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Allocating limited resources to a set of alternatives with uncertain long-term benefits is a common challenge
in innovation management, research funding, and participatory budgeting. Related problems arise in emerging
applications such as ranking outputs of large language models and coordinating decisions in agentic systems.
All settings include multiple agents tasked with estimating the true value of a potentially large number of
alternatives. These estimates, or quantities derived from them, are then aggregated to select a final portfolio
that maximizes overall benefit, ideally using efficient methods. Standard sorting algorithms are ill-suited as
they do not account for uncertainties associated with each agent’s estimate. Furthermore, the cognitive load
on agents can be demanding, especially if the number of alternatives to evaluate is large. Building on the
Quicksort algorithm and the Bradley-Terry model, we develop four new, efficient aggregation protocols based
on agent-assigned win probabilities of pairwise comparisons that are then globally aggregated. The pairwise
comparisons we introduce not only reduce cognitive load on agents, but lead to aggregation protocols that
outperform existing ones, which we confirm via numerical simulations. Our methods can be combined with
sampling strategies to further reduce the number of pairwise comparisons.

1. Introduction While our methods apply to a wide range of selection problems, we
focus on project portfolio selection for concreteness.

The problem of allocating limited resources to projects that provide
the greatest benefit to stakeholders arises in many decision-making con-
texts. When the long-term value of an alternative is difficult to assess,
the evaluating agents will provide a broad distribution of estimates that
must be efficiently aggregated. Common examples include members of
an organization who are tasked with selecting new innovation projects
with uncertain returns [1,2] or community stakeholders in participa-
tory budgeting [3,4] who must decide which public projects deserve

The effectiveness of various aggregation methods such as voting,
averaging, and expert delegation has been examined within social
choice theory [11,12] and organizational decision-making [1,2,13].
The above methods assume that agents use their own direct estimates
of project value. Ranked voting methods, like the Borda count [12,14],
are based on each agent’s ordered ranking of projects. While these
perform well in portfolio selection with uniform project costs [2,15],

funding [5,6]. Similar problems arise in emerging applications, such as
ranking outputs of large language models (LLMs) [7-9] and coordinat-
ing decisions in multi-agent or agentic systems [10]. In many settings,
the number of projects under consideration is large and may result
in a large cognitive load for evaluators. How can agents meaningfully
compare and rank numerous alternatives when their information is in-
complete or uncertain? Addressing this question requires methods that
both reduce individual cognitive effort and enable efficient aggregation
of preferences so that a high-value project portfolio can be selected.

the cognitive load on agents when ranking a large number of projects
can be large.

In this paper, we develop four project evaluation and aggregation
methods that involve pairwise comparisons of projects at the agent
level. Specifically, the agents, who do not know the intrinsic value
of the projects they are called to evaluate, compare pairs of projects.
These comparisons are then used in conjunction with the well-known
Quicksort algorithm [16] and the Bradley-Terry model [17,18] to
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collectively rank projects so that a high-value project portfolio can be
assembled.

We show that our proposed aggregation methods, based on pairwise
comparison rules, outperform those that utilize value estimates or
ordered rankings. Our findings are important because pairwise com-
parisons not only yield better outcomes but help reduce the cognitive
burden of directly ranking many projects and are more plausible.
According to Miller’s law [19], human short-term memory is limited
to processing about seven items at a time, making direct ranking
increasingly unrealistic as the number of projects grows. Furthermore,
pairwise comparisons are particularly useful when direct estimations
are difficult due to psychological biases [20].

Aggregation methods based on pairwise comparisons remain rel-
atively underexplored, particularly in contexts that involve uncer-
tainty [21]. Algorithms for sorting under noisy information were only
recently introduced [22,23] with some extensions enabling parallel
processing [24]. Existing strategies to handle “dirty” comparisons
often combine noisy data with a limited number of accurate, “clean”
comparisons [25,26], which can be adjusted based on noise levels [27].
In some cases, approximate rankings can be achieved with relatively
few comparisons [28]. Other works have modeled decision-making as
an analytic hierarchy process [29] that includes pairwise comparisons
and where fuzzy logic is incorporated to represent uncertainty [30].
Pairwise-comparison algorithms have also been proposed in machine
learning for efficient item ranking [31,32]. Our work contributes to
this nascent literature by developing efficient and easy-to-implement
algorithms.

Since we combine aspects of the Bradley-Terry model with portfolio
selection theory, the next two sections contain a concise overview
of each topic, highlighting the elements most relevant to our study.
In particular, in Section 2, we review the Bradley-Terry model and
the pairwise-comparison algorithm that we later use when agents
are tasked with comparing project pairs. In Section 3, we discuss
how agents evaluate projects based on their expertise and project
type, and where pairwise comparisons are performed according to the
Bradley-Terry model. Various methods for aggregating the heteroge-
neous project evaluations are discussed in Section 4, including two
existing methods that do not use pairwise comparisons (the Arithmetic
Mean and the Borda Count) and four novel methods based on pairwise
comparisons that use the Quicksort algorithm and the Bradley-Terry
model. Limitations and advantages of all methods used are discussed in
Section 5. In Section 6, we introduce the performance measure used to
compare each of the portfolios generated by the six aggregation meth-
ods. Performances are evaluated numerically in Section 7 for various
parameter choices: several of our proposed aggregation methods are
shown to outperform existing ones. Sampling techniques to reduce the
number of comparisons are also presented. Finally, in Section 8, we
summarize and discuss our findings.

