , 0.8, 0.9, 0.99}. The Arithmetic Mean (a) and
Borda Count (b) curves are the same as those in Fig. 3 and are included
for reference. The relative ranking of the six methods remains unchanged
compared to Fig. 3 in which continuous win probabilities are used. However,
the difference in performance between Quicksort (c) and Two-Stage Quicksort
(f) is more pronounced than in Fig. 3.

7.3. Efficiency and scalability

We now estimate the computational cost of each aggregation
method. Aggregating inputs via the Arithmetic Mean does not involve
any pairwise comparisons. However, a single sorting step is still nec-
essary after aggregation to determine which of the 𝑛∗ ≤ 𝑛 projects
should be included in the final portfolio; if this is done via the standard
Quicksort algorithm, the number of necessary comparisons scales as
(𝑛 log(𝑛)). If projects are instead aggregated via the Borda Count, each
of the 𝑁 agents must rank their own scores. This requires (𝑛 log(𝑛))
comparisons per agent to produce a ranking if the standard Quicksort
algorithm is similarly used. For the other four methods that are based
on win probabilities, the average number of pairwise comparisons are:

• Bradley–Terry (c) (all pairwise comparisons): (𝑛2)
• Quicksort (d) (without a second refinement stage): (𝑛 log(𝑛))
• Two-Stage Bradley–Terry (e): (𝑛)
• Two-Stage Quicksort (f): (𝑛 log(𝑛))

In Fig. 5, we show the number of pairwise comparisons for the four
methods above using discrete win probabilities. Since the number of
pairwise comparisons depends on 𝑛 and not on the set of possible win
probability values, similar trends are observed for continuous win prob-
abilities. The Bradley–Terry method (c) utilizes all 30(30 − 1)∕2 = 435
possible comparisons regardless of 𝛽. Similarly, the Two-Stage Bradley–
Terry method (e) involves approximately 58 comparisons regardless of
the value of 𝛽. For aggregation methods that utilize Quicksort instead
a 𝛽 dependence emerges: Quicksort (d) (without a second refinement
stage), requires a number of pairwise comparisons that decreases from
265 for 𝛽 = 0 to 193 for 𝛽 = 10. The Two-Stage Quicksort (f) method
results in slightly more comparisons, with 266 for 𝛽 = 0 and 194 for
𝛽 = 10.

The observed decrease in the number of pairwise comparisons
results from the interplay between noise in the estimates and the divide-
and-conquer nature of Quicksort. The algorithm compares elements
against a pivot to split the dataset into two parts. The fastest completion
of the algorithm is when the two parts contain an equal number of
7
Fig. 5. Number of pairwise project comparisons across aggregation methods
(c–f) for knowledge breadths 𝛽 ∈ {0, 5, 10} used to determine the performance
𝐸(𝛽) in Fig. 4 using discrete win probabilities. Estimates of the average number
of pairwise comparisons for 𝑛 are provided in Section 7.3. Although the
Bradley–Terry (d), Quicksort (c), and Two-Stage Quicksort (f) methods achieve
higher performance, the Two-Stage Bradley–Terry (e) method requires the
least number of comparisons, making it the most practical choice for actual
implementations.

projects, while the slowest is when one part contains all projects aside
from the pivot, and the other contains none. As the noise in project
values increases with 𝛽, it becomes less likely that highly imbalanced
sublists arise during Quicksort recursions. While larger knowledge
breadth allows Quicksort to be more efficient by requiring fewer num-
ber of pairwise comparisons, its overall performance decreases with 𝛽,
but is still higher than or equal to other methods.

Although the Bradley–Terry, Quicksort, and Two-Stage Quicksort
methods exhibit the highest performance in our simulations, the num-
ber of pairwise comparisons they require is likely too high for practical
applications. In contrast, the Two-Stage Bradley–Terry method achieves
favorable performance with significantly fewer comparisons, making
it the most practical approach for real-world use. Further refinements
could include identifying alternative sampling methods analogous to
our cyclic graph approach that maintain strong performance while
reducing the number of pairwise comparisons. Finding ways to spar-
sify the aggregate win probability matrix 𝑊 ′ could also improve the
applicability of our methods.

8. Conclusions

In this work, we compared six aggregation methods (a–f) for se-
lecting project portfolios under uncertainty, including four novel ones
based on pairwise comparisons (c–f). Agents evaluate projects with-
out knowing their long-term value; the accuracy of these evaluations
depends on how well agent expertise matches project types, with
misalignment favoring large errors. How to arrive at a decision? Typ-
ically, direct estimations are collectively aggregated. However, when
estimates are difficult to obtain or when expertise mismatches lead to
outliers, Borda-type methods that rely on rankings offer a more robust
alternative. Yet, generating full rankings can be cognitively demanding,
especially when the number of projects is large.