2. The Bradley-Terry model

The Bradley-Terry model is a statistical method for ranking » items
based on repeated pairwise comparisons originally introduced to rank
players using tournament outcomes [17,18]. Due to its versatility, the
Bradley-Terry model has been applied to sports rankings, electoral pref-
erences, skill-based matchmaking, psychological research, and in other
domains where relative comparisons are more practical than stand-
alone evaluations. More recently, Bradley-Terry models have also been
used in machine learning [33], to help evaluate LLM outputs [8,34],
and in other problems involving human choice [35-38].

The Bradley-Terry model assumes that outcomes of pairwise com-
parisons between the items to be ranked are known and that each
item has an underlying latent “strength”. These latent strengths are
estimated by maximizing the likelihood of the given pairwise compar-
isons, typically using iterative algorithms [39-41]. Extensions include
allowing items to be tied [42,43], multiple, rather than pairwise,
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comparisons [44], incorporating ordering-based advantages, such as
playing on one’s home-field in sports [45,46], or using only subsets of
comparisons [47].

In the original formulation of the Bradley-Terry model, the items
are n competing players and the pairwise-comparison outcomes w;; are
the number of times player i wins over player j. The latter are also
referred to as win numbers. In our setting, we adapt the model by
replacing the players with n “competing” projects (since not all can
be selected) and by considering, instead of win counts, the probability
wifj that agent ¢ prefers project i over project j. For concreteness, the
exposition that follows illustrates how the latent strengths are obtained
in the original context of the Bradley-Terry model. We later adapt the
procedure to our specific project-selection setting.

Mathematically, the latent strengths of items (players or projects) i
and j are denoted by z; and 7;, respectively; the relative frequency that
i wins over j is x;/(r; + x;). Given the win numbers w;;, and denoting
the strength parameter vector & = (z,, ..., x,)", one wishes to maximize
the log-likelihood function

P
1(n)=zw,.j1n< i )
pryt Tt
=Y wy[In(z) - In(z; + 7).
i#
Maximizing Eq. (1) involves iterative updates of the vector x. Under
certain conditions, this maximization has a unique solution [17]. In
practice, for all i, one can differentiate /(x) with respect to z; and set
the resulting expression to zero, leading to the implicit form

@
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Thus, the updated strength of item i, 7;, is determined via
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where z; and r;,; are the strength parameters prior to the update.
Iterations are repeated until convergence is reached and #; =~ ;.
While this scheme is simple, it can be slow to converge. A more recent
approach is Newman’s method [41]. It is based on the update
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which converges faster than the one in Eq. (3) by a factor of 3 to
100. Convergence speed and stability can be further improved by
including the updated values after each iteration as in the Gauss-Seidel
method [48], leading to
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Once the strength 7; of each item i is determined from Eq. (5), the
vector x is used to generate a global ranking. The strength parameters
can become ill-defined if an item never wins or never loses in the
pairwise comparisons. For example, consider items 1, 2, and 3 with
the following pairing results: 1 wins against 2, 1 wins against 3, 2 wins
against 3; in this case the algorithm leads to 7| diverging to infinity at a
faster rate than z,, while 73 converges to 0. These scenarios, however,
become rarer as the number of items increases.

In our portfolio-selection context, each agent ¢ evaluates n projects
and performs comparisons for all distinct project pairs i, j with i,j €
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{1,...,n} and i # j. Agents do not know the exact value of the projects
they are comparing and can only estimate these values. This uncer-
tainty will propagate to the win number, rendering it a probability. In
the next section, we describe how the “win probability” wi. that project
i is better than project j according to agent ¢ is specifically constructed.
In Section 4, the win probabilities wif _ are aggregated over all agents,
and a collective win probability w/; is derived. The set of all w,fj are
then used in conjunction with the Bradley-Terry model to assign latent
strengths to all projects. To do this, we will use the improved Newman’s
method by setting w;; = wl/,j in the iterative scheme in Eq. (5).

3. Agent evaluations and win probabilities

In this section, we discuss how agents evaluate the n available
projects and perform pairwise comparisons. Building on past work, we
assume that the long-term values of the projects exist and are fixed,
but cannot be precisely determined, leading to noisy evaluations [1,2].
Mathematically, each project i € {1,...,n} is characterized by two
parameters: its type f; € [fpin.tna] and value v; € R*. The value
v; defines the true (but unknown) benefit of project i over a specific
time horizon, if chosen. This “ground truth” value may evolve or
fluctuate over time due to societal shifts, environmental conditions, or
complex interactions with other projects j # i. We do not consider
these external sources of uncertainty in v; and restrict ourselves to each
agent’s uncertainty in the estimation of v; at the time of evaluation. This
leads to subjective evaluations v;, (also referred to as perceived values)
of project i from each agent # € {1,..., N}. To construct v;,, we first
assume that each agent ¢ involved in the decision-making process has

a level of expertise e, € ey, emax] given by
N+1-2¢
== yop P ©

According to Eq. (6) the e, values are evenly spaced across the interval
[emin> €max] := lem — B, em + B1. Here, ey, represents the mean expertise
level and p denotes the knowledge breadth that determines the exper-
tise spread. For mathematical convenience, we set ey; = (f,i, + fmax)/2
so that the mean expertise coincides with the mean project type. The
expertise level distribution in Eq. (6) aligns with typical Hotelling-
type models, where preferences are represented as distances along a
line [49,50]. The values ¢; and e, do not have any specific meaning;
they are simply labels used to differentiate between various types and
expertise levels. However, the alignment between ¢; and e, affects the
accuracy of agent £’s evaluation of project i’s value, v;,. Specifically,
we assume that the noise #;, = v;, — v; follows a normal distribution
centered at the origin with standard deviation o6,, = |f; —e,|. That
is, n;, ~ N, Gizf)’ meaning that the closer the agent’s expertise is to
the project type, the lower the uncertainty. Each project is evaluated
by N agents and their individual preferences are aggregated into a
“collective” estimate. Since we assume resources are limited, we further
impose that only a fixed number »* < n of projects can be included in
the final portfolio. The collective estimate of each project determines
whether or not it is part of the final selection.

We now allow agent # to perform pairwise comparisons between
projects i and j, with estimates v;, and v;,, and uncertainties #;, and
1;¢, respectively. The agent assigns a personal “win probability”
wi :=Pr (l),- > vj) =Pr ((U,f — M) > (vjf - ’7/;’))

=Pr ((’hf —je) < Ui — Ujf))
that project i is better than project j based on their evaluations v/, v;,.
The win probabilities wf . are later aggregated into a collective proba-
bility wl’.j that will be used to determine the relative strength of projects
via Eq. (5). In this formulation, wf - is no longer a count of the number of
times i wins over j as in Section 2, but the likelihood agent ¢ places on i
winning over j given his or her evaluations and uncertainties. Similarly,
wlfj is the likelihood that collectively project i is deemed superior to
project j. Under the assumption that the noise in the perceived value

(7)
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Table 1
Main model parameters. Unless otherwise stated, all parameters are real-
valued.

Symbol Description

NeZt Number of agents

nez* Number of projects (or items)

nteZt, n*<n Budget constraint

i,je{l,....n} Project label

zef{l,...,N} Agent label

v; €R* Value of project i

t; € [tnins Tnax) Type of project i

e, € [enin: emax] Expertise of agent #

p=0 Knowledge breadth of agents

ey Mean expertise level; ey = (fin + fimax)/2
Vip Value of project i, evaluated by agent #

Ny = Uiy — U; Noise of value of project i, associated with agent ¢
o >0 Uncertainty in value of project i, associated with agent #
!

vl Aggregate value of project i over all N agents

wi € (0,1 Win probability of project i over project j from agent £
W’ e, 1)™" Matrix of all win probabilities wf), from agent ¢

w,fl. €(©,1) Aggregated probability of project i winning over project j
W' e (0, )" Matrix of all aggregated win probabilities wl’j

is independently and normally distributed, the difference #,, — 1,
follows a normal distribution, with mean zero and standard deviation
\ /aiz[ + oj?f. We thus rewrite Eq. (7) as

Vi, —U;
Wl =o| —L 7| ®8)

o+ "?f
where @ is the cumulative distribution function of the standard normal
distribution. Eq. (8) quantifies the probability that agent # deems
project i to be better than project j. When the evaluation uncertainty
vanishes, ¢,,,0,, — 0, w’ is 1 for v, > v;, and zero otherwise,
representing an indicator function for project i winning. An immediate
consequence of Eq. (8) is that w’, = 1 - w’,.
Table 1 summarizes model variables and parameters used through-
out this work. In the following section, we introduce six aggregation
methods that, starting from the heterogeneous evaluations provided by
the N agents, determine the n* < n projects to be included in the final
portfolio. Two of these aggregation methods are standard and are based
on the direct value estimates v;,; the other four are contributions from
this study and employ the win probabilities wfj in Eq. (8). We will show
that our proposed aggregation methods, which use win probabilities,
typically outperform those based on value estimates.

4. Aggregation methods and portfolio selection

Once the individual inputs (projects evaluations v;,, or win prob-
abilities wf;.) are known, the challenge is to aggregate them into a
collective output from which the n* < n most desirable projects can be
selected. The optimal aggregation of inputs is a well-studied topic in
voting, social choice, and organizational decision-making, with various
methods having been proposed. These include equal weighting, delega-
tion to experts, majority rule and subgroup biasing [1,2,13]. Additional
considerations such as the presence of hierarchies [51], guaranteeing
system legitimacy and fairness [52,53], avoiding polarization [54] or
budget constraints [15], may also influence the choice of aggregation
method. Fig. 1 presents a schematic of the complete portfolio selection
model we use in this work.