To improve upon existing methods, we established a connection
between portfolio selection, the Quicksort algorithm, and the Bradley–
Terry model where project rankings are inferred from agent-specific
win probabilities in pairwise comparisons. Based on this, we pro-
posed four new aggregation methods. The first extends Quicksort to
rank projects using aggregated win probabilities with a computational
complexity of (𝑛 log(𝑛)); the second uses Newman’s method with a
complexity of (𝑛2). To further lower the number of required com-
parisons, we incorporated a cyclic-graph sampling technique to both
approaches, yielding two other aggregation methods of computational

Y. Ge et al.

Journal of Computational Science 92 (2025) 102728
complexity (𝑛) (Two-Stage Bradley–Terry) and (𝑛 log(𝑛)) (Two-Stage
Quicksort).

Our methods are relevant to participatory budgeting, social choice,
organizational decision-making, and other resource allocation problems
that involve decision-making under uncertainty. Our sampling and
ranking methods can also be applied to rank foundation models such
as LLMs.

Note that our analysis assumed uniform project costs, distributions
over a single type variable, and a single set of project values. These sim-
plifying assumptions can be relaxed to explore heterogeneous project
costs and varying type and value distributions, providing a more realis-
tic setting and additional insight into the determinants of performance
in pairwise aggregation methods. Depending on context, it may also
be useful to incorporate delegation strategies, querying only agents
with relevant expertise, or to use alternative aggregation methods, such
as the median instead of the mean. Exploring how agent interactions
influence evaluations, for instance via social influence network models,
could also offer valuable insights [57–59].

CRediT authorship contribution statement

Yurun Ge: Writing – original draft, Visualization, Methodology, In-
vestigation, Formal analysis, Conceptualization. Lucas Böttcher: Writ-
ing – review & editing, Writing – original draft, Visualization, Supervi-
sion, Methodology, Investigation, Formal analysis, Conceptualization.
Tom Chou: Writing – review & editing, Visualization, Investigation.
Maria R. D’Orsogna: Writing – review & editing, Writing – original
draft, Visualization, Supervision, Investigation, Funding acquisition,
Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Maria D’Orsogna reports financial support was provided by Army Re-
search Office. Maria D’Orsogna reports equipment, drugs, or supplies
was provided by National Science Foundation. If there are other au-
thors, they declare that they have no known competing financial inter-
ests or personal relationships that could have appeared to influence the
work reported in this paper.

Acknowledgments

The authors thank Ronald Klingebiel for helpful discussions. This
work was supported by the Army Research Office, United States through
W911NF-23-1-0129 (YG, LB, MRD) and by the National Science Foun-
dation, United States through grant MRI-2320846 (MRD). LB also
acknowledges funding from hessian.AI.

Data availability

No data was used for the research described in the article.

References

[1] F.A. Csaszar, J. Eggers, Organizational decision making: An information
aggregation view, Manag. Sci. 59 (10) (2013) 2257–2277.

[2] L. Böttcher, R. Klingebiel, Organizational selection of innovation, Organ. Sci. 36
(2025) 387–410.

[3] B. Wampler, A guide to participatory budgeting, in: A. Shah (Ed.), Participatory
Budgeting, The World Bank, Washington, DC, 2007, pp. 21–54.

[4] H. Aziz, N. Shah, Participatory budgeting: Models and approaches, in: T.
Rudas, G. Péli (Eds.), Pathways Between Social Science and Computational
Social Science: Theories, Methods, and Interpretations, Springer International
Publishing, Cham, Switzerland, 2021, pp. 215–236.

[5] G. Benade, S. Nath, A.D. Procaccia, N. Shah, Preference elicitation for
participatory budgeting, Manag. Sci. 67 (2021) 2813–2827.
8
[6] D. Helbing, S. Mahajan, R.H. Fricker, A. Musso, C.I. Hausladen, C. Carissimo, D.
Carpentras, E. Stockinger, J.A. Sanchez-Vaquerizo, J.C. Yang, et al., Democracy
by design: Perspectives for digitally assisted, participatory upgrades of society,
J. Comp. Sci. 71 (2023) 102061.

[7] G. Zhang, M. Hardt, Inherent trade-offs between diversity and stability in
multi-task benchmark, 2024, arXiv preprint arXiv:2405.01719.