We proceed by illustrating the six aggregation methods used in
this work. Of these six, the first two are existing ones based on direct
evaluations or scores, the other four are novel to this study and use
pairwise comparisons based on the Quicksort algorithm on the Bradley—
Terry model by incorporating the win probabilities in Eq. (8). This
allows to bypass using the direct project evaluations v;,. Of the four
novel methods, two rely on pairwise comparisons between all project
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Each project
is evaluated by
N agents. The
value of project
1 as perceived

by agent £ is

denoted vy,.

Initially, n
projects with
values v; are

proposed,
out of which

n* < n can
be selected.

—>| —>|

Aggregate evalua-
tions, scores, win
probabilities are

Finally, the top
n* < n projects
are selected

computed for all — based on the
n projects using corresponding
suitable aggre- aggregated
gation methods. outcomes.

Fig. 1. Flowchart of the collective portfolio selection process. A set of n projects are proposed and evaluated by N agents. Aggregated evaluations, scores, or
win probabilities are computed, and the top n* < n projects are selected based on these aggregated outcomes.

pairs, while the other two use comparisons restricted to a subset of
projects.

4.1. Aggregation through direct evaluations or scores

(a) Arithmetic mean. This method uses the project estimates v;, from
all N agents and averages them to obtain the aggregated value

N

v = ! ZU

i N it
N&

The n* projects with largest aggregate values v/ are then selected. The
Arithmetic Mean is the most natural aggregation method, in which all
inputs are equally weighted. However, the direct value estimates v;,
may be difficult to ascertain in practice, and outliers can easily bias
the mean. Ranking-based methods, for example using the Borda count,
may be more robust to outliers [2].

©)

(b) Borda count. The Borda Count, introduced in the late 18th century,
is a rank-based aggregation method in which each agent # ranks the
n projects in descending order according to their estimated values
v;y [14]. For each project i, we denote its position in agent £’s pref-
erence list by pos,(i). The aggregated score s; for project i is then
calculated as the sum of the reversed ranks across all N agents. That
is,

10)

5 =

(n = pos,(i)).

M=

A
[IX

The n* projects with the highest aggregated scores are selected for
inclusion in the collective portfolio. This method is particularly robust
against mis-classification and often outperforms the Arithmetic Mean,
especially in conditions of high uncertainty [2].

4.2. Aggregation through pairwise comparisons

(¢) Quicksort. Quicksort is a widely used sorting algorithm that uses a
divide-and-conquer approach to sort items [16]. Its average-case time
complexity is O(n log(n)), making it one of the most efficient sorting
algorithms [55]. Our adaptation of Quicksort for project selection is
presented in Algorithm 1. Quicksort selects a “pivot” project from the
middle of the list of available projects and partitions the remaining
ones into two sublists: one containing projects ranked worse than the
pivot, and the other containing projects ranked better than or equal to
the pivot. This partitioning process is recursively applied to each sub-
list. In our approach, we calculate the aggregated win probability wl’.j
associated with projects i and j as

w;f;, an

M=

1
ij Nﬂ

where wf - is given in Eq. (8), and consider project i to be better than
the pivot p if the aggregated win probability of project i against the
pivot p is at least 0.5, i.e. if wlfp > 0.5. The Quicksort method produces
a list of ranked projects based on their aggregated win probabilities,
from which the best n* are selected.

Algorithm 1 Quicksort with aggregated win-probability matrix

Require: Aggregated win-probability matrix W' of size n x n
Ensure: Sorted index array idx
1: idx « list of integers from 0 to n — 1

2: function Partrtion(low, high)
i« low—1

4: for j < low to high—1 do

5. if W'lidx[j],idx[high]] < 0.5 then
6: i—i+1

7: Swap(idxl[i], idx[j])

8: end if

9: end for

10: Swap(idx[i + 1], idx[high])
11: return i + 1

12: end function

Juy
w

: function QuickSorTRECURSIVE(/ow, high)

14: if low < high then

15:  pi < Partimion(low, high)

16:  QuickSorTRECURSIVE(low, pi — 1)
17:  QUICKSORTRECURSIVE(pi + 1, high)
18: end if

: end function
. QuickSORTRECURSIVE(D, n — 1)
: return idx

NN =
= O

(d) Bradley-Terry method. Here, we build on the Bradley-Terry model
described in Section 2 to aggregate the agent win probabilities wf - and
to select the n* projects to be included in the collective portfolio. The
algorithm is as follows

For each agent, the internal win probabilities wf] are used to
construct a win-probability matrix W7 e (0, 1)™". Since there are
N agents, there will also be N matrices W*.

The aggregated win probabilities w;j are computed from Eq. (11)
and W7. The aggregated values are used to construct the corre-
sponding win-probability matrix W’ € (0,1)™". Win-probability
aggregation methods in alternative to Eq. (11) may also be used.
Newman'’s iteration is used to determine the relative strength of
each project based on W' and Eq. (5).

Projects are selected in descending order of relative strength until
the desired number of projects n* is reached. These are the ones
that will be included in the collective portfolio.

4.3. Aggregation through sampled pairwise comparisons

Since it may not be feasible for agents to perform pairwise com-
parisons across all project pairs, the final two aggregation approaches
we propose include modified versions of Quicksort and of the Bradley—
Terry Method that utilize only a subset of comparisons. Limiting the
number of win probabilities w{} used is a cost-effective strategy, as
each additional comparison requires resources. However, as we show



Y. Ge et al.

vz = 4,031 =3

wly = 0.2397

(),

vy =1,011=3

why = 0.4338

)

Vo1 = 3.570'21 =0.1

1, =0.202

Fig. 2. Comparison of three projects p;, p,, and p; by a single agent. Each node
represents a project and each directed edge represents a pairwise comparison
between projects. Once w}j has been determined, its complement w;i is given

by w}, =1-wj,.

in Section 7, choosing a good sampling protocol can also significantly
enhance performance.

When using only a subset of pairwise comparisons, different sam-
plings can influence the resulting rankings. For example, consider a
single agent evaluating three projects p;,p,,p; with value estimates
vy =1, vy; =3.5, and v3; = 4 with uncertainties 6,; =3, 6,; =0.1, and
03, = 3, respectively. Fig. 2 shows all pairwise comparisons by agent
1. Comparing project p; with project p, results in a win probability
w}, = 0.2024, while comparing project p, with project p; yields w}, =
0.4338. This sequence leads to the ranking: p; > p, > p;, where x > y
indicates that x is strictly preferred over y. However, if we compare
project p, with projects p, and p;, the win probabilities w%z = 0.2024
and wh = 0.2397 produce a different ranking: p, > p; > p;.

Although the ordering may depend on the specific subsample of
comparisons, we explore an O(n) cyclic-graph sampling method, similar
to what has been done in subgraph matching [56]. Our technique
avoids performing all ©(n?) comparisons and can be visualized as
extracting a subgraph from the complete graph generated by n projects.
Given an ordered list of all p; projects such as (p;,p,,...,p,), cyclic-
graph sampling defines a structured subset of pairwise comparisons

(P15 P2, (P2, P3)s -+ s (Py—is Pn)s (P> P1))s 12)

where the parentheses contain pairs of projects to be compared. Out-
comes depend on the initial (p,, ps, ..., p,) ordering.

We now describe two additional aggregation methods that use
cyclic graph sampling and a two-stage approach. In the first stage, an
approximated project ranking is obtained through random sampling
or by applying existing ranking algorithms. This preliminary ranking
then serves as input to the second stage, where cyclic-graph sampling
is used to refine the ranking via an optimization procedure based on
the Bradley-Terry model. Specifically these methods are:

(e) Two-stage Bradley—Terry method.

« First stage: Generate an initial ranking where projects p; (i €
{1,...,n}) are selected uniformly at random without replacement
from the n available ones. Construct a cyclic-graph sampling of
the randomly ordered list as shown in Eq. (12), and for each
of the n pairs calculate wf/. via Eq. (11). Then apply Newman’s
iteration given in Eq. (5) using the win probabilities w;j to obtain
an approximate ranking.

Second Stage: Starting from the approximate ranking, compute
the corresponding win probabilities w/, using the cyclic-graph
sampling in Eq. (12). To further refine the ranking, apply New-
man’s iteration again, using the win probabilities obtained in the
first stage. Set win probabilities that are not calculated in either
stage to 0.
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(f) Two-stage Quicksort.

» First Stage: Instead of relying on randomly selected pairwise
comparisons, apply the Quicksort algorithm to the matrix of
aggregated win probabilities W’ with elements w/. as shown in
Eq. (11) to generate an initial ranking. Sample only the nec-
essary entries of the aggregated win-probability matrix W’ to
keep a O(n log(n)) complexity. Since the underlying estimates are
noisy observations, this Quicksort-derived ranking may deviate
from the true ranking that would be obtained in the absence of
uncertainty.

Second Stage: Starting from the Quicksort ranking, compute the
corresponding win probabilities ng using the cyclic-graph sam-
pling in Eq. (12). Then apply Newman'’s iteration given in Eq. (5)
for a refined ranking. Unlike in the Two-Stage Bradley-Terry
method discussed in (e), only consider win probabilities associ-
ated with the cyclic graph structure and not those obtained in
the first stage.