[8] W. Chiang, L. Zheng, Y. Sheng, A.N. Angelopoulos, T. Li, D. Li, B. Zhu, H.
Zhang, M.I. Jordan, J.E. Gonzalez, I. Stoica, Chatbot arena: An open platform for
evaluating LLMs by human preference, in: Forty-First International Conference
on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024, 2024.

[9] A. Ghosh, S. Dziadzio, A. Prabhu, V. Udandarao, S. Albanie, M. Bethge,
ONEBench to test them all: Sample-level benchmarking over open-ended capabil-
ities, in: W. Che, J. Nabende, E. Shutova, M.T. Pilehvar (Eds.), Proceedings of the
63rd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Association for Computational Linguistics, Vienna, Austria, 2025,
pp. 32445–32481.

[10] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang, X. Chen,
Y. Lin, et al., A survey on large language model based autonomous agents, Front.
Comput. Sci. 18 (6) (2024) 186345.

[11] E. Elkind, P. Faliszewski, P. Skowron, A. Slinko, Properties of multiwinner voting
rules, Soc. Choice Welf. 48 (2017) 599–632.

[12] F. Brandt, V. Conitzer, U. Endriss, J. Lang, A.D. Procaccia (Eds.), Handbook of
Computational Social Choice, Cambridge University Press, Cambridge, UK, 2016.

[13] H.J. Einhorn, R.M. Hogarth, E. Klempner, Quality of group judgment, Psychol.
Bull. 84 (1) (1977) 158.

[14] J.-C. de Borda, Mémoire sur les élections au scrutin, in: Histoire de L’Académie
Royale des Sciences, 1781, pp. 657–665.

[15] Y. Ge, L. Böttcher, T. Chou, M.R. D’Orsogna, A knapsack for collective
decision-making, 2024, arXiv:2409.13236.

[16] C.A. Hoare, Quicksort, Comput. J. 5 (1962) 10–16.
[17] E. Zermelo, Die berechnung der turnier-ergebnisse als ein maximumproblem der

wahrscheinlichkeitsrechnung, Math. Z. 29 (1) (1929) 436–460.
[18] R.A. Bradley, M.E. Terry, Rank analysis of incomplete block designs: I. The

method of paired comparisons, Biom. 39 (3/4) (1952) 324–345.
[19] G.A. Miller, The magical number seven, plus or minus two: Some limits on our

capacity for processing information, Psychol. Rev. 63 (2) (1956) 81–97.
[20] W.S. Torgerson, Theory and Methods of Scaling, Wiley, New York, NY, 1958.
[21] U. Feige, P. Raghavan, D. Peleg, E. Upfal, Computing with noisy information,

SIAM J. Comp. 23 (5) (1994) 1001–1018.
[22] M. Braverman, E. Mossel, Noisy sorting without resampling, in: Proceedings of

the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2008,
San Francisco, California, USA, January 20-22, 2008, SIAM, Philadelphia, PA,
2008, pp. 268–276.

[23] M. Braverman, E. Mossel, Sorting from noisy information, 2009, arXiv preprint
arXiv:0910.1191.

[24] M. Braverman, J. Mao, S.M. Weinberg, Parallel algorithms for select and partition
with noisy comparisons, in: Proceedings of the 48th Annual ACM Symposium
on Theory of Computing, Association for Computing Machinery, New York, NY,
2016, pp. 851–862.

[25] X. Bai, C. Coester, Sorting with predictions, in: Proceedings of the 37th
International Conference on Neural Information Processing Systems, NIPS ’23,
Curran Associates Inc., Red Hook, NY, 2024, pp. 26563–26584.

[26] P. Lu, X. Ren, E. Sun, Y. Zhang, Generalized sorting with predictions, in: 4th
Symposium on Simplicity in Algorithms, SOSA, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2021, pp. 111–117.

[27] T.H. Chan, E. Sun, B. Wang, Generalized sorting with predictions revisited, in:
Frontiers of Algorithmics, in: Lecture Notes in Computer Science, vol. 13933,
Springer International Publishing, Cham, Switzerland, 2023, pp. 29–41.

[28] J. Giesen, E. Schuberth, M. Stojaković, Approximate sorting, Fund. Inform. 90
(1–2) (2009) 67–72.

[29] E.H. Forman, S.I. Gass, The analytic hierarchy process: An exposition, Oper. Res.
49 (2001) 469–486.

[30] A. Emrouznejad, W. Ho, Fuzzy Analytic Hierarchy Process, Chapman and Hall,
CRC Press, Boca Raton, FL, 2020.

[31] F. Wauthier, M. Jordan, N. Jojic, Efficient ranking from pairwise comparisons,
in: Proceedings of the 30th International Conference on Machine Learning, in:
Proceedings of Machine Learning Research, vol. 28, PMLR, Atlanta, Georgia,
2013, pp. 109–117.