5. Values, scores, or win probabilities?

We now discuss some of the advantages and limitations of the six
aggregation methods and the quantities they rely on (i.e., values, scores,
and win probabilities). When outliers are present, aggregating win
probabilities using Eq. (11) may be preferable to using the arithmetic
mean in Eq. (9). To illustrate this, consider three agents evaluating
Project 1 and Project 2. The first agent holds a highly favorable view of
Project 1, while the other two agents assign lower value estimates to it.
If the first agent’s evaluation is an outlier — say if v;, approaches infinity
- its influence on the aggregated outcome differs substantially between
the two methods. Under the Arithmetic Mean, the aggregated value for
Project 1, v}, is highly skewed by the outlier and may approach infinity
as well. This disproportionate influence from a single agent distorts the
collective assessment of Project 1’s value. Win probabilities mitigate the
impact of outliers, since they are bounded quantities. Let us assume that
the extreme value from the first agent translates into a win probability
of w}z = 0.98, indicating a strong preference. If the other two agents
provide negative assessments of Project 1 with respect to Project 2,
such as w%z = wfz = 0.2, the aggregated win probability, calculated
using Eq. (11), results in w}, = 0.46. This result is more closely aligned
with the agents’ evaluations compared to the outcome produced by the
arithmetic mean.

Using win probabilities also offers an advantage over the Borda
Count, as it more precisely captures individual preferences through
real-valued probabilities. Consider two agents evaluating Project 1 and
Project 2. The first agent strongly prefers Project 1 over Project 2
(w%2 = 0.8), while the second agent only slightly favors Project 2 over
Project 1 (wf2 = 0.46). The aggregated win probability, w|, = 0.63,
indicates that Project 1 is the preferred choice overall, reflecting the
stronger preference of the first agent. This approach takes into account
the intensity of each agent’s preference. On the other hand, if the
Borda Count is used, each project would receive a Borda score of
1, resulting in a tie. This outcome fails to differentiate between the
strong preference expressed by the first agent and the more moderate
preference of the second.

6. Comparing aggregation methods

Once the six aggregation methods (a—f) have been used to assemble
a final portfolio of n* < n projects, a natural question arises: which
method is the most effective in selecting the most valuable projects?
Recall that agents do not know the actual values v; of the projects
they are estimating and that their decision-making is based on project
estimates v;, that can be quite different from the actual values or on
scores or win probabilities that are also subject to uncertainty. The n*

projects that are selected for inclusion in the collective portfolio can
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thus include projects that were estimated to have high value (or that
ranked high, or that had large win probabilities) but that in practice do
not.

The effectiveness of a given aggregation method can be quantified
in different ways. A performance metric for each method can be defined
by either fixing or averaging over project types and/or fixing a set of
agents or averaging over agent expertise distributions. Here, we choose
to measure an aggregation method’s performance by the expected total
value E(B; N,n,n*) of n* < n projects evaluated by N agents with
knowledge breadth f. The expectation is taken over different project
types, ensuring that the N agents (with knowledge breadth g) achieve
robust performance on average across decision-making scenarios in-
volving heterogeneous projects. The most effective aggregation method
will be the one that yields the highest performance E(#; N,n,n*). In
the absence of uncertainty, E(f; N,n,n*) simplifies to the total intrinsic
value of the most valuable n* projects for all aggregation methods. In
the presence of uncertainty, E(f; N,n,n*) will depend on the chosen
aggregation method.

As an example, consider N = 3 agents, each with a knowledge
breadth g = 0, and n = 3 projects, from which »* = 2 projects must
be selected. The project values are v; = 1, v, = 2, and v3 = 3.
We assume that agents perceive the true project values (ie., v;, = v;
for ¢ € {1,2,3}). Since there is no uncertainty, agents will all select
the two most valuable projects and the performance is calculated as
EB=0;N=3n=3,n"=2)=0,+0; =5.

7. Simulation results

We now compare the performances E(f; N,n,n*) across the six
aggregation methods (a-f) via numerical simulations and determine
which of them yields the highest E(8; N, n, n*). Following prior work [1,
2,15], we assume project types are uniformly distributed according to
U(0,10), so that t,;, = 0, 7,,.« = 10. The expertise value of the central
decision maker is set at ey; = (i, + fax)/2 = 5. We consider n = 30
projects, N = 3 agents, and a target of n* = 15 projects. We define the
value of project i as v; = i with i € {1, ...,30}. The uncertainty in agent
¢’s project evaluations is quantified by additive Gaussian noise with
zero mean and standard deviation ¢;, = |t; —e,|, where the expertise
level e, of agent 7 is given by Eq. (6). Variations in value distribution,
type distribution, and other parameters are known to not significantly
affect the relative ordering of aggregation-rule performance [2].

All our results are based on Monte Carlo simulations. For methods
based on pairwise comparisons and win probabilities, we use 100,000
independent and identically distributed samples. For the remaining
two methods, Arithmetic Mean and Borda Count, which are compu-
tationally less demanding, we increase the sample size to 500,000. The
theoretical maximum performance is 21.3216 v; = Z?gmi = 345.

We consider two scenarios for computing the win probabilities
w,fj. In the first scenario, the probabilities are calculated according
to Egs. (8) and (11). However, in real-world applications of aggrega-
tion methods based on pairwise comparisons and win probabilities,
assigning probabilities with several decimal places may be imprac-
tical. Therefore, in the second scenario, we prespecify a set of win
probabilities from which agents can choose when making pairwise
comparisons.

7.1. Continuous win probabilities

In Fig. 3, we plot the performance E(f) EB;N = 3,n =
30,n* = 15) for the six aggregation methods (a—f) as a function of
knowledge breadth g. Both the Arithmetic Mean and the Borda Count
methods are known to be effective in identifying high-value projects
within a portfolio [2]. In particular, the Borda Count is more robust
to evaluation outliers than the Arithmetic Mean and performs better
across a wide range of parameters. This is observed in Fig. 3, which also
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Fig. 3. Portfolio selection using continuous values of win probabilities. In this
example, n* = 15 projects are to be selected out of n = 30 projects by N =3
agents. We show the performance E(f) = E(f; N,n,n*) as a function of the
knowledge breadth g for the six aggregation methods (a—f). The Quicksort (c)
and Bradley-Terry (d) approaches proposed in this work perform favorably
compared to the existing Arithmetic Mean (a) and Borda Count (b) methods,
especially for larger knowledge breadth values g 2 5.5, which are associated
with larger uncertainties.

shows that Quicksort (c), Two-Stage Quicksort (f), and the Bradley-
Terry method using all pairwise comparisons (d), outperform both the
Arithmetic Mean (a) and Borda Count (b) methods, particularly for
higher . The Two-Stage Bradley-Terry method (e) performs worse
than both the Arithmetic Mean (a) and Borda Count (b) for knowledge
breadths g 5 5.5.

Since the above findings are based on aggregating the evaluations
of only N = 3 agents we also conducted simulations for N = 15 and
N =30 agents to verify how absolute and relative performances would
change upon increasing N. We found that the absolute performance
of all six methods increases with N, while their relative performance
remains similar. Thus, at least for modest N, Quicksort (c), Two-Stage
Quicksort (f), and the Bradley-Terry method using all pairwise compar-
isons (d) emerge as high performing aggregation methods independent
of the number of agents N. Additionally, the performance gap between
the three methods above and the Two-Stage Bradley-Terry method
widens with N. This is because compared to other methods, the Two-
Stage Bradley-Terry method uses a sampling protocol that leaves more
entries in the aggregated win probability matrix W’ empty.

7.2. Discrete win probabilities

In practical applications of the Bradley-Terry method, it may be
necessary to prespecify a set of win probabilities wf;. from which
agents can choose. Limiting probability values to a finite, manage-
able set, may be helpful in decision-making scenarios where high
precision is not feasible. In Fig. 4, we show a comparison of the
aggregation methods (a—f) where the win probabilities for methods (c—
f) are restricted to values taken from a set of 11 possibilities given
by {0.01,0.1,0.2,...,0.8,0.9,0.99}. The relative performance ranking of
the methods remains unchanged. However, the performance values
of Quicksort and Two-Stage Quicksort exhibit a greater difference
compared to the continuous case shown in Fig. 3. Recall that the
Two-Stage Quicksort method employs a refinement stage in which
the final ranking is computed according to Newman’s iteration given
in Eq. (5). While this second stage had little impact on performance
in the continuous case, it substantially affects results when using the
prespecified win probabilities listed above. This is consistent with the
observation that Newman'’s iteration (or similar iterative methods used
in the Bradley-Terry method) performs well even when rankings are
derived from a limited set of tournament outcomes.
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Portfolio selection, discrete win probabilities
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Fig. 4. Portfolio selection using discrete values of win probabilities. We show
the performance E(f) = E(f; N,n,n*) as a function of the knowledge breadth
p for the six aggregation methods (a—f) using the same parameters as in Fig.
3. Here, agents that select projects using win-probability-based approaches,
Quicksort (c), Two-Stage Quicksort (f), Bradley-Terry (d), and Two-Stage
Bradley-Terry (e), are limited to selecting win probabilities from a discrete
set of 11 values: {0.01,0.1,0.2,...,0.8,0.9,0.99}. The Arithmetic Mean (a) and
Borda Count (b) curves are the same as those in Fig. 3 and are included
for reference. The relative ranking of the six methods remains unchanged
compared to Fig. 3 in which continuous win probabilities are used. However,
the difference in performance between Quicksort (¢) and Two-Stage Quicksort
(f) is more pronounced than in Fig. 3.

7.3. Efficiency and scalability

We now estimate the computational cost of each aggregation
method. Aggregating inputs via the Arithmetic Mean does not involve
any pairwise comparisons. However, a single sorting step is still nec-
essary after aggregation to determine which of the n* < n projects
should be included in the final portfolio; if this is done via the standard
Quicksort algorithm, the number of necessary comparisons scales as
O(n log(n)). If projects are instead aggregated via the Borda Count, each
of the N agents must rank their own scores. This requires O(n log(n))
comparisons per agent to produce a ranking if the standard Quicksort
algorithm is similarly used. For the other four methods that are based
on win probabilities, the average number of pairwise comparisons are:

+ Bradley-Terry (c) (all pairwise comparisons): On?)