[32] N. Ailon, An active learning algorithm for ranking from pairwise preferences with
an almost optimal query complexity, J. Mach. Learn. Res. 13 (2012) 137–164.

[33] J. Wainer, A Bayesian Bradley-Terry model to compare multiple ML algorithms
on multiple data sets, J. Mach. Learn. Res. 24 (341) (2023) 1–34.

[34] P.Y. We, J. Nagler, J.A. Tucker, S. Messing, Large language models can be
used to estimate the latent positions of politicians, 2023, arXiv preprint arXiv:
2303.12057v4.

[35] C. Muslimani, M.E. Taylor, Leveraging sub-optimal data for human-in-the-loop
reinforcement learning, in: Proceedings of the 23rd International Conference
on Autonomous Agents and Multiagent Systems, AAMAS ’24, International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 2024,
pp. 2399–2401.

http://refhub.elsevier.com/S1877-7503(25)00205-4/sb1
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb1
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb1
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb2
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb2
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb2
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb3
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb3
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb3
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb4
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb4
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb4
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb4
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb4
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb4
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb4
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb5
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb5
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb5
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb6
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb6
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb6
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb6
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb6
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb6
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb6
http://arxiv.org/abs/2405.01719
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb8
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb8
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb8
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb8
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb8
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb8
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb8
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb9
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb9
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb9
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb9
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb9
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb9
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb9
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb9
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb9
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb9
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb9
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb10
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb10
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb10
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb10
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb10
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb11
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb11
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb11
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb12
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb12
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb12
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb13
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb13
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb13
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb14
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb14
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb14
http://arxiv.org/abs/2409.13236
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb16
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb17
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb17
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb17
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb18
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb18
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb18
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb19
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb19
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb19
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb20
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb21
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb21
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb21
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb22
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb22
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb22
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb22
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb22
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb22
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb22
http://arxiv.org/abs/0910.1191
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb24
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb24
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb24
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb24
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb24
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb24
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb24
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb25
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb25
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb25
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb25
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb25
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb26
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb26
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb26
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb26
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb26
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb27
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb27
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb27
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb27
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb27
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb28
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb28
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb28
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb29
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb29
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb29
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb30
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb30
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb30
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb31
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb31
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb31
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb31
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb31
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb31
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb31
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb32
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb32
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb32
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb33
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb33
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb33
http://arxiv.org/abs/2303.12057v4
http://arxiv.org/abs/2303.12057v4
http://arxiv.org/abs/2303.12057v4
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb35
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb35
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb35
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb35
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb35
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb35
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb35
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb35
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb35

Y. Ge et al. Journal of Computational Science 92 (2025) 102728
[36] M. Peschl, A. Zgonnikov, F.A. Oliehoek, L.C. Siebert, MORAL: Aligning AI with
human norms through multi-objective reinforced active learning, in: Proceedings
of the 21st International Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’22, International Foundation for Autonomous Agents and
Multiagent Systems, Richland, SC, 2022, pp. 1038–1046.

[37] R. Herbrich, T.P. Minka, T. Graepel, TrueSkill™: A Bayesian Skill Rating System,
in: Advances in Neural Information Processing Systems, Vol. 19, MIT Press, 2006.

[38] T.P. Minka, R. Cleven, Y. Zaykov, TrueSkill 2: An improved Bayesian skill rating
system, 2018, URL https://api.semanticscholar.org/CorpusID:52906551.

[39] L.R. Ford, Solution of a ranking problem from binary comparisons, Am. Math.
Mon. 64 (1957) 28–33.

[40] D.R. Hunter, MM algorithms for generalized Bradley-Terry models, Ann. Stat. 32
(2004) 384–406.

[41] M. Newman, Efficient computation of rankings from pairwise comparisons, J.
Mach. Learn. Res. 24 (238) (2023) 1–25.

[42] P.V. Rao, L.L. Kupper, Ties in paired-comparison experiments: A generalization
of the Bradley–Terry model, J. Amer. Statist. Assoc. 62 (1967) 194–204.

[43] R.R. Davidson, On extending the Bradley-Terry model to accommodate ties in
paired comparison experiments, J. Amer. Statist. Assoc. 65 (1970) 317–328.

[44] R.N. Pendergrass, R.A. Bradley, Ranking in triple comparisons, in: I. Olkin,
S.G. Ghurye, W. Hoeffding, W.G. Madow, H.B. Mann (Eds.), Contributions
To Probability and Statistics: Essays in Honor of Harold Hotelling, Stanford
University Press, Palo Alto, CA, 1960, pp. 331–351.