* Quicksort (d) (without a second refinement stage): O(n log(n))
» Two-Stage Bradley-Terry (e): O(n)

» Two-Stage Quicksort (f): O(n log(n))

In Fig. 5, we show the number of pairwise comparisons for the four
methods above using discrete win probabilities. Since the number of
pairwise comparisons depends on »n and not on the set of possible win
probability values, similar trends are observed for continuous win prob-
abilities. The Bradley-Terry method (c) utilizes all 3030 — 1)/2 = 435
possible comparisons regardless of f. Similarly, the Two-Stage Bradley—
Terry method (e) involves approximately 58 comparisons regardless of
the value of f. For aggregation methods that utilize Quicksort instead
a p dependence emerges: Quicksort (d) (without a second refinement
stage), requires a number of pairwise comparisons that decreases from
265 for f# = 0 to 193 for f = 10. The Two-Stage Quicksort (f) method
results in slightly more comparisons, with 266 for § = 0 and 194 for
g = 10.

The observed decrease in the number of pairwise comparisons
results from the interplay between noise in the estimates and the divide-
and-conquer nature of Quicksort. The algorithm compares elements
against a pivot to split the dataset into two parts. The fastest completion
of the algorithm is when the two parts contain an equal number of
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Fig. 5. Number of pairwise project comparisons across aggregation methods
(c-f) for knowledge breadths g € {0, 5,10} used to determine the performance
E(p) in Fig. 4 using discrete win probabilities. Estimates of the average number
of pairwise comparisons for n are provided in Section 7.3. Although the
Bradley-Terry (d), Quicksort (c), and Two-Stage Quicksort (f) methods achieve
higher performance, the Two-Stage Bradley-Terry (e) method requires the
least number of comparisons, making it the most practical choice for actual
implementations.

projects, while the slowest is when one part contains all projects aside
from the pivot, and the other contains none. As the noise in project
values increases with g, it becomes less likely that highly imbalanced
sublists arise during Quicksort recursions. While larger knowledge
breadth allows Quicksort to be more efficient by requiring fewer num-
ber of pairwise comparisons, its overall performance decreases with g,
but is still higher than or equal to other methods.

Although the Bradley-Terry, Quicksort, and Two-Stage Quicksort
methods exhibit the highest performance in our simulations, the num-
ber of pairwise comparisons they require is likely too high for practical
applications. In contrast, the Two-Stage Bradley-Terry method achieves
favorable performance with significantly fewer comparisons, making
it the most practical approach for real-world use. Further refinements
could include identifying alternative sampling methods analogous to
our cyclic graph approach that maintain strong performance while
reducing the number of pairwise comparisons. Finding ways to spar-
sify the aggregate win probability matrix W’ could also improve the
applicability of our methods.

8. Conclusions

In this work, we compared six aggregation methods (a—f) for se-
lecting project portfolios under uncertainty, including four novel ones
based on pairwise comparisons (c—f). Agents evaluate projects with-
out knowing their long-term value; the accuracy of these evaluations
depends on how well agent expertise matches project types, with
misalignment favoring large errors. How to arrive at a decision? Typ-
ically, direct estimations are collectively aggregated. However, when
estimates are difficult to obtain or when expertise mismatches lead to
outliers, Borda-type methods that rely on rankings offer a more robust
alternative. Yet, generating full rankings can be cognitively demanding,
especially when the number of projects is large.

To improve upon existing methods, we established a connection
between portfolio selection, the Quicksort algorithm, and the Bradley—
Terry model where project rankings are inferred from agent-specific
win probabilities in pairwise comparisons. Based on this, we pro-
posed four new aggregation methods. The first extends Quicksort to
rank projects using aggregated win probabilities with a computational
complexity of O(n log(n)); the second uses Newman’s method with a
complexity of O(n?). To further lower the number of required com-
parisons, we incorporated a cyclic-graph sampling technique to both
approaches, yielding two other aggregation methods of computational
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complexity O(n) (Two-Stage Bradley-Terry) and O(n log(n)) (Two-Stage
Quicksort).

Our methods are relevant to participatory budgeting, social choice,
organizational decision-making, and other resource allocation problems
that involve decision-making under uncertainty. Our sampling and
ranking methods can also be applied to rank foundation models such
as LLMs.

Note that our analysis assumed uniform project costs, distributions
over a single type variable, and a single set of project values. These sim-
plifying assumptions can be relaxed to explore heterogeneous project
costs and varying type and value distributions, providing a more realis-
tic setting and additional insight into the determinants of performance
in pairwise aggregation methods. Depending on context, it may also
be useful to incorporate delegation strategies, querying only agents
with relevant expertise, or to use alternative aggregation methods, such
as the median instead of the mean. Exploring how agent interactions
influence evaluations, for instance via social influence network models,
could also offer valuable insights [57-59].
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