[45] A. Agresti, Categorical Data Analysis, Wiley, New York, NY, 1990.
[46] J.I. Marden, Analyzing and Modeling Rank Data, Chapman and Hall, London,

UK, 1995.
[47] A. Liusie, V. Raina, Y. Fathullah, M. Gales, Efficient LLM comparative assessment:

A product of experts framework for pairwise comparisons, in: Proceedings of
the 2024 Conference on Empirical Methods in Natural Language Processing,
Association for Computational Linguistics, Miami, FL, 2024, pp. 6835–6855.
9
[48] R. Kress, Numerical Analysis, Vol. 181, Springer Science & Business Media,
Berlin, Germany, 2012.

[49] H. Hotelling, Stability in competition, Econ. J. 39 (153) (1929) 41–57.
[50] W. Novshek, Equilibrium in simple spatial (or differentiated product) models,

in: A. Mas-Colell (Ed.), Noncooperative Approaches To the Theory of Perfect
Competition, Academic Press, Cambridge, MA, 1982, pp. 199–212.

[51] S.E. Humphrey, J.R. Hollenbeck, C.J. Meyer, D.R. Ilgen, Hierarchical team
decision-making, Res. Pers. Hum. Resour. Manag. 21 (2002) 175–213.

[52] C.I. Hausladen, R. Hänggli Fricker, D. Helbing, R. Kunz, J. Wang, E. Pournaras,
How voting rules impact legitimacy, Humanit. Soc. Sci. Commun. 11 (1) (2024)
1–10.

[53] J.C. Yang, C.I. Hausladen, D. Peters, E. Pournaras, R. Hnggli Fricker, D. Helbing,
Designing digital voting systems for citizens: Achieving fairness and legitimacy
in participatory budgeting, Digit. Gov.: Res. Pr. 5 (3) (2024) 1–30.

[54] C. Alós-Ferrer, J. Buckenmaier, Voting for Compromises: Alternative Voting
Methods in Polarized Societies, Vol. 394, Working Paper, University of Zurich,
Department of Economics, 2021.

[55] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms,
MIT Press, Cambridge, MA, 2022.

[56] Y. Ge, D. Yang, A.L. Bertozzi, Iterative active learning strategies for subgraph
matching, Pattern Recognit. 158 (2025) 110797.

[57] A. Stomakhin, M.B. Short, A.L. Bertozzi, Reconstruction of missing data in social
networks based on temporal patterns of interactions, Inverse Problems 27 (11)
(2011) 115013.

[58] L. Böttcher, J. Nagler, H.J. Herrmann, Critical behaviors in contagion dynamics,
Phys. Rev. Lett. 118 (8) (2017) 088301.

[59] J.R. Zipkin, F.P. Schoenberg, K. Coronges, A.L. Bertozzi, Point-process models
of social network interactions: Parameter estimation and missing data recovery,
Eur. J. Appl. Math. 27 (3) (2016) 502–529.

http://refhub.elsevier.com/S1877-7503(25)00205-4/sb36
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb36
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb36
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb36
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb36
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb36
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb36
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb36
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb36
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb37
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb37
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb37
https://api.semanticscholar.org/CorpusID:52906551
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb39
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb39
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb39
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb40
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb40
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb40
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb41
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb41
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb41
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb42
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb42
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb42
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb43
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb43
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb43
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb44
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb44
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb44
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb44
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb44
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb44
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb44
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb45
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb46
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb46
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb46
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb47
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb47
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb47
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb47
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb47
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb47
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb47
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb48
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb48
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb48
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb49
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb50
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb50
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb50
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb50
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb50
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb51
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb51
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb51
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb52
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb52
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb52
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb52
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb52
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb53
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb53
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb53
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb53
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb53
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb54
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb54
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb54
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb54
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb54
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb55
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb55
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb55
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb56
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb56
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb56
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb57
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb57
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb57
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb57
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb57
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb58
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb58
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb58
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb59
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb59
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb59
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb59
http://refhub.elsevier.com/S1877-7503(25)00205-4/sb59

	Efficient portfolio selection through preference aggregation with Quicksort and the Bradley–Terry model
	Introduction
	The Bradley–Terry model
	Agent evaluations and win probabilities
	Aggregation methods and portfolio selection
	Aggregation through direct evaluations or scores
	Aggregation through pairwise comparisons
	Aggregation through sampled pairwise comparisons

	Values, scores, or win probabilities?
	Comparing aggregation methods
	Simulation results
	Continuous win probabilities
	Discrete win probabilities
	Efficiency and scalability

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

